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Reasoning by jurors concerning whether an accused person should be convicted of commit-
ting a crime is a kind of casual inference. Jurors need to decide whether the evidence in the
case was caused by the accused’s criminal action or by some other cause. This paper com-
pares two computational models of casual inference: explanatory coherence and Bayesian
networks. Both models can be applied to legal episodes such as the von Bülow trials. There
are psychological and computational reasons for preferring the explanatory coherence
account of legal inference.

In December, 1980, Martha von Bülow, a very wealthy heiress, lapsed into a
coma that still continues. In 1982, a jury found her husband, Claus von
Bülow, guilty of two counts of assault with intent to murder. But an appeal
granted him a new trial, and in 1985 he was acquitted on both counts. What
was the nature of the inferences that led the first jury to find Claus von Bülow
guilty and the second jury to find him not guilty?

This paper presents an analysis of jury decision making as a kind of cau-
sal inference. Members of the jury had to make inferences about the causes of
Martha von Bülow’s coma, in particular about whether it had been the result
of an attempt by her husband to kill her. Reasoning about the testimony of
witnesses is also causal, in that the jury had to infer whether some witnesses
said what they did because they were in a position to know it was true, or
because they were lying. In general, legal reasoning in trials such as those
of Claus von Bülow’s can be characterized as inference to the best overall
causal story.
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There are currently available two computational models of this kind of
causal inference, one based on Bayesian networks and the other based on ex-
planatory coherence. I will argue that the explanatory-coherence account is
superior both as a descriptive account of how jurors do reason and of how
they should reason. After describing the causal structure of the von Bülow
case, I present computational models of it using both explanatory coherence
and Bayesian networks. In principle, both kinds of models can explain why
the first jury found Claus von Bülow guilty and the second one found him
innocent. However, the Bayesian account has serious problems of interpret-
ation and implementation that make it unsatisfactory as an account of jury
reasoning. Reflections on the nature of probability and causality show the
superiority of the explanatory coherence account of causal inference in legal
reasoning.

Abductive inference is a form that goes from data describing something
to a hypothesis that best explains the data (Josephson and Josephson 1994).
Explanatory coherence and Bayesian networks are two rich ways of specify-
ing how abductive inference works. But the definition of abductive inference
just given assumes that the relation between data and hypotheses is primarily
explanation rather than conditional probability. To remain neutral for the
moment between probabilistic and explanation-based approaches to abduc-
tive inference, I will begin by describing legal decisions as a kind of causal
inference from observational evidence to hypotheses that propose causes of
what was observed.

CAUSAL INFERENCE IN THE VON BÜLOW CASE

Claus von Bülow was tried twice for intent to murder his wife Martha,
whose nickname was Sunny. My account of the trials is based primarily on
the book by Harvard University law professor, Alan Dershowitz (1986), who
was one of Claus von Bülow’s lawyers for the appeal and second trial
(see also Gribben 2001). The primary issue here is: Why did the jury in the first
trial find him guilty, and why did the jury in the second trial find him not
guilty?

According to Dershowitz (1986, p. 37), the prosecution’s case in the first
trial ‘‘was based heavily on hard scientific evidence, eyewitness testimony and
compelling motives.’’ The prosecution argued that Sunny’s coma was the
result of her being injected with insulin by her husband Claus. The most
important witnesses were Sunny’s maid, Maria Schrallhammer, and her
son from a previous marriage, Alex von Auersperg. Maria testified that
she had found a black bag of Claus’s containing insulin in the month before
Sunny went into a coma. Alex testified that after the coma he found the bag
in Claus’s closet, this time with three hypodermic needles, including one that
had been used. Scientific tests found a residue of insulin on this needle.
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Moreover, Sunny’s blood after she was taken to hospital displayed a high
insulin level, and it is well known that excess insulin can induce a coma.

The testimony by Maria, Alex, and scientific experts thus all supported
the prosecution’s causal story that Sunny’s coma was the result of an insulin
injection by Claus. The central causal hypothesis in the case is that Claus
injected Sunny with insulin. No one directly observed this happening, so
its plausibility depends largely on the indirect evidence for it: Sunny’s coma,
Claus having insulin, and Claus having a needle with insulin on it. Implicit in
the acceptance of testimony is a causal judgment that witnesses say what they
do because they believe it, and they believe it in part because it is true
(Thagard forthcoming-a). Other causes are possible too, such as that the wit-
ness is mistaken or lying. For example, in the case of Maria, the jury inferred
that she said she found the insulin in Claus’s black bag because she did really
find the insulin in the bag. In the first trial, the defense lawyers did not suc-
ceed in impugning the testimony of Maria or Alex, in contrast to the second
trial where evidence was presented that they might not be telling the truth.

