
Safe Tuplespace-Based Coordination
in Multi Agent Systems

Naftaly H. Minsky∗ Yaron M. Minsky† Victoria Ungureanu�

Abstract

Linda is a high level coordination model which allows agents to interact via shared tuplespaces without
knowing each other’s identities and without having to arrange for a definite rendezvous. This high level
of abstraction would make Linda particularly suitable for use as a coordination model for heterogeneous
distributed systems, if it were not for the fact that the Linda communication is unsafe.

In order to enhance the safety of tuplespaces, this paper introduces a mechanism for establishing security
policies that regulate agent access to tuplespaces. Our mechanism is based on a previously published
concept of law-governed interaction. It makes a strict separation between the formal statement of a policy,
which we call a “law,” and the enforcement of this law, which is carried our by a set of policy-independent
trustedcontrollers. A new policy under this scheme is created basically by formulating its law, and can be
easily deployed throughout a distributed system.

Two examples policies are discussed here in detail: one ensures a secure bidding policy; the other
prevents denial of service, by regulating the flow of requests sent to the tuplespaces.

1 Introduction

Linda [6, 13] has been originally introduced as a coordination model for for tightly integrated parallel pro-
grams. But, as has been suggested in [19], there is much to be said for the use of Linda-like coordination
for distributed and open agent-systems. In particular, Linda uncouples communicating agents in both time
and space by allowing agents to communicate without knowing each other’s identities and without having
to arrange for a definite rendezvous. Such uncoupling should be very useful for an heterogeneous group of
agents that have to collaborate on some common task, or to compete over common resources, with little, if
any, knowledge of each other.

Interest in the use of Linda-like coordination for open systems has increased recently with the introduction
of systems like Sun’sJavaSpaces [12] and IBM’s TSpaces [31], which marry a Linda-like tuplespace to
the Java programming language. These systems are envisioned as a kind of universal “network dialtone”,
a communications fabric that a wide array of divergent systems can use to communicate with each other.
The intended range of applications is quite large, from allowing for configuration and mutual discovery of
different pieces of hardware installed on a LAN, to coordinating the provision of services such as local
restaurant listings and remote repair diagnostics to travelers in their cars [14]. @@@ Unfortunately, Linda’s
reliance on shared, wide open tuplespaces makes it unsafe for use in open systems. This is clearly a security
concern: a malicious client with access to a given tuplespace could disrupt any system that depends on the
integrity of the data stored in that tuplespace. But even when security is not an issue i.e., when all clients
of a given tuplespace are assumed to be non-malicious, the use of unprotected tuplespaces is still a threat to
system stability. A buggy agent could easily corrupt a shared tuplespace, thus disrupting the activities of the
other clients of the tuplespace. This could lead to the kind of ugly scenario where, say, adding a VCR to your
home network could cause your garage-door opener to stop working.

This deficiency of Linda has been noted before. Ciancarini [7], among many others, enhanced Linda
by making it support a sophisticated multiple tuplespace organization. Both JavaSpaces and TSpaces have
adopted the use of multiple tuplespaces, and provide simple access control on a per tuplespace basis.

∗minsky@cs.rutgers.edu, Department of Computer Science, Rutgers University, New Brunswick, NJ, 08903 USA.
†yminsky@cs.cornell.edu, Department of Computer Science, Cornell University, Ithaca, NY.

1

However, segregating communication into multiple tuplespaces increases safety only insofar as it elimi-
nates sharing. But tuplespaces are most useful when diverse agents share access to a single tuplespace. More-
over, as we show in the following section, the content-based nature of retrieval from tuplespaces requires a
content-based access control. To provide for such control, a new model for Linda, called law-governed Linda
(LGL), has been proposed in [19], but had never been fully implemented. In this paper we show that a simi-
lar, and even more powerful, control mechanism can be established without changing the Linda model itself1,
by subjecting the interaction of tuplespaces with their clients to a more general coordination regime called
law-governed interaction (LGI).

We start in Section 2 with a motivating example, making the case for content-based control over access
to tuplespaces. In Section 3 we provide a summary of LGI, and explain how it is applied to tuplespaces. In
Section 4 we discuss two examples: asecure bidding policy, in e-commerce context, and acongestion control
policy, designed to protect a tuple space against denial of service. The theoretical efficiency of the mechanism,
and the performance of its current implementation, via the Moses toolkit, are discussed in Section 5; Section 6
discusses some related work, and we conclude in Section 7.

2 Message-Passing—A Motivating
Example

To illustrate the weaknesses of conventional Linda we will demonstrate that this coordination model cannot
support even a simple form of pairwise communication (i.e., message passing) which is secure from eaves-
dropping, stealing and from forging. We employ here, and in the rest of this paper, a Prolog implementation
of Linda, provided by BinProlog [29]. We start with some comments about the syntax of this Linda imple-
mentation:

A tuple under this Linda is a list of Prolog terms, such as

[person,name(jones),age(23)],

which may be used to represent a person with the specified name and age. More generally, a field of a tuple is
represented by a termt(v), wheret is a symbol that specifies thetype of the field, and the possibly empty
v represents itsvalue—which in most of our examples would be a literal, but could be a general Prolog-term.
The Linda concept of a “formal” component of a template is realized here by a variable, represented by a
capitalized symbol. And the matching of a template to tuples is defined by unification.

Now, suppose that a pair of agents interacting via a tuplespace needs to exchange messages between
them; since they may not even have the IP-address of each other, they would like to do this exchange via the
tuplespace. It might seem that such exchange of messages can be easily accomplished under Linda simply
by adopting the convention that a tuple

[msg(m),from(s),to(t)]

represents a messagem in transit from agents to agentt—that is, that only agents out’s such a “message-
tuple,” and that only agentt in’s it.

Unfortunately, such realization of message passing would be unsafe, because it relies on avoluntary
convention that needs to be followed by all agents accessing the tuplespace—not just the two who are com-
municating. There are two ways in which this convention can be violated.

1. Any agent interacting with the tuplespace in question can read, and even remove, message tuples that,
by our convention, are intended for a given agentt.

