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ADbstract This paper describes our research in technologies for the
m anagem ent and control of distrbuted energy resources. An agentbased
m anagem ent and control system  is being developed t© enable large-scale
deploym ent of distrdbuted energy resources. Local intelligent agents w ill
allow consumers who are connected at low levels n the distrbution
network t© manage thelr energy mEquirrments and partcipate in
coordination responses to netw ork stm uli. Such regponses can be used o
reduce the volatility of wholesale electricity prices and assist constained
netw orks during summ er and w inter dem and pesks. Th our system , the
coordination of energy resources is decentralized. Energy 1esources
coordinate each other to realize efficient autonom ous m atthing of supply
and demand n large power disrbution networks. The infomm ation
exchange is thmugh indirect (Or stgm ergic) comm unications betw een
agents. The coordination mechanign is asynchronous and adapts to
change In an unsupervised m anner, m aking it mitrnsically scalable and
mwbust.

1 NTRODUCTDN

W ih the increasing gap betw een electrdcity supply and dem and, the
electricity Industry In m any countries is facing a num berof new pressures.
D istrbuted electricity generation technologies together with improved
dem and-side m anagem ent techniques have been dentified as a possible
solution to this challenge [USDE 2000]. The idea of controlling the
sw ithing loads and generators to regoond t© price signals and netw ork
constraints Is tedhnically achievable and becom ng m ore econom ically
viable for businesses requiring greater supply reliability, flexioility, and
Iow er cost o the consum ers.

W e have been developing m ult-agent technology for the m anagem ent
and control of distrbuted energy resources [Guo 2005; Jones 2005; Li
2007;L12008], aim ed atdeploym ent in the A ustralian N ational E lectricity
M arket w ithin the next few years. A component of this work is the
developm ent of algorithm s for coordinating disodbuted energy resources
DERSs) comprsing customer loads and genemtors. Coordination is
m ediated by local intelligent agents that conttoleach DER , called resource
agents, and additional agents that present an nterface o the electricity



ndustry, called broker agents. DERs arr coordated to aggregate
sufficient distodbuted capacity to be of smategic value t© market
participants such as re@ilers and netw ork businesses. Such aggregation is
a significant challenge, particularly for large num bers of DER s and when
centralized control techniques are not feasible.

The m aln research focuses of I proving distrbution include: ([) how
to coordinate all the agents’ actions, (i) how these agents comm unicate
w ith one another during coordination, (il how the system can be made
scalable so that the system can operate effectively even as num ber of
resources increases arbitrarily, and (i) how the system can be adaptable to
non-accurate predictions and unexpected events. Four m ethods reported
In recent litemature are currently under tral or n active use.

1.1 PriceBased Control

hdirect contxol over custom ers’ resources is achieved by asking
human “owners” of each resource t© resoond to a varyhg, broker-
determ Ined price for power [Luh 2003]. Typically the price can be at
several discrete kevels, for example, ow and medim 1ates that are less
than the average retail price, and high and critical rates that are m ore, and
the prce is ncreased shawply at tines when a reduction In demand is
desired. Custom ers get advance notice of high prices by one or several
means and can then choose which appliance settings to change, if any.
The varying price m ay approxin ate the wholesale m arket price to some
extent, or it may be based on local network loading, not reflected In
w holesale pricing, according to the energy utility orbusiness that is asking
services of the broker.

Coordination is achieved thmwugh an iemtve price-updating process
carded out In a distrbuted and asynchronous m anner w ithout accessing
others’ prvate Information or ntmding on their decision-making
authority. A lthough m ibgation of pesk-period pow er usage has been
=ported, there is considerable debate In the electricity industyy about the
Iongtem effectiveness of such progmams [Hopper 2007], due t©
disadvantages such as the follow Ing.

e Human owners m ay not exist for som e resources, orm ay notbe
able orw illing to regpond w hen asked, so there is no guarantesd
levelof system response.

e The processm ay lead to custom er dissatisfaction since it requires
effort from them and they are being asked t© choose betw een cost
and com fortor convenience.

12 DirectLoad Control

D frect control over custom ers’ resources can be achieved using one or
several “circuits” that allow different categories of housshold appliances
to be sw itthed off by the utlity at tim es of peak dem and. Sw iching m ay
be thmugh a physical circuit, htermuptng the flow of electricity, or
through a broadcast com m unications m ethod that activates a local sw itch
at the appliance or circuitboard. O fien the broadcast signal is delivered
by superimposing a comm unications signal on the energy-trangporting



fields using “power-lne camder” technology. Customers receive a
discount on their electricity bill, or another kind of r=w ard, that m ay be
based on which appliances are signed up t© different circuits, how often
those circuits are sw itched, or on the achieved system outcom e which is
what generates value for the utdlity. This kind of program has been
extensively used for many years to contol hotwater sysems. M ore
sophisticated fom s of direct Joad contiol are now being tralled using a
w ider range of agppliances [Energex, 2007]. The disadvantages are as
follow s.
e Thsensitive Intexvention In the operation of som e appliances can
cause significant lnconvenience to resource ow ners.
e Ther r=mans considerable unceranty i the level of system
regponse obtaned, due o the Jack of sate inform ation describing
w hich appliances are on at the tim e of Intervention.

13 MarketBased Control

Agentbased m arket-orented algorithm s [Cadsson 2007; Cleaw ater
1996; D in eas 2005; Kam phuis 2006 ; Kok 2005; O yarzabal 2006; Y gge
1998; Ygge 2000], w ith r=al or virtual currency, have one orm ore broker
agents to carry out a negotiation process w ith each resource agent to fix
usage and price. G enerally, m arket algorithm s for solving flow -resource
problam s have two scalability problem s: one regarding the num ber of
participants In the m arket and the other regarding the nterdependency in
the participant’s dem and overtim e.

The first agent research gpplications and sin ulations carrded out under
the heading of m arketthbased control w ere brought together in  [C learw ater
1996]. M ost early research was ained at clinate contol in office
buildings w ith m any office room s, w here local contiol agents com pete in
the allocation of coolhotair Hudson 1999]. Then, a system s-level theory
of large scale telligent and disbuted contol was formulated [Kok
2005]. This theory unifies m icroeconom ics and control theory In a m ultd-
agent theory. Kamphuis toduces the Powe atcher algorithm

[K am phuis 2006], which is a m arketlased contxol concept for supply and

dem and m atching in electricity netw orks w ith a high share of distrbuted
generation. Real-tm e matching of supply and dem and is crucial to the
safe and wlidble operation of electricity netw orks because electricity
cannotbe stored In sufficientquantity, and w ith sufficient speed, t© absorb
in balance betw een production and consum ption. The m ost successfuil
agentbased m arket algorithm forpow er load m anagem ent w as published
by Ygge [Ygge 1998; Ygge 2000]. Like other algorithm s described
above, Y gge only tried to solve the first scalability problem r=garding the
num ber of participants. In their solution to the problem , the demand
functions of the ndividual agents are aggregated 1 a bnary tree. This
opens the possibility for mnning the optim ization distrbuted over a series
of computers In a network In a way that fits nicely to power system s
architectures [Y gge 1998]. A lthough som e perfom ance advantages have
been r=ported, thism ethod also has disadvantages, w hich are as follow s.

e Ther is a lack of sinple scaldbility - existing m arketbased

algorithm s require hierarchies of brokers to negotiate w ith very



large numbers of rmsoures, leading to potentially fragile
structures.

e M arketbasad algorithm s also require adaptation or r=plication t©
account for rlationships betw een resource controlled actions at
different tim es arising from theirphysical properties.

e Alhough the efficiency of marketbased algorihms may be
quantified there is no r=ported guarantee of an adequate level of
sewvice at resource orsystem  level.