In the first trial, the prosecution was able to present evidence that gave
Claus a strong motive to get rid of Sunny. His mistress, Alexandra Isles,
testified that she had demanded that Claus divorce Sunny. Sunny’s banker
testified that Claus stood to gain a large inheritance if Sunny died, but
would receive little if he divorced her. Thus the plausibility of the hypothesis
that Claus tried to kill Sunny rested on there being a potential cause of his
attempt, namely his romantic and pecuniary motive, as well as on the
hypothetical effects of the attempt, including the needle with insulin on it
and Sunny’s insulin-based coma.

The defense tried to propose an alternative causal story of what produced
Sunny’s coma. They had a witness, Joy O’Neill, who said that she had
frequently given Sunny exercise instruction. O’Neill said Sunny told her that
insulin injection was a good way to avoid gaining weight. The defense tried to
use this report to support their hypothesis that Sunny’s coma was caused by
self-injection of insulin. O’Neill’s testimony was greatly weakened, however,
when records of the exercise studio showed that O’Neill had taught Sunny
much less than she had claimed, and had not taught her at all during the year
that O’Neill claimed to have been told about insulin use. Given all the
evidence that supported the prosecution’s contention that Sunny was injected
with insulin by Claus, it is not surprising that the jury found him guilty.

The second trial was very different from the first. Alan Dershowitz’s
appeal succeeded in getting defense access to notes collected by a private
investigator hired by Alex von Auersperg. These notes showed that Maria
had not mentioned finding insulin in Claus’s bag until after Sunny’s coma
had been identified as insulin related. The prosecution thus suggested that Mar-
ia’s testimony was caused by her dislike of Claus rather than by her having
grounds to believe that there was insulin in Claus’s bag. Moreover, Alex’s

Legal Decision Making 233



testimony was undermined by the revelation that a detective who had been with
him when he found Claus’s bag had not seen any needles in the bag. In
addition, the defense called many scientific experts who challenged the reports
in the first trial that Sunny’s coma was insulin-induced and that the needle
found with insulin on it had acquired the insulin during an injection. Finally,
the alleged motive for Claus’s attempted murder was undermined when Sunny’s
banker was not allowed to testify about how much Claus stood to inherit.

Having undermined the hypothesis that Sunny’s coma was insulin-
induced, the defense did not have to argue that she had injected herself.
Rather, they presented a different story in which Sunny’s many health
problems and strange behaviors (ingesting huge amounts of aspirin, taking
a variety of drugs, and eating ice cream sundaes even though she had blood
sugar problems) could have been responsible for her coma. Thus the defense’s
causal story was much stronger than the self-injection story in the first trial,
and the prosecution’s story was much weaker. Accordingly, the jury in the
second trial reached the verdict that Claus von Bülow was not guilty.

I hope this very brief summary of the two trials suffices to show that
jurors’ decisions were based on causal inferences. Should they conclude that
an insulin injection by Claus had put Sunny in a coma, or should they judge
that other causes could not be ruled out beyond a reasonable doubt? Lacking
in my review so far, as well as in Dershowitz’s (1986) much more detailed
history, is any account of the inferential processes by means of which the
jurors integrated the various pieces of information in the two trials in order
to reach their verdicts. I will now show how the theory of explanatory coherence
can provide such an account.

EXPLANATORY COHERENCE

The theory of explanatory coherence and the computational model
ECHO have been applied to a great many examples of abductive inference
in science, law, and everyday life (see, for example, Thagard 1989; 1992;
2000). The theory of explanatory coherence consists of the following
principles:

Principle El. Symmetry. Explanatory coherence is a symmetric relation,
unlike, say, conditional probability. That is, two propositions, p and q,
cohere each other equally.

Principle E2. Explanation. (a) A hypothesis coheres with what it explains,
which can either be evidence or another hypothesis; (b) hypotheses that
together explain some other proposition cohere with each other; and
(c) the more hypotheses it takes to explain something, the lower the
degree of coherence.

234 P. Thagard



Principle E3. Analogy. Similar hypotheses that explain similar pieces of
evidence cohere.

Principle E4. Data priority. Propositions that describe the results of observa-
tions have a degree of acceptability on their own.

Principle E5. Contradiction. Contradictory propositions are incoherent with
each other.

Principle E6. Competition. If P and Q both explain a proposition, and if P
and Q are not explanatorily connected, then P and Q are incoherent with
each other. (P and Q are explanatorily connected if one explains the other
or if together they explain something.)

