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� This article presents an approach for generating steering behaviors of groups of characters
based on the space colonization algorithm that has been used in the past for generating
leaf venation patterns and tree structures. In this article, the underlying idea of the space
colonization algorithm is adapted to control the motion of virtual characters, providing robust
and realistic group behaviors by adjusting just a few parameters. The main contributions of this
work are the robustness, flexibility, and simplicity of the proposed approach to control groups
of characters in an interactive way, providing path planning and a series of group behaviors,
such as group formation, alignment among others. We also introduce a possible extension of
this model to provide collision avoidance among agents, mainly focused on crowd simulation.
In addition, an interactive tool is provided to allow an easy manner for controlling the motion
of virtual characters.

INTRODUCTION

Intelligent virtual agents (IVAs) are virtual characters that try to mimic
several characteristics of real humans, such as interaction with other agents
and the environment, and that present some level of autonomy. Within
the context of IVAs, the development of easy and interactive manners
to control the motion of virtual objects is an important open problem
that present application in different areas, such as computer graphics
and robotics. In particular, steering behaviors of groups of characters is
important in games, movie productions, simulation tools, among others.

This work was developed in collaboration with HP Brazil R&D and Brazilian research agencies
CNPq, FINEP, and CAPES.
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An Interactive Model for Steering Behaviors of Groups of Characters 595

Indeed, this technology can be applied in any situation in which mobile
entities can be simulated.

Many models have been proposed in the past years, aiming to provide
different ways to steer behaviors of groups, as discussed in Section 2.
However, in spite of all existing methods, the current state-of-the-art lacks
of flexibility. This article presents an approach for steering groups of
virtual agents that can be used to generate different types of behaviors
with simple changes in the proposed model. In fact, the main advantages
of proposed model are (i) robustness, allowing the simulation of realistic
behaviors in low and medium density of virtual agents; (ii) simplicity, since
the just a few parameters are required; and (iii) flexibility to simulate
a series of different behaviors, ranging from path planning to group
formations. In addition, this article presents an interactive tool to create
and control characters motion and behaviors in real time that could be
used to control groups of any type of entities (fishes, birds, humans, etc.)
in virtual spaces.

The proposed approach is an extension of our work published
recently (Rodrigues et al. 2009), that was inspired in a biological
algorithm, based on competition for space in a coherent growth of veins
and branches (Sachs 1969). We adapted this idea to generate motion
behavior of groups, which also compete for space to move realistically,
avoiding collisions, as described in Section 4. It should be noticed that the
main scope of this article is focused on individuals motion by proposing
tree paths and group behaviors. The main point in Rodrigues et al. (2009)
is that groups of individuals can only be recognized if density of people
is not high, because group structures are not visible in highly dense
crowds. This article extends the previous work in Rodrigues et al. (2009)
by proposing a free-of-collision motion of crowds of people. In addition,
an interactive tool to facilitate characters control is described, and new
experimental results are presented.

The remainder of this article is organized as follows. In the next section
we discuss some works found in literature, whereas in Section 3 the space
colonization algorithm is described. In Section 4 we describe our model
to provide characters motion and in Section 5 the steering behaviors
of groups. Section 6 presents an extension of the original conference
article (Rodrigues et al. 2009) to crowds, as well as an interactive tool
to create the virtual agents and environments. Section 7 discusses some
obtained results, whereas Section 8 draws final considerations.

RELATED WORK

The simulation and control of virtual groups have been studied since
the early days of behavioral animation. Two seminal articles are related
to models based on agents, which have some level of autonomy and
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596 R. A. Rodrigues et al.

individuality. Reynolds (1987) simulated flocks of bird-like entities called
boids, obtaining realistic animation by using only simple local rules. Tu
and Terzopoulos (1994) created groups of artificial fishes endowed with
synthetic vision and perception of the environment, which control their
behavior.

A specific problem related to path planning is the generation of
realistic motion along the path. LaValle (1998) introduced the concept
of a rapidly exploring random tree (RRT) as a randomized data structure
for path planning problems. An RRT is iteratively expanded by applying
control inputs that drive the system slightly toward randomly-selected
points. Choi et al. (2003) proposed a model based on a probabilistic path
planning and hierarchical displacement mapping to generate a sequence
of realistic movements of a human-like biped figure to move from a given
start position to a goal with a set of prescribed motion clips. Metoyer
and Hodgins (2004) proposed a method for generating reactive path
following based on the user’s examples of the desired behavior. Dapper
et al. (2007) proposed a path planning model based on a numerical
solution for boundary value problems (BVP) and field potential formalism
to produce steering behaviors for virtual humans. Rodríguez et al. (2007)
proposed a heuristic approach to planning in an environment with moving
obstacles using dynamic global roadmap and kinodynamic local planning.
Kallmann and Mataric (2004) proposed dynamic roadmaps for online
motion planning in changing environments. When changes are detected
in the workspace, the validity state of affected edges and nodes of a
precomputed roadmap are updated accordingly.

