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Abstract—Localizing dynamically changing diffuse event
sources in real environments is still an open problem in Wireless
Sensor Networks (WSN). The dynamism of the environment,
the energy limitations of the sensors, and the noise associated
to the sensor’s measurements is a challenge that a realistic solu-
tion has to deal with. In this paper we propose a decentralized
approach to detect diffuse event sources in dynamic and noisy
environments, using a Wireless Sensor Network infrastructure.
Our approach is gradient-based and follows a distributed and
decentralised algorithm based on local interactions and local
knowledge of the environment. Performances are assessed in
terms of messages sent and number of measures to find the
sources. Results show that our approach efficiently adapts in
tracking the event sources as they appear, is scalable and robust
to noise and failures.

I. INTRODUCTION

The localization of diffuse event sources and plumes is
a problem that appears in a wide range of real applications
such as toxic gas detection, detection of underwater leaks,
or detection of acoustic and heat sources. Diffuse events
are huge phenomena that can spread in a 2D or 3D space
without a regular shape. A diffuse event consists of one
source and its plume. The source is the focus of the event
whereas the plume is the area or space the diffuse event
covers. Plume sizes and shapes are constantly changing due
to the environment dynamism that acts over them (i.e. the
wind, obstacles, etc. . . ).

In some scenarios, the source is fixed and does not vary
with time, while the plume varies constantly. A recent
example is provided by the eruption of the Eyjafjallajökull
volcano in Iceland. The source is well known and somehow
fixed, while the changing ash plume is the main point of
concern.

In other cases, the source(s) itself varies (in location and
number) over time and it is imperative to detect all of them
as quickly as possible. We can mention here the following
two examples. In 2002, the Prestige tanker was damaged
and began losing its cargo during a storm. The Prestige was
carrying approximately 81.000 tons of oil. The oil spread
over the sea near the Spanish and Portuguese coasts. Due
to the wind and sea currents and the way the tanker sank,

the oil split into several disjoint spots. The different spots
of oil moved over the sea and continued splitting into new
spots, rendering the recuperation of the oil and the cleaning
process difficult. Ultimately, this accident lead to a huge
ecological disaster, the oil spills stretching on more than
1000 km. The detection and tracking of the spots was a
difficult task that could have been simplified with the use
of sensor networks. Another real example of dynamically
changing diffuse event sources is provided by the bush
fires in Australia in 2009. Because of the wind, embers
were blown ahead of the fire front, new spot fires then
started where the embers landed. The new fire sources need
to be monitored and tracked, in order to predict the fire
movements and mitigate them as soon as possible. In this
particular example, the presence of smoke makes difficult
the localization of the main fire focuses. Infrared vision
sensors, as used in the project Spread1 have been used to
localize hot temperature spots and to predict fire movement,
thus demonstrating the usefulness of sensors in tracking
fire. In scenarios where sources are dynamically changing,
localizing as soon as possible all diffuse event sources is
crucial (e.g. to avoid the spreading of toxic gas and possible
large disasters). We consider that the sensor network and the
localization of diffuse event sources play a key role in this
kind of scenarios.

So far, approaches exploiting WSN, have essentially
concentrated on detecting plumes using centralized algo-
rithms [1], on detecting a single source (global optimum) in
static and noise-free environments [2], [3], or detecting mul-
tiple sources with sensors well distributed in the environment
and following a centralized strategy [4]. More generally,
regarding the detection of static diffuse event sources in
non-noisy environments, Ruair et al. [1] demonstrated that
existing algorithms for target tracking do not scale well when
they are applied to the localization of diffuse event sources.
These algorithms require that each sensor reports the data to
the sink when it reads a sensor value higher than a threshold.
Since diffuse events can cover large areas, a large number of

1http://www.algosystems.gr/spread/index.html



sensors would try to report the data to the sink, producing
a network overload.

To the best of our knowledge, the problem of detecting
dynamically changing diffuse event sources in noisy WSN
environments has not been addressed before.

Our work focuses on the detection of diffuse event sources
in dynamic and noisy environments. The main task is to
detect not only the main event source (i.e. location of the
global optimum given for instance by the highest temper-
ature or the highest density of oil) but also any residual
event sources that may become new principal events (i.e.
local optima becoming global optimum). Thus, the goal is
to detect all event sources dynamically appearing over time
in the system. Additionally, any realistic solution to the
problem has to deal with the imprecision related to sensors
measurements and the noise introduced by the environmental
changes (e.g. weather conditions or ocean currents).