Principle E7. Acceptance. The acceptability of a proposition in a system of
propositions depends on its coherence with them.

These principles do not fully specify how to determine coherence-based
acceptance, but algorithms are available that can compute acceptance and
rejection of propositions on the basis of coherence relations. The most
psychologically natural algorithms use artificial neural networks that rep-
resent propositions by artificial neurons or units and represent coherence
and incoherence relations by excitatory and inhibitory links between the units
that represent the propositions. Acceptance or rejection of a proposition is
represented by the degree of activation of the unit. The program ECHO
spreads activation among all units in a network until some units are activated
and others are inactivated, in a way that maximizes the coherence of all the
propositions represented by the units.

Thagard (2000, pp. 30!31) describes a general algorithm for using an
artificial neural network to solve constraint satisfaction problems such as
explanatory coherence. For application of coherence as constraint satisfac-
tion to causal inference in the law, think of a set of elements E as the set
of propositions that represent hypotheses and evidence, and positive con-
straints C+ as the coherence relations established by explanation relations.
Negative constraints C! are based on relations of contradiction or incom-
patibility between propositions as established by principles E5 and E6 above.
We can then use the following algorithm to decide what causal hypotheses to
accept or reject:

1. For every element ei of E, construct a unit ui which is a node in a network
of units U. Such networks are very roughly analogous to networks of
neurons.

2. For every positive constraint in C+ on elements ei and ej, construct a sym-
metric excitatory link between the corresponding units ui and uj. Elements
whose acceptance is favored because they represent observed evidence can
be positively linked to a special unit whose activation is clamped at the
maximum value.
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3. For every negative constraint in C! on elements ei and ej, construct a
symmetric inhibitory link between the corresponding units ui and uj.

4. Assign each unit ui an equal initial activation (say, .01), then update the
activation of all the units in parallel. The updated activation of a unit is
calculated on the basis of its current activation, the weights on links to
other units, and the activation of the units to which it is linked. A number
of equations are available for specifying how this updating is done
(McClelland and Rumelhart 1989). For example, on each cycle the
activation of a unit j, aj, can be updated according to the following
equation:

ajðtþ 1Þ ¼ ajðtÞð1!dÞ þ netjðmax! ajðtÞÞ if netj > 0;

otherwise netjðajðtÞ !minÞ:

Here d is a decay parameter (say, .05) that decrements each unit at every
cycle, min is a minimum activation (!1), and max is maximum activation
(1). Based on the weight wij between each unit i and j, we can calculate netj,
the net input to a unit, by:

netj ¼ RiwijaiðtÞ:

Although all links in coherence networks are symmetrical, the flow of
activation is not, because a special unit with activation clamped at the
maximum value spreads activation to favored units linked to it, such as
units representing evidence in the explanatory coherence model ECHO.
Typically, activation is constrained to remain between a minimum (e.g., !1)
and a maximum (e.g, 1).

5. Continue the updating of activation until all units have settled—achieved
unchanging activation values. If a unit ui has final activation above a
specified threshold (e.g., 0), then the element ei represented by ui is deemed
to be accepted. Otherwise, ei is rejected.

This algorithm is psychologically natural in that it views inference as
analogous to neurological processes in which multiple neurons interact in
parallel. But other algorithms are available for solving constraint satisfaction
problems, such as the following greedy algorithm (Thagard 2000, p. 35;
compare Selman et al. 1992):

1. Randomly assign the elements of E into A (accepted) or R (rejected).
2. For each element e in E, calculate the gain (or loss) in the weight of

satisfied constraints that would result from flipping e, i.e., moving it from
A to R if it is in A, or moving it from R to A otherwise.

3. Produce a new solution by flipping the element that most increases
coherence, i.e., move it from A to R or from R to A. In case of ties, choose
randomly.
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4. Repeat 2 and 3 until either a maximum number of tries have taken place
or until there is no flip that increases coherence.

This algorithm usually produces the same acceptances and rejections as
the connectionist algorithm; exceptions arise from the random character of
the initial assignment in step 1 and from the greedy algorithm breaking ties
randomly. LISP code for ECHO is available on my Web site (Thagard 2002).

