
1

Author’s Original Manuscript Forthcoming in:
Journal of Management Information Systems, Special Section on the Transformative Value of

Cloud Computing

Copyright owned by Taylor & Francis Group
For-profit use not allowed

2

KEY AFFORDANCES OF PLATFORM-AS-A-SERVICE: SELF-ORGANIZATION AND

CONTINUOUS FEEDBACK

Oliver Krancher (corresponding author)
Institute of Information Systems, University of Bern, Engehaldenstr. 8, 3012 Bern, Switzerland
Email: oliver.krancher@iwi.unibe.ch, Phone: +41 31 631 4783

Pascal Luther†
Zuehlke Engineering AG, Bogenschützenstrasse 9A, 3008 Bern, Switzerland
Email: pascal.luther@zuehlke.com, Phone: +41 79 505 4461

Marc Jost†
ipt Innovation Process Technology AG, Marktgasse 28, 3011 Bern, Switzerland
Email: marc.jost@ipt.ch, Phone: +41 79 503 4456

†The second and the third author contributed equally.

Oliver Krancher is an assistant professor of information systems at the University of Bern, Switzer-
land. He holds a diploma from University of Regensburg and a Ph.D. from University of Bern. His
research interests revolve around knowledge processes in the development, use, and management
of information systems. His work has been accepted at outlets such as the Journal of the Associa-
tion of Information Systems, the International Conference on Information Systems, and the Euro-
pean Conference on Information Systems. His teaching on cloud computing has been recognized
with the AIS Innovation in Teaching Award. Prior to his academic career, he worked as a consultant
in enterprise software implementation and outsourcing projects.

Pascal Luther is a business analyst at Zuehlke Engineering AG in Bern, Switzerland. He holds a
master’s degree in business administration with emphasis on information systems from the Univer-
sity of Bern. He also studied at Keio University, Japan and at Seoul National University, South Ko-
rea. His academic work on the adoption of platform-as-a-service in software development teams has
been accepted for presentation at the International Conference on Information Systems. In this cur-
rent position, he supports software development teams in agile software development methods and
in requirements engineering.

Marc Jost is an information technology consultant at Innovation Process Technology AG in Bern,
Switzerland. He holds a master’s degree in business administration with emphasis on information
systems from the University of Bern. His academic work focused on the interaction of technology
and software development and its organizational impact. In his current occupation, he accompanies
digital and agile transformation endeavors involving cloud computing, modern software development
practices, and artificial intelligence.

3

ABSTRACT

Although software development teams increasingly use Platform-as-a-Service (PaaS), little is known

about the impact of PaaS on software development. We explored the impact of PaaS on software devel-

opment through a grounded-theory study, conducting 48 interviews in 16 teams. The data turned our at-

tention to the affordances, or potentials for action, that PaaS provides to software development teams.

Two key affordances emerging from our data analysis were self-organizing and triggering continuous

feedback. Actualizing these affordances helped accelerate the collective learning processes that under-

lie software development, thus supporting software development teams in their quest for agility. Our

emerging theory explains how, why, and when these affordances arise. The key contribution of our pa-

per lies in unveiling how the use of cloud computing technology can transform technology-mediated col-

lective learning activities by helping to remove barriers to rapid feedback. Our findings also imply that

organizations can leverage PaaS to facilitate the transition to agile and continuous software develop-

ment practices, in particular in conjunction with cross-functional team designs.

Keywords: Cloud computing, Platform-as-a-Service, software development, feedback, collective learn-

ing, affordances, agile software development, agility, continuous integration, continuous delivery,

DevOps, lean software development

INTRODUCTION

Software development teams increasingly use Platform-as-a-Service (PaaS), a cloud computing technol-

ogy that provides application environments as elastic, on-demand services [56]. The market for public

PaaS services soared from 3.8$ billion in 2015 to 7.2$ billion in 2016 and is expected to further grow by

20% per year [31]. Many major technology companies, such as Amazon with its PaaS service Elastic

Beanstalk, are now competing with established PaaS providers, such as Salesforce.com with its Heroku

and Force.com services [78]. The primary users of these services are software development teams [18].

4

PaaS allows them to quickly set up application environments, to easily deploy code to these environ-

ments, and to instantly scale them [49]. According to a recent survey run by Cloud Foundry (an open-

source PaaS initiative) [18], PaaS has a transformative impact on software development. The fraction of

respondents that reported development cycles shorter than one week rose from 16% to 46% after the

adoption of PaaS. Developer productivity also nearly tripled according to the survey results.

Despite such claims of transformative impact, the academic literature has paid relatively little attention to

the impact of PaaS on software development. The existing PaaS literature has focused on the inner

workings of PaaS services [1, 21], on the business models and ecosystems of PaaS providers [3, 22,

36], and on the PaaS characteristics desired by software developers [32, 33, 75]. The few articles that

discuss impact are conceptual. They suggest that the use of PaaS makes deployment and testing activi-

ties more efficient and that it might enable end user computing [26, 41, 49, 81]. However, empirical evi-

dence of these assertions and, more broadly, of the impact of PaaS on the work of software developers

is lacking. This dearth of empirical evidence is unfortunate because it is difficult to theorize the impact of

a technology without examining the practices through which the technology is used [60].

Evidence of the impact of PaaS on software development practices would be practically relevant be-

cause the use of PaaS could help teams in a transition process that many software development teams

are currently undergoing. In their quest to rapidly deliver innovative software, many software develop-

ment teams attempt to follow movements such as agile [29] and lean [62] software development, contin-

uous integration and delivery [41], and DevOps [2]. Common to these movements is the aim to increase

agility (i.e., the ability to rapidly create, react to, and learn from change [19]) by adopting practices based

on self-organizing and frequent feedback [28, 73]. While these practices have attracted strong interest in

the industry and in the literature [24, 28], relatively little is known about how these practices are affected

by the infrastructure that underlies software development. Conceptual articles from the software devel-

opment literature have recently argued that PaaS, with its on-demand self-service characteristic, is an

5

enabler for self-organizing and continuous feedback practices [2, 77]. However, empirical insights into

how, why, and when PaaS enables these practices are rare. This has led scholars to call for research on

the relationship of cloud computing and agile practices [81, p. 48].

In sum, although PaaS is diffusing at a rapid pace and although providers claim PaaS to have a trans-

formative impact, we lack empirically founded knowledge about the impact of PaaS on software develop-

ment. Given this limited knowledge, we performed a grounded-theory study [34]. We began with the

broad aim of exploring the impact of PaaS on software development. As our informants kept talking

about the actions that PaaS enabled, we decided to focus our study on the affordances of PaaS, i.e., on

the potentials for action that PaaS provides to software development teams. Specifically, we explored

two questions: What affordances does PaaS provide to software development teams? How, why, and

when do these affordances arise? We explored these questions through 48 interviews conducted in 16

software development teams.

We found that PaaS provides four affordances: shaping environments, reusing software services, self-

organizing, and triggering continuous feedback. Shaping environments and reusing software services

are basic affordances that, after a brief learning process, arise from two capabilities of PaaS services:

rapid elasticity and abstraction. In contrast, self-organizing and triggering continuous feedback are

higher-level affordances. They arise after teams actualize basic affordances and thereby produce out-

comes, such as self-contained tasks, that enable higher-level affordances, such as self-organizing. We

also found that two work environment characteristics (functional sub-teams, architectural dependencies)

inhibit the actualization of higher-level affordances because they undermine increased self-containment.

Our study makes three important contributions. First, it provides a perspective on the transformative im-

pact of cloud technology by unveiling how the rapid-elasticity and abstraction capabilities of cloud tech-

nology enable self-organizing and continuous feedback, thereby allowing teams to accelerate collective

6

learning processes and enhance agility. Second, we contribute insights to the software development lit-

erature into how cloud technology can ease the transition to current software development practices.

Third, we add to the affordance literature that affordances can depend on work environment characteris-

tics. In the remainder of this paper, we review the literature to which we integrated our grounded find-

ings, report the methods and results, and discuss implications.

BACKGROUND LITERATURE

Cloud Computing and Platform-as-a-Service

We rely on the definition of cloud computing by the US National Institute of Standards and Technology

(NIST) [56]. Among the essential characteristics of cloud computing according to the NIST definition are

on-demand self-service (i.e., resources are provisioned automatically, without requiring human interac-

tion) and rapid elasticity (i.e., resources are rapidly scalable). Hence, although cloud computing is some-

times regarded as a type of outsourcing or contrasted with on-premises infrastructure, it is a model for

organizing shared computing resources such that automatic, on-demand access to these resources is

possible, irrespective of who owns them and whether they are located “on or off premises” [56, p. 2].

Although cloud computing comprises Software-as-a-Service (SaaS, cloud-based applications), Platform-

as-a-Service (PaaS, cloud-based application environments), and Infrastructure-as-a-Service (IaaS,

cloud-based hardware), most academic work focuses on SaaS [81], examining issues such as adoption

[6], usage continuance [7], ecosystems [16], user desires [71], governance [69, 80], and shadow infor-

mation technology (IT) (i.e., SaaS use without organizational approval) [35, 82]. A common theme in

some of these studies is that cloud technology, with its essential characteristic of on-demand self-ser-

vice, may shift power in organizations, giving end users greater control over the technology that they use

in their work [35, 80, 82].

7

PaaS has received comparatively little attention in the literature [65, 81]. PaaS denotes cloud-based ap-

plication environments [3, 5, 56]. Application environments are the configured resources on which run-

ning instances of applications rely, including hardware, operating systems, application and database

servers, and configurable software components [41, p. 277]. Key PaaS features include instant set-up of

application environments, instant deployment of code to these environments, and automatic scaling [21].

Analysts distinguish two broad categories of PaaS services: model-driven PaaS (mPaaS) and deploy-

ment PaaS (dPaaS) [3, 40]. MPaaS services, such as Force.com and Mendix, provide cloud-based ap-

plication environments that include configurable software components. These components allow model-

driven development, i.e., developing software by configuration, without necessarily writing code [75]. For

instance, Force.com allows developing applications by defining data models, reports, and workflows.

Some observers speculate that mPaaS might enable end user computing (i.e., application development

by business users) [81]. DPaaS services, such as Heroku, Cloud Foundry, and Amazon Elastic Bean-

stalk, are at a lower level of abstraction because unlike mPaaS services, they do not include compo-

nents for model-driven development [40]. Benefits of dPaaS services according to the literature include

more efficient deployment due to automated system administration tasks and more efficient testing due

to identical testing and production environments [26, 41, 49, 81]. Although PaaS aims at supporting soft-

ware development, evidence of the impact of PaaS on software development practices is scarce.

Software Development

This section provides a brief, selective background on the software development literature. This back-

ground shall help link our findings to the literature [34], rather than serve as an a-priori theoretical lens.

