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Abstract

This paper reports on conceptual development in the areas of
database mining, and knowledge discovery in databases (KDD). Our
efforts have also led to a prototype implementation, called MOTC, for
exploring hypothesis space in large and complex data sets. Our KDD
conceptual development rests on two main principles. First, we use
the crosstab representation for working with qualitative data. This is
by now standard in OLAP (on-line analytical processing) applications
and we reaffirm it with additional reasons. Second, and innovatively,
we use Prediction Analysis as a measure of goodness for hypotheses.
Prediction Analysis is an established statistical technique for analysis
of associations among qualitative variables. It generalizes and sub-
sumes a large number of other such measures of association, depend-
ing upon specific assumptions the user is willing to make. As such,
it provides a very useful framework for exploring hypothesis space in
a KDD context. The paper illustrates these points with an extensive
discussion of MOTC.
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1 Introduction

It stands to reason that existing databases are underexploited. Organiza-
tional databases are typically created to record and facilitate business trans-
actions. These databases often contain valuable information which fails to
be recognized and used by the organizations that own and maintain them.
Such, at least, is a widespread belief. This has led to a burgeoning industry of
research papers, start-up firms, and professional seminars, focusing on what
has come to be called KDD (knowledge discovery in databases; see [10] for
a recent collection of representative papers). Real money is being bet that
valuable knowledge is there to be discovered and that software innovations
will help discover and exploit this knowledge economically.

We share the widespread belief in the efficacy, or at least potential, of
KDD, and are exploring a concept that—we believe—addresses a central
problem in KDD, viz., hypothesis generation. In what follows we describe
our concept and our implementation in a prototype system called MOTC.
First, however, some comments to set the context.

The premise of KDD is that software innovations can materially con-
tribute to more effective exploitation of databases. But just how can KDD
software do this and what is its relation to standard statistical methods? Put
bluntly, here is a question we have heard posed by many statisticians and
statistically-trained practitioners: What does KDD have to offer that isn’t
done well already by multiple regression techniques? Put briefly, the answer
is “plenty.” Standard statistical methods, including regression analysis, are
hypothesis testing methods. For example, what regression analysis does is
accept a functional form for a model/hypothesis and then find the “best”
instance of a model /hypothesis of that form. Even if we were to grant that
computational—e.g., KDD or Al—approaches could never improve on this
basic statistical task, very much remains to be done—and to be researched—
in the interests of effective KDD.

Examples of “non-statistical” issues in KDD include the following.

1. Data cleaning
What can be done to locate and ameliorate the pervasive problems of
invalid or incomplete data?

2. “First cut” analysis

What can be done to automatically provide an initial assessment of the



patterns and potentially useful or interesting knowledge in a database?
The aim here is, realistically, to automate some of the basic work that
is now done by skilled human analysts.

Hypothesis generation

What can be done to support, or even automate, the finding of plausible
hypotheses in the data? Found hypotheses would, of course, need to
be tested subsequently with statistical techniques, but where do you
get “the contenders” in the first place?

Our attention, and the research results reported in this paper, have fo-
cused on the hypothesis generation problem for KDD. Because hypothesis
space is generally quite large (more on this below), it is normally quite impos-
sible to enumerate and investigate all the potentially interesting hypotheses.
Heuristics are necessary and, it would seem, a decision support philosophy
is called for. What, then, are the main requirements, or desired features, of
a decision support tool for investigating hypothesis space? We identify the
following as among the principal requirements. Such a tool should:

1.

Support users in hypothesizing relationships and patterns among the
variables in the data at hand (we call this hypothesis hunting).

Provide users with some indication of the validity, accuracy, and speci-
ficity of various hypotheses (hypothesis evaluation,).

Provide effective visualizations for hypotheses, so that the powers of hu-
man visual processing can be exploited for exploring hypothesis space.

Support automated exploration of hypothesis space, with feedback and
indicators for interactive (human-driven) exploration.

Support all of the above for data sets and hypotheses of reasonably high
dimensionality, say between 4 and 200 dimensions, as well on large data
sets (e.g., with millions of records).

What is needed, conceptually, to build such a tool?

1.

A general concept or representation for data, hypotheses, and hypoth-
esis space. This representation need not be universal, but should be
broadly applicable. We call this the hypothesis representation, and we
discuss it in §2.



2. Given a hypothesis representation, we also need an indicator of quality
for the hypothesis in question. We call this the measure of goodness,
and we discuss it in §3.

3. The hypothesis representation and the measure of goodness should
fit with, cohere with, the requirements (and implicit goals, described
above) of a DSS for exploring hypothesis space. We discuss our efforts
and results in this regard in §§4-5.

2 Hypothesis Representation

There are three main elements to our hypothesis representation concept:
1. Focus on qualitative data.