2. Any agent canout message tuples that, by our convention, appear to have been sent by some agents,
thus effectivelyforging a message froms.

One can try to provide for message exchange by means of multiple-tuplespaces, as follows: For agents
to send a message tot, it inserts an appropriate message-tuple into a subspace that can be accessed only by
t ands. This provides us with (nearly) the guarantee that we are looking for, but unfortunately it requires

1The model described in [19] involved a substantial change in the Linda mechanism

2

that there is a subspace with the appropriate access control settings for every pair of agents. Setting up such
quadratic number of subspaces for every pair of agents would be time-consuming at best, and requires a
special mechanism, for such subspaces to be created dynamically and automatically. As we shall see, this
problem becomes simple given the ability to imposecontent sensitive constraints on Linda-operations.

The difficulty of using Linda for secure message passing has been noted by Pinakis [23], who constructed
a special variant of Linda that supports such message passing. We, on the other hand, can provide secure
message passing as one of many types of policies expressible under LGI, and without changing the Linda
model itself.

3 Law-Governed Interaction (LGI)—an Overview

Broadly speaking, LGI, which has been originally introduced in [18], is a mode of interaction that allows
an heterogeneous group of distributed agents to interact with each other,with confidence that an explicitly
specified set L of rules of engagement—called the law of the group—is complied with. A group of agents
thus interacting via LGI under a given lawL, is called anL-group. This mode of interaction is currently
supported by a toolkit called Moses, which is implemented mostly in Java. LGI itself uses message-passing
as the means for interaction between distributed agents, but here we will use it to control the interaction
between tuple-spaces and their clients.

We provide in this section a brief overview of LGI; for more detailed discussion see [22]. The description
is organized as follows: We start in Section 3.1 by formally defining the concept of anL-group. In Section 3.2
we present the other basic elements of LGI. The law-enforcement mechanism is discussed in Section 3.3. Our
language for specifying laws is presented in Section 3.4, and its use is illustrated by formalizing the message
passing policy presented in the previous Section. In Section 3.5 we present an additional feature of LGI—the
concept ofenforeable obligations; and we conclude with a discussion of the levels of security provided by
the current implementation of LGI.

3.1 The Concept of anL-Group

An L-groupG can be defined as the four-tuple〈L,A, CS,M〉 where,

1. L—the law of the group—is anexplicit and enforced set of “rules of engagement” between members
of this group.

2. A is the set ofagents belonging toG—themembers of this group.

3. CS is a set{CSx | x in A} of control states, one per member of the group.CS is mutable, subject to
lawL of the group.

4. M is the set of messages that can be exchanged, under lawL, between members ofG—they are called
L-messages.

We will now elaborate on the components of anL-group.

The Law: The law is defined over certain types of events occuring at members ofG, mandating the effect
that any such event should have—this mandate is called theruling of the law for a given event. The events
thus subject to the law of a group under LGI are calledregulated events—they include (but are not limited to)
the sending and arrival ofL-messages.

The law of a given groupG is global with respect toG, but it is definedlocally at each member of it. The
law is global, in thatall members of the group are subject to it; and it isdefined locally, at each member, in
the following respects:

• The law regulates explicitly onlylocal events at individual agents.

• The ruling of the law for an evente at agentx depends only one itself and on thelocal control-state
CSx of x.

3

• The ruling of the law at a given agentx can mandate onlylocal operations to be carried out atx, such
as an update of the localcontrol-state CS x, or the forwarding of a message fromx to some other agent.

Note that it is the globality of lawLG that establishes acommon set of ground rules for all members of
G, providing them with the ability to trust each other, in spite of the heterogeneity of the group. And it is
the locality of the law that enables its scalable enforcement, by means of a trusted agent calledcontroller
associated with individual members of the group.

Abstractly speaking, the lawL of a group is afunction that returns aruling for every possible regulated-
event that might happen at a given agent. The ruling returned by the law is a possibly empty sequence of
primitive operations, which is to be carried out in response to the event in question, at its home. (An empty
ruling simply implies that the event in question has no consequences—such an event is effectively ignored.)
Later we will introduce the language we use for specifying such laws in our current implementation of LGI.
But the nature of this language is, in a sense, of a secondary importance.

The Group: We refer to members of anL-group asagents, by which we mean autonomous actors that
can interact with each other, and with their environment. Such an agent might be an encapsulated software
entity, with its own state and thread of control, or it might be a human that interacts with the system via
some interface. (Given popular usage of the term “agent”, it is important to point out that this term does not
imply here either “intelligence” nor mobility, although neither of these is ruled out.) Nothing is assumed here
about the structure and behavior of the members of a givenL-group, which are viewed simply as sources of
messages, and targets for them.

The Control-States: For each agentx in G, LGI maintains thecontrol-state CS x of this agent, whose
semantics, for a givenL-group, is defined by its law. Typically, the control-state of an agent could represent
such things as the role of this agent, special privileges it has under this law, and various kinds of tokens it
carries—and it can change dynamically, subject to the law.

Control-stateCSx is not directly accessible to agentx (or to any other agent). It is maintained by the
controller assigned tox, and can be changed only by operations included in the ruling of the law for events at
x. Structurally,CSx is a bag of Prolog-like terms, called theattributes of agentx, whose meaning is defined
by the law of any given group.

3.2 Additional Elements of LGI

Regulated Events: The events that are subject to laws are calledregulated events. Each such event is
viewed as occuring at a certain agenth, called thehome of the event—strictly speaking, however, events
occur at the controllerCh assigned to their home. We introduce here three types of regulated events. The first
pair of events represents stages of the passing of anL-message. The last event, which will be discussed in
detail only in Section 3.5, deals withobligations.

1. sent(h,m,y)—occurs when anL-messagem sent byh toy arrives atCh. (The senderh is thehome
of this event.) The destinationy of the messagem can be either the name of a specific member inG, or
a list of such names, which allows for multicasting.