The second scaladbility problem, the one rrgarding the nter-
dependency In the participant’'s dem and over tim e, is harder to solve In
such aw ay that the usability In the pow er field r=m ains intact. Oneway of
dealing w ith this problem is o ignore itand just suppose there isno nter-
dependency betw een electricity used in different tim e periods. Then, a
single-com m odity m arket algorithm can be used, w here the comm odity is
the am ount of energy t© consum e In one tin e period. Then, the tading
agents must toally rly on market price pradictions In oxder t© utilize
flexibility in their dem and over time. On the other end of the scale one
could consider a m ultd-com m odity m arket algorithm in which agents can
formulate dem and finctions that arr fully nterdependent am ong the
comm odites, which are am ounts of energy t© consume In a series of
consecutive tim e periods. This scalability problem w as partly solved by
Carlsson and A nderson who propose a m arket algorithm  that can handle
dem and fimctons w hich are tree-structured In the time dom ain  [Carlsson
2007]. Agents are able to express dependencies betw een bids 1n different
tim e periods, but n a 1in ited num berofw ays.

14 Planning AJorithm s

Planning algorithm s [CJem ent 2003 ; Clem ent 2000; Guo 2005; M Uller
2001] for coordating a group of distdbuted energy agents have been
developed. An early m ethod fora distrbuted energy m anagem ent system
based on offline planning w as ntrtoduced In M Gller2001]. Thishasa co-
generation system wih different generating units and energy storage
m echanism s. tuses shortterm optim ization w ih the ain ofm Inin ization
of the operating costs based on forecast finctions. Ik is actually a “top-
down” centralized algorithm . Then, Clem ent and Banett [C Jem ent 2003]
ntoduce the decentralized shared actvity ooordnation (GHAC)
algorithm , which negotiates the scheduling and param eters of shared
activites until consensus is mwached. Pmwtocols are defined which
determ lne when t© communicate, what t© communicate, and how t©
process received communication. D istdbuted energy resource agents
coordinate their plans by esablishing consensus on the param eters.
Protocols are the m echanism s assioned to each agent thatallow the agents
to change constraints on the shared activity. Since the protocols are pre-
defined the algorthm has difficulty adapting t© som e em ergent system
behaviours.A swell, fora system w ith a Jarge num berof agents, it ishard
to es@blish consensus among agents wihin a chort tine period. A
coordnation algorthm using summ ary Infom ation has been illustated n
[Clem ent2000]. The summ ary infom ation is used t© guide the search for



a global plan that resolves conflicts and optim izes the total com pletion
tim e of the agents’ plan. I is shown that sum m ary fom ation can find
solutions at higher levels exponentially m ore quickly than at low er levels.
Even o, the algorthm stll lacks scaldbiliy because the summary
Infom ation grow s exponentially w ith increasing num bers of agents. For
very large num bers of agents the search is tim e constrained . R ecently, Guo
[Guo 2005] developed a planning algorithm for coordmnating a group of
disbuted energy agents. The algorittm combhes predicted
environm ental conditons, m odels for the consttamnts and behaviour of
loads and genemators, and a system goal to calculate plans for each
resource for a period nto the future. Each pln is a sate sequence, for
exam ple, a set of sw itrthing actions and tim es that an agentw ill carry out
n the future. A centmalized genetic optim ization algorithm was used in
[Guo 2005] t© sinultanecusly calculate the plans for each resource.
A lthough the plan can coordinate distrbuted agents under ideal situations
eg. accurately predicted environm ent conditions and no sudden change
forany agent), the disadvantages are as follow s.

e Lack of scalability to large numbers of resources - as the
behaviour of all agents w as optim ized centrally for a particular set
of events, the solution w as not expected t© scale w ell, partcularly
as genetic algorithm s are used as the optim ization tool and the
assem bly of agents m ust satisfy system global as well as local
goals.

e No adaptEbility o changes In either local or global conditions —
sudden changes In the situation of one or more agents are not
anticipated or accounted for. For exam ple, if larxge quantites are
added to or rem oved from a cool room ; the whole system would
require re-optm ization.

15 Challenges

T summ ary, In alm ostall distrbuted energy resource m anagem entand
control algorithm sm achine leaming technology has been used to optin ize
the plan t© solve a given task. Two challenges exist form achine leaming
planning algorithm s. One is scalability, which is a problem for m any
m ulb-agent leaming techniques. The din ensionality of the search space
grow s r@pidly wih the complexity of possble agent behaviours, the
num ber of agents nvolved, and the size of the network of interactions
betw een them . This search space grow s g0 1apidly that it seem s clear that
one cannot leam the entire joInt behaviour of a large, heterogeneous,
stongly intercom m unicating m uld-agent system . The other challenge is
adaptability. M uld-sgent system s are typically dynam ic environm ents,
w ith mulbple leaming agents com peting for resources and @asks. Such
dynam ics present a unigque challenge not nom ally found in single-agent
laming: as the agents leam, their adaptation to one another changes the
world sate. How do agents leam In an environm ent w here the goalposts
are constantly and adaptively being m oved? Thege dynam ics also present
the Interesting problem of quality assesan ent. T a decentialized dom aln,
such quality assesam ent is relative t© or In the context of other agents n



the environm ent. Thus there m ay be no absolute quality m easure that can
be assigned to any one agent.

I this paper we ntroduce a distrbuted m ulbd-agent algorithm w hich
coordmates distdbuted energy resources by attem pting t© enforce a tim e-
variable supply cap on the powerdrawn fiom the grid. The inform ation
exchange is thmough indirect (Or stgm ergic) comm unications betw een
wesource agents and one or mor bmker agents. The coomdination
m echanism is asynchronous and adapts t© change In an unsupervised
manner, making i ntrnsically scalbble and rwbust. T the systEm,
Ihdividual agents are selfich and reasonably sinple. How ever;, the desired
(com plex) system resgponse em erges out of low level agent coordination,
which is In stark contrast to traditional centralized control system s. This
work will bring potential solutions to the voladlity of wholesale pool
prces and an altemative w ay of dealing w ith netw ork constramnts during
sum m erand w interpeaks.

The present algorithm overcomes all of the difficulties m entioned
above In rgard t© existng methods. Specifically, no hum an action or
effort is required at the resource level; solutions in plicitly include the
satisfaction of the local constaints of resources and also offer system -
level users a defined service, the relidbility or “firm ness” of w hich m ay be
quantified; the system is scalable to both very large num bers of resources
and interdependency In the participant’'s dem and over tin g, even w ih a
single broker; resource agents act autonom ously, o no central adaptation
orreplication is required w hen conditions change.

The paper will be organized as follows. Section 2 suggests an
approach to coordinating distrbuted energy resource agents using indirect
comm unications mediated by a “stgspace”. Section 3 describes the
coordnation algorithm . Section 4 dem onstrates the perform ance of the
algorithm through the results of sinulation experim ents, and Section 5
analyses the convergence of the algorithm thmough comparison wih
theoretical 1im its of perfomm ance.

2 NDRECT COMMUNITATON BETW EEN
DISTRIBUTED ENERGY RESOURCE AGENTS

2.1 Resource Agents

Local intelligent agents are a natural m eans to m anage quite com plex
data and contol action for mdividual DER s while providing a sinple
nterface by which the DER nteracts w ith the energy system  at large.
Considering the listed disadvantages of the approaches discussed above,
and w ishing t© find an approach that offers both scalability of the num ber
of resources and adaptability to possible sudden changes in the situation of
one orm ore esources, w e suggest that the follow Ing properties of m uld-
agent system s tend to prom ote both scalability and adaptability .

e Agents cshould be as sinple as possible faive) regarding their

Interaction w ith the agent system . Here w e distinguish betw een an



agent’'s flnction as a member of a mulbd-agent system and an
agent’'s local resource management functon. The later is
generally not sim ple because it concems engineering details of the
load or genemtor being managed and the requirrments and
preferences of the custom erw ho owns it.

e Agents should satisfy local goals preferentially (selfish). Aswell
as being simpler to design than agents that m ust sin ultaneously
satisfy goals wrlating to the system , selfish agents will always
ensure that customer r=quirem ents are met as far as possble
w ithout violating local goals. This will assist in successful
adoption of the tedhnology. System goals can be m et through
design of agent Interactions and responses.

e Agents should be dentical orofa few vareties only). Since only
a few agent designs are needed the number of optm isation
param eters is amall and does not ncrease with the number of
resources. This will lead to faster, scale-independent, system
desion. It should also be rwlatively smple t© add resources,
kesping the sam e agentdesion.

e Ther chould be little or no Interagent communication non-
comm unicating). Lack of Interagent comm unication w il lessen
the likelihood of unexpected (unplanned em ergent) behaviour.