2. Use the crosstab (aka: data cube, multidimensional data, cross clas-
sifications of multivariate data) form for data (rather than, say, the
relational form as in relational databases).

3. Represent hypotheses by identifying error values in the cells of the
multidimensional (crosstab) data form.

These aspects of the concept, and why we have them, are perhaps best
understood through a specific example.! Suppose we have data on two vari-
ables: X7, party affiliation, and X5, support for an increased government role
in social services. X; can take on the following values: Dem, Ind, and Rep
(Democrat, Independent, and Republican). X, can have any of the follow-
ing values: left, left-center, center, right-center, right. Suppose we have 31
observations of the two variables taken together, as follows in Table 1.2

Focus on qualitative data. The variables X and X5 in Table 1 are qualitative
(aka: categorical) because they take on discrete values (three such values in
the case of X and five for X5). X; is arguably a nominal variable because

!The example that follows is from [14]. We invite the reader to examine that discussion
as a way of following up on this paper.

2We use the two-variable case for illustration only. As noted above, an impor-
tant requirement for a hypothesis exploration DSS is that it handle reasonably high-
dimensionality hypotheses. Except where noted—e.g., limitations of screen space in
MOTC-like implementations—our points and methods generalize to arbitrarily many di-
mensions, at least in principle.



Support Party Affiliation
Dem Ind Rep

Left | 12 3 1 |16
Left-center 1 2 2 5
Center 0 3 4 7
Right-center 0 1 1 2
Right 0 0 1 1

13 9 9 31

Table 1: Party Affiliation and Support for Social Services by Top-Level Bu-
reaucrats in Social Service Agencies ([14, p. 11])

there is no compelling natural ordering for its three values.> Dem for ex-
ample is neither more nor less than Ind. Similarly, in a business database
Sales-Region and Division are nominal because, e.g., Mid-Altantic is neither
more nor less than New England and Marketing is neither more nor less than
Manufacturing. X, on the other hand is an ordinal variable because there is
a natural ordering for the values it takes on: left, left-center, center and so
on. Similarly, in a business database, Quarter (first, second, third, fourth) is
naturally ordered and therefore ordinal. If a variable, e.g., Sales, is quantita-
tive, then (for our framework) it will have to be quantized, or binned. Thus,
for example, Sales (V4) might be binned as follows into five categories or bins
(aka: forms [20]):*

Vil [0 - 20,000)
V2 [20,000 - 40,000)
V3 [40,000 - 60,000)

3Nothing much turns on this. One could argue that, at least for certain purposes, this
is an ordinal variable. No matter. Our point is that this approach can handle nominal
variables, if there are any.

4How a basically quantitative variable should be binned—including how many forms
it should have—is typically determined by the investigator, although some principles for
automatic binning are available [39]. It is well known that infelicitous binning can lead to
anomalies and distortions. In general for a quantitative variable it is better to have more
bins than fewer, in order to reduce or even eliminate loss of information. Having more
bins does have increased computational cost. Neglecting computational costs, Prediction
Analysis transparently accommodates arbitrarily large numbers of bins (and cells); in
particular it is unaffected by the presence of crosstab cells without data instances.



V4 [60,000 - 80,000)
V5 [80,000 +]

By way of justification for this assumed focus, we note the following: (1)
Many variables, perhaps the majority, occurring in business databases are
naturally qualitative; (2) A general framework, including both qualitative
and quantitative variables, is highly desirable; (3) With felicitous binning
quantitative variables can typically be represented qualitatively to a degree
of accuracy sufficient for exploratory purposes; and (4) Transformation of
inherently qualitative variables to a quantitative scale is inherently arbitrary
and is known to induce results sensitive to the transformation imposed.

Use the crosstab form for data. This aspect of our focus requires less expla-
nation and justification, since it is also standard practice in OLAP (on-line
analytical processing) applications (cf., [16, p. 179] on “the ‘cube’ foundation
for multidimension DBMS datamarts”; [8, p. 45] on “hypercube data repre-
sentations”; [27] and [7] on “cubes”). Our reasons for using the crosstab form
for data representation are simple and essentially identical to why it is now
used so widely in OLAP applications (and has long been essential in statis-
tics): the crosstab form easily accommodates qualitative variables and (most
importantly) it has been demonstrated to be a natural representation for the
sorts of reports and hypotheses users—managers and scientists—typically
are interested in.” (See also the literature on information visualization. For
a review see [21].)

Represent hypotheses by identifying error values in the cells of the multi-
dimenstonal data form. Recalling our example data, in Table 1, suppose
that an investigator has a hypothesis regarding how each bureaucrat’s party
affiliation predicts the bureaucrat’s support for increased social services. Fol-
lowing the notation of [14, 15], we use the statement x ~» y to mean, roughly,
“if z then predict y” or “z tends to be a sufficient condition for y.”% Suppose

We do not want to suggest that the data format evident in Table 1 is the only kind
of crosstab representation for qualitative data. It isn’t and the methods we discuss here,
including MOTC itself, are not limited to this particular format, but further elaborating
upon the point would be a diversion here. See the discussion in [14] of the condensed
ordinal form for one example of an alternative crosstab representation.

