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Abstract 
There are well-understood benefits of designing intelligent interactive systems to 

support mixed-initiative interaction, in which there is a back-and-forth dynamic 

between user and system. We explore the effects of introducing rhythmic 

elements into this interaction, building on the phenomenon of conversational 

entrainment in human-to-human conversation. We demonstrate that well-chosen 

rhythms reduce user stress, increase confidence, and improve the sense of agency 

through which a person feels in control of their own actions. We apply these 

findings in the context of a simple intelligent labeling system (based on a 

deployed product), showing that a more conversational dynamic in labeling 

retains all of the above benefits, while also improving accuracy of user 

contributions by comparison to the currently universal design approach in which 

the user is solely responsible for maintaining any rhythm in interaction events. 

Keywords: mixed initiative interaction; labeling; agency; interaction timing; 

rhythm 
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Introduction 

Machine learning algorithms often need to be trained with sample datasets, prepared by 
humans who label the content manually. However, data labeling is tedious and 
repetitive, with humans often replicating trivial decisions that could have been 
automated, and not getting sufficient time to devote to cases where their judgment 
would have added more value. Much recent research has therefore focused on 
approaches to labeling that optimize information gain by assisting the user with trivial 
cases, or directing them toward more complex ones, so that the user can devote time and 
attention to subtle cues and ambiguous cases, potential bias (e.g. Binns, Veale, Van 
Kleek & Shadbolt, 2017), or inventing new label categories (e.g. Kulesza, Amershi, 
Caruana, Fisher & Charles, 2014).  

The consequence of this increasingly common strategy is that labeling interfaces 
become more conversational. The system is providing implicit feedback to the user 
about the model under development, while the user’s decisions on more difficult cases 
are implicitly challenging the system to update the model it holds. Such a perspective 
shifts from the relatively predictable view of machine learning, in which facts are 
simply repeated until the machine retains them, to one that more closely imitates 
teaching and learning situations between two humans, where the knowledge being 
acquired is dialogically shared, probed and questioned as in a conversation. 

We report investigations into a particular characteristic of human conversation 
that has not previously been explored for its relevance to interactive machine learning - 
rhythmic timing in conversation. This can be contrasted on one hand to earlier models 
of “dialog” in HCI where the user takes the initiative, issuing commands while the 
system responds with information as soon as it can in order to be seen as “smooth” 
(Miller, 1968; Nielsen, 1993), or on the other hand to task optimization models where 
the system takes the initiative, prompting for information that is supplied by the user as 
quickly and efficiently as possible, with minimum latency (Bernstein, Brandt, Miller & 
Karger, 2011). In mixed initiative interaction (Horvitz, 1999), neither of these existing 
design models is appropriate, and we suggest that attention to rhythm and timing 
becomes far more important. 

In design approaches where the system has the potential to complete the user’s 
actions, or even to take the initiative and make decisions, there will be a back-and-forth 
flow of initiative between the user and the system, resembling participatory turn-taking 
in human conversation. In human conversation1, poorly timed participation is associated 
with negative or inappropriate social effects (see, e.g., Richardson, Dale & Kirkham, 
2006; Benus, Gravano & Hirschberg, 2011). We ask: during mixed-initiative interaction 

 

1 While the HCI field has explored conversational interaction design using Grice’s Maxims for human-human 
conversation (Grice, 1975), existing research places more focus on the logic or content of the interaction (i.e. 
quality, quantity, relevance, and manner) (Brennan & Hulteen, 1995; Kehler, 2000). Our research is concerned 
with whether or not the temporal coordination (or the “turn-taking”) aspect in interpersonal conversation can also 
inform HCI design. 



Yu, Blackwell & Cross: Rhythmic Agency 

 3 

such as interactive labeling, how do the rhythmic timing characteristics of the 
interaction influence users’ experience, and how should these be designed? 

After a review of relevant literature, the remainder of this paper presents two 
experiments. The first lays the ground for understanding user perceptions of rhythm 
when interacting with a system during controlled experimental tasks. The second 
applies those results to an intelligent labeling application, showing that the user 
perceptions resulting from changes in rhythm do persist in realistic task contexts. 
Finally, we show that rhythm which mimics human conversational patterns results in 
improved accuracy for labeling, by comparison to the currently standard design 
approach in which the user is free to set their own rhythm when making labeling 
decisions. 

Literature review 

Conversational labeling 

Labeling lays the foundation for the supervised training of machine-learning based 
artificial intelligence (AI) algorithms (Brodley, Rebbapragada, Small & Wallace, 2012). 
The primary purpose of labeling is to construct a training dataset that exemplifies 
human subjective interpretation - considered to be the “ground truth” of human 
intelligence for AI tasks such as language interpretation, social judgements, creative 
expression or emotion classification. Based on these labeled datasets, AI classifiers 
emulate human intelligence and replicate human judgements (Ware, Frank, Holmes, 
Hall & Witten, 2001; Blackwell, 2015). Well-established research resources have been 
constructed this way. For instance, the ImageNet database offers “millions of cleanly 
sorted images” to train computer vision and pattern recognition algorithms (Deng, 
Dong, Socher, Li, Li & Li, 2009), while in more subjective tasks such as emotion 
recognition, human experts are recruited to label corpuses of naturalistic expressions in 
order to train affective computing systems that reflect human responses (Afzal & 
Robinson, 2014). 

In business applications of machine learning classifiers, it is often the case that a 
high-quality labeled dataset is not available - for example, because the cost of labeling 
would be prohibitively expensive, or because a newly established business has not yet 
collected sufficient customer data for reliable training. Furthermore, while research into 
machine learning primarily aims to improve the proportion of correct classifications, 
commercial users of machine learning classifiers must often pay more attention to 
incorrect classifications, since these are the points at which software automation fails, 
and business processes must rely on manual correction to complete transactions. 
However, manual data labeling is tedious and repetitive, with humans often replicating 
trivial decisions that could have been automated, and not getting sufficient time to 
devote to cases where their judgment would have added more value. 
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These pragmatic considerations have led to the development of interactive 
machine learning systems, such as Microsoft Excel FlashFill, BrainCel, Gneiss, etc. 
(Gulwani, 2011; Sarkar, Jamnik, Blackwell & Spott, 2015; Chang & Myers, 2014), in 
which labeling is carried out “online”, with feedback from the partially-trained classifier 
being used to inform the user about current performance and potential weaknesses of 
the statistical model so far, and users being provided with tools to correct the model (for 
an early paradigm of interactive model construction in the HCI literature, see Fails & 
Olsen Jr, 2003). This process of interactive labeling can be considered as a variety of 
programming by example, where the user causes the system to work as desired by 
demonstrating how it ought to behave (Lieberman, 2000; Menon, Tamuz, Gulwani, 
Lampson & Kalai, 2013). From this perspective, the process of observing system 
behavior and providing new labels to correct erroneous behavior is a kind of debugging 
(Kulesza, Burnett, Wong & Stumpf, 2015). Through direct interaction with data, it is 
likely that future semi-automated classification and inference systems will routinely 
demonstrate mixed-initiative interaction characteristics (Sarkar et al, 2015). 

Throughout the development of interactive information systems, encompassing 
many kinds of user interface, the conventionally expected design goal has been for 
systems to respond as quickly as possible to user actions. This is ideal when the user is 
taking the initiative and issuing commands. A few researchers have also experimented 
with increasing productivity in labeling applications, by forcing the user to respond at a 
rhythm set by the system, faster than the user would work by preference. This typically 
leads to an increase in errors, due to speed-accuracy trade-offs, but potentially 
compensated by the overall improvement in efficiency that can be obtained by 
comparing a greater number of user judgments (Krishna, Hata, Chen, Kravitz, Shamma, 
Li & Bernstein, 2016). 