W e have developed, In smulaton and also In hardware for
dem onstration, resource agents that satisfy these properties. Theirpurpose
is © fulfil the =quirem ents of the electricity custom er who owns the
resource under control. They are nevertheless ablke © respond ©
Infom ation about the m ulb-agent system and any system goals, provided
that this regponse doesn’t com prom ise the custom er's requirem ents and
thereby consttute a cost. The resource agents used 1 this sudy contiol
refrigerators and the custom er requirem ent is to mantain tem perature
w ithin nom al operating bounds. In steady-s@ate operation, w ithout any
changes In contents, door openings, or m ultb-sgent regoonses, this results
N a square-w ave pow er consum ption as the com pressor is tumed on and
off when the Intemal tem perature reaches upper and low er tem perature
bounds respectively. These resource agents, therefore, ke over the
control of the com pressor and have the ability to change sw itching tim es
to effecta regponse t© nfom ation about the m uld-agent system . FISURE
1 show s steady-state sw itthing of a real refrigeratorunderagent control.
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FIGURE 1: Steady-state behaviour of a real refrigerator under agent control.
The upper graph show s when the compressor is on and off, the lower graph
show s the corresponding Intemal tem perature of refrigerator, and the horizontal
scale istime In stepsof 10 s.

The inform ation com m unicated w ith the m uld-agent system is chosen
to address the second kind of scalability discussed in Section 13: it is
necessary to acoount for the nterdependency In the resource agent's
energy dem and over tin e, but In doing o0 we should avoid r=plication of
algorithm fimction. W e provide each resource agent w ith the ability to
plan its energy consum ption for a nom inated period nto the future. This
requires it to model its own physical properties such as themm al m ass,
hysteresis, and compressor power. Our sinulaton and hardware
dem onstration agents have this ability, and significant com plexity is
required to fitm odels to m easured behaviour, t© use m odels © plan future
sw itching actions, and t© reconcile the execution of planned behaviour
w ith real-tim e control of the refrigerator under varying conditions. This
complexiy is hidden from other agents, however, and the only
Infom ation com m unicated in the m ulb-agent system is the planned pow er
consum ption of each agent fora planning tine T, hto the future. Since

this paper concems m ulb-agent behaviour the fom ulation and fittng of
m odels w illlbe notbe discussed In detailhere.

These propertes may be genemlized to other kinds of physical
resources ncluding those that have continuous contol rather than on/off
sw ithing. For exam ple, heating, ventilation, and air conditoning n a
buiding is mor complx than opematng a smplk Eiigemtor,
nevertheless, each zone of controlm ay be m odelled to allow the forecast
electricity dem and t© be estim ated according t control settings such as
tem perature setpoints and fan speeds. Ik is also possible t© ncorporate



genemating resources, even those that provide no opportunity for contol
such as renew able generators w ithout the ability to dum p or store pow e,
by using weather forecasts and other data to predict output which is
represented In a plan as negative dem and. For dem and m anagem ent it is
beneficial t© consider heating and cooling loads because thermm al inertia
allow s considerable flexibility 1 the control of these loads. They are also
a very significant com ponent of the tot@al demand, for example, space
heating/cooling, w ater heating, and refrigeration together com prise 75% of
the energy use of an average A ustralian hom e and In m osthom es this isall
electrical energy AGO 2007].

h follow Ing, w e considera form of active stigm ergy [Stone 2000]. Tn
our sinulation and hardware demonstation systems we Inplement a
sinple model (stggpace) using a bulletn board hosted by a sihgle
computer. A full stiogm ergy-basad scenario can be inplem ented, if agents
lave planning daa locally within a comm unication network and the
broker agent is able to access the network at any node, and aggregate
necessary Inform ation by utilising a service discovery protocol w ithin the
netw ork . n otherw ords, stiggpace w ould cover the w hole netw ork, agents
would communicate wih the stiggpace locally, and the aggregation
m echanism (eeded by the brokeragent) w ould be In plem ented w ithin the
network layer g, using a scheme similr to directed diffusion, or
Gradientbased cost fields [Estdin 1999; Ye 2001]). The cunent
m plem entation (stgspace as a bulletin board) is vidble as long as there are
no comm unication bottlenecks. M ore com plex stgspaces, where agents
place and search form essages w ithin a distrbuted r=gion, are also possible
and m ay have advantages for hierarchical system s and system s Tn which
tim e-varying agent clustersm ay form for ncreased perform ance.

2 2 BrokerAgents and Sum m arizing Agents

The above properties refer to resource agents. There m ay also be one
orm ore broker agents to m anage the Interface w ith the electricity netw ork
and m arket. A brokeragent

¢ receives nfom ation on predicted m arket and netw ork usage and

prices,

e nteracts w ith resource agents through stigspace, where it can read

and place nform ation,

e constucts global goals, such as grid supply “cap” for a certain

period of tim e, using m arket and pradicted usage data, and

e may also actas the stiggpace m anager.

Regarding the final point, the mle of stiggpace manager is t© act on
Inform ation In stggpace t© produce derived fomm ation; for exam ple, the
predicted total resource agent demand as a function of tine may be
derived from the planned pow er consum ption of all the resource agents
that subm it their plans to stiggpace. This paper assum es the sum m arizing
agent acts for the broker agent, but other options, such as an Independent
sum m arizing agent, are possible asw ell. D erived infomm ation isplaced in
stiggpace forresource orbrokeragents to access.



To lim it the amount of data that must be stored In stiggpace we
ntroduce tim ebins (or intervals) of durationT, , . Resource agents’ output
pow er plans are averaged into tin e bins t© produce step functions mather
than continuous functions of tine. A 1l resource agents use the same tine
bins to m ake the production of derived inform ation possible and efficient:
agent plans m ay be com pared directly w ithin each time bin. Thisadds a
requirem ent that the resource agents must have synchronized clodks,
which may be achieved with acceptable accuracy using the clocks
provided on standard com puting hardw are, provided that T,, is not a
an all fiaction of a second. T our sin ulation experin ents the an allest
tmebnusedhad T, =1 m . A consequence of biming agents’ plans is
that adherence to the desired total output pow er is only m easured w ith
resolution T,, and any sm aller-scale variations cannot have any mfluence
on the algorithm . This is consistent with the operation of electriciy
m arkets that have an ancillary m arket t© provide r=altim e balancing of
Supply against dem and w ithin each genemation digpatch interval. T the
Austzalian m arket the dispatch ntervalis5mnsoaslongas T,, <5 mn

we can be rasonably confident that the ancillary m arket w ill deal w ith
an allerscale variations In toal resource-agentdem and.

3 COORDINATODN ALGORII'HM
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FIGURE 2: The coordination system . Each resource agent is the decision m aker
and controller of the resource, able t© sense local conditions and plan its actions
based on an intemalm odel. A 1l the agents’ plans are sent to stiggoace, a m edim
for mdirect com m unication, n w hich summ ary data are com puted from the plans
and are availeble to all agents. T particular, the brokeragentuses sum m ary data
and m arket or grid nfom ation t seta cap on the total dem and for pow erdraw n
from the grid based. This supply cap is placed In the stiggpace and is then
available to resource agents, which can revise their plans t© help satisfy the cap
w hile contnuing t© adhere t© their local constraints.



FIGURE 2 is the diagram of our coordination system . The resource
agents have nform ation about local constraints in posed by the electricity
custom erw ho owns the “distrdbuted energy resource” (load or generator) .
At convenient nterwvals, tined to allow convergence before the next
m arket cycle, an iermtve process begins. Each resource agent applies their
Jocal constraints t© a physical m odel of thelr resource to calculate a plan
for electricity dem and or supply fora period nto the fiture. These plans
are transferred into m arket cycles, and then sentto stiggpace.