60r for the cognoscenti of nonmonotonic or defeasible reasoning, “if x then presumably
y.” But this is a subtlety we defer to another paper.



our investigator’s hypothesis, or prediction (call it P;), is that Democrats
tend to be left or left-center, Independents tend to be at the center, and
Republicans tend to be center, right-center, or right. Equivalently, but more
compactly, we can say:

Pi: Dem ~» (left or left-center) and Ind ~» center and Rep ~»
(center or right-center or right)

Equivalently, and in tabular form, we can label cells in the crosstab repre-
sentation as either predicted by P;, in which case they receive an error value
of 0, or as not predicated by P;, in which case they receive an error value of
1. Table 2 presents P; in this form.

Support Party Affiliation
Dem Ind Rep
Left [0 | 1 ] 1

Left-center 0 1 1
Center 1 0 0
Right-center 1 1 0
Right 1 1 0

Table 2: Error-cell representation for the hypothesis, or prediction, P;.

Given that the data are to be presented in crosstab form, the error-cell
representation for hypotheses is natural and, we think, quite elegant. Note
as well two things. First, we can now give an operational characterization
of hypothesis space. If the number of cells in a crosstab representation is C'
and the number of possible error values (2 in Table 2: 0 for no error and
1 for error) is n, then the number of possible hypotheses is (n® —n). (We
subtract n to eliminate the cases in which all cells have the same error value.
Presumably, these cannot be interesting predictions.) Thus even for our little
example, P; is just one of 25 —2 = 32, 766 possible hypotheses for predicting
and explaining these data. Second, as we have implied in our first comment
just given, it is possible to use more than 2 (0 or 1) error-cell values. Perhaps
observations falling in certain cells are intermediate and should have an error
value of, say, 0.5. There is nothing in these representations or in Prediction
Analysis (see §3) that prevents this sort of generalization.



3 Prediction Analysis

Put briefly, Prediction Analysis [14, 15] is a well-established technique that
uses the crosstab and error-cell representations of data and predictions, and
also provides a measure of goodness for a prediction (on the given data).
We can describe only the basic elements of Prediction Analysis here; much
more thorough treatment is available in the open literature. What we find
especially intriguing about Prediction Analysis—besides its intuitiveness and
its fit with our preferred data representations—are two things. First, it has
been shown to subsume most, if not all, standard measures of association
for qualitative data, such as Cohen’s Kappa, Kendall’s 7, and Goodman and
Kruskal’s gamma (see [14, 15] for details). Second, Prediction Analysis was
originally motivated to evaluate predictions ex ante, for example on the basis
of prior theory. But it also can be used ex post to select propositions from the
data, in which case it is, as one would expect, asympotically x2. Used ez post,
Prediction Analysis is good for finding “the contenders,” hypotheses that
merit careful scientific investigation using standard statistical techniques.

The principal measure of hypothesis value in Prediction Analysis is V
(pronounced “dell”), which is defined as follows:

observed error

V=1 (1)

expected error
Let n;; be the number of observations in cell row ¢ column j, and w;; be the
error value for the cell in row ¢ column j. (Again, although we are holding
the discussion in terms of a two-dimensional example, all of this generalizes
in a straightforward way.) Then, we may define the observed error for a
particular prediction (error-cell table) as

R C
observed error = Y > w;; - ny; (2)

i=1 j=1

where the number of forms in the row variable is R and the number of forms
in the column variable is C.
Finally, the expected error formula is

R C
expected error = Y Y wij - Nye - Nej /10 (3)

i=1j=1



where

nje = The number of observations in category
i of the first (row) variable

Nnej = The number of observations in category
j of the second (column) variable

n = The total number of observations

That is, n;e and n,; are the row and column marginals, which are presented
in Table 1. Note as well:

1.

If the observed error equals 0, then V is 1. This is the highest possible
value for V.

If the observed error equals the expected error, then V is 0. This
indicates, roughly, a prediction no better than chance, rather like a
correlation of 0. (But remember: standard correlation coefficients apply
to real numbers, quantitative variables, not qualitative variables.)

V may be negative, arbitrarily so. A negative value is like a negative
correlation, but may go lower than —1.

In general a higher V indicates a better prediction, but this neglects
considerations of parsimony. After all, if all the error cells are set
to 0 then V will equal 1.7 Prediction Analysis uses what it calls the
precision, which is the expected error rate for a prediction, P. Precision
in this sense is called U and is defined as

R C
U= ;;Wij “Nie * Nej/ (- 1) (4)

Note that if w;; = 0 for all ¢, j (i.e., nothing is an error), then U = 0
and if w;; = 1 for all 4, j (i.e., everything is an error), then U = 1.