2. arrived(x,m,h)—occurs when anL-messagem ostensibly2 sent byx, arrives atCh. The receiver
h is thehome of this event.

3. obligationDue(...)—the occurrence of this event means that it is time to enforce anobligation
previously imposed on the home of this event. (Obligations are discussed in Section 3.5).

It should be pointed out that this is not a complete set of regulated events. Our current LGI mechanism
features several additional types of regulated events—dealing with interoperability between laws, the import
of certificates, and other matters—which are beyond the scope of this paper.

2The actual sender of this message may be other thanx, as the law under LGI has the power tomisrepresent the sender—which is
useful in some cases.

4

Operations on the control-state
t@CS returns true if termt is present in the control state, and fails otherwise
+t adds termt to the control state;
-t removes termt from the control state;
t1←t2 replaces termt1 with termt2;
incr(t(v),d) increments the value of the parameterv of termt with quantityd
dcr(t(v),d) decrements the value of the parameterv of termt with quantityd

Operations on messages
forward(x,m,y) sends messagem fromx to y; triggers aty anarrived(x,m,y) event
deliver(x,m,y) delivers to agenty messagem (sent byx)

Figure 1: Some Primitive Operations

CSx

sent
x

agent

L

arrived forward

CS

controller

deliver

Linda tuple space

ts

ts
arrivedforward

sentdeliver

 ----------------a primitive operation

Legend

a regulated event -----------------

L

controller

Communication
 network

Figure 2: Enforcement of the Law

Primitive Operations: The operations that can be included in the ruling of the law for a given regulated
evente, to be carried out at the home of this event, are calledprimitive operations. Primitive operations
currently supported by LGI include operations for testing the control-state of an agent and for its update,
operations on messages, and some others. A sample of primitive operations is presented in Figure 1.

3.3 The Distributed Law-Enforcement
Mechanism

The lawL of anL-groupG is enforced by a set of trusted agents calledcontrollers, that mediate the exchange
ofL-messages between members of the group. Every memberx of G has a controllerC x assigned to it, which
maintains the control-stateCSx of its clientx. And all these controllers, which are logically placed between
the members of groupG and the communications medium, carry thesame law L (as illustrated in Figure 2).
This allows the controllerCx assigned tox to compute the ruling ofL for every event atx, and to carry out
this ruling locally.

Controllers aregeneric, and can interpret and enforce any well formed law. A controller operates as
an independent process, and it may be placed on the same machine as its client, or on some other machine,
anywhere in the network. Under Moses (our current implementation of LGI) each controller can serve several
agents, operating under possibly different laws. This facilitates various optimization techniques, discussed in
Section 5.

5

In the current implementation anL-group,G is maintained by a server that provides persistent storage
for the lawL of this group and the control-states of its members. This server is called thesecretary of G, to
be denoted bySG . For an agentx to be able to exchangeL-messages under a lawL, it needs to engage in a
connection protocol with the secretary. The purpose of the protocol is to assignx to a controllerC x which is
fed the law ofG and the control state ofx (for a detailed presentation of this protocol the reader is referred
to [22]).

We are in position now to explain how the exchange ofL-messages gets to be mediated by controllers, and
how this mediation is carried out. Consider, for example, an agentx sending aL-messagem to a tuplespace
ts, assuming that bothx andts have joined groupG. Messagem is sent by means of a routine provided by
the Moses toolkit, which forwards it toCx—the controller assigned tox. When this message arrives atCx,
it generates asent(x,m,ts) event at it.Cx then evaluates the ruling of lawL for this event, taking into
account the control-stateCSx that it maintains, and carries out this ruling.

If this ruling calls the control-stateCSx to be updated, such update is carried out directly byCx. And if the
ruling calls for messagem to be forwarded tots, thenCx would sendm to the controllerCts assigned tots.
This is done as follows: ifCx does not have the address ofCts it will ask the secretary. When the secretary
responds,Cx will finalize theforward and will cache the address. As such, forthcoming communication
betweenx andts will not require the extra step of contactingSG .

When the messagem sent byCx arrives atCts it generates anarrived(x,m,ts) event. ControllerCts

computes and carries out the ruling of the law for this event. This ruling might, for example, call form to be
delivered tots, and for the control-stateCS ts maintained byCts to be modified.

In general, all regulated events that occur nominally at an agentx actually occur at its controllerC x. The
events pertaining tox are handledsequentially in chronological order of their occurrence. The controller
evaluates the ruling of the law for each event, and carries out this rulingatomically, so that the sequence of
operations that constitute the ruling for one event do not interleave with those of any other event occuring at
x. Note that a controller might be associated with several agents, in which case events pertaining to different
agents are evaluated concurrently.

3.4 The Formulation of Laws

Laws can be quite naturally expressed by mean of any language based onevent-condition-action (ECA) kind
of rules. For now, we have chosen a somewhat restricted version of Prolog [8], due to its expressive power,
and its relatively widespread usage. Under the Moses implementation of LGI, then, the law is defined by
means of a Prolog-like programL which, when presented with a goale, representing a regulated-event at a
given agentx, evaluates it in the context of the control-state of this agent. This evaluation produces a list
of primitive-operations representing the ruling of the law for this event. In addition to the standard types of
Prolog goals, the body of a rule may contain a distinguished type of goal that contribute to the ruling of the
law. It has the formdo(p), wherep is one of the above mentioned primitive-operations and it appends term
p to the ruling of the law.

Message Passing Policy We will not be able to present here additional aspects of law formulation—
the reader is referred to [22] or to [21] for more details—but we will complement this discussion with the
presentation of lawLMP that implements the message passing policy introduced informally in Section 2.

Formally, under LGI, the components ofMP-group are as follows: the groupG consists of
the tuplespace servers3 and their clients. The setM of messages regulated byLMP consists of:
out([msg(m),from(s),to(t)] andin[msg(m),from(s),to(t)] denoting requests to post to,
and respectively retrieve from a tuplespace a messagem. The control-state of each tuplespace server contains
a termtupleSpace which denotes its role. (Clients have empty control states.) Finally, the law of this
policy is presented in Figure 3. This law consists of four rules. Each rule is followed by a comment (in italic),
which, together with the following discussion, should be understandable even for a reader not well versed in
Prolog.