I stigspace the plans are simmed t© get the to@al predicted pow er
dem and 1n each Interval. This is then available to any resource agents that
wish t© use it and also t© the brwker agent. The bmwker agent has
know ledge of predicted electricity m arket price as well as nform ation
about the plans comm unicated by participating resource agents. The
broker acts for electricity m arket participants, such as regilers and
network opemators, who provide additional information leading to a
desired cap on the total dem and for power drawn from the grid. This
supply cap isplaced 1 the stiggpace and ism ade available to any resource
agents thatw ish to use it

A lthough the broker agent has no direct control over resources,
resource agents agree to satsfy any global goals as long as local goals
=m ain satisfied. Therefore, the resource agents, when they retreve the
total dem and and supply cap from stigspace, can wvise their plans using
our CordCap algorithm to help satisfy the cap while contnuing to adhers
to their Jocal consraints. This process is ierated untl it sabilizes. By
subm ittng revised plans they participate in a real-tm e process which is
asynchronous: no explicit coordination is needed between plan
subm ission, plan sum m Ing, and brokeraction .

W hen the total dem and is sable, the broker agent is In a position to
buy pow er for the next tim e period. The process is repeated for every
m arket cycle. The heart of the algorithm , which allow s the coordination
process t© be scalablke and adaptable, lies In the brokerderived features
and the m eans of com m unication betw een broker and resource agents.

I our system , the consmaints for resource agents are tem perature
bounds for a heating/coolng environment; the pln calculated for
electricity dem and or supply is for future half hour, ie., T =30 m n;

these plans are transferred into average pow er dem and or supply In each
hnterval,eg.T,, =5 mn.

3.1 The Electricity M arket in Australia

I Austalia, the N ational E lectricity M arket M anagem ent Com pany
NEM M CO 2007] has been est@bliched to manage the operation of the
wholesale electricity m arket and security of the power sysem . Our
hom es, businesses and ndustries depend on a relisble supply of electricity
to fincton. NEM M CO plays a cential ok In ensuring South-Easem
Austalia’s electricity supply through is responsibilities as m arket and
system operator of the N ational E lectricity M arket NEM ). W ithin NEM
producers subm it bids sating the am ount of energy they can generate at



w hat cost and consum ers subm it predictions for consum ption. These are
m atched centrally, the lowest cost producers are nstucted t© supply
energy, and a single price is set forall participants. This planning process
isbased on shorttem forecasts of the volum e of energy required over the
next 24 hour period. Genemtors are scheduled in 5 m nute digpatch
Intervals. Prices are set for each digoatch nterval and provide a signalby
which consum ers can manage their individual demand. Electdcity is
charged every half houron the hour and half hour, eg., 4:00 am and 4 30
am . These dispatrh and prediction intervals dictate the tim e scale atwhich
electricity managem ent agents can operate. The laxge volimes of
electricity used n the NEM m ake it in possible t© store energy for future
use. Thismeans thatthe NEM isunable to regoond quickly to significant
unpredicted changes in dem and. On the whole, the less oscillation there is
In dem and, the better. The unpredicted demand 1 NEM is reflected In
NEM M CO peak electricity price.
S ignificant electricity dem and and price inform ation is available fiom

NEM M CO . Them ain available electricity prices are:

e 5-m nute pre-digpatch price. This contains 5-m nute pre-dispatch
(forecast) data by r=gion, show Ing short term price and dem and
forecasts Jooking out one hour ahead and is updated every 5
m nutes. Tt is usually published one m nute before the tim e of the
first prediction price. The 5-m nute pre-digpatch price file is
CVS fomaton theNEM M CO websie NEM M CO 2007].

¢ 30-m nute pre-dispatch price. This is the forecast 30-m nute price
to the end of the nextm arketday.

e 30-m ntue rading price. This is the r=al tim e 30-m Tnute prce, at
w hich retailersbuy electricity from them arket.

e 5minute digpatch price. This is the wal tine 5-m nute prce,
w hich is averaged to give the 30-m nute rading price.

32 Usihg a Supply Cap In the Electrdicity M arket

The broker agent buys electricity from the grid at the 30-m nute
trading price, w hich is variable as described above, and sells the electricity
tO consum ers at a consum er price (sst by the broker) which is more
consant. To maxin ize its own profit the broker w ants consum ers to use
Jess pow er In higher price periods, and m ore pow er In Iow erprice periods.
To acoom plish this outcom e, the brokerreads 5-m nute pre-digpatch prices
from NEM M CO to get predicted prices for the next hour. Ik uses this
togetherw ith the total predicted dem and to seta variable supply cap, In 5-
m nute intervals, on the toal power © be drawn during the next 30
m nutes. This supply cap can be a percentage of to@lpow erdem and.

33 The CordCap A gorihm

The CordCap algorithm is used by each resource agent to m odify its
pow erusage o as to help satisfy global goals — here the grid supply cap -



and has been designed for agents w hose actions are 1in ited to on/off load
sw itching. Alhough each agent acts ndependently, the amall but
significant stom ergic communication drives the mulb-agent system
tow ard the global goal as an em exgent property . Specifically, the response
of an Individual resource agent depends on is own local goals, toal
predicted pow er needs and the supply cap. A s already mentioned, the
latter tw o quantities, specified foreach 5-m nute interval In the 30-m Tnute
planning period, are cbtaned fiom stiggpace where the data has been
placed by bmwker and summ arizing agents. If the supply cap is not
satisfied for certain time Intewvals, each resource agent's sw ithing
stategy In those Intervals w illbe updated as described below .

Each agent iterates the process until either @) local and global goals
are satisfied, (o) no further m provem ent ispossibble, or (¢) a specified tim e
Iim itis reached. Once this occurs, all agentactions are “locked 1" forthe
next 5-m nute nterval, the 30-m nute planning period is advanced by five
m nutes and the processbegins again.

34 Resource AgentSw itching Strategy

I the CordCap algorthm the resource agent m odifies is predicted
sw ithing sequence to chift pow er consum ption fiom each cap-violating
hterval nto its leftand righthand neighbours. The process ncludes three
steps, and is carried out forall offending intervals.

1. Locate arandom pomnt t in the nterval.

2. Partly chift power usage In the nterval on the left and right of

t, nto the left and righthand neighbouring ntervals respectively .

3. Revie the rsultant sw ithing stategy to satisfy the resource

agent’s local constrants.

The follow Ing is a m ore detailed description of the algorithm for a
resource agent controlling a sin ple cool-mom resource. Agentactons are
Iim ited to sw irthing the cooling on and off.

Suppose the agentplans its action for fiiture period of tim €, e g . half an
hour, T, =30m in. The bin period is 5 m nutes, T,, = 5m1n, o there

will be 6 five-m nute bins In the plan period. At regular ntexvals each
cool-room  agent gpplies ntemal tem perature constraints © its physical
m odel to calculate plan actions, w hich are represented as a state sequence:

A= [Al ’A2 ’A3 ’A4 ’AS ’AG ] = [a'll ’a'l2 ""’a'_LN ;a2l "'a2N;"';a61 ’a62 "'a6N ] !

where N =T,, /At, At is the tim e resolution for planning, and a, isthe
resource’s on off sate during the - ™ tim e step I the : ™ bin. The planned
actions n each bin, A = [a,,a,,..a,], result n the consumption of
power [P, ,Py, r-- Py 1 ,and thesem ay be summ ed to com pute the average
power demand I each bmn, P=[P,P,,P,,B, P ,P,] wher



Pi:ZI;lpij/N , 1=1,... 6 . The sequence of average pow ers is sent o

stiggpace. FIZURE 3 show s the tim e Intexvals and conesponding state and
POW er sequences.

P Tppn = 30m M .
T, =5min
« »
At
> < ..............
[ ]| .
L
o G g 5 v 5 7
QAT L} Ay L | Ay L V) L B2 L B2 »
Pl P? P3 P4 PS P6

FIGURE 3: Example of a halfhourplan. Ther are 6 five-m nute bins in 30
m nutes. Ih the :® bin the plmned actons ar sate sequences
A= [a,,a,,..a, ], esuldng in consum ption of power [p, ,P;, .. Py 1 and
thence an avermge power i each bm, P = [P ,P,,P,,P, ,P,,P,], which is
com m unicated to stigspace.