Software Development as a Collective Learning Activity

Although the software development literature draws on a variety of theoretical perspectives, an increas-

ingly popular perspective views software development as a complex collective learning activity [9, 25,

8

37, 72, 73]. In this collective learning activity, team members gradually acquire knowledge about require-

ments, technologies, and existing applications, about designs and code that address the requirements

with particular technologies and applications, and about ways for integrating these elements into a co-

herent software [10, 27, 46, 76]. We define learning as the process of knowledge acquisition, knowledge

as the capacity to act in a particular context [61], and a software development team as the collective of

people (typically developers and business users) that share the goal of building software. The notion of

collective learning activity can be visualized by comparing the effort needed to develop a software a first

time to the (often fictitious) effort needed to develop the same software a second time. The second-time

effort is typically only a fraction of the first-time effort due to the learning that accrued during the first go

[10]. A collective learning perspective helps explain why many current software development movements

advocate practices based on self-organizing and on frequent feedback, as we will argue next.

Self-organizing

Self-organizing refers to a process in which some form of order emerges from agents’ spontaneous local

actions and interactions [44]. It contrasts with processes in which order is imposed from outside. A soft-

ware development team is self-organizing if the team “decides what to do, how and when to do it, and no

one outside the [team] directs those activities explicitly” [73, p. 358]. Practices based on self-organizing

are a hallmark of the agile software development movement, which values “individuals and interactions

over [externally imposed] processes” [29] and which advocates uniting business users and developers in

a self-organizing team [29]. These teams make decisions about requirements, solution designs, and the

distribution of work [66]. Self-organizing is also a key idea behind DevOps, which advocates joint teams

of developers and system administrators with no rigid separation of roles between the two [42].

From a collective learning perspective, practices based on self-organizing recognize that much of the

knowledge in software projects emerges over time. Self-organizing allows teams to make decisions

based on this emergent, local knowledge [38, 62]. In contrast, non-self-organizing teams would need to

9

rely on “someone else to name in advance the practices and conditions for every situation, [which] …

obviously breaks down quickly” [39, p. 121] due the key role of cognitive limitations in software work [45].

Although many software development teams are attempting to transition towards self-organizing prac-

tices, these transitions are hampered by barriers related to resources and culture. Self-organizing bene-

fits from teams having control over all resources relevant for their task [30, p. 51], including infrastructure

and knowledge. Yet, as realized by the DevOps movement, software development teams often lack con-

trol over infrastructure and knowledge to manage infrastructure [42]. They may therefore depend on the

external order imposed by infrastructure teams who dictate, for instance, technologies and deployment

schedules. While the DevOps movement suggests removing this barrier by including system administra-

tors into development teams and by eliminating the rigid separation of roles, empirical evidence shows

that developers and operations often take their traditional division of labor for granted [63]. In such

teams, the transition to self-organizing practices is a relatively slow process of cultural change [63].

Frequent Feedback

A second practice advocated by current software development movements is frequent feedback. Feed-

back denotes “information about actions returned to the source of the actions” [79]. Feedback includes

internal feedback (i.e., feedback that actors directly perceive from monitoring the outcomes of their ac-

tions) and external feedback (i.e., feedback provided by another person) [11]. For instance, a developer

obtains internal feedback when she deploys her code and recognizes problems after deployment. She

obtains external feedback, for example, when a business user tests her code and informs her about the

results. These examples indicate that feedback processes operate during many software development

activities, such as compiling, deploying, testing, experimenting, and reviewing.

Current software development movements increasingly recognize that frequent feedback accelerates

collective learning processes. In traditional, plan-based software development, months may elapse from

10

the moment a user specifies a requirement until the user sees the software in action, or from the mo-

ment a developer writes code until she tests the code in a production-like environment [41]. To use a

metaphor, these users and developers resemble tennis players who practice their service but who can

observe the position where the ball hit the ground only months after each swing. They can learn only

slowly from the outcomes of their actions, which is unfortunate if the amount of required learning is large.

As a remedy, agile methods advocate frequent feedback through time-boxed iterations, often of a dura-

tion of a few weeks [73], which are seen as “learning cycles” [66, p. xiii]. Lean methods acknowledge

that such time-boxed rhythms may still delay feedback. They recommend further “increas[ing] the fre-

quency of the feedback loops” [62, p. 38] because “[t]he shorter these cycles are, the more can be

learned” [62, p. 14]. This principle is put into practice by the continuous integration and continuous deliv-

ery (CI/CD) movement [41]. A key principle of CI/CD is that “faster feedback” [41, p. 12] is possible with

technology that allows small code changes to “trigger the feedback process” [41, p. 12]. Such technology

automatically integrates changes into the shared code base and automatically tests and deploys them.

Although many teams desire to follow practices based on frequent or continuous feedback, at least three

barriers slow down feedback in organizational realities. A first barrier are wait times related to deploy-

ment. In many organizations, deployment is performed by specialized infrastructure teams who deploy at

pre-planned schedules, rather than on demand [42]. In such arrangements, days or weeks may elapse

until code is deployed to and tested in testing environments. Although teams can reduce these wait

times by automating deployment processes (i.e., by implementing CI/CD), setting up automated deploy-

ment also takes time and can be complex [15, 41]. Hence, it is difficult to obtain frequent feedback on

software, in particular during the early weeks of a project—a time when ideas about requirements and

designs are often vague and feedback would be particularly valuable. A second barrier are too large

tasks. Frequent feedback can only be triggered if large tasks are broken down into smaller units, such

that the completion of each small unit can trigger the feedback process [14, 58]. Yet some naturally large

11

tasks may be difficult to split up in smaller independent parts. In such situations, feedback is delayed un-

til a large task unit is completed. A third barrier are differences between testing and production environ-

ments. Such differences delay feedback because problems specific to production environments will not

be discovered until code is deployed to production. Given these challenges, research has described the

transition to continuous feedback practices as the quest for the holy grail [4], a “hump of pain” [48, 67], or

a process that requires high levels of top management support and months or years to complete [28].

How particular infrastructure may help overcome these challenges remains empirically unexplored.

Affordance

While our data collection and analysis unfolded, affordances turned out to be a useful concept for theo-

rizing the impact of PaaS on software development. Affordances are potentials for goal-oriented action

that objects (such as PaaS) offer to actors (such as software development teams) [68]. For instance, a

mobile phone affords communicating [12], and an electronic health records system affords standardizing

and coordinating [68]. Four key properties of the affordance lens are (1) the focus on actions, (2) the

concern with how objects facilitate actions, (3) the idea that potentials for action emerge between actors

and objects, and (4) the role of the actors’ goals. Given its focus on actions, a key tenet of the affordance

lens is “to focus … on what an actor could do with the object” [12, p. 4], such as communicating, stand-

ardizing, and coordinating. The focus on actions has invited many scholars to study practices (i.e., recur-

rent collective actions) and their change with an affordance lens [50, 51, 54, 68].

While affordance studies focus on actions, they are also concerned with the mechanisms of how objects

facilitate these actions. For instance, Strong et al. [68] found that an electronic health records system (an

object) allowed hospitals to standardize data (an action) because of the standard data entry forms pro-

vided by the system (technical capabilities of the object). Scholars appreciate this balanced interest in

social action and materiality (i.e., objects) given that “materiality’s role in organizational change remains

under-theorized” [52, p. 159]. Importantly, the claim that an object (e.g., PaaS) facilitates an action (e.g.,

12

a software development practice) means that the object makes the action possible or easier, not that the

object is a necessary condition for the action. For instance, while an electronic health record system af-

fords standardizing, “standardizing can be done separately from implementing” a system [68, p. 76].

Although objects play important roles in affordance conceptualizations, affordances arise in the relation

of objects and actors through three mechanisms. First, affordances may depend on actor capabilities

[12]. For example, a mobile phone allows communicating only if the actors are capable of using their

phones. Second, higher-level affordances depend on the immediate concrete outcomes produced by the

actualization of basic affordances [68]. For instance, Strong et al. [68] found that the electronic health

records system afforded coordinating patient care across sites (a higher-level affordance) only after hos-

pital staff actualized the basic affordances of capturing patient data and ubiquitously accessing data any-

time (basic affordances), which produced easy access to patient data (an immediate concrete outcome).

Third, scholars have speculated that affordances depend on characteristics of the work environment [68,

74]. However, existing studies do “not really address, how non-technology related … mechanisms [such

as work environment characteristics] interact with an IT-enabled change process” [74, p. 833].

Another property of the affordance lens is that actions are assumed to be goal oriented. It is therefore

important to consider the goals (e.g., agility) of the actors in the particular social setting (e.g., software

development teams) to explain what affordances these actors choose to actualize [68, p. 70]. In sum, an

affordance lens explains actions and the resulting outcomes with the entanglement of technological ca-

pabilities, the actors’ capabilities, the actors’ choices to actualize the affordance given their goals in their

social setting, and the changes in the social setting due to the actualization of basic affordances.

METHODS

We used the grounded-theory method (GTM) [13], relying on critical-realist assumptions [55, 57]. The

GTM is appropriate for our study because the flexibility of the method makes it well suited for developing

13

theory about a phenomenon on which little is known [8, p. 6], such as PaaS-based software develop-

ment. Cornerstones of our philosophical stance of critical realism are that reality objectively exists, that

access to reality is limited, and that uncovering causal mechanisms is critical in science [55, 57].

Sampling

We iterated between sampling, data collection, and analysis. Our sampling logic followed the GTM prin-

ciples of constant comparison and theoretical sampling [8, 13, 70]. We began our study in 2014 by

searching for informants that were part of software development teams, used PaaS, and had experience

in non-PaaS projects. We then iteratively expanded this sample through seven waves of data collection,

intermingled with analysis. In line with the principle of constant comparison, we sampled to maximize our

ability to make comparisons. Our final sample of 16 software development teams (see Table 1) includes

teams that vary in a number of dimensions, specifically (1) the software development rationale (i.e., why

and for whom the team developed software), (2) whether they used PaaS, (3) the PaaS product, (4)

whether the PaaS provider was external, (5) team size, (6) project duration, (7) organization size, and (8)

the dominant software development methods in their organizations.

In line with the principle of theoretical sampling, these dimensions emerged only during data analysis.

For instance, after we noted how small service providers and start-ups leveraged PaaS to enact agile

software development practices, we wondered whether we would observe similar practices in in-house

units of large organizations with traditions in plan-based development. We therefore included five teams

from such a company, Telco. Since our sample at that time included mostly small teams engaged in

short projects, we added TelcoMedia, a team of over 30 people engaged in a multi-year project. Moreo-

ver, while we had initially envisioned two separate studies on dPaaS and mPaas, we noted that the

themes were highly similar. We therefore combined the data into one study. In line with the principle of

theoretical saturation, we terminated data collection after interviews only corroborated existing findings

[13, p. 113]. Figure 1 illustrates saturation by plotting the cumulated number of codes against interviews.