Message posting to tuplespaces is regulated by RuleR1, which mandates that a message is to be for-
warded to the intended tuplespace only if the value offrom field of is identical with the id of the sender of

3note, that the tuplespace itself may be is distributed

6

Initially: tuplespace servers have in their control state a term tupleSpace.

R1. sent(X,out([msg(M),from(X’),to(Y)],TS) :- X==X’,do(forward).

Any agent canout amsg tuple, if identified as being from itself.

R2. sent(Y,in([msg(M),from(X),to(Y’)]), TS) :-
Y==Y’, do(forward).

An agentY mayin only messages meant for itself.

R3. sent(TS, ,) :- tuplsSpace@CS, do(forward).

Any message sent by a tuplespace is forwarded.

R4. arrived(, ,) :- do(deliver).

When a message arrives anywhere, it is delivered.

Figure 3: LawLMP—message passing policy

the message. Thus, this rules ensures that sender’s name cannot be forged.
RuleR2 provide for safe retrieval of messages from the tuplespace. By this rule, anin request is

forwarded to the intended tuplespace only if the id of the retriever coincides with the value of theto field.
Thus, this rule ensures that a message can be fetched only by the agent for which it was intended.

RulesR3 andR3 regulate the treatment of messages arriving at a tuple server and its consequent re-
sponses. Since the access control policy is exercised at the client side, these messages are delivered, and re-
spectively forwarded without further ado. Finally, when a response arrives at a client it is delivered (RuleR3).

3.5 A concept of enforceable obligation

Obligations are widely considered essential for the specification of enterprise policies, along with permissions
and prohibitions. The concept of obligation being employed for this purpose is usually based on conventional
deontic logic [17], designed for the specification of normative systems, or on some elaborations of this logic,
such as taking into account interacting agents [3]. These types of obligations allows one to reason about
what an agent must do, but they provide no means for ensuring that what needs to be done will actually be
done [16, 15, 27, 25]. LGI, on the other hand, features a concept of obligation that can be enforced.

Informally speaking, an obligation under LGI is a kind ofmotive force. Once an obligation is imposed on
an agent—which can be done as part of the ruling of the law for some event—it ensures that a certain action
(calledsanction) is carried out at this agent, at a specified time in the future, when the obligation is said to
come due—provided that certain conditions on the control state of the agent are satisfied at that time. The
circumstances under which an agent may incur an obligation, the treatment of pending obligations, and the
nature of the sanctions, are all governed by the law of the group. An example of the use of obligations under
LGI is given in Section 4.2.

Specifically, suppose that at timet0, an agentx incurs an obligation by the execution atx of a primitive
operationimposeObligation(oType,dt) wheredt is the time period, expressed in seconds, after
which the obligation is to come due; andoType—theobligation type—is a term that identifies this obligation
(not necessarily in a unique way). The main effect of this operation is that unless the specified obligation is
repealed (see below) before timet = t0 + dt, theregulated event obligationDue(oType)would occur
at agentx at timet. The occurrence of this event would cause the controller to carry out the ruling of the law
for this event; this ruling is thus thesanction for this obligation. (Note that all the times here are defined by
the local clock of agentx.)

A pending obligation incurred by agentx can berepealed before its due time by means of the primitive
operationrepealObligation(oType) carried out atx, as part of a ruling of some event. This operation
actually repealsall pending obligations of typeoType. We have more to say about this concept, after we
illustrate its use with an example.

7

3.6 Security Considerations

LGI coordination can be considered secure if the following two conditions are ensured: (a) the exchange
of L-messages is mediated by controllers interpreting thesame law L; and (b) that all these controllers are
correctly implemented. If these two conditions are satisfied, then it immediately follows that ify receives
anL-message from somex, this message must have been sent as anL-message. In other words, one cannot
forgeL-messages.

Regarding the first of these condition: to ensure that a message forwarded by controllerC x under lawL
would be handled byCy under thesame law,Cx appends a hashH of lawL to the message it forwards toCy.
(The hash of the law is obtained using one way functions which transforms any string into a considerably
smaller bits sequence with high probability that two strings will not collide [24, 26].) ControllerC y would
accept this as a validL-message only ifH is identical to the hash of its own law.

Regarding the second condition above, concerning the correctness of the controllers, it would be useful
to distinguish between two types of potential violations of a given law: (a)inadvertent violations, due to a
bug in the code of an agent, say, or due to its ignorance of the law; and (b)malicious violations. When not
concerned with malicious violations, one can trust a controller provided by thecontroller-server which is
part of the Moses toolkit, or a controller provided by the operating system—just like we often trusts various
standard tools on the internet, such as the e-mail software or browsers. When malicious violations are a
concern, then the validity of controllers, and of the host on which they operate needs to be digitally certified.
Such certification can be done by the above mentioned controller-service provided by Moses, operating as
as acertifying authority for controllers. For controllers to be thus certified as valid, one may build them
into physically secure coprocessors [32, 28]. Such a secure device consists of a CPU, non-volatile memory,
encryption hardware and special sensing circuitry to detect intrusion. The sensing circuitry erases non-volatile
memory before attackers can penetrate far enough to disable the sensors or read memory contents. For more
details about the security of LGI, the reader is referred to [20, 1]. For a broad review of the security of
coordination mechanisms, see [4].

4 Examples

We present here two quite different examples of LGI-based coordination via tuplespaces. The first example
is that of a policy that supports secure interaction between service providers and their customers. Our second
example shows how a tuplespace can protect itself from getting congested, by controlling the frequency of
messages sent to it by its users. These examples have been tested with Moses toolkit, applied to the TSpace
system of IBM and to the BinProlog implementation of Linda.