However, in mixed initiative situations - including conversational approaches to 
intelligent labeling - the system has the potential to automatically complete the user’s 
actions, take the initiative or make independent decisions. As a result, there will be a 
back-and-forth flow of initiative between the user and the system, resembling 
participatory turn taking in human conversation. In order to design such systems, it is 
necessary to have greater understanding of the temporal dynamics in such 
“conversation”. 

Rhythmic agency in mixed-initiative interaction  

Traditionally, human-computer interaction design was based on the assumption that the 
user was the decision maker and the initiator of an action, and the computer system was 
the responder, executing the user’s commands. Within this dynamic, the user typically 
expects that the faster the system responds, the better control he/she has, and indeed 
much engineering of traditional user interfaces has been dedicated to minimizing system 
response times, with consequent improvements in subjective user experience. However, 
recent developments in intelligent user interfaces, including interactive labeling systems 
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of the kind discussed in the previous section, aim to sometimes make decisions and take 
actions on the user’s behalf, meaning that the nature of the interaction has changed to 
mixed-initiative. Here, both the user and the system can take the initiative, and the 
control is passed back and forth between the user and the system (Horvitz, 1999). 

This new dynamic poses new challenges to interaction design. A key usability 
issue is how to “support the user’s internal locus of control” (Shneiderman, 2010) 
during the handover of initiatives, especially when the system increasingly appears to 
have autonomy. Recent studies have described users’ sense of control as the experience 
of agency (Haggard & Tsakiris, 2009), a concept derived from earlier philosophical and 
psychological theories (Bratman, 1999; McCann, 1998). By definition, the experience 
of agency arises when a person feels that he/she is in control of his/her actions, and is 
responsible for, or has the ownership of, the consequences those actions have caused in 
the external world (Coyle, Moore, Kristensson, Fletcher & Blackwell, 2012). HCI 
researchers have approached this topic from several angles, for example looking at the 
effect of adopting different input modalities (Coyle et al. 2012; Limerick, Moore & 
Coyle, 2015), and of improving output quality and feedback channels (Chafe, 1993; 
Farrer, Bouchereau, Jeannerod & Franck, 2008; Berthaut, Coyle, Moore & Limerick, 
2015).  

Timing of action and response is a property inherent in all kinds of interaction, 
with several implications for usability beyond the mundane question of minimizing 
system response time for optimal task duration (i.e. the system-rt factor in GOMS-style 
analysis (Gray, John & Atwood, 1993)).  

Firstly, timing is a crucial cognitive factor when the user is building a “causal 
link” between an action and its consequence(s). Sense of agency relies implicitly on this 
causal link. However, this sense can easily be impaired if the consequence is presented 
with poor timing, for instance if it is too early, to an extent that it may appear to have 
causes that precede the action, or if it is too late to be linked and recognized as caused 
by that action (Wegner & Wheatley, 1999; Moore & Obhi, 2012).  

Secondly, the timing of external stimuli can affect cognitive function. 
Neuropsychological studies provide evidence that rhythmic stimuli help the brain form 
temporal expectations, based on which target events can be selectively attended to. This 
can enhance signal detection whilst optimizing the allocation of cognitive resources. 
Previous research also suggests that a pre-occupied mind is less likely to feel “in 
control” because establishing causal links requires cognitive resources (Hon, Poh & 
Soon, 2013), meaning that predictable timing in the interaction can potentially allow us 
to feel more control. Thirdly, timing can influence interaction experience. Studies in 
social psychology and music performance have shown the beneficial aspects of 
rhythmic entrainment. Entrainment is when people adapt to each other’s rhythm and 
eventually align their behaviors in time, just as in physical systems such as coupled 
pendulums that will gradually adjust themselves to fall into the same period or phase 
(Clayton, Sager & Will, 2005). Entrainment can improve the temporal predictability of 
an interaction, which allows people to build mutual trust and empathy and induces pro-
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social behaviors (Knight, Spiro & Cross, 2017). Despite this previous research 
demonstrating the influence of rhythmic interaction in human cognition, rhythmic 
timing has not yet been considered as a design element when building mixed-initiative 
applications such as interactive labeling systems.  

The following sections investigate the potential of timing as a design resource 
for interactive labeling through two empirical studies: one investigating the effect of 
alternative interaction rhythms on subjective factors in user experience, and the second 
investigating the consequence of applying the same rhythms in a practical design 
context for interactive labeling.  

Experiment 1 

The first phase in this research used established experimental paradigms to investigate 
whether interaction rhythm does have a reliably measurable effect on the user 
experience of agency as hypothesized. We summarize two experiments that were 
previously reported at the British HCI conference. The present paper summarizes those 
experiments, with new statistical analysis of the results. Readers interested in more 
details of the experimental procedure can refer to the previous publication (Yu & 
Blackwell, 2017). 

This experiment is reported in two parts: the first exploring the effect of rhythm 
during on-screen interaction with visual prompts, and the second exploring interaction 
in response to audio stimuli. The same participants were used in both parts, which were 
administered consecutively in a single session for each participant. The use of audio 
stimuli in the second part, although less representative of user interface design, allows 
us to apply an experimental paradigm that was originally developed to investigate 
perception of agency in neuroscience research. As described below, this “Libet clock 
method” allows us to measure the phenomenon of “intentional binding,” which creates 
an illusion resulting in time errors when reporting the time of events while attending to 
a moving clock. 

In each part of the experiment, and throughout this paper, we report the effect on 
the user of four different experimental conditions, as follows: In condition Computer-
sets-Rhythm (CR) the Computer takes the initiative using rhythmic - or “periodic2”, to 
be precise - timing. In condition Computer-Arrhythmic (CA) the Computer takes the 
initiative using aperiodic time intervals. In condition User-sets-Rhythm (UR) the User 
takes the initiative, setting their own rhythm, typically approximating to a regular time 
period between clicks. In condition User-followed-by-Computer (UC) the User again 

 

2 Though rhythm is often used interchangeably with the term periodicity (Patel, 2010), “being periodic” is a stricter 
criterion than “being rhythmic”: while any series of events in time can comprise a rhythm, only the series that has an 
underlying beat structure is periodic. In other words, all periodic processes are rhythmic, but not all rhythmic 
processes are periodic.  
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takes the initiative, and the Computer follows the period set by the user, imitating 
conversational entrainment between humans. 

After each condition, participants completed the NASA-TLX scale (Hart & 
Staveland, 1988) to assess mental demand, physical demand, temporal demand, 
performance, effort and frustration on 6 separate 21-gradation sub-scales (5-point steps 
within 100 points) presented on the screen. We also asked participants to rate the 
following 5 items: a) “The software adapted to me” vs. “I adapted to the software”; b) “I 
was controlling the pace” vs. “The software was controlling the pace”; c) “The software 
intended to help me” vs. “The software intended to challenge me”; d) “I felt relaxed 
during this task” vs. “I felt stressed during this task”; and e) “I felt confident in my 
answers” vs. “I felt unconfident in my answers”. 

We recruited 22 participants from informal networks among staff and students 
of the University of Cambridge. A small gift was given in appreciation of their time. 
The experiment was reviewed by the ethics committee of the Cambridge University 
Computer Laboratory. 

Experiment 1a: Visuo-spatial presentation task 

Participants were told that this experiment would study “how people follow various 
sequences of events on a screen”, not mentioning timing or rhythm. The procedure had 
three stages. In each stage, participants had to attend in a clockwise sequence to targets 
at four screen locations (upper left, upper right, lower right, lower left). In the target 
stage, a cross was shown in sequence at each of the four locations. In CA and CR 
conditions, the user simply observed the crosses appearing. In UR and UC conditions, 
the user clicked on each cross as it appeared, with the system monitoring the timing 
used. In the presentation stage, a different shape was shown in sequence at each of the 
four locations. In the CA, CR and UC conditions, the user simply observed the shapes. 
In the UR condition, the user clicked each shape as it appeared. In the recall stage, the 
user was asked to recall which shape had appeared in each location in turn: the system 
displayed the four possible shapes in an on-screen menu at each location, and the user 
had to click on the one they remembered being there. Before the three stages, the user 
carried out a simple practice task, clicking around the four locations for 30 rounds. 
During this practice task, the user was told to click at a rate they found comfortable, 
while the system recorded the average rate of clicking. 