To track diffuse event sources, we consider sensor net-
works covering large areas created by a vast number of
connected devices spread randomly in the environment.
Despite the improvement in the technology, which has made
possible the development of ultra-small fully autonomous
and communicating sensors, characterized by small size, low
power consumption, low cost and low computation power,
one of the most important requirements in a WSN remains
the design of energy-efficient algorithms able to extend the
network lifetime [5].

Therefore, a quick detection of dynamically changing
diffuse event sources in large sensing areas calls for de-
centralized self-organising approaches able to adapt to the
dynamicity of the environment, robust to noise and that scale
without being greedy on energy consumption.

This paper proposes a decentralized multi-agent approach,
following a gradient-based strategy and exploiting local
interactions among sensors. It detects all the diffuse event
sources as soon as they appear and has the additional
advantage of limiting the energy consumption of the sensors.

This paper is organized as follows. First, we discuss
related works. Then, we briefly explain the lower power
listening mode assumed in this paper for the sensors. Next,
we describe our model and approach. Then, we report on
simulations and discuss the performance of our approach in
terms of messages sent, number of measures, resilience to
noise and failures. We also performed a study on the impact
of the parameters used. Finally, we present conclusions and
future work.

II. RELATED WORK

Localization of diffuse event sources differs from target
tracking [6] and environment monitoring [7]. These related
problems are concerned either with the prediction of object
movements or with the creation of a model to monitor the
changes in a specific area. We assume that diffuse events
are phenomena whose behavior is unpredictable because of

two main reasons: the environment dynamism and the high
latency that WSN require to track objects. Moreover, the
appearance of diffuse events cannot be predicted by any
model.

The problem of localizing diffuse event plumes in a WSN
has been addressed by Ruair et al. [1] who propose a
MAS approach to map the contours of large diffuse events.
Agents are distributed over a WSN playing different roles:
an agent playing the leader role and operating on one sensor,
and multiple agents playing the member role and operating
on sensors adjacent to the location of the leader agent.
Agents change role by following a gradient-based strategy,
the aim is to cover an event’s contour (plume). The proposed
mechanism can be adapted to deal with multiple sources, but
it has not been demonstrated to be enough for dynamic and
noisy environments.

Blatt et al. [2] and Ermis et al. [3] proposed different
algorithms to detect and localize sources that emit acoustic
waves. They consider static and noisy-free environments,
and their goal is to assess the global optimum value avoiding
the local optima of the acoustic signals.

When the cost of the sensors is expensive, sensors are
allocated strategically and a centralized solution produces
really good result, [4]. When the data sampling periods are
much larger the communication time, a centralized approach
for detection and localization is feasible. Indeed, the time
required to coordinate the nodes is smaller than the sampling
time. This solution however does not scale to a large number
of non expensive sensors spread randomly over the space,
since we cannot assume that every node executes a sample
in every period.

Finally, as the main studies in dynamic multi-modal
optimization have demonstrated [8], [9], in highly dynamic
environments detecting the global optima only is not suffi-
cient (the diversity of the exploration is a required feature).
A current trend in dynamic multi-modal optimization is to
localize most of the best local optima to guarantee a fast
adaptation to environmental changes [10].

III. SLEEP/WAKE MODES

The required life time of sensors for environment mon-
itoring can reach several years. In order to achieve this
requirement, a sensor must be in sleep mode most of the
time. A sensor consumes energy while it takes measure-
ments, is computing and while it is communicating (sending
or listening for data). Communication is the most energy
consuming activity of the sensor [11]. The energy used in
the communication device, even in idle listening is three
orders of magnitude higher than when the node in the sleep
mode.

Different proposals for dealing with energy efficiency at
the MAC layer in sensor networks communication have
been presented. Two main approaches can be identified [12].
On the one hand, the synchronized listening (SL) approach



Figure 1. Low Power Listening (taken from [12])

causes sensors to turn on and off their radio at regular
intervals; sensors must be synchronised to communicate
with each other. This algorithm presents the problem of
the synchronization and coupling between the sensors. The
synchronisation has an extra cost and sensors cannot send
data when they need to, they have to wait for the wake
up events to do so. On the other hand, the low power
listening (LPL) approach allows sensors to be decoupled,
that means they can send information when they want.
The only requirement is, for the sender, to send a large
preamble data in order to synchronize with other sensors in
communication range. Potential receiving sensors wake up
asynchronously to detect and synchronize with any detected
preamble. The main drawback of this algorithm is that the
preamble data does not only wake up the sensor that must
receive the information, but any sensor in communication
range.