More specifically concerning the motion of groups, Kamphuis and
Overmars (2004) introduced a two-phase approach, where a path for a
single agent (a backbone path) is generated by any motion planner. Next,
a corridor is defined around the backbone path and all agents stay in
this corridor. Rodríguez et al. (2007) proposed a model using a roadmap
providing an abstract representation of global environment information to
achieve different complex group behaviors that cannot be modeled with
local information alone. Lien et al. (2005) proposed ways using roadmaps
to simulate a type of flocking behavior called shepherding behavior in
which outside agents guide or control members of a flock. Data-driven
models are quite recent in comparison with other methods and aim
to record motion in a preproduction stage or to use information from
real life to calibrate the simulation algorithms. One example is the work
proposed by Lien et al. (2005), describing a model for controlling groups
motion based on automatic tracking algorithms.

Despite the existence of several algorithms for path planning and
steering of groups, interfaces are usually not interactive, and sometimes
even the parameters are not easy to be defined. This article proposes a
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An Interactive Model for Steering Behaviors of Groups of Characters 597

new model for steering behaviors, where group behaviors can be easily
calibrated, through an interactive interface, while keeping diversity of
generated results. Considerations about the methods proposed here are
presented in the next sections.

BIOLOGICALLY INSPIRED ALGORITHM

The basic model for agents navigation is based on the space
colonization algorithm, which has been previously used to develop leaf
venation patterns (Runions et al. 2005) and tree structures (Runions et al.
2007). The venation model simulates three processes within an iterative
loop: leaf blade growth, the placement of markers in the free space, and
the addition of new veins. The markers correspond to sources of the
plant hormone auxin, which, according to a biological hypothesis, emerge
in the growing leaf regions not penetrated by veins. The markers that
are approached by the advancing veins are gradually removed, because
the space around them is no longer free. As the leaf grows, markers in the
free space are added in the space between existing veins and markers. This
process is detailed previously in Runions et al. (2005). Here, the venation
model has been adapted to animate groups of characters (Rodrigues
et al. 2009). Indeed, the key idea is to represent the space in an explicit
way, using a set of markers (dots in the space). The markers define
the “walkable space” through a discrete set of points, which are used
to compute the paths of agents. These markers should be randomly
distributed (according to a uniform probability density function) over the
portions of the space that can be effectively occupied by the virtual agents,
meaning that obstacles and other regions where agents should not move
must not be filled with markers. Figure 1(a) illustrates an environment
populated with markers. The markers allow the organization and facilitates
the steering of group behaviors, as discussed in next sections.

FIGURE 1 (a) Markers (dots) are discrete representation of walkable space; (b) Darker dots
describe key positions, lighter dots are related with each simulated step that generates path nodes,
and between two path nodes there is the path segment.
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598 R. A. Rodrigues et al.

MODEL FOR CHARACTERS MOTION

This section describes our model to provide the motion of the virtual
characters.1 Our model based on space colonization algorithm can be used
to provide path planning (from initial position to a fixed or mobile goal)
as well as to direct motion of virtual agents without specific goals. The main
difference between these two cases is that motion planning generates one
or more coherent paths (called tree paths in this work) to reach a specific
position, whereas the direct motion takes into account desired directions.
So, in the last possibility, local minima are allowed, because a global path
is never planned. The main application of direct motion is in situations
where a specific goal is not possible, like group behavior for alignment, for
instance.

Following there are the definitions of our model:

• I denote an agent in the group, having a position p(t) at each
iteration t .2

• If an agent have objectives, these positions at each time are denoted by
g(t).

• If an agent does not have specific goals, it should have a direct motion
dm, like in a desired group alignment.

• There is a personal space for each agent, modeled as a circular region
(with radius R), that represents a “perception field” that limits the range
of markers which can be used by each agent.

• G denote the tree path for an agent, computed by using the venation
model proposed by Runions et al. (2005) and adapted to group
animation.

A tree path is a set of locations (key positions) organized in a
directional graph. Each step created in the path corresponds to a path node,
whereas a path segment joins two path nodes. In our model, paths from
the current position of a given agent to its goal are described through a
tree, as illustrated in Fig. 1(b). In this figure, the goal is illustrated through
a red flag, darker dots describe key positions where bifurcations occur, and
lighter dots are related with each simulated step that generates path nodes.
Between two path nodes there is a path segment, and all segments have
the same length. Drawing all segments we can see the tree path generated
from one agent to a specific goal.