14

Table 1: Overview of Software Development Teams

Team Software Develop-
ment Rationale

PaaS
Producta

PaaS Pro-
viderb

Team Task Team
Sizec

Organiza-
tion Sized

Org. SD
Methode

AppCo Product company,
service provider

Force.com
(mPaaS)

External Develops enterprise software package; offers configuration and
extension of the packages to commercial customers

Small Very small Agile

BPMCo Product company CF (dPaaS) External Develops business process management software Large Small Agile
CRMCo Service provider Force.com

(mPaaS)
External Offers custom development, often during or after implementing

Salesforce.com for commercial customers
Small to
medium

Small Agile

DevCo Service provider CF, Heroku
(dPaaS)

External Offers custom development to commercial customers Small to
medium

Very small Agile

ForceCo Service provider Force.com
(mPaaS)

External Offers custom development, often during or after implementing
Salesforce.com for commercial customers

Small to
large

Small Agile

PaaSCo Service provider CF, Heroku
(dPaaS)

External Offers custom development to commercial customers Small to
medium

Very small Agile

PayCo Product company CF, Heroku
(dPaaS)

External Develops payment services software to be used by private cus-
tomers

Small Very small Agile

SecureCo Internal software
development

CF (dPaaS) External Develops embedded software for security systems Medium Large Plan-
based

ShareCo Product company,
Service provider

AppFog, Her-
oku (dPaaS)

External Develops a resource sharing software package; offer configuration
of the package to commercial customers

Small Very small Agile

SoloDev Service provider Heroku
(dPaaS)

External Offers custom development to commercial customers, heavily rely-
ing collaboration with freelancers

Small to
medium

Very small Agile

TelcoAPI Service provider CF (dPaaS) Internal Offers configuration and extension of services that make use of
Telco’s application programming interface

Small Large Plan-
based

TelcoOrder Internal software
development

CF (dPaaS) Internal Develops order management software for internal customers Small Large Plan-
based

TelcoMedia Internal software
development

CF (dPaaS) Internal Develops a media storage software to be used by Telco’s private
customers

Large Large Plan-
based

TelcoNetwork Internal software
development

CF (dPaaS) Internal Develops network information software for internal customers Small Large Plan-
based

TelcoNews Internal software
development

Non-cloud - Develops a news and collaboration platform to be used by internal
customers

Medium Large Plan-
based

TradCo Service provider Non-cloud - Offers custom development to external customers Small Small Agile
a CF = Cloud Foundry, b PaaS provider: internal = PaaS provided by in-house unit, external = PaaS provided by external firm, c team size: small (<5 members), me-
dium (5-15 members), or large (> 15 members), d organization size: very small (< 10 employees), small (10-100 employees), medium (101-10’000 employees), large
(> 10’000 employees), e org. SD Method: dominant software development method in the organization

15

Figure 1: Saturation Plot

Data Collection

We conducted 48 interviews with 42 informants (see Table 2). The informants occupied a number of dif-

ferent roles, such as developers, owner-developers (i.e., individuals that owned part of the firm and de-

veloped software), architects, administrators, managers, testers, and external customers. 8 informants

were interviewed twice to follow up on themes that emerged during data analysis and to explore whether

their use of PaaS had changed over time. The average interview duration was 53 minutes. 40 Interviews

were conducted face to face; 8 were conducted through videoconferencing. All interviews were audio-

recorded and transcribed. Most of the quotes reported in this paper are translated from German.

As is often recommended for exploratory research, we used semi-structured interviews guided by a few

open questions [20, p. 39]. This gave the informants ample opportunities to elaborate, and it allowed the

interviewer to probe into emerging themes. In line with our initial goal to broadly explore the impact of

PaaS on software development, the questions in the initial interview guide were: (1) Please describe the

software development project(s) you are working in. (2) How come you use PaaS? (3) How did the use

of PaaS affect software development in this/these project(s) during different phases of the software de-

velopment lifecycle? (4) How did the move to PaaS affect your team and collaboration within the team?

(5) How important was the interaction with the PaaS provider? Consistent with the GTM principle of no

preconceived theoretical lenses [70], these questions did not focus on themes derived from a-priori theo-

ries but invited informants to talk about the change associated with the use of PaaS.

0

200

400

600

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47C
um

ul
at

ed
 N

o.
 o

f C
od

es

Cumulated No. of Interviews

16

Table 2: Interviews

Team Informants No. of interviews
AppCo 2 owner-developers 2
BPMCo 1 owner-developer 2
CRMCo 3 developers (jointly present in 1 interview), 1 manager 2
DevCo 1 developer, 1 manager 2
ForceCo 3 developers, 3 managers, 2 external customers 9
PaaSCo 1 developer, 1 administrator, 1 manager 3
PayCo 1 owner-developer 2
SecureCo 2 developers 2
ShareCo 1 owner-developer 1
SoloDev 1 owner-developer 2
TelcoAPI 2 developers, 1 manager 4
TelcoOrder 1 developer, 1 manager 2
TelcoMedia 1 administrator, 1 architect, 1 manager, 1 performance engineer 5
TelcoNetwork 2 developers 3
TelcoNews 2 developers, 1 architect, 1 manager, 1 tester 5
TradCo 1 owner-developer, 1 manager 2

Data Analysis

Our data analysis followed the GTM procedures suggested by Charmaz [13]. We started with initial cod-

ing [13, p. 42], memo writing [13, p. 72], and visual mapping (i.e., visualizing events over time) [47], sup-

ported by NVivo. In line with the principle of no preconceived theoretical lenses [70], initial coding was

not guided by the affordance lens or the notion of collective learning but was open to capture any theme

related to the change of software development with PaaS. Initial coding resulted in many provisional

codes that described the actions facilitated by PaaS, such as the example codes shown in Table 3. Initial

coding produced many further themes that we followed during later data analysis, such as PaaS capabil-

ities and work environment characteristics, as well as themes that we did not pursue further.

Table 3: Examples of initial codes

Code Example quotes
Deploying frequently “Deployment can be done more often much more easily."
Everybody can deploy “Everybody can deploy.”
Starting on day one “With PaaS, the development team can start right away, from day one.”
Trying out things “I could very quickly try out Redis [a database technology] to see how it behaves and

how fast it really is.”
Triggering immediate cus-
tomer feedback

“We can show single features to customers within seconds. The customer can then look
at the feature and provide his feedback very quickly.”

Initial coding was followed by focused coding, which centered on the provisional core category emerging

17

from our analysis: the potential for triggering continuous feedback offered by PaaS. We coded themes

that described this potential, as well as themes that appeared related to it. A key strategy for uncovering

these themes was constant comparison of data from PaaS-based software development to data from

non-PaaS-based software development [13, 70]. For instance, the service providers DevCo, PaaSCo,

and SoloDev used PaaS for some of the customers and non-PaaS technology for other customers. We

compared the accounts of PaaS-based and of non-PaaS-based projects. Given our provisional focus on

feedback, key questions in these analyses were how projects differed in the use of feedback and how

these differences were related to PaaS. Memo writing [13, p. 72] was a key activity at this stage.

Focused coding was followed by theoretical coding [13]. At this stage, we considered affordance as a

possible meta-theoretical lens because our data emphasized the actions facilitated by PaaS, rather than

outcomes that would materialize irrespective of actions, such as in the following quote:

“You can implement PaaS and do everything exactly as you did before. Then you wouldn’t see any
change. But PaaS allows you to do things differently. It opens up doors that were closed before. And
that is how it can impact your software development process a lot.” (Developer-and-owner, BPMCo)

Combining the GTM and the affordance lens is consistent with existing affordance research [68] and with

recent suggestions that meta-theoretical lenses can effectively guide the later phases of grounded theo-

rizing [8, p. 3, 13, p. 16, 64, p. xiii]. The affordance lens provided a device for organizing, refining, and

expanding our themes in four important ways. First, given the focus on actions in the affordance lens, we

looked for a “theoretical re-description” [12, p. 8] of the actions in our data. Themes such as feedback,

learning, and agility led us to the theoretical re-description of software development as a collective learn-

ing effort. Second, the affordance literature urged us to aggregate the numerous affordances of low

granularity to a limited number of more abstract categories [12, 53]. We followed Strong et al. [68, p. 74]

in aggregating affordances that were “functionally the same”, i.e., that led to the same outcomes. For in-

stance, we aggregated our initial codes “trying out things” and “triggering immediate customer feedback”

(see Table 3) to the category “triggering continuous feedback” because both codes refer to immediate

18

and frequent feedback as an outcome. Third, the affordance lens invited us to explore the conditions re-

lated to each affordance [12, 68]. We coded which affordances were actualized in which team. Quite sur-

prisingly, our data suggested that all PaaS-based teams had actualized nearly all affordances at least to

some extent after relatively short time. We therefore delved into instances where teams had only par-

tially [12, 68] actualized a particular affordance. We explored the conditions that could explain partial ac-

tualization by comparing potential relationships, such as affordance dependencies [68, p. 74], against

our coding of affordance actualizations per team and against the longitudinal evidence depicted in our

visual maps. The result of these activities was substantive theory [34] that explains how, why, and when

particular affordances arise for software development teams from their use of PaaS.

RESULTS

Figure 2 visualizes our emerging theory. We found two capabilities of PaaS to be particularly salient in

our data: rapid elasticity and abstraction. Four affordances arose in the relation of these capabilities and

software development teams: shaping environments, reusing software services, self-organizing, and trig-

gering continuous feedback. While the first two were basic affordances, self-organizing and triggering

continuous feedback were higher-level affordances that depended on the immediate concrete outcomes

from actualizing basic affordances. The degree to which teams actualized higher-level affordances de-

pended on the work environment characteristic of self-contained tasks. Although the actualization of the

reusing software services affordance made tasks more self-contained, functional sub-teams and archi-

tectural dependencies sometimes inhibited self-contained tasks and, hence, the actualization of higher-

level affordances. The key impact from actualizing the affordances was enhanced agility. We proceed by

presenting the categories related to capabilities, affordances (including outcomes and impact), and work

environment characteristics.

19

Figure 2: Emerging Theory

Technological Capabilities

Although PaaS offers a range of technological capabilities, two emerged as particularly important in ena-

bling the affordances presented in this paper: rapid elasticity and abstraction. Table 3 provides defini-

tions and example quotes. Rapid elasticity, an essential characteristic of any cloud technology [56], is

the capability of immediately changing the scale of the underlying virtualized hardware, such as proces-

sors and memory. Abstraction is the capability of suppressing the details that are encapsulated in the

cloud service [71, p. 187]. PaaS abstracts away the inner workings of application environments, includ-

ing hardware virtualization, application servers, database servers, patches, service and code integration,

load balancing, security and redundancy, deployment, roll-back after failed deployment, and configurable

software components. Abstraction implies that developers are relieved from care of such issues below

the application layer, as one informant put it: “I need to care almost only about my application layer”

(DevCo, manager). Abstraction follows from the essential cloud computing characteristic of on-demand

self-service [56]. Since PaaS provides application environments as an automatic, unilateral service, the

Work environment

AffordancesPaaS capabilities
Triggering
continuous
feedback

Shaping
environments

Self-
organizing

Reusing
software
services

Tailored
learning

environments

Application
dependencies

Rapid
elasticity

Legend:

Facilitates
(on arrows:
immediate
concrete
outcomes)

Reduced
dependence on

infrastructure
teams

Impact

Agility
Lear-
ning

Reduced
efforts

Abstraction

Functional
sub-teams

Inhibits

Self-
contained

tasks

Reduced wait times,
reduced social barriers

to experimentation

20

inner workings of this provisioning process and of its technical components are hidden to the consumers

of the service (i.e., software developers).