We consider that in emergency scenario like forest fires, or
a gas leaks, a sensor should not wait until the next wake up
period, but the sensor must be able to send the information
in a short period of time. Therefore in this paper we assume
the LPL approach.

A. Low Power Listening

The Low Power Listening (LPL) approach reduces the
idle listening time, by incorporating a duty cycle in the phys-
ical layer. This approach is motivated by the idea that most
of the time sensors do not need to communicate, because
interesting events rarely occur. Basically, LPL increments the
size of the data sent by the transmitter and reduces the cost
from the receiver. Figure 1 shows how the receiver wakes
up asynchronously and checks whether there is a preamble
or not. If the preamble is detected, the receiver continues
listening until it receives the data, otherwise it turns off the
radio until the next cycle T .

Halkes et al. [13] have demonstrated that LPL reduces the
idle listening overhead by a factor of ten, using a sample
time of 30µs for detecting any preamble and a wake up
interval T = 300µs. LPL can be applied to those devices
where switching the radio on/off takes little time. Recently,
further improvements have been realized in both approaches
(SL, LPL) [12].

Our work does not focus on the different MAC protocols
proposed in order to save energy in WSN. This brief intro-
duction is presented only to justify the assumption that the
network can work in an asynchronous mode and that every

sensor is constantly in a sleep mode (has its communication
device off) unless it is awaken by another sensor sending
some data. As soon as a sensor has performed its duty
(answering a request or transmitting information) it turns
off its communication device again.

IV. THE MODEL

Let A be the geographical area of interest. Let
Syst = {St, Agt, Dt, h} be the system at time t. St =
{s1, s2, . . . , sn} is the set of all sensors present in the
system at time t (including those potentially off). Agt =
{ag1, ag2, . . . , agk} is the set of all mobile agents present
in the system between time 0 and time t (including those that
may have stopped their execution). Dt = {d1, d2, . . . , dm}
the set of all diffuse events in the system at time t
(including those that may have disappeared or appeared
after time 0). h ∈ A is the location of the sink where
the information must be sent. Each sensor at time t is
a triple si = (state, position, sampleV alue), where the
state is either off, sleep or awake (corresponding to the
LPL modes), the position ∈ A is the location of the sensor,
and sampleV alue ∈ R is the sample that the sensor has
measured at time t. The sample value can be 0 if the sensor
does not take a measure at time t. A diffuse event at time t is
a pair di = (pos, radius) with pos ∈ A the position of the
source and radius ∈ R the radius of the plume centered at
pos. For our experiments, we assume that two diffuse events
do not have the same pos, and that in the absence of noise,
the plume has the shape of a circle.

For the sensors, we consider the following:
• Sensors are randomly and uniformly spread over the

environment A.
• Sensors don’t know their position, no global position

system (GPS) is assumed.
• Sensors are identical and they run the same software.
• We do not assume any multi-hop protocol. Communi-

cation happens only locally with sensors within com-
munication range.

• Sensors know neighbour sensors in communication
range.

• Transmission collisions are handled by lower MAC
layer protocols and are not considered in this paper.

• Sensors follow the Low Power Listening (LPL) mode
described in Section III.

• Sensors are reactive to agents request. No proactive
behavior is assumed from the sensor side.

For the mobile agents, we consider the following:
• Mobile agents can communicate with other agents

within communication range.
• Agents use the sensor communication devices to com-

municate with other agents.
• Agents are proactive (send requests to other agents,

move) and sensors are reactive (respond to agents
requests, take measurements).



For the diffuse events we assume that:
• Diffuse events appear and disappear over time.
• Each diffuse event has one source and one plume.
• When the plume is not subject to noise, the plume

represents a circle centered around the source, with
the maximum intensity in the center and the minimum
intensity at the edge of the circle. In the presence of
noise the shape varies and the gradient from source to
edge is no longer perfect .

• Over time the size of the plume, the position of the
source and the intensity of the source may vary.

The performance of our approach is evaluated in terms
of the number of messages sent and the number of samples
values read by the sensors between time 0 and time t.