Ushg is known resoure model, the resource agent calculates its
expected pow erusage during the planning period, eking care t© satsfy is
Jocal tem peratuire consttraints. Each resource agent then exam nes the total
predicted pow er and the grid cap ©Obtained fiom stigspace) and dentifies
tim e segm ents n which the cap is violated. Ik then m odifies its planned
pow erusage (if any) w ithin these segm ents. The m odification depends on
w hetherone orm ore segm ents violate the cap, and these tw o scenarios are
exam Ined 1 som e detailbelow .

3.5 Dem and Shifting Procedure

Suppose there are an ungpecified num ber of resource agents mnning
the algorthm , and there is only one vioclating nterval, such as thid
nterval 1= 3. FIGURE 4 @) illustates the steps @ken by a typical
resource agent. The grey and black blocks show the tim e w hen the pow er
beingused. ¥, _, and ¥, areupperand low ertem perature constants of
the cool-room and the curve is the pradicted Intermal tem perature based on
the resource model and currently planned pow er usage. The bar code
Indicates an intexval for which a cap violation is predicted. The agent
follow s the follow Ing process to help m itgate the problam .

e Stepll:A time t, israndom ly selected between t, andt, .

e Stepl2: Power n [ ,t ] (f any) is shifted so that its lefchand

edge is C, m Inutes outside the left mtervalboundary. C, defnes
how much energy in the violating Interval can be chiffted outside.



The experim entalvalue of C, I cursystem is 1 m nute. Sin lardy,
powerin [ ,t] (fany) is shifted so that its righthand edge is C,
m fnutes outside the right ntervallboundary .
o Ifthevibltng ntervalisi= 1, ie. thepericd [t ,t 1, the
pow eroutside the left ntervalboundary t, w illvanish.
o Iftheviclating mntervalisi= 6, 1ie., theperiod K ,t 1, the
pow eroutside the right Intervalboundary t, w illvanish.
e Stepl 3: Revise the modified swithing stategy to satsfy the
tem perature constraints of the cool-room , using the follow Ing mle:
o If the prdiced Itemal tEmpemture is outside the
tem perature constamts [V, , W, . 1, leave the plan satus
t, miutes (either ncreasing or decreasing pow er), then
Pin the pln as soon as possble. t, is the defined
param eter representing how long the resource agent can
leave the plan. The experin ental value of t, n our system
is1lm nute.
e Step 14:Subm itthe revised forw ard plan t© stgspace In readiness
forthe next iteration .

I two or mor nItewals violate the cap, each mtewal is teated
Independently as shown N FIGURE 4 ) forthecasei= 3 & 4.
e Step2l:Times t, and t, are mndomly selected I [t ,5] and
I, /t, 1, respectively.
e Step22:The process described In Stepl 2 Isapplied o [ ,t] and
then [t 1.
o If ON' satesoverap the resultis ON /.
e Step2 3: The m odified sw ithing stategy is revised to satsfy the
cool-room ‘s tem perature constaints as n Stepl 3.
e Step 2 4:Subm itrevised forw ard plans to stiggpaceasin Step 1 4.
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FIGURE 4: Coorinating wih a single viclating mterval @) and adjpoent
violating intervals b). The grey and black blocks show the tine when power

being used. The bar code indicates the cap violation mterval. W _ and ¥, are

upper and lower tempemtre boundaries. t, is the defined parameter
representing how long the resource agent can leave the plan. C, defines how

much energy In violating interval can be shifted outside.
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4 SMULATON RESULTS

We have mplemented a sysem wih one bmwker agent, one
sum m arizing agent, one stigspace and a num ber of loads - all cool-room
agents. The bmwker agent rads 5-miwute pre-digpatth wholesale
electricity price from NEM M CO , sets the grid supply cap accordingly and
places it n stiggpace. Each coolroom agent calculates a plan of electricity
demand for the next half hour which satisfies its ntemal tem perature
constraints. This plan is then tansferned into mean powerdemand In 5
m nute ntervals and put In stiggpace. The summ arizing agent sum s the
m ean pow erdem and from all agents in each interval for the nexthalf hour
planning period, placing the total dem and In stiggpace. Cool-mom agents

then apply the CordCap algorithm to satisfy the system supply cap whilst
contnuing o adhere t© their local constrants as described in above.

A series of experim ents has been completed t© nvestigate system
coordination perform ance, which include coordination scalability, the
effect of resource agent diversity on coordination perform ance, m axin um
system dem and reduction for a short period supply cap and continuous
coordnation benefits for resource agents.

41 CoolRoom Model

Cool room s have Intemal tem perature constraints w ith boundaries 1°
and 6° Celsius. The intemal tempemture is govemed by the model
developed In [Clem ent 2000] with m ost room features rem oved for the
purposes of these experin ents:

1

T.0=——— C,f, t-1+Q, O+k, ) 1)
C.f+k

where T, is intemal air tem perature (C), T, is ourside air tem perature
cc), ijs the maximum cooling power kW ) of the cool room plant,
C_is the thermal capacity of air kJG°C ) In the cool wom, £ is the
ssmplingmate Hz), k=AU +U_, A, Isaunitlesscoefficient,and U ,
U are themal resisences Q) of the wall and ventilation path. W e

m odelled non-identical resource agents by allow ng different themm al
capaciies C, In the room model. Tn our experiments, £=3000 Hz),

A,=1/589,U_ =6 Q),andU_=0 Q).
4 2 Coordination Scalbiliy

W e modelled a setof cool rom s w ith pow er capacity Q , =3 ~ 667
kW and them al capacity of airvarying w ithin a 1ange given by

C_,=C_ @1+09") @)

18



where C_ =88964x10" kJISC ) @nd n={L,... N} forasetof cool
woms. The themal capacity is rflected In the typical period of a
heating/cooling cycle.

FIGURE 5 chow s initdal room tem peratures and pow erdem ands n each
5-m Inute Interval for future half hour periods for a system with 3 cool
room s. The tim e constants of all cool room s are very close to each other.
A oconsantsupply cap, 3KW |, is applied to the system . B efore coordination,
the supply cap isnotsatisfied forthe tine 925 t© 940. A fier several steps
of coordination am ong resource agents, supply cap is satisfied as shown In
FIGURE 6.

TABLE 1 lists coordination perfom ance for the system w ith constant
supply cap and different num bers of resource agents. From the eblewe
can see that when agent num bers Increase, the num ber of coordination
steps does not ncrease accordingly. This indicates that the coordination is
scalable for Jarge num bers of agents.

T our sim ulation experim ents, all resource agents w ere executed on
one computer and used non-threaded calculations. T a deployed
environm ent, each resource agentw ill have a dedicated m achne and use
threaded calculation. The total tim e for system coordination is less than
7 6 m illissconds fora system w ith 10,000 agents, w hich is extrem ely fast.
Therefore real time, deployed coordination is certainly possible. The
effects of comm unication gpeed are ignored I this paper. Prelin nary
studies indicate that the system w ill be resilient to this factor, which will
be fully analysed 1n a futlre paper.

TABLE 1: Coordination tim es fordifferentnum bers of resource agents.

AgentNo. SupplyCap kW ) Coordnation To@lTine TineperAgent
Steps (sec.) (eec.)

10 10 5 0341 003

100 100 2 0957 0.0096

1000 1000 1 7268 0.0073

10000 10000 1 76 129 0.0076

19



hiblhtemaltem perature of 1#

- v T

5r B B N _ 4

\ - AN N B

07777\ 77777 T SR ST

9:15 9:20 925 9:30 935 940 945

hiblhntemaltem pemture of 2#
~ [T T T - __-___
8 s = = S
g [ _ : - h -
0] L _____ ST ST
) 0 L | | | |
ﬁ 9:15 9:20 9:25 9:330 9:35 940 945
% hiklhtemaltem pemtiue of 3#
o}
T T T

% 52777;777f7'1? 7777777777 N B
O B N
& 0 I I I 1 1
% 9:15 9:220 9:25 9:30 9:35 940 945
B hifalto@alm ean powerin 5 m hute htenals& G rd supply cap

57 T T T T T ]

0 | | | | |

9:15 9:220 9:25 9:30 9:35 940 945

FIGURE 5: Room and system states before coordmnation (dotted line -

Tin e HourM nute)

cool

oom tem perature constramnts; dash-dot Ine — ntemal tem perature of cool room ;
dashed Ine - the system supply cap, solid Ine - system toaldem and).