Generating Tree Paths for Agents

The tree path G is computed through a two-stage algorithm within an
iterative loop: (i) markers processing and (ii) the addition of new path
nodes. The markers in Runions’s (2005) model correspond to sources
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An Interactive Model for Steering Behaviors of Groups of Characters 599

of the plant hormone auxin, which emerge in the growing leaf regions
not penetrated by veins, according to a biological hypothesis. For path
planning markers describe the “walkable space” to define the direction
of a path node. During each iteration, a path node is influenced by all
the markers closer to it than any other path node. Figure 2 illustrates the
process of tree paths creation and evolution from agent current position
to a specific goal.

For a path node n, located at the position n, the set of markers (located
at positions mi) that are closer to n than any other node is denoted by

S(n) = �m1,m2, � � � ,mN �, (1)

where N is the number of markers associated with node n. If S(n) is not
empty, a new path node n ′ can be created and attached to n through an
edge representing a path segment. Each path node has a circular action
region with radius Ar ,3 that limits the markers that must be evaluated
(if they are not closer to any other path node) to compute the new
direction of growth of the tree path. Figure 1(b) shows an example of
a tree path computed from an agent to its goal. To provide a diversity
of branch orientations generated for G , increasing the space occupation,
the markers closer to each segment are allocated to it, and they cannot
be used by other path segments that originate from the same agent I .
On the other hand, the tree path G ∗ associated to another agent I ∗ can
use the same markers of the tree path G . Consequently, tree paths from
different agents can intercept each other. However, this fact could bring
a collision situation, which is not desirable. To deal with collision-free
behaviors, we used the method for minimum distance enforcement among
agents, proposed by Treuille et al. (2006) and detailed in Section 4.2.

Mathematically, the algorithm for building the tree path is described
as follows. Given a tree node n and a nonempty set S(n), a decision must
be made whether a child node n ′ related to n will be created or not. This
decision is made in such a way that nodes closer to the goal are more likely
to have children, achieving a wider variety of paths in the vicinity of the
goal.

In the proposed approach, the node ng that is the closest to the goal
will certainly have a child, guaranteeing that the goal will be reached by
at least one trajectory. The probability P (n) of any other node n having a
child is given by

P (n) = ‖ng − g‖
‖n − g‖ , (2)

where ‖ · ‖ is the L2 norm of a vector. To decide whether a child will be
created for n, a random variable � with uniform distribution in the interval
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600 R. A. Rodrigues et al.

FIGURE 2 In 1) agent a) in position b) goes to its goal d) avoiding collision with obstacle c). In
2) and 3) we show the evolution of tree paths growing toward to the goal avoiding collision with
obstacle. In 4) the goal is reached by the tree path while agent walks into the path. It is possible
to see branches of tree path that have been deleted from the tree.

[0, 1] is generated, and the the child is created if

P (n) ≥ �� (3)

It can be observed that P (n) = 1 when n = ng , which guarantees that ng

will certainly have a child, regardless of the random value selected for �.
Also, it is easy to verify that P (n) is monotonically decreasing with respect
to the distance between n and the goal g , so that child nodes that are
closer to the goal tend to have more children. If a given node n is granted
a child n ′, it will be created at a position n′ through

n′ = n + �
d(n)

‖d(n)‖ , (4)

where d(n)/‖d(n)‖ is a unit vector representing the growth direction of
the branch at node n, and � is a constant step that controls the length of
the path segments. Vector d(n) is obtained based on the markers in S(n)
and their coherence to the goal g:

d(n) =
N∑
k=1

wk(mk − n), (5)
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An Interactive Model for Steering Behaviors of Groups of Characters 601

where

wk = f (g − n,mk − n)∑N
l=1 f (g − n,ml − n)

(6)

are the weights of the markers computed based on a non-negative
function f . This function should prioritize both markers that lead to the
goal, and those that are closer to the current node n. Our choice for f
that satisfies these conditions is

f (x, y) =


1 + cos �
1 + ‖y‖ = 1

1 + ‖y‖
(
1 + 〈x, y〉

‖x‖‖y‖
)
, if ‖x‖‖y‖ > 0

0, otherwise
(7)

where � is the angle between x and y, and 〈·, ·〉 denotes the inner product.
It can be observed that f decreases as the angle between (g − n) and
(mk − n) increases (so that markers that are aligned with the goal carry a
larger weight), and also as ‖mk − n‖ increases (so that markers closer to
the node carry a larger weight as well). If the number of markers is large,
d(n) will point approximately toward the goal (in fact, it can be shown
that d(n) points directly toward the goal if the number of markers grow
to infinity). However, if the amount of markers is small, d(n) may deviate
from the goal, generating a variety of paths.