Definition 1 (Number of messages sent at time t): Let
msg(ag, t) be the number of messages sent by ag ∈ Agt

between 0 and t, the number of messages sent at time t is
given by:

MSG(t) =
∑

ag∈Agt

msg(ag, t) (1)

Definition 2 (Number of reads at time t): Let
read(ag, t) be the number of samples taken by ag ∈ Agt

between 0 and t, the number of messages sent at time t is
given by:

READ(t) =
∑

ag∈Agt

read(ag, t) (2)

V. OUR APPROACH

The aim of our approach is to localize the diffuse event
sources as soon as possible, minimizing sensor measure-
ments and communication. Basically, the idea is to find those
sensors closest to the diffuse event. One of the contributions
of this algorithm is that the search of the diffuse event
sources is executed in a decentralized way, by collaboration.
This produces a better scalability when the diffuse events
are spread over a huge number of sensors. Once we find the
sources the number of sensors that report the information
about the diffuse event sources localization is very low
compared with the traditional tracking algorithms used in
sensor networks, where every sensor that samples a value
higher than a fixed threshold sends the information to the
sink.

We assume a WSN where the sensors are spread randomly
over a 2-dimensional space. All sensors are identical and
reactive. Over the WSN there is a middleware that permits
a set of agents to move from one sensor to another and
have access to the sensor data and sensor communication
devices. All agents run the same algorithm and agents have
only access to local information. Communication between
agents is only allowed when they reside in adjacent sensors,
that is, a hop by hop communication protocol is not assumed.

Sensors only communicate with other sensors when an agent
hosted in some sensor requires information.

We propose a distributed and decentralized approach
based on a mobile MAS where agents move freely over the
sensor network to localize the sources of diffuse events that
are randomly appearing and disappearing along the time.
Moreover, agents are responsible for monitoring the local-
ized events once the source is reached. They are responsible
for requiring measures from the sensors.

Our approach pursues a number of active agents lower
than the number of sensors, as we show later on. As a
consequence, a low number of environment measurements
are performed. Because we cannot control the number of
active diffuse events, we include a mechanism to control
the number of mobile agents that live in the WSN. This
mechanism controls the number of agents in the WSN in
a decentralized way and without additional communication
cost.

In order to deal with energy constraints we use a GPS-
free algorithm where our main goals are to reduce the
number of data sensor measures and the used bandwidth.
The GPS-free approach can reduce WSN cost [14] and can
work either in indoor or underwater environments with high
energy constraints.

Our approach performs two different explorations: (1)
a global exploration thanks to the random generation of
new agents on the WSN; and (2) a local exploration that
drives agents to the sources. Global exploration is required
to continuously monitor new diffuse events as they appear.
We consider that the system converges when, for each active
event, there is an agent located at the sensor nearest its
source (i.e. all event sources are monitored).

To ease the discussion, we use in this paper the notion
of mobile agents. However, to further reduce computation
and communication costs, the actual movement of the agent
can be replaced by moving a token (instead of a whole
agent). In that case, each sensor hosts a stationary agent
and the movement would consist in sending a token among
the sensors until the token reaches the diffuse event source.

A. Sensors

Sensors are responsible for creating agents. Sensors pro-
vide an infrastructure to host agents allowing the agents
to access their data and communication devices. Sensors
are most of the time in the sleep state, that is, with the
wireless communication turned off and using low energy.
Every Tw ticks, a sensor creates an agent with probability
Pa. It is important to note that the creation of an agent
does not change the communication state, if the sensor is
in the sleep state, it will stay so until it switches to the
awake state because of a communication request (i.e. data
received from a nearby sensor or sent on request of the
agent). The Pa parameter controls the number of agents that
are created across the whole environment. A high Pa value



Algorithm 1 The Sensor Algorithm
if (createAgentEvent()) then

if (Random() < Pa ) then
CreateAgent()

end
end
if (sensorReadRequestEvent()) then

sendSensorData()

end

implies a high global exploration and also a higher cost, i.e
an increment on the sensor measures and on the number of
messages sent. Moreover, sensors send data measures when
they receive data requests. These are sent by an agent to
a neighbor sensor when it performs local exploration. The
sensor algorithm is sketched in Algorithm 1.

For simplicity purposes, we do not show the change of
communication state (sleep to awake to sleep again). The
sensor is always in the sleep mode, except when it sends or
receives a data.