,,,,,,,,,,,,,,,, A
5+ - \\ ~ ) N — s —~ _
. p g ; N
O””\””F ”””” L [ L L
915 9:20 9:25 930 935 940 945
htemaltem perature of2#
~ [t oo o T s
) - - < P - = = ]
;-a 5 - - _ ~ - -
L
O 0 | | | | |
& 9:15 9:20 9:25 9:30 935 940 945
@ htemaltem pemture of 3#
o)
T T T
O s T e
37— - —~ e
g -
Lo
% 9:15 9:20 9:225 9:30 935 940 945
B Totalm ean powern 5 m hute nterals& G rd suppl cap
57 T T T T T -]
0
9:15 9:20 9:225 9:30 935 940 945

htemaltem perature of1#

Tine HourM nute)

FIGURE 6: Room and sysem s@ates after coordination. The resource agents
revise theirplans to help satisfy the system supply cap (s0lid Iine isbelow dashed
Iine) whist continuing t© adhere to their local consraints dash-dot lines are
alw ays betw een the dotted lines).

20



4 3 Effects ofD wversiy

System s consisting of 10,000 cool room s w ith different variation
1Enges In param eters have been set up to test the effects of diversity on
coordination perform ance. The cool room s have the sam e tem peature
constraint, but diverse power capacites and tine consants, random
sartng intemal tem peratures and mndom nital sw iching sates for the
cooling plan.

TABLE 2: Capsachieved through coordination of 10,000 resource agentsw ih
average com pressorpow errating of 3 kiW .

System  Compressor T (i) T, fmin) Cap kW) Steps

power kW )
1 B,3] 0517 8] B8,16.7] 10000 6
2 [L12,4 88] [4 83,103] [4 534 8] 4364 6
3 [0 35,5 65] [483373] [45,35] 3615 6

TABLE 2 lists mninum supply cap achievable for the systems
com prising resource agents w ith different range of param eters, but the
sam e system averagepower. T, and T . are respectively the tum on and
tum off tin e constants of resource agents, Cap’ is the m lninum system
supply cap which could be satisfied, and ‘Steps’ is the number of
coordination steps for resource agents t© satisfy supply cap. Bracketed
entries are ranges of param eters over a num ber of cool room s. From top
to bottom , the system s have increasing diversity of resource agents. From
the t@ble, we can see that the system w ith m ore diverse resource agents
w il tolerate a sm aller supply cap.

44 Maxinum Dem and Reduction orShortPeriod
Supply Cap

I a deployed environm ent, resource agents continuously coordnate
their plans w ith each other every 5 m fnutes. To Investigate how the
System perfom s under continuous cooxrdination w e carred outa series of
testsbased on system s2 and 3 M TABLE 2.

W e expect that a supply cap would be useful n two circum sances:
when the electricity price is high =ailers could request a cap t© reduce
their expenditure on the w holesale m arket, and w hen the physical netw ork
is near capacity the netw ork operator could request a cap to ensure a safe
operating m argin. E lectricity price forecasts are published by the m arket
operator, but netw ork capaciyy may becom e a problem suddenly due t©
equipm ent failure, and then the broker may give only lim ited advance
notice to resource agents before applying the cap. To test the systEm
regponse o different cap notice times, the follow ng tests have been
executed fora supply cap of 15 m nutes’ duration.

Suppose a 15-m Inute cap occurs between 930 and 945. Cap notice
times of 5, 10 and 15 m nutes were nvestigated for two of the system s
defined n TABLE 2. The dem and of system 3 for15 m fnutes advance cap
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notice is shown n FIGURE 7, where supply cap, toal dem and before and
after using CordCap algorithm are shown In different style lines
egpectively. TABLE 3 gives the m inimum system dem and that could be
achieved fordifferent cap notice tines. W e can see that different advance
notice tim es give the sam e achievable m minum system dem and; but the
greater the diversity of resource agents In the system |, the m ore dem and
reduction can be achieved. This tells us that achievable m Inin um system

dem and for the CordCap algorithm depends largely on the diversity of
resource agents. also ndicates a possible lim imtion of the algorithm for
short cap durations. This point w il be discussed further n section 52

w hen theoretical 1im its of dem and regponse are presented.

TABLE 3: Demand reduction fordifferent cap notice tim es.

System Advance N otice M Ininum System Demand
m Tutes) kw )
5 368
2 10 365
15 365
5 310
3 10 310
15 310

Totalm ean poweri 5 m hute ntenal& G rd supply cap
T 1 1 1 1

ie00r T Supply cap §
Dem and affer coodnation
1400 - ‘ Dem and befre coordhation |
\
1200 i
N \
< 1000 -
32
= {
E — al
= 800 -
0
) T
6007 dem and ]

400

i reduction

915 920 925 930 935 9:40 945

Tine
FIGURE 7: 15-m inute advance notice forsystem 3 n TABLE 2. A 15-m nute
cap occurs betw een 930 and 945. N otification of the cap isgiven at9:15. The
dashed lne represents nital hon-coordnated) planned pow erdem and, w hich is
over the system supply cap (dotted line). The solid line represents coordnated
plnned power demand, which is under the system supply cap. Demand
reduction is defined as the average r=duction n power demand between
coordmated and non-coordinated situations.
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5 CONVERGENCE

51 Fmmness ofConvergence

Electricity utlites will require relisbility of convergence in any
algorithm ic technigue to provide a dem and-regponse service. The degree
of religbility is called “firm ness” In the electricity ndustry and depends on
the rason for calling on demand regponse. Some electricity m arkets
pem itdem and bids in the w holesale m arket, In which case there are well-
defined specifications for quality of service that m ustbe m et Noxd Pool
2008]; presently the Austalian m arket does not pem it such bids. If
dem and response is an ntemal capability that the utlity uses to m anage
the dem and it presents t© the m arket, the quality of service may be less
well defined, and existing m ethods of dem and m anagem ent provide a
variety of levels of reliability. Pricedased control depends on volntary
sw ithing of loads by custom ers and is inherently unfim for this reason

H opper 2007]. D irect load control provides a firm tim e of response by
Issuing a precise broadcast signal [Energex 2007], although the m agnitude
of the response depends on the satistical distrbution of states of
ndividual custom er loads and is therefore less firm w ithout additional
datm. These extrem es pregent a w ide 1ange of usefirl levels of firm ness
that is nevertheless useful in assisting utlites to m anage their overall
dem and.

W e have sudied wlidbilty of convergence through num erical
experin entation and com parison againsta theoretical lim it of coordination
perfom ance. FIGURE 8 show s a typical graph of convergence of system
pow er dem and for one of the experimental system s In TABLE 2. The
dem and that exceeds the cap r=duces rapidly and in this case becom es zero
after six steps of the algorithm .

1000 Agent Coordiation -Dem and Convelgence
0.09 T T T T T

0.08- b

0.07r- N

0.06 - b

0.05- N

0.04r- b

0.03 - b

PowerOverCap Mwh)

0 I I I I
0 1 2 3 4 5 6

Coordation S teps

FIGURE 8: Coordination convergence, measured by the reduction of total
pow erdem and thatexoeeds supply cap during coordination process.
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There is no single definition of fimness that is universal i the
ndustry. W hat is required fiom an algorithm ic perspective is assurance
that the coordination process can achieve a requested cap level. Thisisa
necessary part of the evaluation of fitm ness butnot sufficient. I practice
firm ness w ill depend on a num ber of extraneous variables, which it is
outside the scope of this paper to exam ne. W e define fimness for a
partcular system  as the probability that convergence has occuned aftera
given number of steps, and measurr it by repeated sinulations w ih
dentical caps but w ith different initdal conditions on the resources. The
experim entshown N FIGURE 7 was r=peated 100 tin es foreach of several
different cap levels to generate the fim ness results shown in FIGURE 9.
D em and reduction is defined as average difference In dem and betw een the
coordinated and non-coordnated situations. I is noticeable that the
probability of convergence is high and nsensitive t© the levels of dem and
reduction of 45% and less, and then changes Epidly as the demand
reduction ncreases, Indicating the range of cap levels thatm ay be reliably
achieved. The crtical cap level at which the convergence behaviour
changes gives a precise m easure of the achievable algorithm perform ance.