The procedure described so far creates a sequence of nodes connected
by path segments but no bifurcations in the tree. To create bifurcations,
one father node n must be connected to at least two different children
nodes n ′

1 and n ′
2. When the first child node n ′

1 is created, it retrieves the
markers around it according to a “restriction distance” (so that the number
of markers available to n is reduced). Then, S(n) is recomputed with this
reduced set of markers.

To define if the node n will have another child, a new random variable
� is generated, and the test in condition (3) is applied. If the condition is
verified, a new child n ′

2 is granted to n, and it is obtained through Eq. (4),
using the reduced set of markers (i.e., the remaining markers around n
that were not restricted by n1). This node also retrieves the markers around
it, and the process for creating child nodes for n is repeated until there
are no markers available to n, or condition (3) fails. It should be noticed
that, at each iteration, a new random variable � is created and compared
with the probability P (n) given in Eq. (2) to decide if node n will have
a child or not. Hence, some nodes may have more children than others
(usually, the number of children increases near the goal, as explained
before). In fact, some nodes may have just one child and do not present
any bifurcation at all. Nodes that present at least two children are called
“key positions,” and there is a unique path between adjacent key positions
(see darker dots in Fig. 1(b)).
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602 R. A. Rodrigues et al.

While a tree path is being computed, the agent is able to walk along
the generated paths. Although other path planning algorithms can also be
used (such as the A* search algorithm), the proposed model presents some
advantages. First, for group behaviors (follow, escape, and collaborative
actions such as surround behavior), one important aspect is the diversity
of paths (it is desirable that a group walks to a specific goal by occupying
the space with different possible paths). Another interesting aspect is that
we are able to recompute our trajectories from the needed position; for
example, when the target of the agent (in follow behavior) crosses the
tree path, we can recompute the path from the intersection point. Further
details can be found elsewhere in Rodrigues et al. (2009). The next section
describes how the agents move along the tree, after the path has been
computed.

Computing the Motion of Agents

Tree paths provide local goals for agents. However, an important
challenge in groups motion should be treated in this model: collision
avoidance. As mentioned before, tree paths G and G ∗ related to different
agents can share markers, consequently agents walking in tree paths
can collide, passing by closer (or the same) path nodes. To address
this problem, we used the method for minimum distance enforcement
among agents, proposed by Treuille et al. (2006). Their method proposes
iterations over all pairs of agents within a threshold distance tmin,
symmetrically pushing them apart, so that the minimum distance is
enforced, as describes in Eq. (8).

denf(pi) = 1
#Ai

∑
j∈Ai

pi − pj

2
, with Ai = �j | dij < tmin� (8)

where tmin is the minimum threshold distance allowed (that was set
experimentally to 0�5m), dij is the distance between agents i and j , and
#Ai is the number of elements in the set Ai . Consequently, modifying the
position of one character impacts all other characters. We implemented
a translation for pairs of agents that are closer than the minimum
distance. Indeed, this strategy does not present any compromise in the
computational time for a small number of agents (main focus of this
work). Anyway, more details about computational time are discussed in
Section 7.

There are two manners to provide agents motion. The first one is
used when agents have specific goal location; the second, when there are
no goals. In the later case agents are affected by the markers, which can
have different weights. Indeed, markers are used as discretized information
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An Interactive Model for Steering Behaviors of Groups of Characters 603

of the available space, but also they can affect differently the motion of
agents, depending on associated weights. Given an agent I at the position
p(t) and goal g(t), at each time iteration t and given its computed tree
paths G , the next agent position is computed by

p(t + 1) = p(t) + �
d(p(t))

‖d(p(t))‖ + denf(p(t)), (9)

where � is a constant that controls the length of the agent step, d(p(t))
is an orientation vector from the agent’s current position p(t) to the next
path node coming from tree path, indicating its local goal (and attaining
the global goal g(t)). Also, we compute denf(p(t)), a result vector for
minimum distance enforcement among agents, proposed by Treuille et al.
(2006) to avoid collisions.

In the goal-based motion of the agent, which includes the tree path
computing, three events should be iteratively managed:

1. Agent’s decision: When an agent reaches a key position, it should take
a decision to which tree branch it should follow. This decision is
considered taking into account how close to the goal the tree branch
brings the agent.

2. Branch death: There are two reasons to remove the branches in a tree:
(i) when a branch was not chosen by the agent (last item), the branch
and its children are removed; and (ii) when the goal changes position,
branches far away from the goal (defined by the recomputing distance Rd)
are removed and then recomputed to take into account the new goal
position.

3. Branch reaches agent’s goal: Tree path stops growing, but the agent keeps
walking along the paths until it reaches the goal.