4.1 A Secure Bidding Policy

Suppose that we want to use a tuplespacets as a medium for communication between the providers of
certain services, and their clients. Such communication is to have the following steps: (a) when a clientc
needs a services heouts intots a request-tuple

[requester(c),service(s)],

identifying itself and the service requested; (b) service provider bid for this service byouting bid-tuples of
the form:

[offerFor(c,s), fee(f), provider(p), contact(addr)],

identifying the request the bid is for (via its two argumentsc ands), the feef for the service being
offered, the idp of the provider making the bid, and an address of this provider, which the client can use to
establish contact with him outside of the tuplespace (say, an e-mail address of the provider); (c) finally, the
client chooses among the bids he receives for his request, and establishes contact with the chosen provider,
via the contact address included in the bid.

To safeguard this communication we would like to establish the following constraints:

8

1. Request-tuples and bid-tuples cannot be forged. That is, each such tuple should correctly identify the
agent that made it.

2. A request-tuple issued by a clientc can be read by any provider (but not by clients), and can be removed
only by c himself.

3. A bid issued for a request of clientc can be accessed (viain) only by c himself. In other words, a
bid-tuple made by a providerp for a service request by clientc should behave like a secure message
(in the sense of Section 2) fromp to c.

Such secure bidding is supported under LGI by lawLSB in Figure 4. Let us examine now this particular
law in detail:

Initially: Agents have in their control states terms denoting the role they play: serviceProvider for
providers and tupleSpace for tuplespace servers.

R1. sent(C,out([requester(C’),service(S)]),TS) :-
C==C’,do(forward).

Any clientC canout request-tuples for services, if identified as being from himself.

R2. sent(C, in([requester(C’),service(S)]),TS) :-
C==C’,do(forward).

Any clientC canin (i.e. read and remove) request-tuples previously posted by himself.

R3. sent(P, rd([requester(C),service(S)]),TS) :-
serviceProvider@CS, do(forward).

Any service providerP can read requests posted to a tuplespace.

R4. sent(P1, out([offerFor(C,S), fee(F),provider(P2),contact(Addr)]),TS) :-
P1==P2, serviceProvider@CS, do(forward).

Any service providerP canout offer-tuples, if identified (in termprovider, as being from himself.

R5. sent(C,in([offerFor(C’,S), fee(F), provider(P),contact(Addr)]), TS) :-
C==C’, do(forward).

Only the client who posted a service request canin a corresponding offer.

R6. sent(TS, ,) :- tupleSpace@CS, do(forward).

Any message sent by a tuplespace is forwarded.

R7. arrived(, ,) :- do(deliver).

when a message arrives anywhere, it is delivered.

Figure 4: LawLSB of Secure Bidding

• RuleR1 of this law is the only one that provides for the outing of request-tuples, and it requires the
requester field of the tuple to be identical with the id of the sender of this message. Thus, this rules
ensures that request-tuples cannot be forged, as required in (1) above.

• RulesR2 andR3 provide for the retrieval of request-tuples, imposing constraint (2) above: RulesR2
allows a request tuple to be in-ed only by the client that outed it. And RulesR3 allows any request
tuple to be read (but not removed) by any producer

• RuleR4 allows providers to issue bid-tuples. It also ensures that the bidder identifies himself correctly
in theprovider term of the bid-tuple, so that such tuples cannot be forged, as required in (1) above.

• By rule RuleR5, an offer issued by any provider for a request by clientc, can be in-ed only by
c—establishing constraint (3).

9

• Finally, RuleR6 allows the tuplespacets to send arbitrary messages to any agent—these are replies
thatts send to its users. And RuleR7 permits all arriving messages to be delivered, to any recipient.
(Note that under this particular law arrivals need not be regulated because all regulation is done when
messages are sent. This is not the case in general, as our second example demonstrates.)

4.2 Congestion Control Policy

We now consider the following policy designed to allow a tuplespace to protect itself from getting congested,
by controlling the frequency of messages sent to it by its users:

1. Every client of a tuplespacets has a quantum of timedt assigned to it, which is to be theminimal
delay between any two requests sent by this agent to the tuplespace.

2. The server of the tuplespace can set the delay of an agent to any desired value.

3. If an agent attempts to send a message tots sooner than permitted by his delay, this message is to be
forwarded to the server at the earliest time consistent with the delay,without client’s involvement.

This policy, established by lawLCC , presented in Figure 5, is implemented as follows: early messages
are buffered in the control state of a client, and obligations are imposed to forward the messages in question
at the earliest possible time consistent with the delay condition. While a client may send its requests tots at
any rate, these messages will be actually forwarded to the destination at the pace imposed byts, and in their
original order.

There are three possibilities to take into account when a client attempts to send a message. First if
the delay condition is satisfied and there are no buffered messages, then the message is forwarded to the
tuplespacets (RuleR1). Second, if the delay condition is not satisfied and the buffer is empty, then the
message is pushed into the buffer and an obligation is imposed to forward the message at the earliest time
that satisfies the delay condition (RuleR1). Finally, if the delay condition is not satisfied and the buffer is
not empty, the message is added to the buffer in FIFO order (RuleR2). These rules, then, give the term
delay(dt) in the CS of an agent the effect intended for it in our policy.

Now, by RuleR3, when an obligationsendMessage fires the oldest message is removed from the
buffer and is forwarded tots. Moreover, if there are still buffered messages, then anothersendMessage
obligation is set for the earliest time satisfying the delay condition.

We end the presentation of this law by showing how the tuple space may adjust at will thedelay term
of his clients. By RuleR4, messages sent byts are forwarded directly to their destination. Most of these
messages carry replies to clients, and they are delivered directly upon arrival, according to RuleR6 4. But
when a messagechangeDelay(val) sent byts to a clientc, then, by RuleR5, the value of the term
delay in the control state ofc is set toval. Note that thechangeDelay message affects the control
state of a client, but is not delivered to the client itself, thus preserving the usual semantics that a client only
receives replies for its requests.

Discussion Two observations about this policy are in order. First, note that for this policy to be effective, it
must be enforced at the client side (by the client’s controller, in our case). Otherwise, if this policy is checked
at the server side, the server might be congested just from checking the validity of messages sent to it, even
if most of them end up being rejected.