The rhythmic behavior of the system in the four conditions was varied as 
follows: In the CA condition, the time intervals between stimulus presentations were 
randomized. In the CR condition, all stimuli were presented periodically, appearing at 
regular intervals (using the “comfortable” rate observed during the practice task). In the 
UR condition, the user sets the rhythm (period) in all stages, by choosing the speed at 
which they click. In the UC condition, the system observes the period of the user clicks 
in the presentation stage, and then imitates the same period in the recall stage. The order 
of these four conditions was randomized across participants. In conditions CA, UC and 
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UR3, the intervals between events are compared, testing for cross-correlation 
coefficients between the series of user click intervals and the series of visual stimuli 
presentation intervals. Cross-correlation is a measure for the “similarity of two 
interacting series as a function of the displacement of one relative to the other” (Boker, 
Rotondo, Xu & King, 2002), with its value ranging between 0 and 1. Increased value of 
the cross-correlation coefficients between user intervals and system intervals provides a 
measure of rhythmic entrainment between the two. 

Experiment 1b: Auditory presentation task 

Experiment 1b used the same set of experimental conditions (CA, CR, UR, UC), but 
with auditory rather than visual stimuli - a simple series of beeps. Participants were told 
that the purpose was to explore “how people follow various sequences of sounds from a 
computer”. In place of the practice task, the user explicitly chose their preferred period 
by adjusting a slider, then clicking to confirm after hearing 16 beeps at that steady 
speed. 

In all four conditions, the participant watched the rotating sweep hand on a 
“Libet clock” while listening to a series of beeps. When the beeps stopped, they 
reported the perceived clock time at the last beep. The series ended after (randomly) 7, 
8, 9 or 10 beeps, so that the participant could not anticipate when the end would come. 
In the CA condition, the interval between the beeps was irregular. In the CR condition 
the beeps occurred at the preferred constant speed. In the UC condition, participants 
clicked a button to make the computer beep the first 4 times, after which the computer 
system continued to beep at the speed of their clicks. In the UR condition, participants 
continued clicking the button at their own pace throughout. The sequence of these four 
conditions was randomized across participants. 

The Libet clock method relies on the “intentional binding” illusion that occurs 
naturally when people feel in control of their actions (also described as “sense of 
agency”), first applied in HCI research by Coyle et al. (2012). If a person believes they 
are in control of an action, this illusion causes them to perceive the outcome (of that 
action) as happening earlier than its actual time. Conversely, if a person does not 
assume control of an action, they perceive the outcome as happening later than its 
actual time. In other words, the perceived time interval between an action and the 
outcome is shortened when a person feels in control, and is prolonged when they do 
not.  To measure this effect, we followed the standard approach in Libet clock 
experiments: the participant reported the position where they saw the rotating clock 
hand at the time of the last beep, and we calculated the error in this report that results 

 

3 In CR condition, the system intervals were strictly periodic, of which the 
standard deviation was 0, hence the cross-correlation formula (see Boker, Rotondo, Xu 
& King, 2002) was not applicable to CR condition. 
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from the illusion. The direction (e.g. positive / negative) and size of the error can 
implicitly measure participants’ experience of being in (or out of) control and to what 
extent they feel so (Libet, Gleason, Wright & Pearl, 1983). Participants practiced each 
condition three times, then repeated the task 30 times. After each block, participants 
also provided the same subjective ratings as before. 

It is worth noting that explicit measures (such as self-report) and implicit 
measures (such as intentional binding) of sense of agency (SoA) are often, though not 
always, congruent (Moore, Wegner & Haggard, 2009; Ebert & Wegner, 2010). One 
theory is that the sense of agency consists of heterogenous dimensions, and explicit and 
implicit measures to date offer different accounts of the sense of agency (Synofzik, 
Vosgerau & Newen, 2008): while implicit measures such as intentional binding may 
represent the feeling of agency (FoA), which is passive, primary and perceptual 
(Synofzik et al., 2008), explicit measures such as self-report represents the judgement of 
agency (JoA), which is an active and reflective attribution process on a conceptual level 
(Ebert & Wegner, 2010; Gallagher, 2007). Nevertheless, both FoA and JoA contribute 
to the overall SoA, and one may be more prominent than the other depending on the 
“context and task requirements” (Synofzik et al., 2008; Ebert & Wegner, 2010).  

The sequence of the four experimental conditions (CA, CR, UR, UC) in both 
parts of the experiment were counterbalanced, though the two parts (1a, 1b) were not, 
which might have introduced a learning bias. However, this risk was partially mitigated 
given that the task design for each part of the experiment was sufficiently different and 
challenging (e.g. memorizing randomized visual prompts, attending to randomized beep 
sounds while observing a Libet clock), and each participant was given a short break and 
a new task brief before part two, asked to choose a preferred baseline rhythm (which 
would be used in CR, and to generate randomized CA intervals around it) to listen to 
using a slider, as well as to try 3 rounds in each condition as warm-up before proceeding 
to the formal tasks. 

Results 

Experiments 1a and 1b both compare measures in the four conditions {CA, CR, UR, 
UC}. In the following analyses, we first report an omnibus test to determine whether 
there is any statistically significant difference between the four conditions. If a 
significant difference is found, we then carry out contrast analysis (Rosenthal, Robert & 
Rosnow, 1985; Haans, 2018) to test whether the ordering of the measured values in the 
four conditions supports hypotheses in relation to sense of agency. Bonferroni 
adjustment is applied to these significance tests (i.e., where k tests are carried out, α = 
0.05/k). Not all measures follow a normal distribution - we report this for each measure 
(based on Shapiro-Wilk test for normality), and use a non-parametric test whenever the 
data is not normally distributed. 
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Results for Experiment 1a 

Sense of control: Participants’ subjective ratings of sense of control were not normally 
distributed. An omnibus Friedman test confirmed that experimental condition did have a 
significant effect on participants’ perceived sense of control (χ2 = 43.340, df=3, p < 
0.001). Contrast analysis with a linear model (CA < CR < UC < UR) confirmed that 
more predictable, approximately periodic, user-led rhythm did increase the user’s sense 
of agency (F(1, 21) =MS/MSe = 715322.227/14079.751 =50.805, p < 0.001). 

Perceived task stress: Participants’ responses on TLX sub-scales were not normally 
distributed. An omnibus Friedman test found that experimental condition had significant 
effects on perception of physical demand (χ2 = 12.277, df=3, p=0.006), task success (χ2 
= 13.206, df=3, p=0.004) and effort (χ2 = 9.332, df=3, p=0.025). Contrast analysis with 
a linear model (CA < CR < UC < UR) confirmed that more predictable and user-led 
rhythm was associated with perceived task success (F(1,21) =MS/MSe 
=721.636/109.160 =6.611, p =0.018). In conditions UC and UR, the user is required to 
click more often, and contrast analysis confirmed that participants noticed this increased 
physical activity (F(1,21) =MS/MSe =1298.227/98.703 = 13.153, p = 0.002). To 
explore perceived effort, we considered whether the UC condition would be perceived 
by the user as involving greater responsibility for establishing the dyadic rhythm. We 
therefore tested two contrasts: linearly reducing effort (CA > CR > UC > UR), and a 
cubic model reflecting greater perceived effort in UC. Contrast analysis (after 
Bonferroni correction) confirmed this second model (F(1,21) =MS/MSe =744.727 / 
79.775 =9.335, p=0.006). 