B. Mobile Agents

Mobile Agents are responsible for actively tracking dif-
fuse event sources and monitoring them once they have
reached the source. Mobile Agents use a WSN as an
infrastructure that enables them to move over the space, to
obtain sensor data, and to communicate with other sensors or
agents. The agent procedure has to deal with uncertain data
(mistaken measurements) and with a weak infrastructure that
can fail at any time (sensors can break down, sensor data
may contain noise, and communications can fail).

The goal is to design a robust agent algorithm that allows
agents to monitor diffuse events with a high performance.
The agents decide when a sensor must read a sensor data
or when a sensor must communicate its sensor data to a
neighbour sensor. Sensors are managed by the agents, i.e
they are not proactive.

In order to deal with the requirements (low number of
sensor reads and low number of communication messages),
the number of active agents must be considerably lower than
the number of sensors. We consider the following policies:
(1) when an agent is created, it first checks whether another
agent exists in another sensor within its communication
range, the agent with a higher creation timestamp finishes
its execution; and (2) when two different agents reach the
same sensor, only one of them continues its execution (i.e.
two agents cannot coexist at the same sensor).

The intuition is that when agents are created, they try to
reach the closer diffuse event source by following the short-
est path according to a gradient-based strategy. Specifically,
each agent uses the sensor data of the neighboring sensors
in order to guide its movements and finally find the source.

Algorithm 2 The Agent Algorithm
if (agentsInNeighborhood()) then

exit()

end
while (true) do

sensorData = readSensor()
if (sensorData <= 0) then

exit()

end
neighbors = selectAdjNodes (ns)
requestReads (neighbors)
bestSensor = selectBestSensor (neighbors)
if (bestSensor.data > sensorData) then

moveToSensor(bestSensor)
if (existAgentInSensor () ) then

exit()

end
end

end

Following Algorithm 2, when an agent is created, it first
checks if there is another agent placed in one of the adjacent
sensors. If that is the case, the most recent agent finishes its
execution. Otherwise, it reads the sensor data and checks if
a given event plume is detected. If nothing is detected (the
measured value is too low), it finishes its execution. When
an event is detected, the execution continues by choosing
ns adjacent sensors and sending a sensor data request to the
selected ns sensors. When all the answers are received, the
agent selects the best sensor. That is, the sensor providing
the highest sensor data read (e.g. highest gas concentration,
highest temperature). If the data of the best neighbor sensor
is higher than the data the agent has measured on its host
sensor, the agent migrates to the selected sensor. After
migrating, if another agent is already hosted at that sensor,
the migrating agent finishes its execution. Otherwise, the
main loop starts again (reading the sensor data of the host
sensor).

When an agent reaches the source of a diffuse event
(i.e. when it does not move between consecutive reads),
it continuously monitors the event until an environment
change occurs. An event source may disappear or change
its location. When it disappears, the data obtained from the
sensor becomes zero and the agent finishes its execution.
When an event source changes its position (i.e. the event
moves slightly), the requests to the neighbor sensors will
guide the agent to the new source location.

VI. EXPERIMENTS

The goal of this section is to demonstrate the performance
of our approach in simulated scenarios and to perform a



Table I
SIMULATION SETTINGS

Params values Params values
Space A 103 × 103 m2 SN 1000
TS 2× 105 ticks Tw 20 ticks
tc 200 ticks Pa 0.5%

Sensor Rng 80 m ns 3

Table II
STANDARD SETTINGS FOR MPB

Params values Params values
movrand random num. of peak 1-3

num. of dimensions 2 minheight 30
maxheight 100 stdheight 50
minwidth 0.1 maxwidth 5.0
stdwidth 0.0 mincoordinate 0

maxcoordinate 100 peak function cone

study of the impact of the parameters of our proposal.
Specifically, we analyze the performance of our approach
when the number, i.e. density, of the sensors changes; when
local and global exploration vary; or when the system is
subject to different noise levels. Moreover, we measure the
exploration cost and we study the robustness of our approach
in front of network failures.

The simulation has been implemented using REPAST
[15] for modeling sensors and agents, and the Moving
Peaks Benchmark (MPB) [16] for modeling the environment
changes (diffuse events). MPB is a benchmark created to
compare dynamic function optimization algorithms, provid-
ing a fitness function changing along the time. The function
is composed by different peaks (cones) that change in width,
height and position. These peaks are used as diffuse events in
our simulation. Figure 2 shows an example of environment
change. In the upper part of the figure, the environment
presents two different diffuse events with small plumes.
The lower part of the figure, shows the situation after
an environment change, we can see three diffuse events
with different width, height and position. Each (different)
situation is called scenario in this paper.