Second, the congestion policy as presented here, is devised for a system containingonly one tuplespace.
This is not, however, an intrinsic requirement: the policy can be easily extended for the case the tuplespace
itself is distributed5.

4with the exception of operations onchangeDelay tuples, which are blocked. Allowing clients to issue requests for such tuples
would have allowed for the possibility that an agent could change its own delay by performing ain(changeDelay(x)) followed by
ard/out(changeDelay(x)).

5One possible implementation is to maintain differentdelay, lastCall andbuffer for each tuplespace in the system

10

Initially: Each client has in its control state: (1) a term delay(DT) where DT represents the minimum delay
between successive messages sent by the client to the tuplespace ts; (2) a term lastCall(Tlast)
where Tlast is the time when the last message was sent to the tuplespace (initially set to 0); and (3)
a term buffer(L), where L is the list of messages the client sent earlier than required by the delay
condition and have not yet been forwarded (L is initially empty).

R1. sent(X,M,ts) :-
buffer([])@CS, lastCall(Tlast)@CS,delay(DT)@CS,clock(T),
T > (Tlast + DT) →

(do(lastCall(Tlast)←lastCall(T)), do(forward))
|
(do(+obligation(sendMessage,Tlast+DT)),
do(buffer([])←buffer([M]))).

A message sent to the servers will be forwarded if there are not buffered messages and the delay condition is
satisfied. Otherwise, the message is buffered and an obligation to send the message at the earliest time which
satisfies the delay condition is set. In the case the message is forwarded the termlastCall is updated to reflect
that a message was sent at the current timeT.

R2. sent(X,M,ts) :-
buffer(L)@CS, append(L,[M],L1), do(buffer(L)←buffer(L1)).

If there are buffered messages, when a new messageM is sent tos, M is appended in FIFO order to the buffer.

R3. obligationDue(sendMessage) :-
lastCall(Tlast)@CS,delay(DT)@CS,clock(T)@CS,
do(lastCall(Tlast)←lastCall(T)),
buffer([M|R])@CS, do(buffer([M|R])←buffer(R)),
do(forward(Self,M,ts)),
R=[]→

true
|
do(+obligation(sendMessage,T+DT)).

When an obligationsendMessage fires the least recent message,M, is removed from the buffer and is for-
warded tos. The termlastCall is updated to reflect that a message was sent at current timeT. Moreover, if
there are buffered messages an obligationsendMessage is set for the earliest time satisfying the delay condi-
tion.

R4. sent(ts, ,) :- do(forward).

Any message sent by the tuplespaces is forwarded to its intended destination.

R5. arrived(ts,changeDelay(Val),X) :-
do(delay(DT)←delay(Val)), do(deliver).

When a messagechangeDelay(Val) sent byts arrives at the destination, thedelay term is changed to
Val.

R6. arrived(,M,) :- not (M=changeDelay(V)),do(deliver).

Any message other thanchangeDelay arriving at the destination is delivered without further ado.

Figure 5: LawLCC - Congestion Control Policy

11

5 On the Efficiency of LGI, and of its Moses Implementation

The current implementation of Moses, which has been tested on Solaris and Windows NT platforms is ex-
perimental and much less efficient than it can be—presently, an event is evaluated in approximately 3.5 ms.
But even in its present state, LGI is quite affordable, under a wide range of applications. We start this section
by analyzing the structure of the relative overhead incurred when sending a message under LGI; we then
evaluate the relative overhead under different scenarios.

The Relative Overhead of LGI Consider a messagem sent by an agentx to a tuplespacets. If the
interaction between the two parties is mediated by controllers in the manner described in Section 3, then this
message would be converted to three consecutive messages: (1) fromx to C x, (2) from Cx to Cts, and (3)
from Cts to ts. The overheadox,y, due to the extra messages and the law-evaluations involved, is given by
the following formula:

ox,y = (tx,Cx
com + tsent

eval + tCx,Cts
com + tarrived

eval + tCts,ts
com)− tx,ts

com (1)

wherete
eval is the time it takes a controller to compute and carry out the ruling for evente, andt a,b

com is the
communication time froma to b. Therelative overhead rox,ts of an LGI message fromx to ts—relative to
the direct transmission of such a message—is defined as:

rox,ts = ox,ts/tx,ts
com (2)

When evaluating these formulae in specific situations we will use the following approximations and typi-
cal values. First, the communication timeta,b

com depends on many factors, including the length of the message,
the communication protocol being used, the distance between the communicating parties, and whether the
message is sent in clear or signed. We will ignore many of these factors, and distinguish only between the
following quantities: (We specify, within parenthesis, the typical value we will be using for each of them.)

1. tpipe (≈ 0.1 ms): the communication time via a pipe, fora andb residing on the same machine.

2. tWAN (≈ 50ms): the TCP/IP communication time, fora andb residing in different LANs and the
message is sent in clear.

3. tsigned (≈ 100ms): the communication time fora andb communicating via signed messages across a
WAN—it takes into account the time required to sign the message and to verify the signature.

Second, the experiments we performed showed that the evaluation time its relatively insensitive on the event;
as such we will use the approximationte

eval ≈ teval. The time taken by our current, experimental controllers
to evaluate an event is 3.5ms (for a detailed presentation of the experiments see [22]).

The LGI model is silent on the placement of controllersvis-a-vis the agents they serve, and it allows for
the sharing of a single controller by several agents. Moreover, the current implementation supports both clear
and signed communication between parties. (The secretary decides whether the communication should be in
clear or signed. Due to lack of space we are unable to present here the authentication protocols —the reader
is referred to [30]. Suffices to say that they ensure that an agent cannot masquerade as another agent or as
a controller.) This provides us with flexibilities, which can often be used to minimize the overhead of LGI
under various conditions. We will consider here in detail the effect of these factors on the relative overhead
of LGI across a wide area network (WAN).