Rhythmic entrainment: The intervals in the CR condition do not vary over time, so 
cross-correlation coefficient is calculated only for conditions {CA, UC, UR}.  These 
coefficients were normally distributed. An omnibus ANOVA confirmed that the 
experimental condition had a significant main effect (F =MS/MSe = 0.733/0.023 
=31.630, df=2, p<0.001). Entrainment results from two agents accommodating their 
rhythm to each other, so we expect to observe an entrainment effect in condition UC, 
where the computer follows the rhythm set by the user. To test whether cross-
correlation is greater in UC than the other two conditions, we use a quadratic model 
(CA < UC > UR). Contrast analysis with a quadratic model confirmed that rhythmic 
entrainment does result in greater cross-correlation in the UC condition (F(1,21) 
=MS/MSe = 15.989/0.203 =78.717, p<0.001). 

Recall accuracy: The numbers of stimuli correctly recalled were not normally 
distributed. An omnibus Friedman test indicated a marginally significant main effect (χ2 
= 8.497, df=3, p=0.037) across the four conditions. However, despite participants’ 
subjective impression that they had been more successful in the more rhythmic 
conditions, contrast analysis with a linear model (CA < CR < UC < UR) showed that 
influence of rhythm on recall performance, although having a tendency in the expected 
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direction, was not statistically significant (F(1, 21) =MS/MSe = 192.045/132.807 
=1.446, p=0.243). 

Results for Experiment 1b 

Sense of control: Participants’ subjective ratings of sense of control were not normally 
distributed. An omnibus Friedman test confirmed that experimental condition did have a 
significant effect on participants’ perceived sense of control (χ2 = 43.248, df=3, 
p<0.001). As in experiment 1a, contrast analysis with a linear model (CA < CR < UC < 
UR) confirmed that more predictable, approximately periodic and user-led rhythm did 
increase the user’s sense of agency (F(1,21) =MS/MSe =1093146.183/18314.087 
=59.689, p < 0.001). 

Intentional binding: The estimation errors between outcome event and reported Libet 
clock readings were normally distributed. An omnibus ANOVA confirmed that the 
experimental condition had a significant main effect on intentional binding (F= 
MS/MSe = 46384.201/5062.114 =9.163, df=2, p<0.001). Our hypothesis was that the 
intentional binding effect would increase with more predictable and user-led rhythm. 
Contrast analysis using a linear model (CA < CR < UC < UR) confirms this effect 
(F(1,21) =MS/MSe =2311110.291/102964.616 = 22.446, p < 0.001).  

Judgment of agency: It is not always the case that subjective judgement of agency 
(JoA), corresponds directly to the feeling of agency (FoA) as measured by the 
intentional binding effect (Synofzik et al., 2008). We tested this association using the 
Spearman Rank-order Correlation Test (noting that subjective reports were not normally 
distributed), finding a strong positive correlation (r=0.249, p=0.019). These findings 
indicate that temporal structure of an interaction can affect both FoA and JoA when 
users are forming experiences of agency (Wegner & Sparrow, 2004; Moore, Wegner & 
Haggard, 2009). 

Perceived system adaptation: Participants’ ratings of how adaptive and helpful the 
system was were not normally distributed. An omnibus Friedman test confirmed that 
experimental condition did have a significant effect on participants’ rating of both 
perceived adaptivity and perceived helpfulness of the system (χ2 =18.192, df=3, 
p<0.001; χ2 =18.269, df=3, p<0.001). In the UR condition, the computer does not need 
to adapt to the user, so we expect a quadratic trend (CA<CR<>UC>UR) in these two 
ratings. This was confirmed for both adaptivity (F(1,21) =MS/MSe = 
11546.182/2311.229 = 4.996, p = 0.036) and helpfulness (F(1,21) =MS/MSe 
=15290.909/1321.385 =11.572, p = 0.003). 

Perceived stress: As in experiment 1a, ratings on TLX sub-scales were not normally 
distributed. An omnibus Friedman test confirmed that experimental condition did have a 
significant effect on perceived mental demand (χ2 = 9.690, df=3, p=0.021) and 
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perceived effort (χ2 =15.426, df=3, p=0.001). Contrast analysis with a linear model (CA 
> CR > UC > UR) confirmed that more predictable and user-led rhythm had resulted in 
less perceived mental demand (F(1,21) =MS/MSe =1891.636/135.827 = 13.927, p = 
0.001) and task effort (F(1,21) =MS/MSe = 1106.182/80.087 = 13.812, p = 0.001).  

This was further corroborated by participants’ reported ratings of 
relaxation/stress. An omnibus Friedman test confirmed that experimental condition did 
have a significant effect on perceived relaxation/stress (χ2 =11.816, df=3, p=0.008). As 
in experiment 1a, contrast analysis with a linear model (CA < CR < UC < UR) 
confirmed that more predictable and user-led rhythm did reduce perceived stress 
(F(1,21) =MS/MSe = 67765.500/6682.071= 10.141, p = 0.004). 

Confidence: participants’ ratings on TLX perceived task successfulness subscale were 
not normally distributed. An omnibus Friedman test confirmed a significant effect (χ2 
=12.672, df=3, p=0.005), and as in experiment 1a, contrast analysis with a linear model 
(CA < CR < UC < UR) confirmed that more predictable and user-led rhythm did make 
participants perceive the tasks as more successful (F(1,21) =MS/MSe = 
1222.545/90.450 = 13.516, p = 0.001).  

This was further corroborated by participants’ reported ratings of confidence in 
their own answers, which were also not normally distributed. An omnibus Friedman test 
confirmed that experimental condition did have a significant effect on this confidence 
(χ2 =18.722, df=3, p<0.001). Contrast analysis with a linear model (CA < CR < UC < 
UR) confirmed that more predictable and user-led rhythm did increase participants’ 
confidence (F(1,21) =MS/MSe =67101.136/5652.374 = 11.871, p = 0.002).  

Experiment 1 Summary 

These preliminary experiments have demonstrated that manipulating rhythmic elements 
of interaction does influence the user’s perception of that interaction in a controlled 
experimental context, including: the feelings of agency that support a sense of control; 
temporal entrainment that is typical of natural human conversation; and perceptions of 
effort, stress and task performance. We have demonstrated those effects using 
controlled experimental tasks designed specifically to measure them, but the next 
question is whether the same effects will be observed in a more realistic interactive 
application, especially an application of the type where machine learning or other AI 
methods might result in mixed initiative experiences such as conversational interaction. 
We therefore designed a second experiment, to test whether similar effects are observed 
during realistic interaction with an intelligent system. 
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Experiment 2 

In this experiment we wished to investigate how the user’s interaction behavior and 
sense of control would be affected by the rhythmic aspects of interaction in an AI-
assisted labeling system. The design of the system was inspired by CODA (Blackwell et 
al, 2018), an open source web-based tool that was originally created to support 
researchers from Africa’s Voices Foundation (AVF) in efficiently analyzing large 
numbers of short texts (> 250,000 text messages). Current applications of CODA 
include collating public understanding of the COVID-19 pandemic in Kenya, or 
understanding maternal health issues among displaced populations in Somalian refugee 
camps. AVF staff are typically translator/researchers who read messages in a local 
language (often informal or using hybrid slang), in order to categorize and review them 
thematically. CODA was designed to make this process more efficient by enabling a 
conversational interaction style. 

When an AVF researcher uses CODA, text messages are initially presented in a 
black and white table. As the researcher labels each message with a thematic code, the 
color of the row changes to show which theme it has been labeled with. The table is 
progressively colored in as the researcher labels more messages (Blackwell et al., 2018). 
At the same time as CODA is populated with manual labels, natural language 
processing algorithms are able to offer semi-automated decision support: based on the 
labeling decisions already made by the researcher, CODA infers the potential label for 
unlabeled messages and pre-colors those rows. This system initiative is communicated 
by using different shades of the theme colors, where the level of color saturation 
corresponds to the level of the statistical confidence of the inferred labels. Researchers 
are able to structure their work for efficient construction of thematic categories, re-
ordering the rows by theme (to either confirm or correct thematic groups) or by 
confidence, to address the most ambiguous cases or to provide training cases that will 
contribute to low-confidence regions of the language model. 