In finding good hypotheses, we seek to maximize V. We might think
of maximizing V and U jointly, asin a-V+ (1—a)-U orin V-U;® or

7Of course if expected error is 0, the ratio is undefined.
8V .U = U — K or the absolute reduction in error of the prediction. One might instead,
e.g., prefer to use the relative reduction in error.



we might think of U as a constraint on this maximization problem.We
might also think of imposing other constraints, such as “naturalness”
conditions. For example, in the error cell representation, one might
require that there should not be gaps in columns between error and
non-error cells. But this is a topic beyond the scope of the present
paper. For present purposes, we rely on the user’s judgment to impose
reasonableness criteria on hypotheses explored.

4 MOTC: A DSS for Exploring Hypothesis
Space

MOTC is a prototype implementation of a DSS for exploring hypothesis
space. It assumes the two main frameworks we have just discussed (crosstab-
ulation of qualitative data for hypothesis representation, and Prediction
Analysis for a measure of goodness for hypotheses) and it meets, or at least
addresses, the main requirements we identified above for such a DSS. MOTC
is implemented in Visual Basic 5 and Microsoft Access, and runs in a Win-
dows N'T' environment.

The central, dominating metaphor in MOTC is the representation of vari-
ables (dimensions) as binned bars. A single bar corresponds to a single vari-
able. Bars are arrayed horizontally, and are divided by vertical lines indi-
cating bins. Each bin corresponds to a category for the variable in question.
Thus, in our previous example the bar for Party Affiliation would have three
bins, while the bar for Support would have five bins. A user may right-click
on a bar and MOTC will present information about the underlying binning
arrangement. See the figures in §5 for illustration. The width of a bin as dis-
played represents the percentage of records in the relevant data set that have
values falling into the bin in question. Wider bins indicate proportionately
larger numbers of records. MOTC as presently implemented allows up to
eight variables to be represented as bars on the display. A bar may have any
number of bins. This is in fact an interesting and nontrivial degree of multi-
dimensionality (and see our discussion in §6 of the focus+context technique
used by Rao and Card in their Table Lens program [32]).

MOTC as currently implemented has two modes of operation: hypothe-
sis hunting (aka: brush) mode, and hypothesis evaluation (aka: prediction)
mode. In hypothesis hunting mode, users use brushing with the mouse to dis-



play relationships among variables. Users choose particular bins and brush
them with a chosen color by clicking on them. MOTC responds by apply-
ing the same color to bins associated with other variables. For example, if
the user brushes bin 3 of variable 1 with purple, MOTC might respond by
covering 25% of bin 2 of variable 4 in purple, indicating thereby that 25%
of the records associated with bin 2 of variable 4 also are associated with
bin 3 of variable 1. (See the various figures, below, for illustrations.) A user
may brush more than one bin with a single color, either within or without a
single variable. The effect is a logical “or” for bins within a single variable
(bar) and an “and” for bins in different variables. Further, suppose purple
is used to brush bins 1 and 2 of variable X, bins 4 and 5 of variable Y, and
bins 7 and 8 of variable Z. Suppose further that we are in prediction mode
(see below) and that we want X and Y to predict Z. Then, the equivalent
representation in Prediction Analysis terminology is:

(X1 VX)) A (YaVYs))~ (Z7V Zs)

MOTC presently supports up to five colors for brushing. Each color used
corresponds to a separate ~ rule in terms of Prediction Analysis. Working
in brush mode, the user explores hypothesis space, with MOTC providing
feedback by coloring bins in the unbrushed bars (predicted variables). The
user thus gets a rough idea of where the “big hits” in the predictions lie.

In hypothesis evaluation, or prediction, mode the user brushes—clicks
and colors—bins in the predictor and predicted variable bars. In essence,
the user is interactively populating a higher-dimensional version (up to 8
dimensions in the current implementation) of an error-cell table, as in Table
2. Doing so specifies a hypothesis and MOTC responds by calculating and
displaying V and U for the hypothesis.

Working iteratively, the user may explore hypothesis space by switching
back and forth between hypothesis hunting mode and hypothesis evaluation
mode. This continues until the user reaches reflective equilibrium.

5 A Sketch of MOTC at Work

Our purpose in this section is to give the reader a sense of what it is like
to work with MOTC to explore a collection of data. We shall work with a
hypothetical, rather abstract example and shall use drawings, rather than
original screen dumps, in our illustrations. We do this for several reasons.
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Most importantly, our aim is to communicate the essential concepts asso-
ciated with MOTC. We want to discuss the forest, rather than the trees.
Screen dumps from, and descriptions of, MOTC are available in considerable
detail elsewhere, including the open literature [1, 2], as well as Web sites
(http://grace.wharton.upenn.edu/ sok/motc and
http://www.practicalreasoning.com/motc). Here, our aim is to commu-
nicate in as brief a manner as possible the core ideas of how MOTC works
from a user’s perspective.