Using Local Controllers Perhaps the most natural way to use LGI, and usually the most efficient one, is
to place each controllerCx at the host machine of agentx itself, as illustrated in part (a) of Figure 6. This
allows each agent to communicate with its controller via pipes, which is substantially more efficient than
TCP communication. Applying Equations 2 and 1 to this situation and assuming that the controller-controller
communication is not signed, yield the following result for relative overhead:

rox,ts = (2 ∗ teval + 2 ∗ tpipe)/tWAN ≈ 0.14 (3)

This overhead is quite negligible. However, as argued below, this scheme can be used only when clients
of the tuplespace are assumed to be non-malicious.

12

x L

Cx
L

C

Legend:
 pipe communication

 WAN communicationts ts

Figure 6: Controllers are placed on the same machine as the agents and the communication is done in clear.

Using Remote Controllers The above scheme has the following problems when one is concerned that
agents may be malicious. First, local controllers can be tempered with by their clients. Second, if clear
communication is used, an agent can masquerade as another agent or as a controller. The security is enhanced
if controllers are placed on trusted machines, and messages are signed when sent over the network. Such
controllers would generally not reside in the LAN of their clients, but might be anywhere in the Internet.

To compute the relative overhead of such communication, illustrated in part (a) of Figure 7, we plug
tsigned for every communication time in Equation 1. This yields the following result for the relative overhead
in this case:

rox,y = (2 ∗ tsigned + 2 ∗ teval)/tsigned ≈ 2 (4)

The last step is justified by the fact thatteval is numerically so much smaller thantsigned.
Although this overhead is not negligible, it is not prohibitive. Furthermore, as we shall see in the following

section, even when security is an issue it is often possible to dramatically reduce this overhead by exploiting
the ability of several agents to share a single controller.

L

Cx

L

Cts

x ts

Legend:
 pipe communication

 signed communication

(a) (b)

L

C

L

CSxn CSts

tsL

CSx1
x1

xn

......

Figure 7: (a) Controllers are placed remote (across a WAN); (b) Agentsx1,..., xn and tuplespacets share
the same controllerC.

Sharing Controllers Suppose that a single controllerC is assigned to the tuplespacets and to all agents
x1, ..., xn operating under a certain policy. Since the tuplespace is trusted, we can placeC on the same
machine as the tuplespace and consequently, the communication between them can be done via pipes. The
processing with such a controller of a regulated message fromxi tots, wherei belongs to1, .., n is illustrated
in part (b) Figure 7.

Controller-sharing works as follows: each controller maintains a table with all agents currently assigned
to it. When a controller has to forward a messagem to an agenty, it first looks fory in the table of assigned
members. If the look-up is successful, the controller simply places the correspondingarrived-event in
they’s queue. As such,in this scheme, the controller-to-controller message disappears, but we still have two
evaluations of the law, one for thesent-event and one forarrived-event. This placement technique requires
only one more message than required by unregulated message passing. Our formula for relative overhead

13

would now yield:
roxi,ts = (tpipe + 2 ∗ teval)/tsigned ≈ 0.07 (5)

This is a very low overhead for all communication with the tuple space. However, such a solution is not
scalable especially if the number of participants in a policy is large, or the message-traffic is high.

6 Related Work

We already mentioned, in the introduction, two kinds of approaches to make tuplespaces safe: traditional
ACL-based access control, as in IBM TSpaces, in Jini, and the use of multiple tuplespaces. We found these
approaches wanting, as non of them provides content-based control. Here we will consider three additional
approaches.

The Klaim language [9] enhances the safety of tuplespaces via strong typing. Access to tuple is regulated
here viatyped access rights, making it possible to determine statically, and thus very efficiently, whether
an access is allowed or not. This method can be used to prevent many inadvertent errors by buggy code.
However, it does not provide effective means for protection against potentiallymalicious agents, since it is
not possible to rely on typing if the requests come from untrusted sites.

The SecOS [5] system attempts to provide secure access to tuplespaces via explicit cryptographic tech-
niques. Under this system, entries in a tuplespace are encrypted, and can be decrypted only by agents holding
the correct key. This scheme has several serious limitations. First, it does not protect a tuple from being
deleted from the tuplespace, even by agents that do not have keys for some fields in it. Indeed, any tuple can
be removed by anybody, simply by issuing anin command, with an empty template, for example. Second,
this scheme leaves it up to the originator of every tuple to distribute keys for it. Such key distribution may
become a managerial nightmare, especially when dealing with large and rapidly changing group of agents.

Perhaps the closest work to this paper isprogrammable tuplespace [10, 11], called LuCe. Like us, they
call for an explicit formulation of a policy, which is to be written in a formal language. The programmability
is achieved by triggering a reaction whenever a communication event occurs. A reaction, similar to our rule,
consists of a set of primitive operations to be executed when the event occurs. A major difference between
Moses and LuCe is that the latter does not maintain state for the clients of the tuplespace. Such state is
necessary for many security policies, such as the congestion control policy discussed in Section 4.2, or the
well known Chinese Wall policy [2].

7 Conclusion

Our objective in this paper has been to remedy the lack of safety inherent in using tuplespace based middle-
ware for open systems. We have demonstrated how a law-governed interaction can be used to add a wide
variety of guarantees to a tuplespace without eliminating the flexibility that makes tuplespaces attractive in
the first place. Moreover, these guarantees can be added transparently, allowing them to be integrated into an
existing system.

LGI-based control is particularly appropriate for use in the context of tuplespaces for the following rea-
sons:

• Laws under LGI are sensitive to the content of the tuples being handled.This property is an
essential part of what makes it possible to implement useful guarantees efficiently under our regime. It
is in particular required for both examples in this paper.

• Laws are sensitive to the state of agents,which can change dynamically. This property is critical to
the congestion control policy, and to many others.

• Enforcement of laws can occur at either the client, the server, or anywhere in the network.Push-
ing enforcement responsibilities to the client can greatly improve scalability. Efficiency aside, some
kinds of restrictions, such as congestion control, cannot be enforced at the server.

• LGI supports different levels of security. Since the type of communication is not built-in, the mech-
anism can support in and efficient manner, policies with different security requirements.