The main purpose of AI-assisted labeling systems like CODA is to allow human 
experts to make the most efficient use of their valuable time, to “get the greatest benefit 
from their analytic decisions” (Blackwell, 2015), but the temporal aspects of such 
interaction have not been manipulated in previous design work, nor has the impact on 
users’ sense of control been assessed. We therefore created an experimental labeling 
interface with presentation and visual style similar to CODA. Our motivation in using a 
design similar to an existing product was to provide improved external validity for the 
experimental study, while making a customized version of this tool meant that the 
labeling tasks could be constructed in a controlled manner in order to investigate the 
effects of timing on interaction. This approach is comparable to previous user-centered 
investigations of intelligent labeling systems, such as the “AutoCoder” UI that was 
created by Holliday et al. (2016) to investigate user trust in automated labels. 



Yu, Blackwell & Cross: Rhythmic Agency 

 14 

An imaginary task scenario (simplified by comparison to the work of AVF, and 
related to situations that would be familiar to experimental participants recruited in the 
UK rather than public health in Africa) was developed as follows: 

An online shopping mall has a data center. Recently they developed a few 
machine learning algorithms, which can process customers’ enquiry 
messages, and automatically label messages into several categories, such as 
‘delivery’, ‘exchange and return’, ‘membership’ and so on. 
However the performance of those algorithms are quite poor at the moment, 
and the system often makes wrong judgements. Therefore they are now 
recruiting people to manually train the algorithms, to make them better. 
As one of the first steps, the data center wants to let the algorithms judge 
whether an enquiry message is about ‘product delivery’ or not. 

In order to minimize participant bias caused by experimental expectation, we introduced 
the experiment by telling participants that our goal was to “study the efficiency and 
performance of different database algorithms developed for an online shopping mall 
data center, which will be trained during their interaction with users in order to achieve 
better sentence processing and automatic labeling”. We informed participants that their 
task was to “check the system’s judgment on each message by clicking the ‘Correct’ or 
‘Wrong’ button”. We did not mention timing or rhythm in the briefing. We further 
explained that in this study they were only expected to distinguish whether a message 
was about “product delivery” or not, and we gave them a definition of product delivery 
and a list of relevant keywords.  

 

Figure 1 - the experimental labeling interface, in the style of the 
CODA system 

As seen in Figure 1, each message is presented in a single row (together with a sequence 
number and time stamp – these are not used in the experiment, but are included to 
closely reflect the interface of the real CODA system whose appearance we are 
emulating). The row is colored either blue, if the system-proposed category says that the 
message is about delivery, or gray, if the system-proposed category says that the 
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message is not about delivery. The participant must read the text of the message, and 
decide whether the system-proposed category for this message is correct or wrong. The 
participant must click either the “Correct” button or the “Wrong” button, after which the 
cursor advances to the next message. New messages pushed by the system continually 
appear at the bottom of the table, at intervals as discussed below. 

We recruited 15 participants from informal networks among staff and students 
of the University of Cambridge, all native English speakers (age M = 26.4, σ = 5.81). 
Each participant completed a practice stage, which gave them an overview of all the 
procedures, including practicing the basic operation by labeling 40 messages. After the 
practice tasks, they were asked to complete four blocks, each of which involved making 
decisions about 30 messages. After each block, participants reported sense of control 
and stress level using the same scales applied in Experiment 1.  

For the 30 messages in each block, 20 were not about product delivery, while 10 
were about product delivery. We then randomly selected 10 of the 20 non-delivery 
messages and deliberately labeled them incorrectly as “product delivery”. Similarly, 5 
of the 10 delivery messages were randomly labeled incorrectly as “not product 
delivery”. The result is that in each block of 30 messages, 15 were labeled correctly, 
and 15 were labeled incorrectly. The composition of the test data items is summarized 
as a confusion matrix in Table 1. The participant’s task is to correctly adjust these 
(initially balanced) proportions by fixing the labels. To reduce learning effects, we 
randomized the sequence in which messages were presented within each block, and also 
randomized the order of the three blocks for each participant. All 120 test messages 
were reviewed by a native English speaker in a pilot study, to confirm that our ground 
truth intention (delivery or non-delivery) had been correctly expressed in the text.  

  Label presented by the system  
 

Totals   Delivery Not Delivery 

Actual 
content of 
the text 

Delivery 5 5 10 

Not Delivery 10 10 20 

Totals 15 15 30 

Table 1 - confusion matrix of labels presented for 30 test data 
items in each block, of which 50% are incorrect 

The experiment was reviewed and approved by the ethics committee of the Cambridge 
University Computer Laboratory. Participants were compensated with a gift voucher. 
After the session, participants were debriefed, telling them that in addition to their 
labeling results, we had also been interested in how the timing pattern of the system’s 
actions had influenced their interaction behaviors and their subjective experience of 
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agency. 

Independent variable and manipulation 

There was one independent variable in Experiment 2: the rhythm of interaction between 
the user and computer when the messages are presented to be coded. In order to directly 
compare this more realistic mixed-initiative application to our earlier experimental 
tasks, we created versions of the application based on the same four timing variants 
used in experiment 1: an arrhythmic (aperiodic) condition (equivalent to the previous 
CA) where the computer takes the initiative, and messages presented for coding appear 
at irregular intervals; a condition in which the computer takes the initiative in presenting 
messages for coding, but following a predictable rhythm (equivalent to CR); a condition 
in which the user takes the initiative, with the computer following in alignment with that 
rhythm to present new messages (equivalent to UC); and a condition in which the user 
sets the rhythm at which messages are presented (equivalent to UR). 

In the computer-initiated CA and CR conditions, participants clicked a “Start 
Task” button to begin, after which the system began pushing new messages onto the 
bottom of the table at intervals determined by the condition. The base interval length in 
the CR condition was a fixed value of 4.4s. This value was determined based on 
previous literature, indicating that an optimal line length for screen reading was 50-60 
characters per line (cpl) (Dyson & Haselgrove, 2001), and that the effective reading rate 
on screen was around 150 words per minute (Muter & Maurutto, 1991). All of our test 
messages fell into the 50-60 cpl range and the average length was around 11 words, 
which should take a native English speaker roughly 4.4s to read and comprehend. We 
wished to place participants under a small degree of time pressure, so we reduced this 
estimated reading time by 10% to 4s. Previous research was also used to make an 
estimate of mouse selection time for large on-screen targets, calculated to be about 0.4s 
for the visual layout we used (Akamatsu & MacKenzie, 1996). Therefore altogether the 
rhythmic interval in Task 2 was set as 4.4s (4s to read + 0.4s to click). The random 
interval series in the CA condition were generated in MATLAB, with mean set as 4.4s 
and range linearly distributed with equal probability between 2.2s and 6.6s. Each 
adjacent pair of two intervals had at least a 500ms difference in duration, in order to 
ensure that participants would notice the random variations.  

In the UC condition, the system would first push a message, then wait for the 
user to judge and label it. This first interval between the system’s push and the user’s 
response plus 500ms would be the interval between the 2nd and the 3rd system’s push, 
and then the 2nd interval between the system’s push and the user’s response plus 500ms 
would be the interval between the 3rd and the 4th system’s push, and so on. If the user 
sped up when labeling this message, their next message would be pushed earlier, and if 
the user slowed down, the next push would be delayed. Therefore the timing would be 
implicitly set by the user, but initiated by the system. The UR condition was considered 
as a control condition, corresponding to the conventional design of labeling systems 
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(including CODA), in which the user is able to dictate the pace and assume full control 
of all actions.  

Dependent variables and measurements 

The experimental system recorded timestamps of all participant mouse clicks, and all 
labeling decisions. In the results section we discuss the speed of labeling in terms of 
interval between the decision clicks and length of the accumulated queue. We also 
discuss accuracy of the participant decisions, in judging whether the presented label was 
correct or incorrect. We pay particular attention to the number of user decisions that 
incorrectly reject accurate labels offered by the system (i.e. “false positive” in error 
diagnosis) and the number of user decisions that incorrectly accept wrong labels offered 
by the system (i.e. “false negative” in error diagnosis).  