A user’s interaction with MOTC begins with the data, which must be
stored in a Microsoft Access database and must reside in a single table or
query.? Once such a table or query exists, the user may launch MOTC, open
the appropriate Access database, and select for investigation the particular
table or query of interest.

Once the user identifies the data source (table or query), MOTC presents
the user with a list of attribute names (from the database) for the data source.
The user selects which attributes to explore and may choose up to eight.!”
For each attribute or dimension, the user must also make decisions about
binning the data. MOTC will guess whether the data for a given attribute
are continuous (e.g., sales in dollars) or discrete (e.g., sales regions). The
user must either override or confirm this quess. MOTC will then guess how
best to categorize, or bin, the data. Again, the user may override the guess
and indicate how MOTC should bin the data by dimension. (On binning,
see our discussion above, in §4.)

9How essential is Microsoft Access? In principle, MOTC could be converted easily to
work with any ODBC-compliant database, but MOTC makes essential use of Microsoft-
specific features, particularly crosstab queries, which are not part of standard SQL. In the
future, we intend to completely reimplement MOTC in order to make it database-neutral.
That will require a substantial amount of work.

10The limitation to eight attributes is arbitrary. We chose it to be large enough to make
the point that MOTC could handle a nontrivial number of dimensions (8 is interesting),
and small enough to fit conveniently on most screens. We intend to relax this in future
editions. Doing this right—to allow, say, 200 attributes—will require more sophisticated
screen management techniques. See our discussion in §6.

11



% Place the figure about here. ***

Figure 1: Binned, Four-Dimensional Data Set Ready for Exploration in
MOTC

Once these decisions are taken, MOTC presents the user with a display
showing each attribute as a horizontal bar, with vertical lines indicating bins.
See Figure 1. In this Figure, which is a drawn schematic of the real program,
we see that there are four attributes under joint consideration. These are
labelled A, B, C, and D. Attributes A and D are each binned into three
categories (1, 2, and 3, call them low, medium, and high), while attributes
B and C each have four bins. (The number of bins in MOTC is open-ended,
but it seldom is useful to have more than 8 or 10.)

At this point, MOTC is by default in brush (or hypothesis finding) mode.
The user would select a color (MOTC supports up to five colors) and begin
to explore by “brushing” a bin on an attribute. Here, we will use shading
and patterns instead of colors. Figure 2 shows a notional display in which
the user has selected the horizontal line pattern and brushed the left-most
(1, or “low”) bin on attribute A.

% Place the figure about here. ***

Figure 2: MOTC in Hypothesis Generation (Brushing) Mode

MOTC has responded by shading bins in the other three attributes.'!
These MOTC shadings should be interpreted as histograms. Remember that
every observation fits into some (exactly one) bin on each dimension. Re-
calling our party affiliation example, if you are left-center, then there is some
party affiliation you have. MOTC is for discovering interesting patterns in
the distribution of observations across bins. What MOTC is telling us here is
that if an observation is from bin 1 (left-most bin) of attribute A, then it will
tend to be in bins 3 or 4 of attrbute B, bins 1 or 2 of attribute C, and bin 2
of attribute D. This would appear to be a significant, or at least interesting,
pattern. How good is this as a hypothesis? How well does it predict?

At this point, the user is in position to state a hypothesis and have MOTC
calculate its dell and precision values, from Prediction Analysis. The user

UThere is nothing significant about brushing the A (topmost) attribute. The ordering of
the attributes on the screen is arbitrary. The user can brush a bin in any of the attributes
and MOTC will respond appropriately.

12



then switches to prediction mode, chooses a color (pattern) and clicks on the
bins corresponding to the hypothesis. See Figure 3.

¥ Place the figure about here. ***

Figure 3: MOTC in Prediction Mode

In the Figure, the user has clicked on bin 1 of attribute A, bins 3 and 4
of attribute B, bins 1 and 2 of attribute C, and bin 2 of attribute D. Notice
that the shading completely fills each selected bin. What this display is
indicating to MOTC is the error-cell representation for the hypothesis. From
this display, MOTC constructs the analog of Table 2, calculates V and U
(dell and precision), and displays then for the user. The user is then free to
continue exploring other hypotheses.

In the case at hand, it is likely that ¥V would be reasonably high (which is
good), but that U (precision) would be fairly low (which is bad). Typically,
the user will want to explore more complete hypotheses (what if the obser-
vation is in bin 2 of A?). The end result of this kind of exploration might
produce a complete hypothesis as in Figure 4.12 With such a hypothesis

¥ Place the figure about here. ***

Figure 4: MOTC with a Complete Prediction on the Data

expressed, MOTC would then calculate V and U (dell and precision), and
display them for the user.