APPLICATION TO THE VON BÜLOW CASE

To apply the theory of explanatory coherence and the computational
model ECHO to the von Bülow case, it is necessary to express the causal rela-
tions described in the section ‘‘causal inference in the von Bülow case’’ as
explanations. ECHO takes input such as (explains (H1 H2)E1), which sig-
nifies that hypotheses H1 and H2 together explain evidence E1. Appendices
A and B list all the input given to ECHO for the first and second von Bülow
trials, respectively. The structure of the constraint network produced by
ECHO is most easily understood graphically, as shown in Figure 1 for the
first trial. The relation explains is asymmetrical, but ECHO establishes a sym-
metrical link between a hypothesis and what it explains. Quine and Ullian
(1970, p. 79) argued: ‘‘We see therefore that there can be mutual reinforce-
ment between an explanation and what it explains. Not only does a supposed
truth gain credibility if we can think of something that would explain it, but
also conversely: an explanation gains credibility if it accounts for something
we suppose to be true.’’

Note how ECHO naturally encodes the two competing causal stories
about why Sunny went into a coma. The theory of explanatory coherence
and the computational model of ECHO are highly compatible with the pre-
dominant psychological theory of jury decisions, according to which jurors
choose between competing stories of what happens (Pennington and Hastie
1992; 1993; see also Byrne 1995).

What is the relation between the concept explains that ECHO takes as
primitive and the concept cause that I used to describe the von Bülow case
in the earlier section? In the philosophy of science, there are several compet-
ing conceptions of explanation (see, e.g., Salmon 1989 and Thagard 1992,
ch. 5). The one I prefer ties explanation directly to cause: A proposition A
is part of the explanation of a proposition B if the entities and their properties
described by A are part of a causal process that produces the properties of the
entities described by B. For example, I interpret the claim that Claus’s inject-
ing Sunny with insulin explains her coma as saying that there was a causal
process that started with Claus, the needle, insulin, and the act of injection,
and ended with Sunny unconscious. We need not know all the steps in the
relevant causal process in order to have an explanation, but we can at least
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sketch some of the mechanisms such as injection and the body’s reaction to
insulin that lead from the explanatory cause to the explained effect.

For the first trial, ECHO ends up accepting the hypothesis that Claus
injected Sunny with insulin, but for the second trial ECHO ends up rejecting
it. This result occurs regardless of whether the neural network or greedy
algorithms are used to maximize constrain satisfaction. To simulate decision
making in the first trial, the connectionist algorithm requires 188 cycles of
updating activations before the network has settled, and the greedy algorithm
requires around 16 flips to reach the same partition of propositions into
accepted and rejected. The connectionist algorithms can easily handle much
larger networks. My student Ray Grondin developed a simulation of the
1684 trial of Laurence Braddon, analyzed by Wigmore (1937), which

FIGURE 1. Graphical structure of the constraint network created by ECHO for the input presented
in Appendix A. Solid lines indicate coherence relations established by explanations, while dotted lines
indicate incoherence relations established by contradiction and competition. Data nodes are indicated
by italics.
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involved more than 200 propositions and still settled in a few minutes on a
laptop computer.

Appendix B shows the input to ECHO used to simulate the second trial.
Notice that it undermines the testimony of Maria and Alex by providing
alternative explanations of why they said what they did about insulin and
hypodermic needles in Claus’s bag. Most important, it includes new evidence
in the form of expert testimony that Sunny’s coma was not produced by
insulin rejection. Moreover, the defense’s explanation of what put Sunny into
a coma is better supported than the self-injection explanation in the first trial,
and the prosecution’s description of Claus’s motives is weaker. All of these
factors contribute to ECHO’s rejection of the hypothesis that Claus injected
Sunny.

How subjective is the analysis of two trials presented in the appendices?
It may seem that ECHO simulations require many numerical values such as
excitation, inhibition, and decay that depend on arbitrary decisions by the
programmer. In fact, however, I use the same numerical values (e.g., 04 for
excitation, !.06 for inhibition) in all ECHO runs, and sensitivity analyses
have shown that the actual values do not much matter as long as excitation
is greater than inhibition. More problematic is specification of the ‘‘explains’’
relations which requires the programmer to understand the causal structure
of the case. But the same understanding is required for simulations using
Bayesian networks discussed below. Marking a proposition as ‘‘data’’ is
not arbitrary: In the legal context, the data are the utterances made by
witnesses that are observed by everyone in the courtroom.

Thus the program ECHO has successfully modeled the decisions of the
juries in both the first and second trial. Along with the theory of explanatory
coherence, it shows how different kinds of causal factors can be integrated
into a single judgment about whether an accused is innocent or guilty. Pre-
vious application of ECHO to legal cases can be found elsewhere (Thagard
1989; 2003). The latter paper concluded that explanatory coherence was
not the best explanation of the judgment by the jury in the 1995 O. J.
Simpson trial, arguing that the judgment was partly a matter of emotional
coherence deriving from juror bias in favor of Simpson and against the
Los Angeles Police Department. I have found no suggestions that the von
Bülow juries were biased either for or against him, so the explanatory
coherence account appears adequate for both of his trials.