As with Experiments 1a and 1b, participants were also asked for subjective 
ratings of their sense of control and stress level. As before, we used the NASA-TLX 
scales to assess participants’ mental demand, physical demand, temporal demand, 
confidence in performance, perceived effort and frustration – each dimension as a 21-
gradation sub-scale (5-point steps within 100 points) presented on the screen. We also 
asked participants to rate the same 5 items validated in Experiment 1: a) “The software 
adapted to me” vs. “I adapted to the software”; b) “I was controlling the pace” vs. “The 
software was controlling the pace”; c) “The software intended to help me” vs. “The 
software intended to challenge me”; d) “I felt relaxed during this task” vs. “I felt 
stressed during this task”; and e) “I felt confident in my answers” vs. “I felt unconfident 
in my answers”. 

Results analysis 

The measures described above were analyzed using the same overall procedure as in 
Experiment 1. We performed an omnibus test, either repeated-measure one-way 
ANOVA or non-parametric Friedman Test (depending on whether the values of that 
measure were normally distributed), to test whether each measure did show significant 
variation across the four different conditions. If significant variation was observed, we 
carried out a planned contrast analysis (using SPSS, and following the procedures 
introduced in (Rosenthal et al., 1985) and (Haans, 2018)). We report for each hypothesis 
the contrast model, of which the assigned contrast weights and test procedure are 
described in (Rosenthal et al., 1985; Furr & Rosenthal, 2003). When multiple contrasts 
were tested against the same data, the alpha level for each F test was corrected using the 
Bonferroni method (α = 0.05/k). 

Test of workload equivalence: Before testing the effects of manipulating rhythm, we 
checked that the base workload (the rate at which the user was making coding 
decisions) was equivalent between conditions after order randomization, message 
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sequencing, and system adaptations to the user’s speed. We therefore compared the 
average work rate (interval between coding actions) in the four conditions. After 
removing three outliers (based on quantile-quantile plot), the average interval between 
coding decisions was found to be between 4.102s and 4.455s, confirming our design 
estimate that it would take a native English speaker 4.4s to read and label one message. 
The intervals were normally distributed, but failed the Mauchly Test of Sphericity 
(W=0.041, χ2=27.942, DoF=5, p<0.001), so the non-parametric Friedman Test was 
used to confirm that there was no significant overall effect of condition on task load (χ2 
= 3.109, p = 0.375). 

Sense of control: In mixed-initiative tasks such as AI-assisted labeling, it is important 
for the user to feel that they are in control of the process, while still maintaining an 
effective rate at which the user provides labeling decisions to the system. In experiment 
1b, we had been able to evaluate the sense of agency directly, by measuring the 
intentional binding illusion. In this more realistic mixed-initiative application, it is not 
possible to use the intentional binding paradigm, so we employed self-report to measure 
sense of control. We removed two invalid responses (one null response, and one 
selecting “1” or “100” on all items). The remaining data was not normally distributed. 
An omnibus Friedman test confirmed that experimental condition did have a significant 
main effect on reported sense of control (χ2 = 15.259, p=0.002), with means as shown 
in Figure 2. Our expectation based on Experiment 1 was that users would feel a greater 
sense of control when the rhythm of the labeling activity followed their initiative - that 
having the system control the rhythm during AI-assisted labeling would impair the 
user’s perceived control, while a user-led rhythm would preserve their perceived 
control. We performed contrast analysis with a linear model (CA < CR < UC < UR), 
which confirmed that user-led rhythm does promote greater sense of control (F(1,13) 
=MS/MSe = 191178.286/5763.824 = 33.169, p < 0.001). 

 
Figure 2 - sense of control (self-report) - marginal means for 

contrast analysis between four rhythm conditions 

Perceived effort and stress: As described, the AI-assisted labeling interface was 
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designed to include an element of time pressure, in order to evaluate the effect of 
interaction rhythm during tasks that have appreciable user performance demands. We 
collected participant responses using six of the NASA TLX 21-gradation sub-scales. 
Ratings on the “mental demand”, “temporal demand”, and “effort” sub-scales were 
normally distributed, while “physical demand”, “success”, and “frustration” were not. 
Appropriate omnibus tests of these subscales found that the experimental condition had 
significant effects on sub-scales for “mental demand” (F =MS/MSe =11.929/3.262 = 
3.657, df= 3, p=0.020), “temporal demand” (F =MS/MSe = 79.732/7.771= 3.657, df= 3, 
p<0.001) and “effort” (F =MS/MSe = 12.810/3.438 = 3.657, df= 3, p=0.019), with 
means as shown in Figure 3. Our expectation was that users would perceive the task as 
less demanding when the system followed the user’s rhythm. Contrast analysis with a 
linear model (CA > CR > UC > UR) confirmed that user-led rhythm is associated with 
both reduction in perceived mental demand (F(1,13) =MS/MSe = 604.571/63.341 = 
9.545, p = 0.009) and reduction in perceived temporal demand (F(1,13) =MS/MSe = 
3363.500/122.423 = 27.474, p <0 .001). In experiment 1, we had considered two models 
for perceived effort - a linear model that increased with more user-led rhythms (CA > 
CR > UC > UR), and also a cubic model in which UC would be perceived as more 
effortful because the user is taking responsibility for maintaining interaction rhythm 
(CA > CR > UC < UR). With Bonferroni correction for the two comparisons, contrast 
analysis does not support the first of these models (F(1,13) =MS/MSe = 
240.286/106.901 = 2.248, p = 0.158), but does confirm the second model, in which the 
user setting a rhythm that is followed by the computer is perceived as more effortful 
than simply allowing the user to follow their own pace (F(1,13) =MS/MSe = 
528.286/80.132 = 6.593, p = 0.023). 
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Figure 3 - TLX ratings for a) perceived effort, b) mental demand 
and c) temporal demand - marginal means for contrast analysis 

between four rhythm conditions 

Perceived helpfulness: An important goal in mixed-initiative interaction is that users 
should perceive the system as helping them in their tasks. We evaluated this perception 
in the post-task questionnaire by asking participants to report whether “the system was 
helping me” vs. “the system was challenging me”. Ratings on this scale were normally 
distributed after removing outliers as before. An omnibus ANOVA test confirmed that 
the experimental condition did have a significant main effect on this measure 
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(F=MS/MSe = 300.875/90.439 =3.327, df=3, p=0.029). As shown in Figure 4, 
participants were more likely to report that the AI-assisted labeling system was 
challenging them in the conditions when the computer imposed the labeling rhythm 
(CA and CR), and were more likely to report that the system was helping them in the 
conditions when they set the rhythm (UC and UR). Contrast analysis with a linear 
model for decreasing challenge / increasing helpfulness (CA > CR > UC > UR) 
confirmed that this tendency is statistically significant (F(1,13) =MS/MSe = 
17643.500/2407.500 = 7.329, p = 0.018) 

 

Figure 4 - subjective reports on scale from the system helping 
the user (0) to challenging the user (100) - marginal means for 

contrast analysis between four rhythm conditions 

Accumulated task load: In many of the routine judgment tasks where mixed-initiative 
interaction techniques might be applied, task load can be measured in terms of the 
“backlog” of decisions that need to be taken by the human agent. In our design case of 
an AI-assisted labeling tool, the accumulated task load is directly visible as the length of 
the queue of messages that are waiting to be labeled. For each experimental block we 
calculated the average length of the queue over the duration of the block. This measure 
was not normally distributed. An omnibus Friedman Test showed that the experimental 
condition had a very significant main effect on average queue length (χ2 = 25.039, 
p<0.001). Our expectation was that the accumulated task load would be high in the two 
conditions where messages were pushed at a rate determined by the computer, and low 
in the two conditions where the user set the pace (CA ~= CR > UC ~= UR). However, 
contrast analysis with this model did not find a significant effect (F(1,10) =MS/MSe = 
0.555/0.152 = 3.648, p = 0.085). Because the omnibus test had shown a highly 



Yu, Blackwell & Cross: Rhythmic Agency 

 22 

significant main effect, we performed further post-hoc analysis. As shown in Figure 5, 
the accumulated load was lowest in the UR condition, and highest in the UC condition. 
Contrast analysis with the model (UR < CA < CR < UC) shows that this linear trend is 
highly significant (F(1,10) =MS/MSe = 33.005/4.939 = 66.831, p < 0.001). We consider 
the implications of this observation further in the discussion section below. 