Table 4: PaaS Capabilities

Category Definition Example quotes
Rapid
elasticity

The capability of im-
mediately changing
the scale of the un-
derlying hardware

“Scaling is a matter of pushing a button.”
“As a user I can say: I’d like to have five instances. Now I need more RAM, more
CPU. Or less.”
“You can scale extremely fast.”

Abstraction The capability of sup-
pressing the details
that are encapsulated
in the cloud service

“You never have to update scripts or applications. They are always up to date.”
“When we start a project, we never talk about servers, hardware, Windows ver-
sion, Linux, how many databases, how much memory and so on. We don’t set up
development servers or infrastructure. We never talk about IT.”

Affordances and Immediate Concrete Outcomes

Four affordances arose in the relation of technological capabilities and software development teams. Ta-

ble 5 shows the four affordances along with conditions for their actualization, the actions needed to actu-

alize the affordance, and immediate concrete outcomes, illustrated by example quotes. We next intro-

duce each of the affordances.

Shaping environments

The combination of the rapid-elasticity and abstraction capabilities allowed teams to shape environ-

ments, i.e., to easily align application environments to their needs. Specifically, PaaS allowed teams to

easily change the machine power, the software configuration (e.g., choice of database servers), and the

data of their environments. The ability to shape environments was useful in learning environments, i.e.,

in environments that teams used for the purpose of generating feedback. Examples of learning environ-

ments include development, test, and integration environments. An immediate concrete outcome from

shaping environments were tailored learning environments, i.e., environments that were tailored to the

learning needs of the team (see also the arrows in Figure 2 and the last column of Table 5).

21

Table 5: Affordances that PaaS offers to Software Development Teams

Definition Conditions Actions needed to actualize
the affordance

Immediate concrete outcomes with example quotes

Shaping environments
Aligning appli-
cation environ-
ments with
one's needs.

Technology: Abstraction,
rapid elasticity; Context:
Financial resources for
environments available

Teams create representa-
tive or deliberately modified
environments.

Tailored learning environments:
“[With PaaS], I can immediately go into an environment … that is absolutely identical to the production
environment.”
“Let’s do a load test only with one instance and 1 GB of RAM. … With PaaS, this is just one command
line. Now let’s test it with hundreds of instances with 6 GB each.”

Reusing software services
Making use of
existing soft-
ware services,
typically ser-
vices developed
by the PaaS
provider.

Technology: Abstraction;
Actors: Individuals are fa-
miliar with PaaS-based
development principles

Teams use the PaaS ser-
vices (e.g., setting up appli-
cation environments), in-
stead of developing the ser-
vices (e.g., developing
scripts for setting up envi-
ronments) or doing the work
manually (e.g., purchasing
machines).

 (1) Reduced efforts:
“It is very fast and cheap to move a field.”
“[With IaaS] we have an effort of half a day to configure a server. With Heroku, it’s two clicks.”
(2) Reduced dependence on infrastructure teams:
“If you want this or that service …, you don’t have to run each time to a system administrator and ask.”
“You don’t need another person to take care of infrastructure. The developer himself can arrange for
the infrastructure … He does not have to involve other people to deal with the issues below the appli-
cation layer …Hence, the developer is really independent.”

Self-organizing
Organizing work
through local
actions and in-
teractions.

Outcomes from lower-
level affordance: Reduced
dependency on infrastruc-
ture teams; Context: Self-
contained tasks

Teams make decisions
spontaneously and autono-
mously, instead of following
external order.

(1) Reduced wait times: “If we have to set up a server [without PaaS], we need to order a server. This
may easily take a few weeks … This falls away [with PaaS].”
(2) Reduced social barriers to experimentation: “When we were not yet in the cloud, I sometimes
thought that a Redis server [a particular database technology] would be great. Then we talked about it
[with administrators]: ‘Yeah, but setting up a Redis server (irritated). Would you need that for other
projects as well?’ Now in the cloud, I can just try it.”

Triggering continuous feedback
Provoking im-
mediate feed-
back as early
and as often as
needed.

Outcomes from lower-
level affordances: tailored
learning environments, re-
duced efforts, reduced so-
cial barriers to experimen-
tation, reduced wait times

Teams trigger feedback on
demand, such as by deploy-
ing immediately, frequently
showing version of the soft-
ware, and deliberately ex-
perimenting with technolo-
gies.

Learning:
“You deploy to integration or test environments on a daily basis. As a consequence, you [immediately]
note many issues that would otherwise fall on your feet two weeks later if you deployed only every two
weeks. This definitively increases productivity.”
“Each [feedback] loop puts in a better position… By having access to the software from the very be-
ginning, by trying it out and doing their work with it, customers change their requirements fundamen-
tally over time.”

22

There were two types of tailored learning environments. The first were representative environments, i.e.,

environments that were as similar as possible to production environments. Our informants reported that

in non-PaaS settings, testing was often hampered by differences between testing and production envi-

ronments in terms of machine power, configuration (e.g., database products), and data (e.g., simplified

test data differing from production data), such as in the non-PaaS-based TelcoNews team:

 “After testing on integration, we could assume that it will also work on production. However, this isn’t
always true. There are cases in which the environments still differ, even if only slightly …, like a
cache being configured differently.” (TelcoNews, developer 1)

PaaS facilitated creating representative environments because rapid elasticity reduced constraints on

machine power while abstraction helped to make configuration and data identical:

“[Without PaaS] it is difficult to have environments that are identical to your production environment.
With PaaS, the environments are exactly identical.”(PaaSCo, administrator)

“Salesforce offers you a sandbox called Full Sandbox. That’s a 1-to-1 copy of your production envi-
ronment. All the data is there.” (ForceCo, developer 1)

A second type of tailored learning environments were deliberately manipulated learning environments.

These environments were intentionally different to enable testing under alternative conditions:

“Testing can be also much easier with PaaS. For example, you can do scalability tests in a dimension
like never before. You can start hundreds of servers at once … and test your application on a very
high scale. To do something like this on-premise, you would have to buy hundreds of servers, which
would, of course, not be affordable. With PaaS you can start those virtual servers for a short period of
time and stop them.” (BPMCo, owner-developer)

With the exception of TelcoAPI, who did not use any learning environments, all PaaS-based teams actu-

alized the shaping environments affordance in at least some projects. Yet financial constraints prevented

some teams from actualizing the affordance in some projects. For instance, informants from ForceCo

and CRMCo reported that in some projects, the customers were not willing to bear the fees that the

PaaS provider charged for representative test environments. This illustrates that actualizing this af-

fordance involved a choice, indicating that shaping environments was indeed a potential for action.

23

Reusing software services

The abstraction capability provided a second affordance: reusing software services. These software ser-

vices comprised process services (i.e., software services that support the process of software develop-

ment) and product services (i.e., software services that become part of the developed software product).

Process services included services for setting up virtualized infrastructure, services for configuring and

updating application and database servers, and services for deploying code and rolling back. Product

services included PDF creators, user interface components, objects, fields, and workflows.

As the term reuse suggest, PaaS enabled teams to make use of existing software services, typically ser-

vices developed by the PaaS provider. This yielded two immediate concrete outcomes: reduced efforts

and reduced dependence on infrastructure teams. Reusing process or product services reduced efforts

because it eliminated the work that was abstracted away by the PaaS service. For instance, reusing soft-

ware services eliminated efforts for deployment automation, configuration, and requirements analysis:

“As soon as you are finished, you can deploy the code with one single command. Of course, this is
also possible with IaaS or an on-premise solution, but you would first have to set up a platform that
does all this.” (BPMCo, owner-developer)

“With on-premises you have to think about network configuration, load balancing, redundancy, and so
on. … With PaaS these things are … automated.” (PaaSCo, manager)

“[In non-PaaS software development] one used to lose a lot of time with basic things, such as usabil-
ity, user authentication, and infrastructure. That’s the major change with Salesforce [during require-
ments analysis]. You can talk 90% of the time about business processes. This makes the phase
much shorter.” (ForceCo, manager 1)

Nearly effortless deployments with PaaS contrasted with, for example, the non-PaaS-based team Tel-

coNews, where each deployment took “2-3 hours” (TelcoNews, developer 1).

By reusing process services, software development teams reduced their dependence on infrastructure

teams because the automatic process services substituted for the manual work that was traditionally

24

performed by infrastructure teams. Thus, software development teams no longer depended on infra-

structure controlled by these teams and, hence, obtained easier access to resources such as servers:

“I also work in a [non-PaaS-based] project. There I realized how difficult it is to get a server, even a
virtual server… With PaaS this is a lot easier.” (SecureCo, developer 1)

In a similar vein, an informant from Telco cynically narrated how, in a current non-PaaS-based project,

one of his colleagues “sends Excel sheets with port activation requests to an anonymous email address

just to wait until some guy activates the port one month later and you can do the deployment” (TelcoAPI,

manager). In contrast, by reusing the process services provided by PaaS, developers were able to ar-

range for the required infrastructure themselves:

“[The developer] can … set up this environment. He can rapidly add new services. He can rapidly
create a test environment. He can do all this on his own”. (TelcoMedia, manager)

Although, in principle, developers could also set up their infrastructure without PaaS, such as by setting

up physical machines themselves or by using IaaS, many still depended on the help by infrastructure

teams because “developers often do not have the knowledge for setting up environments and deploying

code” (DevCo, manager). Since PaaS abstracted away issues related to application environments, de-

velopers did not require such knowledge anymore in order to set up environments themselves.

Reduced dependence on infrastructure teams gave rise to an important change in the work environment:

the tasks of many teams became self-contained [30] (see the arrow from reusing software services to

self-contained tasks in Figure 2). That is, many teams now had control over the use of all resources (in-

frastructure, knowledge, and software) required to independently complete their task.

Much like shaping environments, reusing software services was a potential for action. Teams were able

to choose whether to reuse the process and product services provided by the PaaS product. Although

there was a choice, all 14 PaaS-based teams in our sample actualized the reusing software services af-

25

fordance to a large extent. However, our informants reported that they had to learn PaaS-based devel-

opment principles before they could “appropriately” [12, p. 7] actualize the affordance (see the third col-

umn in Table 5). Specifically, many informants mentioned a learning process of a few weeks during

which they learned principles such as stateless development, no use of file systems, and microservice-

based architecture. Although this learning process was necessary, our informants generally found this

process to be manageable, or “not a big deal” (TelcoOrder, developer 1).