BAYESIAN NETWORKS

There is, however, a distinguished alternative account of legal infer-
ence, using Bayesian networks. Kadane and Schum (1996) argue that legal
trials can be understood using probability theory and they present a com-
prehensive and detailed analysis of the famous 1921 trial of the accused
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anarchists, Sacco and Vanzetti. In the past decade and a half, Bayesian
networks have become increasingly influential in artificial intelligence
(Pearl 1988; 2000). It is necessary to consider, therefore, whether this
approach provides a plausible alternative account of juror inference in
the von Bülow trials.

Bayesian networks consist of a network of nodes, some pairs of which are
joined by arrows. The arrows indicate relations of probabilistic dependence:
If A - > B, then the probability of B depends in part on the probability of A.
In addition, the arrows can be interpreted as causal relations: If A - > B,
then A causally influences B. Given this second interpretation, it is natural
to analyze legal trials as Bayesian networks. Figure 2 shows a Bayesian net-
work built using the programming tool JavaBayes (Cozman 2001). This net-
work was constructed using nodes for the propositions in the ECHO analysis
of the first von Bülow trial (see Appendix A and Figure 1). The major differ-
ence between the Bayesian network in Figure 2 and the coherence network in
Figure 1 is that the connections in the Bayesian network are unidirectional.

In addition to constructing the causal network shown in Figure 2, the
Bayesian analysis of the first von Bülow trial and others requires specifying
many conditional probabilities. For each node that has n arrows coming into
it, it is necessary to specify 2nþ1 conditional probabilities. For example,
the node Alexandra-affair has one arrow coming down to it from C-love-
Alexandra, so the Bayesian simulation requires the conditional probabilities:

P(Alexandra-affair is true=C-love-Alexandra is true)
P(Alexandra-affair is false=C-love-Alexandra is true)
P(Alexandra-affair is false=C-love-Alexandra is false)
P(Alexandra-affair is false=C-love-Alexandra is false)

Thus, if jurors are Bayesian networks, they would need to have some
estimate of the probability of what Alexandra says about Claus given that
she says it. In constructing the JavaBayes network, I had no idea what this
probability would be, but I figured that in general witnesses are reliable so
I guessed that

P(Alexandra-affair is true=C-love-Alexandra is true) ¼ .7
P(Alexandra-affair is false=C-love-Alexandra is true) ¼ .3.

I had no idea what the conditional probabilities might be if C-love-
Alexandra is false, so I just left them at the default values of .5.

Even more problematic was coming up with conditional probabilities in
cases where there are two arrows coming into a node. For example, the node
C-injected required eight conditional probabilities such as:

P(C-injected is true = C-want-end is true & C-want-money is true).
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Given the causal link, it was plausible to give this my default high-
probability value of .7, but for most of the Boolean combinations, I had
no idea what the conditional probabilities might be and left them at the
default value of .5.

FIGURE 2. Bayesian network analysis of the first von Bülow trial produced using JavaBayes (Cozman
2001). Arrows indicate conditional probability, for example, that Alexandra-divorce is conditional on
Alexandra-demanded. Dark nodes are observed to be true.
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Nevertheless, the probability values I inserted were sufficient to simulate
jury behavior in the first von Bülow trial. JavaBayes uses the provided con-
ditional probabilities and the information that some nodes were marked as
observed to be true to calculate the posterior probability of each nodes.
My simulation resulted in C-injected having a probability of greater than
.5 and in S-injected having a probability of less than .5. Thus it seems that
JavaBayes, like the jury in the first trial, found von Bülow guilty. I have
not done a JavaBayes simulation of the second trial, but I expect that it could
be made to find von Bülow innocent, perhaps with some adjustment of
conditional probabilities. I have assumed that ‘‘guilty beyond a reasonable
doubt’’ means something like ‘‘probability above a specified value such as
.5’’; reasonable doubt is a complex notion that I discuss elsewhere (Thagard
forthcoming-b).

However, I have serious doubts about the Bayesian explanation of juror
reasoning in these two trials. These doubts derive from what I shall call the
interpretation problem and the implementation problem. The interpretation
problem is that there is no plausible meaning for the probabilities used in
the Bayesian simulation. The network shown in Figure 2 is unproblematic
if the arrows are interpreted as causal relations. The coherence relations in
Figure 1 are also based on causal relations that underpin explanation
relations. But Bayesian networks require also that the arrows have a prob-
abilistic interpretation so that conditional probabilities can be specified.
Otherwise, the algorithms for calculating probabilities used by JavaBayes
and similar programs have no application. I will now argue that there is
no satisfactory interpretation of the probabilities that would be needed for
legal applications.