Convewgence Fimness
100

80

70

% Demand Reducton | |

— ~42% Dem and Reducton
45% Dem and Reducton |

—+k— 48% Dem and Reductobn
©— 51% Dem and Reducton |

60

40 -

30+

Convemgence Fimness & )

10

0 2 4 6 8 10 12 14 16 18 20
Coorlhaton Steps

FIGURE 9: Convergence firm ness com parison for different levels of dem and
reduction for coordination of 1000 agents.

The cap level was fixed during each of these experinents. W e also
tested the effectiveness of progressively reducing the cap level during the
sinulation. Taking the case of 48% demand r=duction In FIGURE 9,
w hich show ed m arginal convergence, w e applied the dem and reduction in
three steps:

e Firstly, apply the algorithm to cbtain a set of resource agent plans

thatachieve a dem and r=duction of 38% .
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e Startng from this set, apply the algorithm t© cbtain a revised sstof
plans thatachieve a dem and r=duction of 44 5% .
e Fially, sarting fiom this set, apply the algorithm t© achieve a
dem and reduction of48% .
I can be seen In FIGURE 10 that this inproved the probability of
convergence by about 10% , which is m arginal com pared to the dram atic
deterioration of convergence as the dem and r=duction varies from 45% to
51% . This deterioration is an unam biguous and usefiil indication that the
algorithm has rached is lmit of performance. This linit is a
characteristic of the algorithm and of the system of energy consum ers, and
a ral system could be subected t© a series of convergence tests ain ed at
finding the point of deterioration under a range of conditons. Such a
characterisation of perform ance w ould be usefill inform ation for a broker
agentto use n setting cap levels.
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FIGURE 10: Convergence firm ness com parison betw een fixed cap and variable
cap for coordination of 1000 agents. The demand reduction is 48% and the
fixed-cap curve istaken from FIGURE 9.

52 TheoreticallLin tofDem and Response

W e are forumate that a system of sin pl refrigerators is am enable t©
theoretical analysis. For a given length of cap we may calculate the
m Inin um achievable pow er consum ption fora sstof cool room s subjectto
an “ideal” contol r=gine. As will be discussed below this r=gin e has
slightly different constraints to those of cur current algorithm . H ow ever, it
provides a valuable msight mto what might be achieved by such
algorithm s.
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A saum e that the tem pemature variation of cool room s is linearbetw een
sw itching operations; this is approxin ately ttue for the r=al cool room In
FIGURE 1 and the sinulated cool room s in FIGURE 5, and w ill only be
violated significantly when the compressor is opemting close to is
capacity orw hen the allow ed tem perature range is particularty large, such
cases requirng a m ore sophisticated analysis. Define ¢ as the period or
period in steady-state operation and r as the duty cycle or the fraction of
each period that the com pressor is sw itthed on.

A ssum e also that the system has perfect coordnation ability supported
by mnfnirdbandwidth communications - clearly these ar stong
assum ptions but it is useful © see what can be achieved In ideal
circum stances. Consideratw hat level a supply cap of duration 7 may be
applied. For cap durations up to 7 = ((—1r)c, which is the nom al off-
period fora cool oom , a cap level of zero m ay be achieved by aligning
the offperiod of each cool room w ith the cap period. If 7 ncreases and
there are m any cool room s, then each one m ustbe sw irthed on fora part
of the cap pericd, and a m Inin um constantpow er consum ption P, ;. (c,r)
can I principle be achieved through coordnation and m ultple sw ithing.
Forexam ple, if 7 = 2c— rc then each coolroom m ustbe sw itched on fora
oeltne r during 7 and, wih compressor power p,, the m ininum
constantpow erconsum ption is P, (€,r) = p,1¢ /7 .

This consum ption ncreases lnearty w ith 7, due to linear tem perature
variation, o the m minum pow er consum ption during a supply cap of
duration 7 fora system of N (c,r) coolroom s having period ¢ and duty
cycle r is

P . er)=N () p, Lt Clx 6)
T
when 7>c(-1) and P, (c,r) =0 otherwwise. kisassumed thatcand r
do not depend on 7. Consider an experimental system of N
wfrigeators wih fixed duty cycle r, =1/3 and periods unifom Iy
distrbuted between ¢, =15 mmand ¢,,, =30 m . Then

Cmax _ijn
o that
Cpme 1
N, = J- J-N (c,x)drdc. 6)
Gom O

htegrate the m nimum pow er consum pton across this set of cool
1oom s o calculate the m ninum  achievable level of a system supply cap
ofduration 7 :
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0

where L=min(,, 7/ 0-1) andU =mi(, 7/ L-1).

I FIGURE 11 this curve is graphed together w ith an experin entally
determ ned curve. For each cap duration the stgspace algorithm was
applied to a simulated system of 100 cool oom s rated at 3 kW and w ith
Y, G, and C, . asabove. The cap levelw as reduced progressively as

Iong as convergence succeeded; the criterion for success was that five
successive experim ents should converge successfully to satsfy the cap
over its entire duration.

It is w orth noting that the m axim um peak pow er for this system when
uncontolled is 300 kW . The figure show s that the stiggpace algorithm
perform s w ell over the entire range of cap duration, achieving a m Inin um
cap of 50 kW  for short caps, rising to 90 KW for Jonger caps. C om parison
w ith them Inin um cap 1im itshow s tw o points of nterest:

1. Forshortcaps the bestcap achieved is significantly higherthan the

m Inin um possible.

2. As cap duration Increases perform ance approaches the theoretical

m Inin um and even exceeds it forvery long caps.
Both these points w illnow be discussed in detail.

1. Short caps: Good perform ance in this r=gine wlies on agents
chifting m ostof theirON tim es outside the cap interval. In section
4 4 itwas shown that agents failed to do this for short caps even
when advance notice of the cap was given. The main reason for
this failure seem s to be the 1im ited control availlblk t© CordCap,
which only chifts power fiom a cap-violatng interval t© both
adpcent intervals, a process cbserved to be subect to localm nin a
forshort caps. C learly, secking an in provem ent to the algorithm in
this regim e w {llbe a priority for fiuture research.

2. Long caps: For caps much longer than the period ¢ the optin um
stategy is different. I is no longer possble for ndividual agents
to chift their ON tim es outside the cap, <o the best option is t©
r=duce peak power by evenly distrbuting the ON tines of all
agents over the cap interval. The CordCap algorithm perform s
very w ell In this regin e, approaching the theoretical 1im itand even
exceeding it by a anall amount In some cases. This apparent
anom aly is due to sin plifying assum ptions m ade in calculating the
theoretical lim it. T particular, the assum ption of consant duty
cycle r does nothold exactly for system sm odelled by equation (1).

ey, ©

P, xr)dcdr=N_ p, IB|:
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FIGURE 11: Perfomm ance com parison agamnst theoretical 1im itof achievable cap
level asa fimction of cap duration.

6 CONCLUSDN

A distdbuted m ulb-agent coordination system has been introduced In
this paper, w hich coordinates distdbuted energy resources In an attem ptto
achieve a supply cap on the power drawn from the electricity grid while
satisfying local constramts of the agents. This system features separation
of the coordmation m echaniam fiom the infom ation exchange m echanism
by using Indirect (or stigm ergic) com m unications betw een resources and a
broker. The ocoordination mechanism is asynchronous and adapts t©
change In an unsupervised m anner, m aking it mtrnsically scalable and
mwbust. The ingpiration forusing indirect com m unications com es from the
study of natural system s such as ant colonies. This system also features
averaging (©Or more complex processing) of energy consum ption plans
over appropriate cycles, such asm arket cycles, before such inform ation is
communicated. This both m=duces the message size and ensures that
aggregated quantities of pow er created by coordination are aligned w ith
the tin e Intervals in w hich they are valued in the electricity m arket.