Self-organizing

Self-contained tasks enabled by the reusing software services affordance gave rise to a third affordance:

self-organizing. Teams were able to make local, spontaneous decisions such as when to deploy, how to

coordinate, and what technologies to use. They were able to make these decisions themselves because

they did not depend anymore on other teams that could impose order. Accounts from a variety of teams

illustrate how self-contained tasks, resulting from the reduced dependency on infrastructure teams, facili-

tated self-organization. Members of the TelcoAPI team narrated how infrastructure teams imposed pro-

cesses on them and how reusing software services with PaaS liberated them from these processes:

“Here at Telco, setting up traditional infrastructure means speaking with a DevOps guy to get an ap-
plication server. Then I have to ask the firewall guys to open a port... Then I have to consider firewall
rules and security issues. So, in order to publish a service with on-premises infrastructure, I need to
do four things. With PaaS I’m done in 10 minutes.” (TelcoAPI, developer 2)

“[With PaaS], you have your personalized environment, including services, ready within 3 minutes,
entirely sidestepping your organization.” (TelcoAPI, manager)

A developer from the TelcoMedia team narrated how self-contained tasks allowed ad-hoc decision mak-

ing about deployments:

“A lot changed [in our team structures]… We now don’t have anyone who is responsible for the hard-
ware, the server, and the databases. We just need someone who manages the PaaS, which is really
not a lot of work. This can be done either by a developer or by the project manager. We also do not
need any integrators because every developer can deploy directly to the PaaS. … The structures in
our team evolved ad hoc, how it made sense to us.” (TelcoMedia, developer 1)

26

Reduced dependencies on other teams also gave developers greater freedom to choose the technolo-

gies that they found useful, rather than technologies that others had approved:

“You don’t have to take what your firm prescribes. You can say I take this service from here and this
service from there. I do this on my own. People can work with what they love and what they need.”
(TelcoAPI, manager)

Self-organizing yielded two important immediate concrete outcomes: reduced wait times and reduced

social barriers to experimentation. By organizing work inside the team, PaaS-based teams did not have

to wait for the actions of others, or “external blockers” (PaaSCo, manager). In contrast, non-PaaS-based

teams often waited a long time for others’ actions, such as in the non-PaaS-based TelcoNews team:

“We completed the work on the software six months ago. Now we’re still waiting for the infrastructure
to be ready.” (TelcoNews, developer 2)

Self-organizing also lowered social barriers to experimentation because developers did not have to fear

that their requests for work from other teams would provoke negative reactions:

“If you use an on-premises environment only for a quick experiment and then throw it away, the ad-
ministrator, who spent several hours setting it up, will murder you. With PaaS you simply create such
a throwaway environment with a single click.” (PaaSCo, manager)

Although the outcomes from reusing software services facilitated self-organizing, teams could choose to

what extent they wanted to actualize this affordance. For instance, it was, in principle, possible to reuse

the PaaS services but to stick to externally imposed roles and processes, such as by asking infrastruc-

ture teams to set up PaaS environments or by following plan-based software development approaches.

As one informant put it: “You can plan yourself to death for half a year and then install everything on

PaaS” (TelcoOrder, developer). Hence, although reusing software services facilitated self-organization,

teams were able to choose whether and to what extent to actualize this affordance, showing that self-

organizing was a potential for action.

27

Triggering continuous feedback

The key affordance that arose in the relation of PaaS and software development teams was triggering

continuous feedback. That is, the PaaS-based teams in our sample were able to provoke immediate

feedback as early and as often as needed. Feedback included internal feedback and external feedback

(see section 2.2 for definitions). Instances of triggering continuous internal feedback included: develop-

ers experimenting with alternative technologies when they wished to do so; developers perceiving the

results of deploying code to representative test environments immediately after writing the code; custom-

ers immediately seeing a version of a software based on their requirements; customers immediately ex-

periencing the consequences from their changes to the software configuration. Instances of triggering

continuous external feedback included: developers showing new features to customers immediately after

developing them to obtain feedback; developers deploying new features to production environments im-

mediately after developing them to obtain feedback from end users.

The potential to trigger continuous feedback arose because the outcomes from actualizing the other

three affordances helped tear down temporal, technical, and social barriers to feedback. Reduced effort

and reduced wait times helped tear down temporal barriers to feedback. For instance, with reduced de-

velopment and administration efforts and with eliminated wait times for deployment, the time from articu-

lating a requirement until seeing the software in action was often substantially shortened:

“An enormous difference to classical software development is that you can set up a working proto-
type in no time… Thus, you get feedback from the beginning... You continuously show the application
and obtain feedback. Because you can and because it is very easy and quick.” (ForceCo, manager 1)

“When you want to hand over code for testing, … you can quickly create a test environment on Her-
oku, deploy to it, and look at it. As a developer, you are able to much faster show something to cus-
tomers. You have a shorter feedback loop.” (DevCo, manager)

Tailored learning environments helped reduce technical barriers to feedback by providing teams with the

technical environments that fit their learning needs.

28

“With PaaS, each developer could deploy his code on his own test environment, which is an exact
copy of the production environment. If the code works, it will also work on the production environ-
ment.” (ShareCo, owner-developer)

Reduced social barriers to experimentation helped reduce social barriers to feedback:

“PaaS allows developers to try out different services quickly, play around with them, and decide for
the best. Try this in with on-premises—impossible. … System administrators would go crazy if you
asked them continuously to install and uninstall certain services for testing.” (PaaSCo, manager)

The key outcome from triggering continuous feedback was learning. Continuous feedback helped cus-

tomers to refine their ideas about their requirements:

 “Sometimes, the customers don’t know what they want. Then the feedback [from working with a pro-
totype] often results in different or new requirements.” (ForceCo, manager 2)

“With PaaS, we can create many small prototypes and test instances that we show the customer on
demand… This greatly improves … the customer’s understanding.” (DevCo, manager)

Continuous feedback also helped developers to learn from mistakes made during coding:

“If a developer deploys himself and then notes that something does not work because of his code,
then he realizes this himself and learns. PaaS allows us to think more and more along these lines.”
(DevCo, manager)

The ability to continuously promote learning through continuous feedback was important for all teams in

our sample because they shared the goal of agility [19]. Continuous feedback enabled them to continu-

ously create change (e.g., by quickly implementing a new requirement, by quickly trying out technolo-

gies, by deploying immediately) and to immediately learn from it (e.g., by seeing how useful the new re-

quirement, the technology, or the code change was).

As with the other affordances, actualizing the triggering continuous feedback affordance involved a

choice. We next elaborate on the conditions under which teams actualized higher-level affordances.

Work Environment Characteristics

While all PaaS-based teams actualized the basic affordances shaping environments and reusing soft-

ware services to a large extent, we found more variation between teams, and within teams over time, in

29

the degree to which teams actualized the high-level affordances self-organizing and triggering continu-

ous feedback. Teams actualized the self-organizing affordance, and hence the triggering continuous

feedback affordance, to a lesser degree when two context factors inhibited self-contained tasks: applica-

tion dependencies and functional sub-teams (see the dashed arrows in Figure 2 and the definition and

example quotes provided in Table 6).

Table 6: Work Environment Characteristics

Category Definition Example quotes
Self-contained
tasks

A state in which a team has con-
trol over the use of all resources
(infrastructure, knowledge, and
software) that are required to in-
dependently complete its task

“You get teams that can operate highly autonomously.”
“We deploy to production because the operations team has been un-
coupled.”
“You have a very broad knowledge. You could do an entire project
on your own.”

Application
dependencies

The extent to which an applica-
tion has interfaces to other appli-
cations

“PaaS is great if you don’t have any mainframes in your basement
with which the software needs to communicate.”
“We learned that we have to be realistic. Recently, we had the case
of a software that strongly depends on data from certain back-end
systems. In cases like this, we cannot operate in the same way as in
our typical PaaS projects.”

Functional
sub-teams
(vs. cross-
functional
teams)

A team design where teams are
subdivided into specialized sub-
teams

“The Mango team is responsible for the mobile application and the
web interface. … But sometimes the web interface was not compati-
ble with the back-end, which is managed by the Kiwi team. So in this
cycle, the Mango team started deploying in cooperation with the Kiwi
team. But then the Durian team, who is responsible for the desktop
clients was not ready. So they could not deploy.”

As laid out in the section on the reusing software services affordance, the tasks of many teams became

self-contained by reusing PaaS services because the teams eliminated their dependence on the infra-

structure and knowledge possessed by infrastructure teams. Self-contained tasks, in turn, enabled self-

organization. For tasks to be self-contained, teams need to have control over all resources required for

their tasks [30]. These resources include not only infrastructure and knowledge but also applications. Yet

some tasks were characterized by strong application dependencies. In such tasks, the interfaced appli-

cation was an important resource outside the team. When the interfaced application was under control of

a team that followed external order (e.g., by following prescribed waterfall methods), then the focal team

also had to adhere to external order, such as in the case of the TelcoNetwork team:

30

“We move outside the [regular three-months] release cycle [formally prescribed by Telco]… unless
we develop enhancements for projects in which Core systems [i.e. systems which are developed
based on the waterfall model] are affected. In that case, we rely on data from Core systems and we
deploy within the official release cycle. But for other features, we move outside [the waterfall develop-
ment process] and we release how we want.” (TelcoNetwork, developer 1)

Second, self-contained tasks were also inhibited by functional sub-teams. For instance, after TelcoMedia

had fully actualized self-organization and continuous feedback for some time, managers of the TelcoMe-

dia team decided to divide the team into four sub-teams with functional specialization, such as a front-

end team and a back-end team. As a consequence, the tasks of these sub-teams were not self-con-

tained anymore given that many tasks affected both front-end and back-end and, hence, involved people

outside a particular sub-team. With such increased dependencies, the team had to abandon the highly

self-organized way of working of the first project phase and adopted a more central coordination ap-

proach with rigid roles and fixed two-weeks cycles. With this time-boxed approach imposed from outside

the sub-teams, the sub-teams did not actualize the potential to trigger continuous feedback anymore in a

number of areas. An architect lamented that this team design slowed down the project:

“We didn’t really want this. But the external vendor wanted it. [They] developed the back-end and
they did not want to give up control over the back-end. That was the reason [for this team structure]…
To be sincere, this really blocks us and it is inefficient.” (TelcoMedia, architect)

In contrast, BPMCo was also a large team of over 50 people but remarkably retained its ability to contin-

uously trigger feedback. They strongly relied on self-contained tasks assigned to “relatively small, auton-

omous [sub-]teams”, “typically [of] a back-end and a front-end developer” (BPMCo, owner-and-devel-

oper). BPMCo fully actualized the self-organization and continuous feedback affordance and “deploy[ed]

each feature … as soon as it [was] ready, totally dynamically, sometimes multiple times a day” (BPMCo,

owner-and-developer).

Alternative Explanations or Predictions

During our data analysis, we examined several alternative explanations and predictions for affordances

or, more broadly, the impact of PaaS on software development. They emerged from our literature review

31

or from our data analysis but were discarded as our theoretical sampling and analysis unfolded. For in-

stance, although some informants conjectured that PaaS affords self-organizing and triggering continu-

ous feedback only if the dominant organizational software development method is an agile method, we

also found these affordances to be actualized in organizations that prescribed waterfall development.

Table 7 provides a brief discussion of this and other explanations or predictions.

Table 7: Alternative Explanations or Predictions

Category Conjecture Evidence
Intentions
behind
PaaS use

Teams actualize higher-
level affordances only if
greater agility is their in-
tention behind PaaS
use.