And the user, as we have said, can continue exploring in this manner until
reaching reflective equilibrium.

12The following remarks will perhaps be useful for interpreting Figure 4, and specifically
the hypothesis it represents. First, recall Figure 3, which is a simpler figure of MOTC in
prediction mode. There, the hypothesis represented is, roughly, “If A is low, and B is high
(bins 3 and 4), and C is low (bins 1 and 2), then D is middling (bin 2).” (We say “roughly”
because the shading is really serving to determine the error—cell representation.) Call this
hypothesis . It is indicated by the horizontal shading, which is retained in Figure 4. In
addition, Figure 4 contains two other hypotheses. 8 (indicated by vertical shading): “If
A is high, and B is low and C is high, then D is low.” 5 (indicated by cross—hatched
shading): “If A is middling, and B is in bin 2 and C is in bin 3, then D is high.” In total,
Figure 4 represents the conjunction of these three hypothesis: « and § and . This is a
complete hypothesis in that every bin is associated with some hypothesis (or prediction).
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6 Comparison with Alternatives

MOTC, as we have seen, assumes two main frameworks (the crosstabula-
tion form for representing hypotheses, and Prediction Analysis for measur-
ing goodness of hypotheses), and provides an interactive environment of some
promise for discovering interesting hypotheses. Here we want to consider the
question, How does MOTC, or the ideas it embodies, compare with what
has appeared in the relevant literature? Two points first: (1) MOTC is
nearly unique, or at least unusual, among database mining tools in using
the crosstabulation form,!® and (2) MOTC is unique in being an end-user
interactive tool for supporting Prediction Analysis. For these reasons, we
are less concerned in this section with establishing originality and are more
focused on placing MOTC within the nexus of data visualization techniques.
This serves the purposes of better understanding what MOTC is about and
of pointing towards future research.

6.1 Design goals of the MOTC interface

Stepping back and looking at the larger picture, the purpose of MOTC is to
help the user discover interesting patterns in data and to provide an evalua-
tion of the predictive value of those patterns. To this end, we identified three
main desiderata for MOTC’s interface design.

1. Present a display that can represent a very large number of records.

The simple fact is that modern databases are huge and we need tools
for dealing with them. Of course, for purposes of pattern discovery it is
always possible—even desirable—to sample from the underlying data.
Even so, having the option of examing larger datasets is always a good
thing, since patterns evident in large datasets may not be apparent in
smaller sample sets.

2. Effectively display a large number of variables.

It is also a simple, or brute, fact that modern databases present large
numbers of dimensions, or fields, among which users have an interest in
discovering patterns. To limit a user’s view of the data to only a subset
of the data’s variables is a severe restriction on the user’s ability to

13Thanks to Balaji Padmanabhan for this point. See also [28].
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discover patterns. Unfortunately, too many variables (dimensions) in a
display can quickly overwhelm a user’s cognitive resources. Therefore, a
second goal of MOTC’s interface is to maximize the number of displayed
dimensions without overwhelming the user.

3. Provide for visualization that helps users discover associations among
variables.

Passively displaying information only goes so far in helping users dis-
cover patterns in the data. To be a truly effective interface the display
must actively highlight associations among variables in the data by
providing users with feedback about the quality of the apparent asso-
ciations.

These are general goals, goals that have attracted study outside the context
of MOTC. We now briefly review and discuss this literature.

6.2 Present a display that can represent a very large
number of records

It is generally accepted that people more easily process visual information
than textual or numerical information. “Scanning a thousand tiny bars with
your eyes requires hardly any conscious effort, unlike reading a thousand
numbers, which takes a great deal of mental energy and time” [31]. Infor-
mation visualization techniques can take advantage of this fact by displaying
enormous amounts of information on the screen. For example, the SeeSoft
system effectively displays over 15,000 lines of code on the screen [9] by
representing code with pixel-thin lines that reflect the code’s visual outline.
InXight’s “wide widgets” [31] are visual components that can be incorporated
into a GUI information system to display several orders of magnitude more
data than traditional display tools (e.g., spreadsheets or hierarchical trees).
Wide widgets are focus+context interfaces [12, 35] which dynamically distort
spatial layouts so that users can zoom in on several records or variables while
the rest of the records shrink to fit within the remaining space. In this way,
users can focus on several items without losing the context provided by the
remaining items. One wide widget, the Table Lens, has been demonstrated
with a table of baseball statistics containing 323 rows by 23 columns = 7429
cells [30]. Others include the Perspective Wall [26] and the Hyperbolic Tree
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Viewer [25].14

Wright [40] demonstrates several applications that make use of 3D ef-
fects. Ome application, a financial portfolio manager displays more than
3,000 bonds on a single screen. This system uses color to indicate long and
short positions, height for the bond’s value, and the x and y axes to represent
subportfolios and time to maturity.