In order to aggregate noise to the sensor reads, we
modified MPB such as the fitness function incorporates a
noise factor γ in the following way:

SensorV alue(~p) = MPBV alue(~p) + (2 ∗ θ − 1) ∗ γ (3)

where θ generates a uniform random number between [0..1]
and γ, the noise factor, varies between 0 and 10 depending
on the experiment.

A simulation is a run of TS = 2 × 105 ticks, where an
environment change occurs at each tc = 200 ticks. That
is, a simulation holds 1000 environment changes (similar
to those shown on Figure 2). The results reported are the
averages of these 1000 changes. Simulations take place in

Simulation Scenario 1

Simulation Scenario 2

Figure 2. Environment change example

a rectangular space A of 1000× 1000 square meters where
SN = 1000 sensors are distributed randomly. The parameter
settings used in the simulation are summarized in Table I,
where Ts is the simulation time, tc the frequency of the
environment changes, SN the number of sensors, Tw the
frequency of the agent creation event, Pa the probability
of creating an agent and ns the number of nearby sensors
receiving a data request from an agent. Table II summarizes
the configuration of MPB. Mainly, the number of diffuse
events vary from 1 to 3 with a radius of the plume ranging
from 30 to 5000 meters.

Figure 3 shows an example of a simulated scenario,
where the sensors are spread over the space and 3 diffuse
events are active. Gray blurred regions represent the diffuse
events perceived with noise, i.e. event plumes do not form a
continuous space. Small filled points represent the sensors.
Gray filled points represent sensors not hosting agents.
White filled points represent sensors with a hosted agent.



Figure 3. Scenario with noise

Circles represent communication range of sensors hosting
an agent that has detected an event; ns sensors within the
circle will receive the data requests.

In the simulations we use the number of data sensor reads
and the number of messages sent as an estimation of the cost
to reach the convergence, i.e. when all diffuse event sources
of a given scenario have been detected. These values are
measured for each environment change: from the moment
a new scenario is in place until convergence is reached (all
events sources detected). We consider a failure of the system
if the system cannot reach the convergence before a new
change in the environment (i.e. 200 ticks), that means at
least one of the sources has not been detected. Once the
system has reached the convergence, the agents continue
exploring and monitoring the events. At that moment the
agent are ready to send the sensor data to the sink. The
cost of sending the information to the sink depends on the
routing algorithm that is used and it is not addressed in
this work. Thus, the monitoring reads and routing messages
are not counted here, because they depend on the routing
algorithm and on external parameters such as the desired
monitoring frequency. Our counting of reads and messages
stops when we reach the event source. We performed an
additional experiment for measuring the number of sensor
data reads and messages when no diffuse events are present,
i.e. the cost of the global exploration.

A. Varying the number of sensors in WSN

This first experiment had two goals: (1) to demonstrate
that the complexity of our approach grows linearly with
the WSN size (i.e. our approach is scalable) and (2) to
demonstrate the adaptability or our approach to different
WSN densities. The different densities used in this simula-

Table III
VARYING SENSOR NUMBER WITHOUT NOISE

Sensor Number Reads Msgs Failures Adj. avg.
500 311.30 518.82 35.5% 9.2

1000 397.38 651.64 15.2% 18.76
2000 681.67 1115.48 5.8% 37.09
4000 1222.37 1998.11 4.6% 74.94
8000 2339.69 3816.25 3.2% 149.7175

tion have been established following [17]. In this experiment
the number of sensors varies from 500 to 8000 and noise is
not applied to the sensor data reads.

The first observation is that, when the density of sensors
increases, the number of failures decreases, i.e. agents are
able to find better paths to navigate toward event sources
(see Table III). Notice that the number of failures reaches a
35% only when the number of sensors is low (500). This
percentage of failure could be reduced by incrementing the
Pa probability or by reducing the Tw interval, as we will
present in the next experiment. The number of consumed
resources varies according to the size and location of the
diffuse events. Fast convergences are reached with only 15
sensor reads whereas hard scenarios require more than 1000
reads. Notice that the difficult scenarios are those where the
diffuse events have overlapping areas or at least one of the
diffuse event is present in a low number of sensor (small
diffuse event). Notice that we consider a convergence only
when all the event sources of a scenario are located.