As Hacking (2001) reviews, there are two kinds of interpretations of
probability: frequency-type and belief-type. Frequency-type interpretations
apply best to cases such as games of chance and large databases. For
example, we can say that the probability of rain in Waterloo on a July day
is x because the frequency of days with rain over the past 50 years of collect-
ing records, that is the ratio of days with rain to all days in July, is x. It is
obvious that frequency-type probabilities are irrelevant to the von Bülow
trial. Nobody, including members of the jury, has frequency information
either for single hypotheses such as C-injected or for conditional probabilities
such as P (C-injected=C-want-end).

Proponents of Bayesian networks such as Pearl (2000, p. 2) usually
endorse belief-type probabilities, according to which probabilities encode
degrees of belief about events in the world. At first glance, this seems like
a reasonable way to think about legal inference. Jurors will find an accused
guilty if they believe the prosecution’s story to a sufficient degree, i.e., with
high probability. But there is abundant psychological evidence that people’s
degrees of belief do not conform to the calculus of probability (e.g.,
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Kahneman et al. 1982; Gilovich et al. 2002). Rather than think of degrees of
belief in nonfrequency matters as like probabilities in ranging from 0 to 1, it is
more psychologically plausible to view them as a small number of qualitative
states, perhaps the following: strongly believe ! weakly believe ! no belief !
weakly doubt ! strongly doubt. The mathematical range of probabilities is
excellent for expressing frequencies, but does not map well at all onto degrees
of belief.

Explanatory coherence theory does not attach any special significance to
the numerical activations arrived at by different nodes in the neural networks
that it uses to maximize coherence: The crucial issue is whether a proposition
is accepted or not. In contrast, the Bayesian model requires an interpretation
of probabilities as either frequencies or degrees of belief, neither of which is
plausible in the context of legal decision making.

By the implementation problem for Bayesian networks I mean the dif-
ficulty of coming up with all the conditional probabilities that the analysis
requires. My simulation of the first von Bülow trial required the specifi-
cation of 96 conditional probabilities, and the numbers I came up with
are largely arbitrary. The problem was even more serious for the much
larger JavaBayes simulation that Ray Grondin did of the Braddon trial,
which required many hundreds of conditional probabilities that he simply
had to make up.

If the actual numbers do not much matter, as suggested by my use of a
few default values for conditional probabilities in the JavaBayes simulation
of the von Bülow trial, then the apparatus of probability theory is largely
superfluous. All that really matters is causal structure, and explanatory
coherence theory captures that without dealing at all with probabilities. On
the other hand, an honest Bayesian has to be willing to ascribe to jurors
and other people a great many numerical probabilities, and there is no prin-
cipled way to do this. We might ask jurors to compare their degrees of belief
in a proposition to outcomes in games of chance where probabilities are well
defined, but there is no clear psychological mapping between beliefs such as
Claus injected Sunny and rolls of a dice.

CONCLUSION

Because of the interpretation and implementation problems, I judge
the Bayesian network account of juror inference to be less plausible than
the explanatory coherence account. Both approaches capture the insight
that legal decisions such as whether an accused is guilty depend on causal
inference. But the explanatory coherence account better captures the
insight of psychologists such as Pennington and Hastie (1993) and legal
scholars such as Dershowitz (1986) and Allen (1997) that jurors decide
by choosing between competing stories about what went on in an alleged
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crime. Such stories are full of causal structure, concerning both what hap-
pened in the crime situation and what happened in court when witnesses
made their testimonies. Legal inference is inference to the most plausible
causal story, but the psychological mechanism by which jurors evaluate
causal stories seems based, not on Bayesian probability calculations, but
on explanatory coherence.
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APPENDIX A

Input for ECHO simulation of Trial I

;Evidence:
(proposition ‘S-coma ‘‘Sunny went into a coma.’’)
(proposition ‘Maria-said-insulin ‘‘Maria said she found insulin in Claus’s
bag.’’)
(proposition ‘Alex-said-hypo ‘‘Alex said he found used hypodermic in
Claus’s bag.’’)
(proposition ‘Cahill-insulin ‘‘Cahil said insulin put Sunny in coma.’’)
(proposition ‘lab-insulin ‘‘Lab reported insulin on used hypodermic.’’)
(proposition ‘S-banker-inherit ‘‘Sunny’s banker said Claus would inherit
$14 million.’’)
(proposition ‘Alexandra-affair ‘‘Alexandra said she was having an affair
with Claus.’’)
(proposition ‘Alexandra-demanded ‘‘Alexandra said she demanded Claus
divorce Sunny.’’)
(proposition ‘Joy-said-insulin ‘‘Joy said Sunny recommended insulin.’’)
(proposition ‘Joy-said-taught ‘‘Joy said she taught Sunny many times.’’)
(proposition ‘Joy-records ‘‘Records showed Joy hardly taught Sunny.’’)