Teams actualized higher-level affordances irrespective or their initial intentions
behind PaaS use. Teams, such as TelcoMedia and TelcoNetwork, that had not
anticipated the action potential for self-organizing and continuous feedback be-
fore using PaaS, quickly perceived and actualized these action potentials after
they started using PaaS.

External vs.
internal pro-
vider

The impact of PaaS de-
pends on whether the
PaaS provider is exter-
nal or an in-house unit.

Teams actualized higher-level affordances irrespective of whether PaaS was
provided by an in-house unit (like in the four PaaS-based teams at Telco) or by
an external firm (like in all other teams studied).

Team size Only small teams are
able to actualize higher-
level affordances.

Teams actualized higher-level affordances irrespective of team size. Even large
teams, such as BPMCo with over 50 members and TelcoMedia with over 30
members, actualized these affordances as long as the sub-teams were cross-
functional.

Project du-
ration

PaaS use correlates
with agility because
PaaS is primarily cho-
sen for short projects.

PaaS-based teams actualized higher-level affordances and were highly agile
even in long, large projects. For instance, TelcoMedia was a multi-year project
characterized by high agility, as evidenced, for instance, by lead times for new
features of two weeks. Such lead times were rare in other teams at Telco.

Organiza-
tion size

Only teams in small or-
ganizations actualize
higher-level af-
fordances.

Teams actualized higher-level affordances irrespective of the size of organiza-
tions. Since the use of PaaS helped teams to decouple themselves from their or-
ganizations, even formal cultures typical for large organizations, such as Telco
and SecureCo, hardly inhibited higher-level affordances.

Dominant
organiza-
tional soft-
ware devel-
opment
method
(DOSDM)

Teams actualize higher-
level affordances only if
the DOSDM is an agile
method.

Teams actualized higher-level affordances irrespective of the DOSDM. For in-
stance, although Telco and SecureCo had strong traditions in waterfall develop-
ment, teams quickly started self-organizing and triggering continuous feedback
after adopting PaaS. Since the use of PaaS helped teams to decouple them-
selves from their organizations, strong traditions in waterfall development, like at
Telco and SecureCo, did not inhibit higher-level affordances.

Network ef-
fects

The impact of PaaS de-
pends on network ef-
fects. It is higher when a
PaaS product attracts
many customers and in-
dependent software
vendors.

In our data, the impact of PaaS on software development practices hardly de-
pended on network effects. The affordances arose primarily in a dyadic relation-
ship of a PaaS provider and a software development team. Although the teams
sometimes used services (e.g., PDF creators) offered by independent software
vendors, it was in particular the use of services offered by the PaaS provider
(e.g., deployment features, objects, fields, workflows) that had a transformative
impact on software development practices in the teams that we studied.

32

DISCUSSION

In this research, we set out to study the impact of PaaS on software development. The underlying moti-

vation was the lack of empirical studies that examine how software development practices change with

the use of PaaS. The key outcome from our study is an emerging theory, grounded in evidence from 16

teams, that describes the affordances offered by PaaS and that explains how, why, and when these af-

fordances arise. The key affordance is triggering continuous feedback, and its key impact is enhanced

agility. Implications from our theory are (1) that the use of cloud technology can help accelerate technol-

ogy-mediated collective learning processes under certain conditions, (2) that PaaS is an enabling tech-

nology in the transition to practices advocated by many current software development movements, and

(3) that the actualization of affordances can be inhibited by work environment characteristics that conflict

with the logic underlying the affordances. We next discuss these and other implications for the literatures

on cloud computing, software development, and affordances in more detail.

Implications for the Cloud Computing Literature

The Impact of PaaS on Software Development: Beyond Efficiency Gains and the Outsourcing Metaphor

Our findings related to basic affordances echo claims in the cloud literature about efficiency gains ena-

bled by PaaS. For instance, our findings related to the shaping environments affordance resonate with

Lawton’s assertion that “[b]uilding, debugging, testing, and deploying applications in the same environ-

ment … reduces project risk by eliminating problems caused when programs are developed in one set-

ting but run in another” [49, p. 14]. Our findings related to the reusing software services affordance are

broadly in line with the view of PaaS as “a way for companies … to help contain or drastically reduce IT

expenditures” [26, p. 22]. However, our findings go beyond the prevailing focus on particular efficiency

gains, or the idea that PaaS “may affect aspects of system testing and implementation phases, but have

little impact on the design and development phases” [81, p. 48].

33

Our study adds that actualizing basic affordances not only yields efficiency gains during particular

phases; it also enables the transformation of work practices towards greater agility that is delineated in

our two higher-level affordances. The first of these higher-level affordances is self-organizing. By reusing

the software services provided through an on-demand self-service, software development teams reduce

their dependence on infrastructure teams, which makes the work of software development teams self-

contained and thereby facilitates self-organizing. Since these teams do not depend anymore on the

knowledge and infrastructure possessed by infrastructure teams, they can more easily make local, spon-

taneous decisions such as when to deploy, how to coordinate, and what technologies to use. The litera-

ture on PaaS has rarely explicitly described the potential of PaaS to facilitate self-organizing, although

the idea that PaaS affords self-organizing is somewhat implicit in the assertion that mPaaS might enable

end user computing [81]. Yet end user computing (i.e., business users changing applications them-

selves) was only one, and not the most salient, facet of self-organizing facilitated by PaaS that surfaced

in our data. Although users sometimes performed minor changes to applications themselves, the much

more salient pattern of self-organizing behavior was that software development teams leveraged PaaS

to make autonomous decisions about issues such as deployment, team coordination, and technologies.

It is insightful to relate our findings on self-organizing to the broader cloud computing literature. Some

work on SaaS alludes to the potential for cloud users to self-organize their use of computing resources

but gives it a rather negative connotation through terms such as stealth adoption or shadow IT [35, 82].

This contrasts with our informants’ positive perspective, one of whom viewed the potential to self-organ-

ize the software services underlying his work as “awesome democratization” (TelcoAPI, manager). The

idea that cloud technology enables self-organizing contrasts also with the outsourcing metaphor that is

sometimes used in cloud computing research. While the notion of outsourcing sensitizes for heightened

boundaries and arduous coordination with external parties [23, 43], the PaaS-based teams in our sample

achieved quite the opposite: They reduced their dependence on and their need to coordinate with other

34

units because the work of these units became an on-demand self-service. Paradoxically, by relying on

an on-demand self-service, software development teams abdicated control over the provisioning of infra-

structure but gained control over the choice and use of infrastructure, allowing developers to decide what

technologies to use and when to make what changes. This potential for self-organizing existed irrespec-

tive of whether the PaaS provider was internal or external (i.e., outsourcing). These findings echo voices

[65] that have warned against literally transferring ideas from outsourcing research to cloud computing.

A second higher-level affordance emerging from our analysis is triggering continuous feedback. The out-

comes from actualizing the other three affordances helped teams to tear down the temporal, social, and

technical barriers to feedback, allowing teams to trigger nearly immediate feedback when needed and to

learn from it. With few exceptions [71], academic studies on cloud computing have rarely recognized its

potential to accelerate technology-mediated feedback processes and to thereby enhance agility.

Closest to this idea is perhaps Venters’ and Whitley’s assertion that “the scalability of cloud services al-

lows the trialling of niche services in an agile manner with low risk” [71, p. 190]. Our emerging theory ex-

pands this idea in three ways. First, it is not only the scalability (or rapid-elasticity) capability but also the

abstraction capability that helps accelerate feedback. Abstraction helps reduce efforts and liberate from

dependencies, which reduces temporal and social barriers to feedback. Second, these capabilities ena-

ble quicker feedback and, hence, agility by allowing not only to trial different services but also to continu-

ously make changes to a particular service and to observe the outcomes (such as by changing configu-

ration or source code and immediately testing the software in production-like conditions). Third, our

emerging theory recognizes that teams may not be able to realize the potential to enhance agility under

all circumstances. Two work environment characteristics, application dependencies and functional sub-

teams, can inhibit self-organizing and, hence, triggering continuous feedback. Thus, whether and how

teams can harness the potential for greater agility offered by PaaS is likely to depend both on exoge-

nous factors (i.e., application dependencies) and on team design (i.e., choice of cross-functional teams).

35

Towards Theory of the Transformative Impact of Cloud Computing on Collective Learning Processes

Although we developed a substantive [34] PaaS-specific theory, we believe that our theory can serve as

a first step towards formal theory [34] of the transformative impact of cloud technology on technology-

mediated collective learning processes. Two empirical settings may help illustrate the application of the

theory: IaaS-based software development and SaaS implementations. Relative to PaaS, IaaS offers a

similar level of rapid elasticity but a lower level of abstraction. Applying our theory to IaaS-based soft-

ware development would thus suggest that with lower abstraction, IaaS provides qualitatively similar but

somewhat weaker affordances (i.e., actions are not facilitated to the same extent as in the case of

PaaS). For instance, the self-organizing affordance is weaker because IaaS eliminates the need for the

physical infrastructure possessed by infrastructure teams but not for their knowledge about the provi-

sioning of the infrastructure. The triggering continuous feedback affordance is also weaker given the so-

cial and temporal barriers to feedback that remain due to the weaker self-organizing affordance and due

to the higher efforts for managing infrastructure and building application components.

Our theory may also be applied to SaaS implementations given that, like software development, soft-

ware implementations are technology-mediated collective learning processes (e.g. teams learning new

ways of configuring the software and of using it in their work routines [50, 59]). Since SaaS offers a

higher level of abstraction than PaaS, it may provide stronger affordances for self-organizing and trigger-

ing continuous feedback than PaaS, in particular to business users. Whereas the business users in the

PaaS-based teams in our sample rarely configured the software themselves, SaaS may enable business

users to make spontaneous, local, and autonomous decisions about the choice, configuration, and use

of software without adhering to external order. They may also trigger continuous (internal) feedback by

trialling a variety of SaaS services [71, p. 190] and by immediately experiencing how they could perform

their work with the help of these services. Extrapolating our finding on the inhibiting role of work environ-

ment characteristics, we expect that the affordances for self-organizing and continuous feedback are

36

less pronounced in the case of enterprise software, where dependencies on other teams are relatively

strong, than in the case of team-level software, such as collaboration software. Although these ideas

have not been validated through our study, they are intended to illustrate how researchers can build on

the key idea behind our emerging theory: the idea that the abstraction and rapid-elasticity capabilities of

cloud computing technology help remove the barriers to feedback that otherwise slow down technology-

mediated collective learning processes.

Implications for the Software Development Literature

Our study offers insights into the transition process towards self-organizing and continuous feedback

practices, which is a key focus of the software development literature and of current software develop-

ment movements. The transition to self-organizing practices is a key concern of the DevOps movement,

which aims to break down social barriers to collaboration by promoting collaborative norms in united

teams of developers and administrators [42, 63, 77]. While this often presents a relatively slow process

of learning and cultural change, the PaaS-based teams in our sample followed a different, relatively

quick process with, however, a similar outcome. Rather than to promote collaboration, they chose to

eliminate administrators by substituting their work with an automatic on-demand service. This quickly

eliminated the frictions between developers and administrators and enabled teams to make spontane-

ous, local decisions about the use of infrastructure. Thus, our study provides the insight that PaaS can

facilitate the transition to self-organizing practices because its abstraction capability allows developers to

reuse software services, which reduces the dependence on and the order imposed by others.