 

Figure 5 - accumulated task load of messages waiting to be 
labeled - marginal means for contrast analysis between four 

rhythm conditions 

Accuracy: Recall that in each block of items presented to the participant, 50% of 

the labels have been designed to be correct, and 50% to be incorrect. The user task 

was to identify and reject the incorrect labels by clicking the “wrong” button, and 

to confirm the correct labels by clicking the “correct” button. To analyze 

accuracy, we counted the number of false negatives (where the user clicked the 

“correct” button when the label was actually incorrect) and the number of false 

positives (where the user clicked the “wrong” button when the label was actually 

correct). The overall numbers of true/false positives and true/false negatives, 

across all participants and all conditions, is summarized in Table 2. 
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  User judgement of the label  
 

Totals   Wrong Correct 

Accuracy 
of system 
label 

Wrong 857 (TP) 43 (FN) 900 

Correct 24 (FP) 876 (TN) 900 

Totals 881 919 1800 

Table 2 - confusion matrix of labels presented for 30 test data items in each block 

The overall error rate (FP + FN) is 67 out of 1800 decisions, or 3.72%. This means that 
on average, for each block of 30 trials (a single participant in a single experimental 
condition), participants typically made about one error - either a false negative or false 
positive. This average of 1 observation per condition does not allow us to characterize 
variance of the distribution or carry out ANOVA between the experimental conditions, 
but we include some descriptive statistics as a basis for further investigation (requiring 
substantially larger samples) in future. 

Table 3 summarizes in a confusion matrix the proportion of errors observed in 
each of the four conditions, across all participants. This shows that the greatest number 
of false negatives (where the label is wrong, but the user says it is correct) is seen in the 
CA condition, while the greatest number of false positives (where the label is correct, 
but the user says it is wrong) is seen in the UR condition. Based on these observations, 
the large variation in the relative proportion of false positives and false negatives 
between the conditions is intriguing, and deserves future investigation - for example, to 
determine whether there might be differential levels of agreement bias between the 
conditions. However, a Chi-squared test shows that, while these overall differences in 
accuracy between conditions tend toward significance, no statistically significant effect 
can be confirmed across all four conditions (p=0.11). 

  User judgement of the label 

  Wrong Correct 

Accuracy 
of system 
label 

Wrong 211 / 215 / 216 / 215 14 / 10 / 9 / 10 

Correct 3 / 8 / 3 / 10 222 / 217 / 222 / 215 

Totals 214 / 223 / 219 / 225 236 / 227 / 231 / 225 

Table 3 - confusion matrix with breakdown by condition CA / CR / UC / UR 
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As a measure of overall performance in a labeling task, we can use the Matthews 
Correlation Coefficient (MCC), which is commonly applied to machine learning 
classifiers. Possible values of MCC range from 1 (perfect correspondence) to -1 (no 
correspondence at all). We calculated MCC for each experimental block (30 trials, of 
which 15 had incorrect labels). We observed the best performance in the UC condition 
(MCC = 0.95) and the worst performance in the UR condition (MCC = 0.91), as shown 
in Figure 6. This difference in means is sufficiently large to suggest that the effect 
would be worth investigating in future, especially given the possibility that rhythmic 
entrainment in a conversational labeling interface may offer superior accuracy to 
conventional interfaces based on self-paced rhythm. However, a Chi-squared test again 
shows that, while differences between the four conditions tend toward significance, no 
statistically significant effect can be confirmed (χ2 = 5.755, N=15, df=3, p=0.124). 

As discussed further below, the difference between UC and UR is particularly 
interesting, because UR represents current standard design practice, in which the rhythm 
of interaction is simply determined by the user, while UC reflects a potential 
conversational approach to labeling, in which the computer follows the rhythm set by 
the user in an analogy to conversational entrainment. The CA and CR conditions, in 
contrast, are experimental manipulations that have informed our theoretical agenda from 
the first experiment, but are not suggested as practical design approaches. We therefore 
carried out a post-hoc within-subjects comparison of the UC and UR conditions using 
the Wilcoxon Signed-Rank test, which confirmed that the difference between these two 
conditions is statistically significant (V = 42, p=0.023) with a large effect size (r= |Z| / 
√N = 2.269/ √15 = 0.59) (Rosenthal, Cooper & Hedges, 1994; Maher, Markey & Ebert-
May, 2013). Given that this was a post-hoc test, further experimental investigation is 
justified. Nevertheless, the finding suggests interesting implications for application of 
this work, as we discuss below. 
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Figure 6 - Matthews Correlation Coefficient (MCC) - marginal 
means for four rhythm conditions, indicating post-hoc paired-

sample comparison between UC and UR 

Discussion 

Our main focus in this research has been to understand the changes in user perceptions 
that result from introducing a conversational approach to the temporal design of mixed 
initiative interaction. Experiment 1 demonstrated that interaction following predictable 
rhythms, incorporating elements of human conversation such as rhythmic entrainment, 
is perceived as less stressful and effortful, providing greater sense of agency, locus of 
control and task confidence.  

The tasks in Experiment 1 were based on previous research that measured sense 
of agency via the intentional binding illusion, drawing on previous suggestions that such 
methods could be used to assess the sense of agency in HCI, since sense of agency is a 
key element underlying the locus of control in interaction (Coyle et al., 2012). While 
our main focus in Experiment 1 was to demonstrate that such effects can be modified by 
manipulating the rhythmic properties of interaction, it is important to ask whether the 
effects of rhythm are purely subjective and attitudinal (properties which are of course 
valuable in themselves), or whether they are also associated with improvements in task 
performance in realistic mixed-initiative settings.  

We therefore moved beyond controlled experiments that had been designed 
specifically to measure sense of agency, and proceeded to assess whether the same 
effects would be observed in the more realistic context of a prototype application whose 
design reflected that of an actual mixed initiative labeling application. This application-
oriented experiment showed that the perceptual effects seen in laboratory-style tasks are 
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replicated in a realistic labeling application. Furthermore, the results of this experiment 
suggest that user accuracy in labeling decisions can be enhanced by temporal interaction 
design that imitates conversational entrainment between humans -- having the system 
follow the rhythm of actions made by the user. It is particularly interesting that, while 
users find it least stressful when they are able to fully control the rhythm of interaction 
by the timing of their own actions (the UR condition), labeling accuracy is not optimal 
in this more comfortable design approach. A conversational rhythm, where the timing 
of the actions initiated by the system is modified to follow rhythmic cues from the 
user’s own actions, results in greater accuracy than self-paced interaction design where 
the user sets their own rhythm.  

This has two important implications. The first is that subjective sense of agency, 
by itself, is not necessarily a good predictor or proxy for task performance. The self-
paced UR condition resulted in the highest measured values for sense of control (in both 
Experiment 1 and Experiment 2), but the worst accuracy on an actual labeling task. The 
implications for design are firstly, that user comfort may not always be the ultimate goal 
of interaction design in mixed initiative systems, and secondly, to remind us that system 
evaluation must consider actual performance metrics, not simply subjective self-
assessment by users. 