14

8 Acknowledgments

The authors are grateful to the anonymous reviewers for their helpful comments on the previous version of this
paper. This work was supported in part by NSF grants CCR-96-26577, CCR-97-10575 and CCR-98-03698.

References

[1] X. Ao, N.H. Minsky, T. D. Nguyen, and V. Ungureanu. Law-governed internet community. Technical
report, Rutgers University, LCSR, April 2000.

[2] D. Brewer and M. Nash. The Chinese Wall security policy. InProceedings of the IEEE Symposium in
Security and Privacy. IEEE Computer Society, 1989.

[3] M. Brown. Agents with changing and conflicting commitments: a preliminary study. InProc. of Fourth
International Conference on Deontic Logic in Computer Science (DEON’98), January 1998.

[4] C. Bryce and M. Cremonini. Coordination of internet agents: Models, technologies and applications.
In A. Omicini, F. Zambonelli, R. Tolksdorf, and M. Klusch, editors,Proc. of the Conference on Coor-
dination and Security on the Internet ; LNCS 2000 (to appear), 2000.

[5] C. Bryce, M. Oriol, and J. Vitek. A coordination model for agents based on secure spaces. In P. Cinacrini
and A. L. Wolf, editors,Proc. of Coordination’99: Third International Conference on Coordination
Models and Languages; LNCS 1594, pages 4–20, April 1999.

[6] N. Carriero and D. Gelernter. Linda in context.Communications of the ACM, 32(4):444–458, April
1989.

[7] Paolo Ciancarini. Enacting rule-based software processes with polis. Technical report, University of
Pisa, october 1991.

[8] W.F. Clocksin and C.S. Mellish.Programming in Prolog. Springer-Verlag, 1981.

[9] R. De Nicola, G Ferrari, and R. Pugliese. Coordinating mobile agents via blackboards and access
rights. In David Garlan and Daniel Le Metayer, editors,Proc. of Coordination’97: Second International
Conference on Coordination Models and Languages; LNCS 1282, pages 221–237, September 1997.

[10] E. Denti, A. Natali, and A. Omicini. Programmable coordination media. In David Garlan and Daniel Le
Metayer, editors,Proc. of Coordination’97: Second International Conference on Coordination Models
and Languages; LNCS 1282, pages 274–288, September 1997.

[11] E. Denti and A. Omicini. An architecture for tuple-based coordination of multi-agent systems.
Software—Practice & Experience, 29(12):1103–1121, 1999.

[12] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces(TM) Principles, Patterns and Practice (The Jini(TM)
Technology Series). Addison-Wesley, 1999.

[13] D. Gelenter and N. Carriero. Coordination languages and their significance.Communications of the
ACM, 35(2):97–107, February 1992.

[14] Jini. Technical report, Sun Microsystems. website:http://java.sun.com/products/jini/.

[15] P.F. Linington. Options for expressing ODP enterprise communities and their policies by using UML.
In Proceedings of the Third Internantional Enterprise Distributed Object Computing (EDOC99) Con-
ference. IEEE, September 1999.

[16] P.F. Linington, Z. Milosevic, and K. Raymond. Policies in communities: Extending the odb enter-
prise viewpoint. InProceedings of the Second Internantional Enterprise Distributed Object Computing
(EDOC98) Conference. IEEE, November 1998.

15

[17] J. J. Ch. Meyer, R. J. Wieringa, and Dignum F.P.M. The role of deontic logic in the specification
of information systems. In J. Chomicki and G. Saake, editors,Logic for Databases and Information
Systems. Kluwer, 1998.

[18] N.H. Minsky. The imposition of protocols over open distributed systems.IEEE Transactions on Soft-
ware Engineering, February 1991.

[19] N.H. Minsky and J. Leichter. Law-governed Linda as a coordination model. In P. Ciancarini, O. Nier-
strasz, and A. Yonezawa, editors,Object-Based Models and Languages for Concurrent Systems, number
924 in Lecture Notes in Computer Science, pages 125–146. Springer-Verlag, 1995.

[20] N.H. Minsky and V. Ungureanu. A mechanism for establishing policies for electronic commerce. In
The 18th International Conference on Distributed Computing Systems (ICDCS), pages 322–331, May
1998.

[21] N.H. Minsky and V. Ungureanu. Unified support for heterogeneous security policies in distributed
systems. In7th USENIX Security Symposium, January 1998.

[22] N.H. Minsky and V. Ungureanu. Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems.TOSEM, ACM Transactions on Software
Engineering and Methodology, 2000. (to be published, and currently available through
http://www.cs.rutgers.edu/˜minsky/).

[23] J. Pinakis. Providing directed communication in Linda. InProceedings of the 15th Australian Computer
Science Conf., pages 731–743, 1992.

[24] R. Rivest. The MD5 message digest algorithm. Technical report, MIT, April 1992. RFC 1320.

[25] M. Roscheisen and T. Winograd. A communication agreement framework for access/action control. In
Proceedings of the IEEE Symposium on Security and Privacy, May 1996.

[26] B. Schneier.Applied Cryptography. John Wiley and Sons, 1996.

[27] M. Sloman. Policy driven management for distributed systems.Journal of Network and Systems Man-
agement, 1994.

[28] S.W. Smith and S. H. Weingart. Building a high-performance, programmable secure coprocessor.Com-
puter Networks, 31:831–860, April 1999. (Special Issue on Computer Network Security).

[29] P. Tarau. Language issues and programming techniques in BinProlog. InProceedings of of the Gulp’93
Conference, June 1993.

[30] V. Ungureanu. A Mechanism for Supporting Communication Policies in Distributed Systems. PhD
thesis, Rutgers University, 2000. Obtainable from ungurean@cs.rutgers.edu.

[31] P. Wyckoff, W. McLaughry, T.J. Lehman, and D.A. Ford. TSpaces.IBM Journal of Research and
Development, 37:454–474, 1988.

[32] B. Yee.Using Secure Coprocessors. PhD thesis, Carnegie Mellon University, May 1994.

16