The transition to continuous feedback is also a key concern behind many current software development

movements, such as the agile movement [39, p. 121], and the more recent CI/CD and lean software de-

velopment movements [28, 41, 42, 62]. Research on these approaches has described the transition to

continuous feedback practices as a tedious process that is fraught with technical challenges in particular

37

at the outset of projects and that demands significant top management support [17, 28, 48, 67]. In con-

trast, the PaaS-based teams in our sample actualized the continuous feedback affordance relatively

early and easily, without significant management support. The use of PaaS helped these teams to tear

down the temporal (wait times, large tasks), social (need to collaborate with infrastructure teams), and

technical (heterogeneous environments) barriers to feedback. For these teams, the transition to continu-

ous feedback practices was a relatively easy, natural process. This comparison of our findings with the

tedious processes reported in the literature underscores a key assertion of our paper: that PaaS pro-

vides an affordance for continuous feedback. The use of PaaS can make it easier for teams to enact

continuous feedback practices, although teams can also enact such practices without PaaS, albeit with

greater effort. An important contribution of our paper is, hence, that we reveal the enabling potential of

PaaS for software development practices that rely on continuous feedback.

Our findings on work environment characteristics resonate with insights provided by the software devel-

opment literature. Similar to our finding that application dependencies inhibit higher-level affordances,

research on CI/CD has found that application dependencies are a major problem in CI/CD adoption [48].

Moreover, in line with our observation that functional teams inhibit higher-level affordances, the literature

on CI/CD advocates the use of cross-functional teams to implement CI/CD [41]. These commonalities

are not surprising given that the use of PaaS facilitates the practices advocated by the CI/CD movement.

Implications for the Affordance Literature

Although the primary contributions of our study relate to the cloud computing and software development

literatures, we also offer one insight to the affordance literature. While affordance studies explain the ac-

tualization of affordances primarily with actor characteristics (e.g., goals, skills) [50, 68], our study re-

vealed that work environment characteristics can be important inhibitors for the actualization of af-

fordances. Our teams were unable to fully actualize the self-organizing and, hence, the continuous feed-

back affordances when they were constrained by work environment characteristics—functional sub-

38

teams and application dependencies—that were at odds with the logic of self-organizing. With the ex-

ception of Strong and colleagues, who briefly mention work environment characteristics [68, p. 72], few

scholars have incorporated work environment characteristics into affordance-based theories. Our study

indicates that conflicts between the logic of affordances (e.g. the principle of self-organizing systems)

and work environment characteristics (e.g. strong dependencies on the environment) can help explain

variation in the actualization of affordances.

Limitations

Our study is not without limitations. First, unlike in a case study, the focus in our study was on breadth

rather than depth. Given the lack of knowledge about PaaS, breadth was useful for uncovering themes

that are salient across many PaaS-based teams, rather than idiosyncratic to a particular setting. Future

research could focus on depth, analyzing one or few cases of PaaS-based software development over

time. Such a case study could provide richer insights into processes of change. Second, our study relied

on interview data only. Future research on the impact of PaaS could make greater use of triangulation,

such as by corroborating interview statements with observational analysis, with the analysis of code ver-

sioning systems, and with more structured instruments that build on our findings. Third, although we ex-

amined a number of potentially inhibiting context factors through theoretical sampling and although our

sample included a relatively large number of teams, all PaaS-based teams in our sample were overall

satisfied with the affordances that PaaS provided to them. Future research could look out for cases of

failed PaaS implementations to further sharpen the conditions under which the use of PaaS results into

positive impact on agility. Fourth, most of our teams used a relatively homogeneous class of technolo-

gies (mPaaS and dPaaS services). Future research could compare a greater variety of technologies that

differ in the level of abstraction (e.g., IaaS, container technologies, non-cloud based model-driven frame-

works) to further disentangle the roles played by particular capabilities.

39

Practical Implications

With the growing adoption of PaaS, organizations are wondering what the value proposition of PaaS is

and how they can harness it. Our study suggests that the primary value proposition of PaaS is agility. By

enabling teams to trigger continuous feedback, PaaS can help to speed up the learning processes from

which useful, innovative software results. Organizations should therefore consider adopting PaaS in pro-

jects that strive for rapid, software-based innovation and that are not hampered by complex dependen-

cies on other applications. The mere adoption of PaaS may, however, not necessarily produce greater

agility. Organizations should encourage self-organization and continuous feedback practices in these

teams. Moreover, organizations should rely on cross-functional (sub-)teams in such projects. Given the

role of application dependencies, organizations may start their PaaS journeys in isolated applications

and then expand their use of PaaS along the network of related applications.

CONCLUSION

Although vendor studies point to a transformative potential of PaaS for agile practices and although

means for enabling agile practices are of key interest to IS research and practice, the enabling potential

of PaaS, and more generally of cloud computing, for agile practices has been largely unexplored. Our

study unveils how two kinds of agile practices—self-organizing and continuous feedback—are enabled

by two technical capabilities that are intimately related to the essential characteristics of cloud technol-

ogy: rapid elasticity and the high level of abstraction offered by an on-demand self-service. Rapid elastic-

ity and abstraction help teams to tear down the temporal, technical, and social barriers to feedback, re-

sulting in accelerated technology-mediated collective learning processes and thus enhanced agility.

While our study focuses on PaaS, future research may explore these mechanisms for other types of

cloud technologies. More broadly, our study shows how cloud computing research can move beyond the

outsourcing metaphor and explore the transformative value of cloud technology by paying close attention

to the essential characteristics of cloud technology and the way how they facilitate particular practices.

40

REFERENCES

1. Anselmi, J., Ardagna, D., and Passacantando, M. Generalized nash equilibria for saas/paas clouds. European Journal of
Operational Research, 236, 1 (2014), 326-339.

2. Austel, P., Chen, H., Mikalsen, T., Rouvellou, I., Sharma, U., Silva-Lepe, I., and Subramanian, R. Continuous delivery of
composite solutions: A case for collaborative software defined paas environments. Paper presented at the 2nd International
Workshop on Software-Defined Ecosystems. Portland, Oregon. 2015.

3. Beimborn, D., Miletzki, T., and Wenzel, S. Platform as a service (paas). Business & Information Systems Engineering, 3, 6
(2011), 381-384.

4. Bellomo, S., Ernst, N., Nord, R., and Kazman, R. Toward design decisions to enable deployability: Empirical study of three
projects reaching for the continuous delivery holy grail. Paper presented at the 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. Atlanta, GA. 2014.

5. Benedict, M. Coming to (your) terms with platform-as-a-service (paas). Bedford, MA: Progress Software, 2013, pp. 1-11.

6. Benlian, A., Hess, T., and Buxmann, P. Drivers of saas-adoption–an empirical study of different application types. Business
& Information Systems Engineering, 1, 5 (2009), 357-369.

7. Benlian, A., Koufaris, M., and Hess, T. Service quality in software-as-a-service: Developing the saas-qual measure and
examining its role in usage continuance. Journal of Management Information Systems, 28, 3 (2011), 85-126.

8. Birks, D.F., Fernandez, W., Levina, N., and Nasirin, S. Grounded theory method in information systems research: Its
nature, diversity and opportunities. European Journal of Information Systems, 22, 1 (2013), 1-8.

9. Boh, W.F., Slaughter, S.A., and Espinosa, J.A. Learning from experience in software development: A multilevel analysis.
Management Science, 53, 8 (2007), 1315-1331.

10. Brooks, F.P.J. The mythical man-month: Essays on software engineering. Reading, MA: Addison-Wesley, 1975.

11. Butler, D.L., and Winne, P.H. Feedback and self-regulated learning: A theoretical synthesis. Review of educational
research, 65, 3 (1995), 245-281.

12. Bygstad, B., Munkvold, B.E., and Volkoff, O. Identifying generative mechanisms through affordances: A framework for
critical realist data analysis. Journal of Information Technology, 31, 1 (2016), 83-96.

13. Charmaz, K. Constructing grounded theory: A practical guide through qualitative analysis. Thousand Oaks, CA: Sage,
2006.

14. Chen, L. Towards architecting for continuous delivery. Paper presented at the 12th Working IEEE/IFIP Conference on
Software Architecture. Montréal, Canada. 2015.

15. Chen, L. Continuous delivery: Overcoming adoption challenges. Journal of Systems and Software, 128, June (2017), 72-
86.

16. Chen, P.-y., and Wu, S.-y. The impact and implications of on-demand services on market structure. Information Systems
Research, 24, 3 (2013), 750-767.

17. Claps, G.G., Svensson, R.B., and Aurum, A. On the journey to continuous deployment: Technical and social challenges
along the way. Information and Software Technology, 57, January (2015), 21-31.

18. CloudFoundryFoundation. Cloud foundry application runtime user survey. https://cloudfoundry.org/wp-
content/uploads/2012/02/CFF_ApplicationRuntime_UserSurvey.pdf. Accessed Feb 27th, 2018.

19. Conboy, K. Agility from first principles: Reconstructing the concept of agility in information systems development.
Information Systems Research, 20, 3 (2009), 329-354.

20. Corbin, J., and Strauss, A.L. Basics of qualitative research. Thousand Oaks, CA: Sage, 2008.

21. Costache, S., Dib, D., Parlavantzas, N., and Morin, C. Resource management in cloud platform as a service systems:
Analysis and opportunities. Journal of Systems and Software, 132, October (2017).

22. DaSilva, C.M., Trkman, P., Desouza, K., and Lindič, J. Disruptive technologies: A business model perspective on cloud
computing. Technology Analysis & Strategic Management, 25, 10 (2013), 1161-1173.

https://cloudfoundry.org/wp-content/uploads/2012/02/CFF_ApplicationRuntime_UserSurvey.pdf
https://cloudfoundry.org/wp-content/uploads/2012/02/CFF_ApplicationRuntime_UserSurvey.pdf

41

23. Dibbern, J., Winkler, J., and Heinzl, A. Explaining variations in client extra costs between software projects offshored to
india. MIS Quarterly, 32, 2 (2008), 333-366.

24. Dingsøyr, T., Nerur, S., Balijepally, V., and Moe, N.B. A decade of agile methodologies: Towards explaining agile software
development. Journal of Systems and Software, 85, 6 (2012), 1213-1221.

25. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., and Herbsleb, J.D. Team knowledge and coordination in geographically
distributed software development. Journal of Management Information Systems, 24, 1 (2007), 135-169.

26. Fanning, K., and Centers, D.P. Platform as a service: Is it time to switch? Journal of Corporate Accounting & Finance, 23,
5 (2012), 21-25.

27. Faraj, S., and Sproull, L. Coordinating expertise in software development teams. Management Science, 46, 12 (2000),
1554-1568.

28. Fitzgerald, B., and Stol, K.-J. Continuous software engineering: A roadmap and agenda. Journal of Systems and
Software, 123, January (2017).