;Prosecution hypotheses:
(proposition ‘C-loved-Alexandra ‘‘Claus loved Alexandra.’’); p. xxi
(proposition ‘Alexandra-divorce ‘‘Alexandra demanded Claus divorce
Sunny’’)
(proposition ‘C-want-end ‘‘Claus wanted to end his marriage to Sunny.’’)
(proposition ‘C-want-money ‘‘Claus wanted to inherit money.’’)
(proposition ‘C-injected ‘‘Claus injected Sunny with insulin.’’)
(proposition ‘M-found-insulin ‘‘Maria had earlier found insulin in
Claus’s bag.’’)
(proposition ‘Alex-found-hypo ‘‘Alex found hypodermic needle in
Claus’s bag.’’)
(proposition ‘insulin-needle ‘‘Insulin found hypodermic needle.’’)
(proposition ‘insulin-coma ‘‘Insulin put Sunny into a coma.’’)
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(proposition ‘C-inherit ‘‘Claus would inherit $14 million’’)
(proposition ‘Joy-lied ‘‘Joy lied that Sunny recommended insulin.’’)

;Defense hypothees
(proposition ‘S-injected ‘‘Sunny injected herself with insulin.’’)
(proposition ‘Sunny-used ‘‘Sunny used insulin.’’)
(proposition ‘Joy-taught ‘‘Joy taught Sunny many times.’’)

;Contradictions
(contradict ‘Joy-taught ‘Joy-records)

;Prosecution explanations:
(explain ‘(insulin-coma)’S-coma)
(explain ‘insulin-coma) ‘Cahill-insulin)
(explain ‘(C-injected) ‘insulin-coma)
(explain ‘(C-injected) ‘S-coma)
(explain ‘(C-want-end) ‘M-found-insulin)
(explain ‘(C-injected) ‘insulin-needle)
(explain ‘(C-injected) ‘Alex-found-hypo)
(explain ‘(Alex-found-hypo) ‘Alex-said-hypo)
(explain ‘(M-found-insulin) ‘M-said-insulin)
(explain ‘(insulin-needle) ‘lab-insulin)

;motive
(explain ‘(C-love-Alexandra Alexandra-divorce) ‘C-want-end)
(explain ‘(C-love-Alexandra) ‘Alexandra-affair)
(explain ‘(Alexandra-divorce) ‘Alexandra-demanded)
(explain ‘(C-want-end) ‘C-treated-bad)
(explain ‘(C-want-end C-want-money) ‘C-injected)
(explain ‘(C-want-money) ‘C-inherit)
(explain ‘(C-inherit) ‘S-banker-inherit)

;Defense explanations:
(explain ‘(S-injected) ‘insulin-coma)
(explain ‘(S-injected) ‘S-coma)
(explain ‘(Sunny-used) ‘S-injected)
(explain ‘(Sunny-used Joy-taught) ‘Joy-said-insulin)
(explain ‘(Joy-taught) ‘Joy-said-taught)

;Data
(data ‘(S-coma Maria-said-insulin Maria-said-bad Alex-said-hypo Cahill-
insulin lab-insulin S-banker-inherit Alexandra-affair Alexandra-demanded
Joy-said-insulin Joy-said-taught Joy-records))
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APPENDIX B

Input for ECHO simulation of Trial 2

;Evidence:
(proposition ‘S-coma ‘‘Sunny went into a coma.’’)
(proposition ‘Maria-said-insulin ‘‘Maria said she found insulin in Claus’s
bag.’’)
(proposition ‘Maria-notes ‘‘Maria did not mention insulin in Kuh’s
notes.’’)
(proposition ‘Alex-said-hypo ‘‘Alex said he found used hypodermic in
Claus’s bag.’’)
(proposition. ‘Detective-vs-Alex ‘‘Detective said Alex did not find nee-
dle.’’); 107
(proposition ‘Cahill-insulin ‘‘Cahil said insulin put Sunny in coma.’’)
(proposition ‘lab-insulin ‘‘Lab reported insulin on used hypodermic.’’)
(proposition ‘S-banker-inherit ‘‘Sunny’s banker said Claus would inherit
$14 million.’’)
(proposition ‘Alexandra-affair ‘‘Alexandra said she was having an affair
with Claus.’’)
(proposition ‘Alexandra-demanded ‘‘Alexandra said she demanded Claus
divorce Sunny.’’)
(proposition ‘Cortivo-said-needle-not-injected ‘‘Cortivo said needle not
injected.’’);202
(proposition ‘Rubenstein-said-not-insulin ‘‘Rubenstein said tests did not
show high insulin.’’); 202
(proposition ‘Galitis-said-not-insulin-coma ‘‘Dr. Galitis said it was not
an insulin coma.’’)