In addition to goal-based motion, there is another manner to compute
the motion agents that is useful when goals are not explicit (e.g., in
formation and alignment behaviors). In this case there is no goal vector
but an agent motion direction md , which is computed based on a variation
of the weights of the markers within the agent’s personal space. Given
an agent I at the position p(t) at each iteration t , and given the set of
M markers S(p(t)) = �m1,m2, � � � ,mM � within the personal space of the
agent I (all markers are considered), we first find the set S ′(p(t)) of M
orientation vectors from agent I to all the markers in S(p(t)), to compute
the agent direct motion md :

S ′(p(t)) = �u1,u2, � � � ,uM �, where uk = mk − p(t), for k = 1, � � � ,M �
(10)
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604 R. A. Rodrigues et al.

The motion direction md of the agent is computed by

md =
M∑
k=1

wkuk , (11)

which is very similar to the branch growing procedure given by Eq. (5).
However, the weights wk in Eq. (11) are not related to any goal but instead
selected according to the desired behavior (see Sections 5.2 and 5.3 for
details). The next position of the agent is given by

p(t + 1) = p(t) + �
md

‖md‖ + denf(p(t)), (12)

where � and denf(p(t)) are the same parameters used in Eq. (9). Next, we
present some examples of behaviors that can be obtained using the two
strategies for the motion of agents described in this section: based on goals
and based on directions.

GROUPS STEERING BEHAVIORS

In addition to tree paths described in the last section, we propose
group behaviors that derives from that. First, behaviors of pursuing,
escaping and surrounding are described. Second, we show the possibility of
representing various groups formation that can be used in entertainment
as well as other applications. Then, an approach for group alignment is
described, which is also important in group formation. Section 7 presents
several examples of those behaviors.

Behaviors: Pursue, Escape, and Surround the Goal

The best way to describe the pursuit action takes into account a
path between only two individuals (one follower and one target agent).
Moreover, as a target location can change dynamically, the path between
follower and target should be recomputed iteratively (as described in the
last section). Figure 3(a) illustrates such behavior in two scenarios with
obstacles.

In this behavior, once the target agent crosses the tree path of a
follower agent, the tree path is recomputed from the intersection point.
This behavior can be easily scaled with more than one follower agent. In
the case of a group of agents following the same target, it is desirable
to provide a surround behavior. A simple change in the rule to allocate
markers can be used to obtain interesting results: Instead of sharing the
markers among the tree paths of the pursuer agents, each tree path
gathers markers from disjoint sets of markers. With this simple choice, the
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An Interactive Model for Steering Behaviors of Groups of Characters 605

FIGURE 3 (a) Pursue behavior: one agent tries to reach another one; (b) The illustrated tree
path shows the way for follower agent to achieve the target.

pursuer agents fight for space, and must find other possibilities to move.
Hence, the pursue behavior arises as a consequence, as illustrated in Fig. 4.

Finally, another small change in the path planning algorithm can
provide escape behavior. In path planning, the path node is accepted in
tree path when it brings the agent closer to its goal. In a escape behavior,
all agents should try to get away from a predefined position c. To cope
with this condition, wider variety of branches should be created far from
the position c, and not close to the goal as described in Eq. (2). In fact,
this behavior can be achieved by replacing P (n) in Eq. (2) by a new
function Pe(n):

Pe(n) = ‖n − c‖
‖nc − c‖ , (13)

where nc is the node located the farthest away from c.
If there is just one follower agent, c is exactly the position of the

follower. If more than one follower agent is present, then c is obtained as
the centroid of all the agents’ position. Figure 5 illustrates such behavior.

FIGURE 4 Surround behavior: two agents try to reach another one. It is possible to observe the
diversity of generated tree paths causing the surround behavior.
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606 R. A. Rodrigues et al.

FIGURE 5 Escape behavior: one agent tries to escape from a circular region, in which three
follower agents are included.

In this figure the escape region is automatically computed based on three
follower agents, and consequently the tree path algorithm tries to bring
agent outside such region.

Behavior: Groups Formation

This behavior aims to provide the formation of specific shapes, which
is relevant in several entertainment applications. For instance, games and
movies, as well as theatrical performances, can use such characteristics
to provide group motion. There are at least two different ways to model
such behavior. The predefined one considers the generation of specific
goals into a shape, and the posterior distribution of the individuals
into the group. The drawback of this approach is the low flexibility if
a shape changes dynamically or if more agents want to participate in
the performance, because it requires the recomputation of specific goals
for each agent. The second approach describes an emergent behavior
of agents to occupy the space corresponding to the desired shape.
We adopted the last approach in our model by using markers in the space.

Initially, a shape region should be defined (as illustrated in Fig. 6,
where the shapes are the letters V and H). It can be done by using
our markers spray (more details can be found in Section 6.1). At the
beginning, the environment has markers to allow the agents motion. Then,
the user can spray markers to define the shape formation. Consequently,
markers are painted over the environment, increasing the density of
markers in formation shape. Yet, the markers into the target shape have
increased weight to a defined constant wmax ≥ 1. The consequence is that
markers into the target shape will have more importance in Eq. (11) than
markers outside.
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An Interactive Model for Steering Behaviors of Groups of Characters 607

FIGURE 6 Agents form explicit shapes of letters V and H.