29. Fowler, M., and Highsmith, J. The agile manifesto. Software Development, 9, 8 (2001), 28-35.

30. Galbraith, J.R. Organization design: An information processing view. Reading, MA: Addison-Wesley, 1977.

31. Gartner. Size of the public cloud platform as a service (paas) market worldwide from 2015 to 2020.
https://www.statista.com/study/31311/platform-as-a-service-statista-dossier/. Accessed Oct 6th, 2017.

32. Gass, O., Meth, H., and Maedche, A. Paas characteristics for productive software development: An evaluation framework.
Internet Computing, IEEE, 18, 1 (2014), 56-64.

33. Giessmann, A., and Stanoevska, K. Platform as a service–a conjoint study on consumers’ preferences. The 33rd
International Conference on Information Systems, Orlando, FL, USA, 2012.

34. Glaser, B.G., and Strauss, A.L. The discovery of grounded theory. Chicago, IL: Aldine, 1967.

35. Haag, S., and Eckhardt, A. Shadow it. Business & Information Systems Engineering, 59, 6 (2017), 469-473.

36. Hahn, C., Huntgeburth, J., Winkler, T.J., and Zarnekow, R. Business and it capabilities for cloud platform success. Paper
presented at the International Conference on Information Systems. Dublin, Ireland. 2016.

37. He, J., Butler, B.S., and King, W.R. Team cognition: Development and evolution in software project teams. Journal of
Management Information Systems, 24, 2 (2007), 261-292.

38. Highsmith, J. Adaptive software development: A collaborative approach to managing complex systems. New York, NY:
Dorset House, 2000.

39. Highsmith, J., and Cockburn, A. Agile software development: The business of innovation. Computer, 34, 9 (2001), 120-
127.

40. Hilwa, A. Analyst watch: The evolving state of paas. http://sdtimes.com/analyst-watch-the-evolving-state-of-paas/.
Accessed Feb 27th, 2018.

41. Humble, J., and Farley, D. Continuous delivery: Reliable software releases through build, test, and deployment
automation. Boston, MA: Pearson Education, 2010.

42. Humble, J., and Molesky, J. Why enterprises must adopt devops to enable continuous delivery. Cutter IT Journal, 24, 8
(2011), 6-12.

43. Jain, R.P., Simon, J.C., and Poston, R.S. Mitigating vendor silence in offshore outsourcing: An empirical investigation.
Journal of Management Information Systems, 27, 4 (2011), 261-298.

44. Kauffman, S.A. The origins of order: Self-organization and selection in evolution. New York: Oxford University Press,
1993.

45. Krancher, O., and Dibbern, J. Learning software-maintenance tasks in offshoring projects: A cognitive-load perspective.
Paper presented at the The 33rd International Conference on Information Systems. Orlando, FL. 2012.

46. Krancher, O., and Dibbern, J. Knowledge in software-maintenance outsourcing projects: Beyond integration of business
and technical knowledge. Paper presented at the The 48th Hawaii International Conference on System Sciences. Kauai, HI.
2015.

47. Langley, A. Strategies for theorizing from process data. The Academy of Management Review, 24, 4 (1999), 691-710.

https://www.statista.com/study/31311/platform-as-a-service-statista-dossier/
http://sdtimes.com/analyst-watch-the-evolving-state-of-paas/

42

48. Laukkanen, E., Itkonen, J., and Lassenius, C. Problems, causes and solutions when adopting continuous delivery—a
systematic literature review. Information and Software Technology, 82, February (2017), 55-79.

49. Lawton, G. Developing software online with platform-as-a-service technology. Computer, 41, 6 (2008), 13-15.

50. Lehrig, T., Krancher, O., and Dibbern, J. How users perceive and actualize affordances: An exploratory study of
collaboration platforms. Paper presented at the The 38th International Conference on Information Systems. Seoul, South
Korea. 2017.

51. Leonardi, P.M. When flexible routines meet flexible technologies: Affordance, constraint, and the imbrication of human
and material agencies. MIS Quarterly, 35, 1 (2011), 147-167.

52. Leonardi, P.M., and Barley, S.R. Materiality and change: Challenges to building better theory about technology and
organizing. Information and Organization, 18, 3 (2008), 159-176.

53. Lindberg, A., and Lyytinen, K. Towards a theory of affordance ecologies. In, Mitev, N., and de Vaujany, F.-X., (eds.),
Materiality and space, Gordonsville, VA: Palgrave Macmillan, 2013, pp. 41-94.

54. Majchrzak, A., Faraj, S., Kane, G.C., and Azad, B. The contradictory influence of social media affordances on online
communal knowledge sharing. Journal of Computer‐Mediated Communication, 19, 1 (2013), 38-55.

55. Maxwell, J.A., and Mittapalli, K. Realism as a stance for mixed methods research. In, Tashakkori, A., and Teddlie, C.,
(eds.), Sage handbook of mixed methods in social & behavioural research, Thousand Oaks, CA: Sage, 2010, pp. 145-167.

56. Mell, P., and Grance, T. The nist definition of cloud computing.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf. Accessed Feb 27th, 2018.

57. Mingers, J., Mutch, A., and Willcocks, L. Introduction [special issue: Critical realism in information systems research]. MIS
Quarterly, 37, 3 (2013), 795-802.

58. Olsson, H.H., and Bosch, J. Climbing the “stairway to heaven”: Evolving from agile development to continuous
deployment of software. Paper presented at the 38th Euromicro Conference on Software Engineering and Advanced
Applications. Cesme, Izmir. 2014.

59. Orlikowski, W.J. Improvising organizational transformation over time: A situated change perspective. Information Systems
Research, 7, 1 (1996), 63-92.

60. Orlikowski, W.J. Using technology and constituting structures: A practice lens for studying technology in organizations.
Organization Science, 11, 4 (2000).

61. Pentland, B.T. Organizing moves in software support hot lines. Administrative Science Quarterly, 37, 4 (1992), 527-548.

62. Poppendieck, M., and Poppendieck, T. Lean software development: An agile toolkit. Reading, MA: Addison-Wesley,
2003.

63. Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L.E., Tiihonen, J., and Männistö, T. Devops adoption benefits and
challenges in practice: A case study. Paper presented at the 17th International Conference on Product-Focused Software
Process Improvement. Trondheim, Norway. 2016.

64. Sarker, S., Xiao, X., and Beaulieu, T. Guest editorial: Qualitative studies in information systems: A critical review and
some guiding principles. MIS Quarterly, 37, 4 (2013), iii-xviii.

65. Schneider, S., and Sunyaev, A. Determinant factors of cloud-sourcing decisions: Reflecting on the it outsourcing literature
in the era of cloud computing. Journal of Information Technology, 31, 1 (2016), 1-31.

66. Schwaber, K. Agile project management with scrum. Redmond, WA: Microsoft Press, 2004.

67. Stolberg, S. Enabling agile testing through continuous integration. Paper presented at the Agile Conference, 2009.
AGILE'09. Chicago, IL. 2009.

68. Strong, D.M., Johnson, S.A., Tulu, B., Trudel, J., Volkoff, O., Pelletier, L.R., Bar-On, I., and Garber, L. A theory of
organization-ehr affordance actualization. Journal of the Association for Information Systems, 15, 2 (2014), 53.

69. Susarla, A., Barua, A., and Whinston, A. A transaction cost perspective of the" software as a service" business model.
Journal of Management Information Systems, 26, 2 (2009), 205-240.

70. Urquhart, C., Lehmann, H., and Myers, M.D. Putting the ‘theory’ back into grounded theory: Guidelines for grounded
theory studies in information systems. Information Systems Journal, 20, 4 (2010), 357-381.

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

43

71. Venters, W., and Whitley, E.A. A critical review of cloud computing: Researching desires and realities. Journal of
Information Technology, 27, 3 (2012), 179-197.

72. Vessey, I., and Conger, S. Learning to specify information requirements: The relationship between application and
methodology. Journal of Management Information Systems, 10, 2 (1993), 177-201.

73. Vidgen, R., and Wang, X. Coevolving systems and the organization of agile software development. Information Systems
Research, 20, 3 (2009), 355-376.

74. Volkoff, O., and Strong, D.M. Critical realism and affordances: Theorizing it-associated organizational change processes.
MIS Quarterly, 37, 3 (2013), 819-834.

75. Walraven, S., Truyen, E., and Joosen, W. Comparing paas offerings in light of saas development. Computing, 96, 8
(2014), 669-724.

76. Walz, D.B., Elam, J.J., and Curtis, B. Inside a software design team: Knowledge acquisition, sharing, and integration.
Communications of the ACM, 36, 10 (1993), 63-77.

77. Wettinger, J., Breitenbücher, U., and Leymann, F. Devopslang–bridging the gap between development and operations.
Paper presented at the 3rd European Conference on Service-Oriented and Cloud Computing. Manchester, UK. 2014.

78. Wikibon. Platform-as-a-service market share worldwide in first half of 2015, by vendor.
https://www.statista.com/statistics/478119/paas-vendor-market-share-ranking-worldwide/. Accessed Feb 27th, 2018.

79. Wikipedia. Feedback (disambiguation). https://en.wikipedia.org/w/index.php?title=Feedback_(disambiguation). Accessed
Feb 27th, 2018.

80. Winkler, T.J., and Brown, C.V. Horizontal allocation of decision rights for on-premise applications and software-as-a-
service. Journal of Management Information Systems, 30, 3 (2013), 13-48.

81. Yang, H., and Tate, M. A descriptive literature review and classification of cloud computing research. Communications of
the Association for Information Systems, 31, 2 (2012), 35-60.

82. Zainuddin, E. Secretly saas-ing: Stealth adoption of software-as-a-service from the embeddedness perspective. Paper
presented at the International Conference on Information Systems. Orlando, FL. 2012.

https://www.statista.com/statistics/478119/paas-vendor-market-share-ranking-worldwide/
https://en.wikipedia.org/w/index.php?title=Feedback_(disambiguation

	Author’s Original Manuscript Forthcoming in:
	Journal of Management Information Systems, Special Section on the Transformative Value of Cloud Computing
	Copyright owned by Taylor & Francis Group
	For-profit use not allowed
	Key Affordances of Platform-as-a-Service: Self-organization and continuous feedback
	Abstract
	Introduction
	Background LIterature
	Cloud Computing and Platform-as-a-Service
	Software Development
	Software Development as a Collective Learning Activity
	Self-organizing
	Frequent Feedback

	Affordance

	Methods
	Sampling
	Data Collection
	Data Analysis

	Results
	Technological Capabilities
	Affordances and Immediate Concrete Outcomes
	Shaping environments
	Reusing software services
	Self-organizing
	Triggering continuous feedback

	Work Environment Characteristics
	Alternative Explanations or Predictions

	Discussion
	Implications for the Cloud Computing Literature
	The Impact of PaaS on Software Development: Beyond Efficiency Gains and the Outsourcing Metaphor
	Towards Theory of the Transformative Impact of Cloud Computing on Collective Learning Processes

	Implications for the Software Development Literature
	Implications for the Affordance Literature
	Limitations
	Practical Implications

	Conclusion
	REFERENCES