;Prosecution hypotheses:
(proposition ‘C-loved-Alexandra ‘‘Claus loved Alexandra.’’); p. xxi
(proposition ‘Alexandra-divorce ‘‘Alexandra demanded Claus divorce
Sunny’’)
(proposition ‘C-want-end ‘‘Claus wanted to end his marriage to Sunny.’’)
(proposition ‘C-want-money ‘‘Claus wanted to inherit money.’’)
(proposition ‘C-injected ‘‘Claus injected Sunny with insulin.’’)
(proposition ‘M-found-insulin ‘‘Maria had earlier found insulin in
Claus’s bag.’’)
(proposition ‘Alex-found-hypo ‘‘Alex found hypodermic needle in
Claus’s bag.’’)
(proposition ‘insulin-needle ‘‘Insulin found on hypodermic needle.’’)
(proposition ‘insulin-coma ‘‘Insulin put Sunny into a coma.’’)
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;Defense hypothees
(proposition ‘S-coma-noninsulin ‘‘Sunny went into a coma for non-insu-
lin reasons.’’)
(proposition ‘Sunny-health ‘‘Sunny had many health problems.’’)
(proposition ‘Sunny-behavior ‘‘Sunny had many weird health beha-
viors.’’)
(proposition ‘M-lied ‘‘Maria lied about Claus.’’)
(proposition ‘A-lied ‘‘Alex lied about hypodermic.’’)
(proposition ‘needle-not-injected ‘‘The needle found in Claus’s bag was
not injected.’’)
(proposition ‘not-insulin-coma ‘‘Sunny’s coma was not insulin induced.’’)

;Prosecution explanations:
(explain ‘(insulin-coma)’ ‘S-coma)
;(explain ‘(insulin-coma)’ ‘Cahill-insulin)
(explain ‘(C-injected) ‘S-coma)
(explain ‘(C-injected) ‘insulin-coma)
(explain ‘(C-want-end) ‘M-found-insulin)
(explain ‘(C-injected) ‘insulin-needle)
(explain ‘(C-injected) Alex-found-hypo)’
(explain ‘(Alex-found-hypo) ‘Alex-said-hypo)
(explain ‘(M-found-insulin) ‘M-said-insulin)
(explain ‘(insulin-needle) ‘lab-insulin)

;motive
(explain ‘(C-love-Alexandra Alexandra-divorce) ‘C-want-end)
(explain ‘(C-love-Alexandra) ‘Alexandra-affair)
(explain ‘(Alexandra-divorce) ‘Alexandra-demanded)
(explain ‘(C-want-end C-want-money) ‘C-injected)
;(explain ‘(C-want-money) ‘C-inherit
;(explain ‘(C-inherit) ‘S-banker-inherit); ruled out, p. 200

;Defense explanations:
(explain ‘(not-insulin-coma) ‘S-coma)
(explain ‘(Sunny-health Sunny-behavior) ‘S-coma-noninsulin)
(explain ‘(M-lied) ‘Maria-said-insulin)
(explain ‘(M-lied) ‘Maria-notes)
(explain ‘(A-lied) ‘Alex-said-hypo)
(explain ‘(A-lied) ‘Detective-vs-Alex)
(explain ‘(needle-not-injected) ‘Cortivo-said-needle-not-injected)
(contradict ‘needle-not-injected ‘C-injected)
(explain ‘(not-insulin-coma) ‘Rubenstein-said-not-insulin)
(contradict ‘not-insulin-coma ‘insulin-coma)
(explain ‘(not-insulin-coma) ‘Galitis-said-not-insulin-coma)
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;Data
(data ‘(S-coma Maria-said-insulin Maria-said-bad Alex-said-hypo
Cahill-insulin lab-insulin S-banker-inherit Alexandra-affair Alexandra-
demanded Maria-notes Detective-vs-Alex Rubenstein-said-not-insulin
Cortivo-said-needle-not-injected Galitis-said-not-insulin-coma Sunny-
health Sunny-behavior))
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