This system overcom esm any of the difficultbes of previously reported
coordination sysems. Ik chould partcularly be noted that the system
rem ains robust under changing circum stances of resources, even for large
resource num bers, and the system autom atically ncludes different scales
of tem poral dependency through the am algam ation of energy consum ption
plans. U sing coolroom s as representative loads under agentm anagem ent,
this paper has Ihtroduced the coordation approach In deil and
dem onstmated through simulation that it is scalble at least © 10,000
resource agents. Tt has exam ned the effect of the diversity of cool-room
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param eters, as w ill be found I gpplication, and shown that this in proves
perform ance. The weliability or “fimness” of convergence has been
studied and the dependence of convergence on supply cap level gives an
unam biguous and usefiil ndication that the algorithm has reached its lim it
of perfom ance. A theoretical perform ance 1im it was calculated for an
“ideal” coordination system and allow ed an Instructive com parison against
sim ulated perform ance, show Ing that for long periods of supply cap the
new oooration syseEm performs well and achieves near-optimum
perfom ance; for shorter periods of supply cap the system , while giving
significant in provem ent, perfom s well below the theoretical lim it. This
Seam s to be a property of the agent sw itthing strategy of m odifying pow er
In 5-m Inute cap-violating ntervals by chifting pow erto adjacent ntexvals.
This stategy w orks w ell for lJonger caps, but w ill need to be m odified t©
give in proved perform ance for shorter cap ntervals. This w il form an
In porant part of the continuing research nto agentiased coordmation of
distrbuted energy .

REFERENCES

Australian G reenhouse O fice @G0 ).2007.
http /v ww greenhouse gov au/mventory enduse, accessed June
2007.

Carlsson, P.and A . Anderson. 2007. A flexible m odel for tree-structured
mulbd-commodity markets, Electonic Commerce Research,
vol7,no.1,pp.69-88.

Cleaw ater; S.H .1996 .M arketbased control - A paradigm fordistrbuted
resource allocation, book In W orld Scientific, Sngapore.

Clement, B.J.and A . C.Banett. 2003 . Continual coordnation through
shared activites, Proceedings of the Second Intemational Jont
Conference on Autonomous Agents and M ulbd-Agent SysteEms,
M elboume, Austalia, pp.57 — 64.

Clement, B. J.and E. H. Durfee. 2000. Perfom ance of coordinating
concurrent hierarchical planning agents using sum m ary inform ation,
Proceedings, 7th Itemational W orkshop on htelligent Agents VII:
Agent Theories, Architectures, and Languages, Boston, M A, USA ,
pp.202 - 216.

Dineas, L.and N. D . Hatziargyriou. 2005. Operation of a muld agent
system form icrogrid control, IEEE Transactions on Power System s,
vol.20,1n0.3,pp.1447-1455.

Energex, 2007 . htp:/Afww_energex com au/environm ent/cool change/
cool change him 1, accessed June 2007.

Estin,D ., R.Govindan,J.Heldem ann,and S .Kum ar.1999. N ext
century challenges: scalable coordination in sensornetw orks,
Proceedings of the F ifth Annual ACM /IEEE Ihtemational

29



Conference on M cbile C om puting and N etw orks, Seattle, ACM Press,
New York,USA ,pp.263-270.

Guo, Y. J. Li and G. James. 2005. Evolutonary optim isaton of
distrbuted electrical loads and genemtors, Proceedings, 18%
Australian Joint Conference on Artificial Itelligence, Sydney,
Austalia, pp.1086-1091.

Hopper, N. C. Goldman, R. Bharwvikar, and D . Engel. 2007. The
Summ erof 2006 : A m ilestone in the ongoing m aturation of dem and
response, The E lectricity Joumal, vol. 20,n0.5,pp. 62-75.

Hudson, G.and C. P.Undewood. 1999. A simple building m odelling
procedure forM atl.ab/5im ulink, Proceedings, Intemational Building
Performance and Simulation Conference, K yoto, Japan, vol. 2, pp.
777-783.

Jones, T.E.and G. C. James. 2005. The m anagem ent and contiol of
distrbuted energy resources, Proceedings, CIGRE Symposiim on
Power System sw ith D ispersed G eneration, A thens.

Kamphuis, .G . J.K.Kok,C.J.W amer,M .P.F.Hommelery. 2006.
M assive coordination of residential em bedded electricity generation
and demand rgponse usng the Powe atther approach,
Proceedings, 4 htemational Conference on Energy Efficiency 1
D om estic Appliances and Lighting, London, pp . 1249-1259.

Kok,JK . CJ.W am ey, IG . Kam phuis. 2005. Pow e atcher:m ulbagent
control I the electrdcity fiastucture, Proceedings, 4%
Ihtemational Jont Conference on Autonomous Agents and
M ultbagent System s, U trecht, N etherlands, pp . 75-82.

Li, J., G. Poullon and G . Jam es. 2007. Agenthbased disbuted energy
managem ent, 20th Austalian Joint Conference on Artficial
htelligence, G old Coast, Q ueensland, A ustralia, pp.569-578.

Li R. J.Li, G.Poultn and G . Jam es. 2008 . A gentbased optim isation
systems for electrical load management, accepted by 1%
Ihtemational W orkshop on Optmisation In M ulbd-Agent SystEms,
E stordl, Portugal.

Luh,P.B.M .NiH.Chen,and L.S.Thakur. 2003 . Price-‘bas=ed approach
foractivity coordination In a supply netw ork, IEEE Transactions on
Robotics and Autom ation, vol. 19,n0.2,pp.335-346.

M Uller, H ., A .Rudolf, and G .Aum ayr. 2001 . Studies of disodbuted energy
SUpply systEm s using an Inovative energy m anagem ent system ,
Pow er Industry C om puter Applications, pp.87-90.

N ational E lectricity M arketM anagem entCom pany NEM M CO ),
Austalia, 2007 . hitp:/Ayww nemm co com au/, accessed D ecem ber
2007.

N ord Pool, 2008 . hitp /v w w nordpoolspot.com Arading/

The Elsoot market/159/, accessed M arch 2008.

Ovarzabal, J., J. Jm eno, J.Ruela, A . Engler, and C . Haxlt. 2006 . Agent
based micro grid managem ent system , htemational Joumal of
D istrdbuted Energy Resources, vol. 2,n0.3,pp.195-209.

Regan, T., H. Sinodck, and A . Davis. 2003. D isbuted energy neural
netw ork Integration system : year one final report, Technical Report
of National Renew able Energy Laboratory NREL), Golden, CO ., 1
June 2003,0STIIDD :15003911,NREL SR 560-34216.

30



Stone, P. and M . Veloso. 2000. M ultiagent system s: a survey from a
m achne leaming pergpective, Autonom ous Robots, vol. 8, no. 3, pp.
345-383.

Unied States D gpartm ent of Energy (USDE). 2000. Report of the US
deparment of enemgy’s power outage study team.
http ://certs bl gov cents-rtinakey-outade him 1, accessed A pril 2008.

Ye, F.,, A. Chen, S. Lu, and L. Zhang. 2001. A scalble solution to
mihimum oost fowarding I large scale sensor netw orks,
Proceedings of the 10th ntemational Conference on Computer
Communications and N etw orks, D allas, Texas, pp.304-309.

Ygge, F. 1998. M arketO rented Programm Ing and its Application to
PowerLoad M anagem ent, Ph D . Thesis, ISBN 91-628-3055-4, Lund
University, Sw eden.

Ygge, F. 2000. Resource-O rented M uld-Comm odity M arket A Igorithm ,
Joumal of Autonom ous Agents and M ulb-Agent System s, vol3, pp.
53-72.

31