The algorithm is described in two steps. The first one takes into
account the tree path algorithm described previously. In this case, an
automatic goal into the target shape is attributed for each agent in the
simulation, providing motion stimulus for each individual. The automatic
goal takes into account the convex hull of the target shape, and it is
selected as a random position within it. When the agent gets close to the
shape region (it is identified through markers analysis, i.e., if one agent has
a target marker into its personal space), the orientation vector computed
in tree paths algorithm is not any more taken into account. In other words,
Eq. (9) is used initially to guide the motion of agents, and then it is
replaced by a modified version of Eq. (12), using the following weights wk

to obtain the motion direction md :

wk =
{
wmax, if mk is within the target shape
1, otherwise

, (14)

where wmax is the increased weight within the desired formation region.
Larger values for wmax result in a more direct motion of each agent toward
its goal, whereas smaller values lead to smoother (and slower) movement.
Experimentally, we observed wmax = 10 presented good results, and used
this value in all experiments.

When other agents arrive in formation shape, they fight for space,
but they tend to keep inside the formation shape, because the weight
of the markers is greater than outside target shape markers. Moreover,
if all agents should present same specific orientation in target shape, their
distribution is easily regulated after the agent entries in the shape region.
The final distribution of agents for the VH shape is given in Fig. 6(c).

Behavior: Groups Alignment

This behavior, as the one described in last subsection, is useful to
provide group performances in entertainment applications. Alignment of
people is an interesting feature that can be used in several applications.
In our model we are able to have people moving based on specific
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608 R. A. Rodrigues et al.

goals (using tree path algorithm; Section 4.1) as well as without goals,
by changing the weights of markers into agent personal space, and then
generating the motion of agents, as in last section.

For our group formation, we are able to create alignment regions with
predefined weight masks for markers. One possible mask used to provide
horizontal and vertical alignment is illustrated in Fig. 7, on the left. In this
case, the markers into the formation mask have their weights increased
according to wk = dist(I , k), where dist(I , k) is the Euclidean distance from
the current position of agent I to the marker mk . These weights are used
to obtain the motion direction md used in Eq. (12). If a given marker is
within the personal space of more than one agent, these agents compete
for the marker. In fact, the same marker may present different weights
when viewed by different agents, depending on their goals and relative
position w.r.t. the marker. To minimize the chance of more than one agent
reaching the same marker at the same time, the weight of the marker is
increased for the agent that is the closest to it. More specifically, this weight
is recomputed as the sum of the weights of that specific marker as viewed
by all agents having the marker within their personal spaces, so that the
closest agents tends to reach the marker faster than the others.

EXTENSION TO CONTROL CROWDS

The space colonization algorithm, briefly described in Section 3, has
inspired the method we introduced in the previous sections for tree
paths and steering behaviors presented in this article. The key idea is to
represent empty space explicitly, using a set of markers, and to treat these
points as a resource for which the agents paths in the simulation compete.
Consequently, tree paths are generated as a function of free space, goals,
and group behavior to be applied. Such paths present discretized goals
that are achieved progressively by the agents as they move along the path.

FIGURE 7 Left: Weight masks are used to define alignment behavior. Right: An example of
generated behavior.
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An Interactive Model for Steering Behaviors of Groups of Characters 609

As described in Section 4.2, tree paths can share markers, so collisions
among agents can happen. In the original article (Rodrigues et al. 2009),
we proposed the use of an enforcement distance denf, defined in Eq. 8, that
is used to avoid collision with other agents. In fact, the motion for each
agent along its path is given by Eq. (9). On the other hand, when agents
have no specific goals (e.g., groups formation and alignment), agents move
according to weights defined in the space, as explained in Section 4.2. In
this case, the enforcement distance is also used to avoid collisions with
other agents, as shown in Eq. (12).

Although there is no theoretical limit on the maximum number
of agents that can be simulated using either of the above-mentioned
approaches (with or without goals), the enforcement term denf in Eq. (8)
requires the computation of all pairwise interactions of agents within a
threshold distance. Hence, the cost to compute the enforcement grows
quadratically as a function of the number of agents, which could be
prohibitive when dealing with crowds.