Unfortunately, these techniques will fall short for very large databases,
because, ultimately, we are limited to the number of pixels on the screen.
Even with techniques like VisDB’s pixel-oriented approach [22, 23|, which
displays a data record per pixel, we are still limited to the number of pixels
on the screen. With today’s technology, this means approximately 1024
x 1024 ~ 1MB records which will not do for multi-million, gigabyte, and
certainly not terrabyte-sized databases.

To present an unlimited number of records on the screen at once we need
to present summaries of the data. If summaries are provided for each variable,
then the only limitation is the number of variables that can be displayed
regardless of the number of records in the database. The InfoCrystal [36]
uses an innovative extension of Venn diagrams to visualize data summaries.
MineSet’s Evidence Visualizer [3] uses rows of pie charts to summarize the
data. One row for each variable, one pie chart for each attribute. The pie
chart represents the number of records matching the query variable’s chosen
value with the pie chart’s value.

The approach of presenting summaries of all the data is strongly endorsed
by Ben Shneiderman who preaches the following mantra (as he calls it) for
designing visual information seeking systems:

Overview first, zoom and filter, then details-on-demand. [34, p. 2]

To overview very large numbers of records, we must sample or summarize.
MOTC represents a summarization strategy (the crosstabulation form), but
there is nothing to prevent applying MOTC to sampled data.

6.3 Effectively display a large number of variables

The problem of displaying multidimensional data in an effective manner,
one comprehensible to users, has been studied for some time (see [20, 21]

“Tmages of these systems can be found on InXight’s home page at
http://www.inxight.com /vizcontrols
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for useful reviews). Perhaps the most natural and widespread approach for
adding dimensions to a display is to add visual cues to an existing display. For
example, the three dimensions of a 3D graph can be augmented by encoding
points on the graph with color, texturing, shapes (glyphs), shading, and other
such techniques. Becker [3] demonstrates the use of such techniques with
the MineSet system, and various forms of these techniques are supported
by contemporary data visualization software tools (e.g., Advanced Visual
Systems).

This family of techniques has two important limitations. First, there are
only so many visual cues that can be employed. Perhaps 5-10 variables can
be represented on a 2D display using the 3 geographic dimensions, color (di-
vided into hue, saturation and brightness), shape, size, texture, and shading.
Second, and more limiting, is that humans cannot effectively process that
many visual cues of this sort at once. More than a few visual cues quickly
overwhelm users. Projecting multiple dimensions onto a two-dimensional
plane also becomes quickly illegible. Jones [21, Chapter 14], for example,
reports that 8 dimensions is too much for this technique and even 6 and 7
dimensions are difficult to comprehend.

As an example, Feiner and Beshers’ Worlds Within Worlds technique [11],
which plots n dimensions by successively embedding 3-dimensional coordi-
nate systems inside one another, can theoretically display any number of
dimensions on the screen. However, Jones [21, Chapter 14] points out that
more than three levels (9 dimensions) is incomprehensible and even 2 levels
(6 dimensions) can be difficult to assimilate.

In MOTC, we present the same visual cue for each variable (a horizontal
bar on the screen, with coloring), and use secondary visual cues (position,
color) to distinguish the categories associated with a variable (the bins).
A popular set of techniques using this approach are graphical matrices in
which rows and columns represent variables, and each cell in the matrix is a
comparison of the pair of variables represented by the cell’s row and column.
Perhaps the most common representation of the two variables associated with
a matrix cell is a scatter plot [21, 5, 4]. However, other representations are
possible, such as histogram profiles [38], boxplots and sunplots [20, Chapter
5].

Unfortunately, graphical matrices only allow direct comparisons between
two variables. A simpler technique is to display a row of variables. When
combined with brushing (see above), variable rows allow any number of vari-
ables to be directly compared. MineSet’s Evidence Visualizer [3], with its
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rows of pie charts, does just this. The Influence Explorer [38] presents rows
of histograms, each histogram summarizing the values of a single variable.
Thus, MOTC’s display approach for variables should, in future research, be
assessed as a member of this category of representation. Very likely it will
be possible to improve the display, but that is something to be determined
by extended empirical testing, something that has yet to be done for nearly
all the interesting techniques.

Even using graphical matrices of variable rows, the number of variables
that can be displayed is limited to the number of rows or columns that can fit
on the screen. A natural extension of this technique to use the focus+context
ability of Table Lens [30] to augment the number of rows and columns dis-
played, thereby augmenting the number of variables. Indeed, the interface
for MOTC is an elementary example of this idea: the underlying dataset can
have a very large number of dimensions, among which the user picks up to
eight for a particular analysis; different dimensions can be picked in different
analyses. In future editions of MOTC (or MOTC-like systems), we would
think that this process could be made smoother and easier and that doing
so would benefit the user.