The results achieved in this first simulation show that our
approach is able to find all the diffuse event sources with
a probability of 85% when the number of reads is approx.
40% of the number of sensors, and the number of messages
is approx. 60% of the the number of sensors (line 2 of
Table III). The number of messages and reads grows linearly
with the number of sensors, while the number of failures
decreases (good scalability).

B. Quality of Convergence

In the experiments we are showing the average of the
number of reads and the average of the number of mes-
sages. However, the number or reads and messages that the
approach needs to reach the convergence, that is, to find all
the diffuse event resources in one scenario do not follow a
uniform distribution. Figure 4 shows how, for most of the
scenarios, our approach is able to reach the convergence
in less than 200 reads. The black line on the top of the
bars shows the standard deviation over 5 runs where each
runs has 3000 environment changes. More precisely, 1300
convergences of a total of 3000 are assessed with less than
200 reads, while 450 scenarios require more than 800 reads
or do not converge at all.

Figure 5 shows that similar results are obtained for the
number of messages. 30% of the convergences are reached



Figure 4. Reads histogram

Figure 5. Msgs histogram

with less than 200 messages.

C. Varying the Noise Factor

The goal of these experiments was to evaluate the per-
formance of our proposal in the presence of different noise
levels. Specifically, the noise factor γ was varied from 0 to
10.

In Table IV, we may observe how, when the noise factor
increases, the performance of the system decreases (in terms
of reads). However, when the noise level is equal to or lower
than 4, the percentage of failures decreases. That is because
the noise introduces a stochastic behaviour that increases the
exploration in the search. This increment in the exploration
increases the number of reads and messages, but produces
a better convergence (less percentage of failures). We can
also note that our algorithms is robust to noise. Indeed, even
when the noise factor is ±10% the algorithm is able to reach
the convergence, that is to detect the optimum sensor for all
the diffuse events in 75% of the scenarios.

D. Varying the Local Exploration

In this simulation we studied the performance of the
algorithm when we vary the local exploration in a noise-free

Table IV
VARYING THE NOISE FACTOR γ

γ Reads Msgs Failures
0% 397.38 651.64 15.2%
±2% 547.70 907.64 13.4%
±4% 698.31 1160.37 15.1%
±6% 776.21 1291.31 18.6%
±10% 878.73 1461.43 25.1%

Table V
VARYING THE ns PARAMETER

ns Reads Msgs Failures
1 446.41 625.68 15.4%
2 425.96 663.72 16.7%
3 397.38 651.64 15.2%
4 435.79 740.80 12.6%
5 517.21 903.14 14.1%
6 525.74 934.45 14.4%
10 752.18 1391.42 13.1%

environment. Local exploration is controlled by the number
of sensors that an agent uses to decide its next location (ns).

In Table V, we observe that even when we increase to
10 the number of requested sensors, the number of failures
is not significantly decreasing. The reason behind this result
is that the so increased local exploration is not enough to
detect all the diffuse event sources. Specifically, the global
exploration (and not the local explorations) is the main factor
of failures. As expected, the number of messages and sensor
reads increases when the local exploration is higher. From
the results of this experiment, we set the parameter ns = 3
(see Table V).

E. Varying Global Exploration

In the previous experiment we observed that, even in-
creasing the local exploration, the number of failures is not
reduced. Thus, the goal of this experiment is to reduce
the system failures by increasing the global exploration
and to measure the cost associated to this strategy. The
global exploration is controlled by the frequency (Tw) of
the sensors to create agents and the probability (Pa) to
actually do so. Both parameters can increase or decrease the
number of agents that are exploring the space at the same
time. We performed a study assessing the contribution of
these parameters to the global exploration ratio, the relation
between the global exploration ratio and system failures, and
the cost of the exploration when reducing system failures.