To overcome this problem in the first situation (agents with goals), this
extended version of the article eliminates the enforcement term denf when
computing the motion of agents. In this situation, the markers that were
used to generate the tree paths are also considered to guide the agents.
In fact, the set of markers used to generate each node of the tree path is
stored in a database when the path is created. When an agent Ii reaches
a node ni ,k in its tree path Gi , it retrieves all the corresponding markers.
When it is time to move to the following node ni ,k+1, the motion is only
possible if all the markers related to the destination node are not retrieved
by any other agent Ij , j �= i (meaning that there is no other agent in the
vicinity of its path). If that happens, agent Ii also retrieves all the markers
related to ni ,k+1, and it keeps moving. If not, agent Ii stays still in its current
position, until all the markers of the destination node are released.

If the radius Ar of the action region is greater than or equal to half
the distance � between adjacent nodes n1 and n2, i.e., if Ar ≥ �/2, then the
set of markers related to either n1 or n2 covers the whole segment between
these two nodes. Hence, any other pair of adjacent nodes n ′

1 and n ′
2 that

intersects the segment n1n2 would also share markers with either n1 or n2.
Hence, if an agent moving along the nodes n1 and n2 captures the markers
related to those nodes, another agent moving along n ′

1 and n ′
2 could not

move, avoiding any possible collision. In all experiments, we used Ar = �/2.
Section 7 presents some experimental results in crowded scenarios.

Interactive Interface to Control Crowds

An important aspect in virtual human simulation is the behavior
control. Some existing models produce interesting results; however,
interfaces are not interactive and sometimes even the parameters are not
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easy to be defined. In our work we took considerable effort to develop
an interactive tool where groups and individual behaviors could be easily
defined through a sketch interface.

First, markers are in the center of our model, because they produce
high impact in generated trajectories as well as in agents’ behaviors. The
amount of markers and their position in the space can be easily modified
using the sketch interface, by interactively spraying or erasing markers.
Figure 8 shows a screenshot of our prototype system that implements such
interaction.

We used dart-throwing algorithm for generating the markers (Cook
1986). This process is performed in preprocessing stage and recorded
in a file, because it is not necessary to recompute it for same scenario.
If new markers are sprayed/erased during the simulation, the changes
can also be recorded in the file. This algorithm presents a computational
complexity (n logn), so we investigate the possibility of using a random
distribution of markers in scenario to improve computational time. In
this case we consider initialization of a grid of markers and the random
process acts as a noise in markers position, providing linear complexity.
Results indicate that grids and random techniques can be used without
high impact in group behaviors. The evaluation included agents linear
and angular velocity and trajectories smoothness. Although these analysis
present similar results in both markers distribution techniques when
density of markers is 60markers/m2, here we keep using dart-throwing
algorithm as originally used by Runions et al. (2005). One reason for that
is the fact that markers density cannot be fixed in interactive tool, because
users can spray again in the same space.

Agents tend to follow paths with higher density of markers, so that
local control can be achieved by increasing the number of markers along

FIGURE 8 Prototype system for crowd simulation with interactive control. The user “sprays” markers
(dots) on the floor. The distribution of markers directs the agents.
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An Interactive Model for Steering Behaviors of Groups of Characters 611

FIGURE 9 Removing markers in the environment affect the virtual humans’ trajectories (the first
and second agents are influenced by the new configuration of markers.) The circle represents the
marker eraser, and it has been used to narrow down the region where the agents can walk.

preferred paths. When markers are removed, agents immediately adjust
their paths, as shown in Fig. 9.

Besides the interactions with markers, other features are also
presented, such as creation of agents, selection of one or multiple agents,
definition of group behaviors to be applied, and definition of goals
and paths for agents. In addition, other functionalities like illumination,
texture, and camera animation are possible, as described in Musse et al.
(2007).

EXPERIMENTAL RESULTS

This section presents additional results to the ones previously
published (Rodrigues et al. 2009). First, we describe the main variables
of the model. It is important to emphasize that these variables do not
need to be recalibrated when environment or simulation scenario changes.
However, they can be changed if users want to generate different results.

Parameter R is related with circular region around an agent and
represents its perception field. This variable, set experimentally to 1�2m,
is used when agents are not walking in the tree path, and their motion is
based on markers weight (e.g., group formation and alignment). Coherent
with R , the radius of the action region Ar related to each path node, is
set to the same value 1�2m. Variables � and � are related respectively with
agents step motion in the tree path and the size of path segment of tree
path. Values used in all simulations are � = 0�05m (assuming a simulation
at 24 FPS) and � = 2�0m.

Figure 10 shows an illustration of combined behaviors for formation
and alignment applied together. It is interesting to perceive that in the
beginning 1) agents apply a hybrid behavior (goal-based) until they have
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612 R. A. Rodrigues et al.

FIGURE 10 This figure shows four different time steps in the formation and alignment behaviors
applied together. In 1) and 2) agents are going into a shape region. In 3) and 4) agents align
their locations as a function of other agents.