One more technique is worth noting. Inselberg’s parallel coordinates sys-
tem [17, 19, 18, 21] represents variables as vertical bars, and database records
as “polylines” which connect each of the variables’ vertical bars. Where a
polyline crosses a variable’s vertical bar represents that polyline’s record’s
value for the variable. This technique allows for a very large number of vari-
ables to be displayed—as many variables as vertical lines that will fit on
the screen. The drawback of this approach is that each polyline represents
one record, so the technique is limited to displaying only a relatively small
number of records.

6.4 Visualizing associations between variables

Visualization techniques are known to be very helpful for discovering pat-
terns in data. This is especially so for relationships between two variables.
Things are more difficult when multiple variables are involved. For this prob-
lem, MOTC’s approach is of a kind that is accepted in the literature: present
multiple variables and support active display of linkages among them. For ex-
ample, selecting a record or range of records in one of the Influence Explorer’s
histograms highlights the corresponding records in the other histograms [38].
Similarly, the Lifelines system [29] displays compact medical patient histories
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in which users can, say, click on a particular patient visit and immediately
see related information, such as other visits by the same patient, medication,
reports, prescriptions and lab tests. Visage [24, 33] presents multiple views of
the same data. One window may present geographic data in map form, while
another window presents the data as a histogram, and yet another presents
the data in a table. Selection of a subset of data in any window, highlights
the corresponding representation of the data in the other windows. Graphical
matrices can by dynamically linked through brushing [4, 5] in which selecting
a set of records in one scatterplot (or whatever graphical technique is used
for the graphical matrix) simultaneously highlights the same records in the
rest of the matrix’s cells.

MOTC’s use of brushing (see above) should be seen as a visualization
approach of the kind explored in this literature. As with the issue of display
of multiple dimensions, much further research is needed in order to find the
optimal design (if there is one) of this sort.

7 Summary & Discussion

So, what have we got and how good is it? Recall that earlier we argued for
a series of goals for any tool to support the hypothesis generation activity
in KDD and database mining. Here, with additional comments, is that list
again.

1. Support users in hypothesizing relationships and patterns among the
variables in the data at hand. MOTC has hypothesis hunting mode,
in which users may use the mouse quickly and interactively to try out
and test arbitrary hypotheses, and thereby explore hypothesis space.

2. Provide users with some indication of the validity, accuracy, and speci-
ficity of various hypotheses. MOTC employs Prediction Analysis for
this.

3. Provide effective visualizations for hypotheses, so that the powers of hu-
man visual processing can be exploited for exploring hypothesis space.
MOTC contributes an innovation in visualization by representing mul-
tidimensional hypotheses as binned bars that can be brushed with a
mouse. Also, MOTC innovates by tying together hypothesis hunting
and evaluation, and does so with a common visual representation.
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4. Support automated exploration of hypothesis space, with feedback and
indicators for interactive (human-driven) exploration. MOTC does not
do this at present, although we have plans to add these features. Briefly,
we intend to begin by using a genetic algorithm to encode and search
for hypotheses (see Table 2). As in our candle-lighting work [6], we
envision storing the most interesting solutions found by the genetic
algorithm during its search and using these solutions as feedback to
the user.

5. Support all of the above for data sets and hypotheses of reasonably high
dimensionality, say between 4 and 200 dimensions, as well as on large
data sets (e.g., with millions of records). MOTC is not computationally
very sensitive to the number of underlying records. We have worked
successfully with much larger data sets than those we report here. But,
MOTC is sensitive to the number of cells in the crosstab grid. With 10
variables and 10 bins per variable, the mulidimensional data grid has
10 cells, a number perhaps too large for practical purposes. On the
other hand, 12 variables with only 4 bins each is only 4'? ~ 16 million
cells, and this is quite manageable on today’s PCs. In short, MOTC-
like systems will work over a wide range of useful and computationally
feasible problems.

All of this, we think, looks very good and very promising. Still, the ultimate
value of any system like MOTC has to be determined by testing real people on
real problems. Our experience to date, which is admittedly anecdotal, is very
encouraging. Moreover, we note that if you value Prediction Analysis, then
you need to calculate V, U and so on. MOTC makes these calculations and
does them quickly and easily from a user’s point of view. All this is excellent
reason to proceed to experiments with real people and real problems. But
that is subject for another paper.
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Figure 1: Binned, Four-Dimensional Data Set Ready for Explorationin MOTC




Figure 2: MOTC in Hypothesis Generation Mode




Figure 3: MOTC in Prediction Mode




Figure 4: MOTC with a Complete Prediction on the Data