The second implication is that the improvement in accuracy seen in the more 
conversational UC condition may reflect enhanced mutual partnership between user and 
system, drawing on the expectations of naturalistic dialog. It is interesting to consider 
what mechanism may be involved in the extremely poor performance of the UR 
condition. One possible explanation, for which further investigation would be 
beneficial, draws on expectation states theory (EST), which considers the position that a 
person holds within the “power-and-prestige” order of a group. Those in higher 
positions are likely to be more assertive, more critical of others’ performance, give 
others fewer opportunities to speak, and attribute less credit to others’ contribution. If 
self-paced interaction rhythm gives users the impression that they are in full control, 
and hence more “powerful” than the system in terms of EST theory, this would result in 
them being more critical of the system’s suggestions, and giving less credit to the 
system’s contribution (Bonito, Burgoon & Bengtsson, 1999; Fişek, Berger & Norman, 
1995). This is indeed the pattern observed in the confusion matrix for the self-paced UR 
condition, which resulted in a far higher proportion of False Positives (where the system 
is right, but the user says it is wrong) by comparison to the more conversational UC 
condition. It is also notable that the accumulated task load is lowest in the UR condition, 
indicating that decisions are being made quickly in order to reduce queue length, giving 
the system less “opportunity to speak”, while the accumulated load is highest in the UC 
condition, indicating that participants spent more time considering the system 
contributions as a conversational partner.  

Further investigation of this conversational design strategy seems likely to offer 
a valuable resource for future mixed initiative systems, where adapting system behavior 
to follow the rhythmic conventions of conversation results in an effective combination 
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that is both comfortable and empowering in terms of sense of agency, while also 
offering the optimum level of human judgment as a contribution to overall system 
accuracy in mixed initiative tasks.  

Limitations 

There are limitations in these experiments that should be addressed in future research. 
The most important is that our experimental designs always using four different 
rhythmic conditions CA / CR / UC / UR, while providing useful control conditions to 
validate the effects of interaction rhythm, lead to complex and time-consuming 
experimental designs with loss of statistical power. Having demonstrated that the basic 
effects of conversational interaction can be reliably replicated, we suggest that further 
investigation should focus only on comparison of the self-paced UR interaction style 
(which is effectively the design approach used in all mixed-initiative labeling systems 
currently in use) to the novel UC interaction style, which employs conversational 
entrainment to create interaction that appears optimum in terms of labeling 
performance, while also offering comfort and sense of control to the user. The CA and 
CR conditions, on the other hand, are not representative of any realistic system design 
(other than unintentionally, in the rather perversely arrhythmic CA case). While useful 
as an experimental control for theoretical comparison, it is difficult to interpret the 
implications of these two conditions for design applications, making them less valuable 
in an HCI context. 

We also note that the limitations arising from this experimental complexity in 
Experiment 2 leave room to question the statistical strength of the findings. The 
relatively low frequency of observed errors, combined with expected variation within 
the four different conditions, meant that omnibus tests of labeling accuracy had only 
marginal levels of statistical significance. The paired-sample comparison of the 
conventional UR and novel UC design approaches, on the other hand, did find that this 
difference was significant, even though only explored as a post-hoc comparison. We 
have a plausible (also post-hoc) theoretical explanation for this effect, and this 
explanation is further validated by comparison of agreement bias as revealed in relative 
proportions of false negative and false positive decisions by the user. If repeating this 
experiment, we would certainly design it to test these effects as our central research 
question, especially considering their practical relevance to the design of conversational 
labeling interfaces. 

Ethical questions in conversational labeling 

Research like this, which blurs the boundaries between human and machine behavior, 
often raises longer-term ethical considerations that we would like to draw attention to. 

Firstly, it is important to ask whether the intentional mimicking of human social 
behavior is intended to establish any kind of moral equivalence between human agents 
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and interactive systems (especially where those systems might be deployed by 
organizations whose own moral purposes could be mixed or unclear). Our own goal has 
been to create interaction dynamics that are comfortable and productive for the user, 
and we strongly recommend this as the priority for other such research in future. There 
is a further danger, as seen in some kinds of social media, that routine adoption of 
particular interpersonal cues in technical contexts might devalue those cues, damaging 
social cohesion as a result. User experience researchers must be alert to possible social 
harms arising from technology adoption. 

Secondly, a possible future extension of this approach might be to further 
emulate human conversational behavior, in order to deceive system users, and have 
them believe they are interacting with another person when they are not. Deception of 
this kind would obviously be unethical, not only for the falsehood itself, but also for 
creating a situation where a person invests emotional resources into interaction that 
appears to be reciprocal and mutually affiliative, but is actually a form of dominance, 
controlled by hidden actors (cf Rule 4 of Boden et al., 2017). Sadly, there are many 
circumstances in which it can be tempting for businesses to substitute automated 
systems for human staff as a cost-saving measure. The ethics of such situations are 
already problematic for our societies, and subject to open debate. Unethical deception in 
combination with those business practices might (adversely) clarify their moral status, 
but could also be used to avoid the obligations of scrutiny according to accepted social 
norms. 

Finally, the widespread use of manual labeling as the unseen human labor 
underlying contemporary AI systems is associated with numerous ethical risks. The 
development of surveillance capitalism, in which users are compelled to submit to 
extractive terms of use in exchange for “free” services, has until now been unregulated 
and only occasionally subject to critical attention (Zuboff, 2019). The labor dynamics of 
cognitive capitalism as a basis for the future of work are also problematic, raising 
serious questions about underlying transgressions of human rights, and exploitative 
terms of employment (Irani & Silberman, 2013; Blackwell, 2019). If such labor is recast 
as a “conversation”, it is important to acknowledge that this conversation would be 
taking place within a context where there is an extreme imbalance of economic and 
contractual power between the conversational “partners". It would be ethically wrong to 
use the illusion of agency as a design trick in order to disguise lack of actual agency. 

Conclusion 

The principles of mixed-initiative interaction are now well understood. In designing 
intelligent interactive systems, it is important to understand the dynamic of back-and-
forth contributions between system and user. However, in human-to-human 
conversation (as in music), the temporal properties of the back-and-forth exchanges are 
also important (see Richardson, Dale & Kirkham, 2006; Hawkins, 2014). If we play the 
“notes” in the right order, but without attending to the rhythm, it will not be the same 
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conversation. The studies that we have reported investigate the ways in which these 
principles might apply to HCI. In the two studies of the first experiment, we explored 
the ways in which varying the rhythm of interaction influences the user’s perception of 
their relationship with the system, including task stress, confidence, and most 
importantly the sense of agency in which they perceive themselves as being able to 
control and contribute to the system behavior. These user perceptions are directly 
related to deep questions around the future influence of intelligent systems in our lives, 
suggesting that design for agency and control will be an important priority in many 
domains. 

In our second experiment, we explored whether the user experiences that are 
associated with rhythmic action in a purely experimental task would also be preserved 
in a realistic application scenario having genuine conversational elements. In intelligent 
labeling systems, it is a fundamental requirement that the user should be able to 
contribute actively (as a source of human judgments and behavioral data), and also that 
they should be able to perceive, respond to and correct the machine learning models 
being constructed by the system. We therefore simulated an intelligent labeling 
interface, following the design of an actual deployed product, that implemented a range 
of different interaction rhythms. Evaluation of this interface demonstrated that the 
observed effects of rhythm on user stress and confidence are preserved in a realistic task 
context. Although our main focus was on showing that these effects can potentially be 
replicated in mixed initiative applications, we also observed a substantial impact on 
labeling accuracy. When our novel implementation of labeling interaction using a 
conversational rhythm is compared to the currently established design practice in which 
the user determines the rhythm without any kind of conversational entrainment or other 
rhythmic response from the system, we found evidence that users may take more care in 
their judgments, while still finding the interaction comfortable. This requires further 
investigation in design-oriented research, with closer calibration of accuracy 
measurement over a wider range of tasks and labeling duration.  

Overall, this research demonstrates the opportunity for mixed initiative 
interaction design to become more acceptable to users, and also more effective, through 
design elements that draw on understanding of rhythmic entrainment in human-to-
human conversation. We expect that as a result, interactive rhythmic agency will 
become an important element of more conversational intelligent labeling systems, and 
potentially also in other domains. 
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