FIGURE 11 In 1), a, b, c, and d are related, respectively, with follower agent, target agent, obstacle,
and a circular region, which includes all follower agents. In 2) and 3) tree path is evolving and
in 4) target agent is walking and escaping from follower agents.
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An Interactive Model for Steering Behaviors of Groups of Characters 613

markers of interest region (star formation) into their perception region.
Then, in 2) it is possible to see agents into formation region, then applying
the alignment behavior, when weight masks are visible 3). Finally, agents
occupy the formation region and in the same time they keep aligned
as shown in 4). The possibility of combine different behaviors (with or
without tree paths and goals) is a great potential of our method.

The escape behavior is implemented based on a small change in tree
paths algorithm. Indeed, instead to be attracted by the goal, the escape
behavior is attracted by the nodes which are far away from a specific
location, as described in Section 5.1. Figure 11 illustrates this behavior
when one target agent is followed by four other agents.

The computational performance of tree path technique is very
dependent on the number of generated nodes, which also takes into
account the simulated environment (obstacles, number of agents, distance
to the goal). In Fig. 12 we show the time4 consumed for 1, 5, and 10
agents, including the number of iterations performed in the simulation.
It is important to note that maximum number of iterations observed in
our simulations is 49, meaning that at most 49 iterations are required by
the agents to reach their goals in the simulated environment. Because our
model is focused on low density scenarios, we have tested a maximum
of 50 agents to better visualize the groups behavior, achieving real-time
performance. However, according to the worst possibility (49 iterations to
reach the goal) in Fig. 12, it is theoretically possible to compute tree paths
for thousands of agents.

Figure 13 shows crowd simulated using our method. In these images it
is possible to see lane formation, which is an emergent behavior expected
in crowds. Indeed, this effect is created because it takes less effort for

FIGURE 12 Computational time (ms) for processing 1, 5, and 10 agents, considering the evolution
of tree paths.
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614 R. A. Rodrigues et al.

FIGURE 13 Left: Two groups are approaching to another. Right: Lanes can be visualized.

people to follow immediately behind someone who is already moving
in their direction than it does to push their own way through a crowd.
Emerged as a function of least effort hypothesis, the formation of lanes
arises, because people change trajectory whenever they encounter an entity
moving in the opposite direction. This action forms chains of entities
walking in line, as we would expect.

FINAL REMARKS

This article presented an algorithm to provide motion of groups
of agents. It is based on a biologically inspired technique used in the
past for generating leaf venation patterns and tree structures, simulating
the competition for space between growing veins or branches. Here,
we presented some behaviors to simulate groups of agents, such as
group path planning (we called tree paths), pursue behavior, surround
behavior, escape behavior, groups formation, and groups alignment. The
key innovation is the simple way in which the paths are created, by
“observing” and “occupying” free space, which is represented using a set
of marker points, which leads to a simple yet computationally effective
implementation of the competition for space. Global tree path is modeled
by biasing the influence of the captured marker points according to their
agreement with each agent’s direction to its goal, which can be assigned to
individual agents or groups. In addition, agents motion can be goal based
or influenced by variation of weights attributed to markers, originating
alignment and formation behaviors.

Comparing with other models, although RRT (LaValle 1998) explores
uniformly the “walkable space,” defining positions randomly in this space
that will guide the expansion of the search tree, in the proposed model
the space is previously discretized using a uniform distribution. Once
the space is known, the proposed model considers weighted positions
so that the growth of branches is directed to the goal. This difference
allows optimizing the construction of the tree and the search for the path
in this structure. Compared with roadmaps, the proposed model allows
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An Interactive Model for Steering Behaviors of Groups of Characters 615

the generation of a connected tree using a small amount of edges. In
a roadmap (Lien et al. 2005), the performance of the connected graph
is impaired due to the number of edges necessary to explore the entire
space. The proposed model also requires single nearest-neighbor queries,
whereas roadmaps require more-expensive k-nearest neighbor queries.

This article also presents an extension to the method providing
collision avoidance among agents into a crowd. This extension is naturally
integrated with markers and their association in the space, which path
nodes. In this idea, as described in Section 6, the markers associated
to specific path nodes can only be used by agents in such nodes.
Consequently, agents avoid collision with others. As future work, we intend
to provide other group behaviors, focused on individualities, such as agents
skills.
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NOTES

1� Details are described in PhD thesis authored by Bicho (2009).
2� For the sake of clarity, the time index t will be removed from this point on and used only when

necessary.
3� Its size can be calibrated, but normally we use the same radius R defined for the agent personal

space.
4� Average of 20 simulated experiments. These results were obtained using monothread

implementation without characters’ rendering on Intel� CoreTM 2 Duo 2.2GHz, 3GB DDR2 at
667MHz and NVIDIA� GeForce� 8400M GS 128MB.
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