Table VI shows how, when the exploration rate increases
due to an increased probability Pa of creating an agent,
the number of failures decreases. However, the price is an
increment of the number of reads and messages. Similar
results are found when the frequency Tw is increased (see
Table VII). In both experiments we are increasing the
number of agents that explore the WSN. As a conclusion
of the results, Pa and Tw can be used to customize our



Table VI
VARYING AGENT CREATION PROBABILITY, Pa

Pa Tw Reads Msgs Failures
0.2 20 322.30 538.29 37.7%
0.5 20 397.38 651.64 15.2%
1 20 484.01 783.83 4.5%
5 20 654.21 1024.92 5.0%

Table VII
VARYING FREQUENCY, Tw

Pa Tw Reads Msgs Failures
0.5 5 576.26 920.21 1.8%
0.5 10 488.36 790.16 4.4%
0.5 20 397.38 651.64 15.2%
0.5 50 307.75 513.11 38.5%

approach depending of the search priority. This trade-off
between the quality of the results and the cost can be
used in order to control the priority of the search process.
Emergency situation will tend to increase the exploration
cost. We consider that even when we reduce the percentage
of failure to 5%, the number of reads and messages present
good results. Indeed, the algorithm is able to find the sensor
closest to the event with 654 reads in an environment with
1000 sensors. We consider this a good number of reads,
because first not all sensors have performed a read (there is
clearly less than 1000 reads), and second there will be only
one sensor that will send the result to the sink. In approaches
where all sensors perform a read (1000 reads), the system
still does not know which sensor is the closest to the event.
In such a case, the sensors must still decide which of them
must send the information to the sink, thus increasing the
communication cost.

Experimental results have demonstrated that, even in the
presence of a high noise level, the number of failures is
reduced by incrementing the global exploration. For in-
stance, increasing Pa to 2% and the noise level to 10% the
number of reads is 1190 and the number of messages is 1947
whereas the number of failures number is 162 (16.2%)(i.e.
same number of failures achieved without noise). Thus, the
global exploration level can reduce the number of failures
produced by the lack of sensors in the WSN or by the
presence of noise.

F. The Exploration Cost

The goal of these experiments was to measure the explo-
ration cost when no diffuse events are present in the system
(most frequent case). Specifically, we tested our approach
when different noise levels are applied. Notice that noise is
acting as false plumes that temporarily drives agents through
the WSN.

Table VIII shows how when the noise level increases from
0% to ±2%, the exploration cost increases by 50%. Thus,
we may conclude that noise increments the exploration cost.

Table VIII
THE EXPLORATION COST

Noise Reads Msgs
0% 49.28 0±0
±2% 100.22 108.74
±5% 99.46 107.87
±10% 101.78 111.05

Table IX
FAILURE TOLERANCE

Failure Prob. Reads Msgs Failures
0% 449.91 740.33 13.7%
5% 455.76 751.13 15.1%
10% 409.97 675.38 16.9%
20% 422.26 697.46 19.6%
40% 463.55 772.60 30.7%

However this increment remains constant, even when we
increment the noise to ±5%, or even to ±10%. Thereby,
our approach does not dependent on the noise level.

G. Tolerance to WSN failures

In these experiments the goal was to analyze the robust-
ness of our approach when sensors fail. To that purpose,
a probability of failure was added to each sensor. Sensor
failures are simulated as follows: just before Tw a percentage
of sensors are declared broken down (state is off). Then,
those sensors cannot be used until the next Tw interval,
where the sensors may continue to be broken or have become
fixed.

In Table IX we observe that the increment in the sensor
failures involves a decrease of system convergences. How-
ever, when exploration is increased (for instance increasing
the probability of agent creation from 0.5 to 2.0) the system
is able to decrease the failures to 47 (with an average of
reads of 705 and messages of 1145). Thus, we may conclude
that our approach reaches the convergence even with a high
probability of sensor failures.

VII. CONCLUSIONS

In this paper we have proposed a new approach, based
on a Mobile Multi-Agent technology, to detect diffuse event
sources in dynamic and noisy environments using a wireless
sensor network infrastructure. To our knowledge, this prob-
lem has not been addressed before. Our approach proposes a
distributed and decentralized algorithm based on local inter-
actions and local knowledge of the environment. Different
strategies have been designed to guarantee a low number of
agents maintaining the performance of the system.

We studied the performance of our proposal on different
scenarios: changing the density of the sensors; varying local
and global exploration ratios; applying noise to the data that
sensors gather; and subjecting sensors to failures. Experi-
mental results have shown that the presence of noise, sensor
failures, and the lack of sensors diminishes the performance



of our approach. However, it has been detailed how this
degradation can be alleviated by increasing the exploration
level. The increase of the exploration level involves a reason-
able rise on the cost to reach the convergence. Importantly, in
our approach the cost of global exploration is not dependent
of the noise level.

Because our approach is not introducing any assumption
on the sensor positions, we plan to explore its capabilities
in scenarios like underwater applications or 3-Dimension
spaces.
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