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A LEARNING STRATEGY FOR THE AUTONOMOUS CONTROL
OF TYPE 1 DIABETES

M. L. Fravolini', S. Cascianelli', and P G. Fabietti?
L Department of Engineering, University of Perugia, Italy
2De[)artment of Internal Medicine, University of Perugia, Italy

O  This article proposes a learning strategy for the control of the blood glucose in type 1 diabetes
based on continuous subcutaneous glucose measurement and subcutaneous insulin administration.
The method velies on an Iterative Learning Control strategy that exploits the approximated repeti-
tiveness of the daily feeding habits of a patient. The administration strategy for the insulin is based
on a mixed feedback and feedforward law whose parameters are tuned through a learning process
based on the day-by-day analysis of the glucose response to the infusion of exogenous insulin. The
proposed scheme is fully autonomous in the sense that it does not require any a priori information
on the insulin/ glucose response of the patient, on the amount of ingested carbohydrates, and on
the announcement of the mealtimes. A novel filtering strategy of the subcutaneous glucose signal
is proposed to provide a robust detection of the meal occurrence despite the significant noise intro-
duced by the subcutaneous glucose sensor. A specific module is proposed to detect and prevent possible
hypoglycemia events. Considering a prototype diabetic virtual patient it was showed that, thanks to
the learning mechanism, the scheme in a few days is able to bring and to maintain the blood glucose
in the normoglycemia region and that the control performance can improve over time. Long-run
simulation studies have also shown the robustness of the learning scheme in the presence of realistic
uncertainties and interpatient variability.

INTRODUCTION

Diabetes mellitus is a disease characterized by the inability of the pan-
creas to regulate blood glucose concentration. Insulin-dependent or Type
1 Diabetes Mellitus (T1DM) is characterized by the pathologic inability of
pancreatic B cells to secrete insulin. Inadequate secretion of insulin by
the diabetic pancreas results in poor maintenance of the normoglycemia
within a normal blood glucose (BG) concentration range. A research by the
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World Health Organization (WHO) estimated an adult diabetes population
of at least 350 million worldwide by the year 2030 (Wild et al. 2004). The
management of T1DM is based on the regular administration of exogenous
insulin to the patient. Typically, exogenous insulin is administrated through
multiple daily boluses injected intravenously following the measurement of
the BG concentration (Bondia et al. 2009). From a control point of view,
this approach can be classified as an intermittent feedback strategy because
measurements and control actions are performed only some times a day.
Itis well known that in the presence of significant uncertainties, time delays,
and measurement noise this strategy may produce unsatisfactory control per-
formance (Dua, Doyle, and Pistikopoulos 2009). Another critical point is
that this approach relies strongly on the interaction by the patient with the
BG measurement, dose computation, and insulin injection. This interaction
introduces, unavoidably, a “human factor” in the loop that could make the
protocol not reliable.

As a consequence, since the sixties (Clemens, Chang, and Myers 1997)
there has been considerable research interest for the development of an
“artificial pancreas” that is a possibly portable (or implantable) automated
device that continuously monitors the BG and computes and administrates
the insulin dose to the T1DM patient (Schubert et al. 1980). Very detailed
surveys have recently reviewed the state-of-the-art of glucose control algo-
rithms and monitoring systems for diabetes (Cobelli et al. 2009; Bequette
2005; Elleri, Dunger, and Hovorka 2011; Youssef, Castle, and Ward 2009).

Latest advances in technology have led to the development of con-
tinuous glucose sensors that provide reliable subcutaneous (sc) glucose
measurements at a high frequency rate (Leal et al. 2010) and to reduced-
dimensions insulin pumps for continuous sc infusion. These advancements
made feasible the development of a wearable artificial pancreas capable
of maintaining normoglycemia over extended periods. To date, several so-
called sc—sc systems have been proposed (Steil et al. 2006; Weinzimer et al.
2008).

Considering the wide set of control strategies that have been proposed
for BG control, there is today a great interest in the development of control
schemes based on artificial intelligence principles such as machine learn-
ing (Alpaydin 2004). Machine learning methodologies allow the control
device to learn, autonomously, how to control the system through the con-
tinuous interaction with the system itself while it is operating in a repetitive
mode. The Iterative Learning Control (ILC) process exploits information
from previous repetitions to improve, iteratively, the control performance
from repetition to repetition. An interesting survey study on this topic can
be found in Wang, Gao, and Doyle (2009).

In the context of BG control of TIDM, the ILC approach is deemed
appropriate because the controllertuning algorithm can exploit the



Tterative Learning Control of Diabetes 533

(approximate) daily repetitiveness of the feeding habits of a patient as the
key mechanism for the learning process. In practice, the control of the BG
response is iteratively tuned day by day, exploiting the actual response of the
patient.

There are basically two practical benefits of this strategy. The first is that
it does not require any mathematical model of the patient to be worked
out for the controller design and tuning; instead, the controller tuning is
performed autonomously exploiting the day-by-day experience. Second, the
controller is naturally personalized, meaning that the scheme learns from
the patient’s lifestyle how to keep the BG under control.

Some studies have shown the feasibility of regulating the BG in TIDM
patients via ILC methodologies. In Palerm et al. (2008) a run-to-run
approach was applied for the computation of the insulin boluses and
mealtimes. A similar approach was proposed in Good et al. (2002) to com-
pute the optimal drug dosage of anticoagulant. In these works, the control
action is typically feedforward and the parameters defining the insulin boluses
are updated only at the end of a cycle. In Wang, Dassau, and Doyle (2010),
an ILC approach was proposed in order to learn the insulin infusion rate in
the context of a model-based predictive control (MBPC). In Wang, Zisser,
et al. (2010) the same authors proposed an indirect ILC for the control of
TIDM. In Zarkogianni et al. (2011) a fuzzy logic algorithm was proposed for
the online tuning of the MBPC parameters that regulate the insulin infusion.

Unlike the studies mentioned, in this article we propose a novel mixed
ILC feedforward and feedback control strategy in which the parameters,
defining the feedback and feedforward contribution, are tuned in parallel
through an ILC procedure that is based on the day-by-day automated analysis
of the glucose response to the infusion of exogenous insulin.

The proposed mixed approach is expected to perform better that a
pure feedforward or of a pure feedback ILC control scheme. In fact, the
feedforward contribution provides an anticipatory premeal bolus having the
purpose of limiting the postprandial glucose peak while the feedback con-
tribution provides an insulin correction that is based on the continuous
BG monitoring, thus introducing robustness to disturbances. The proposed
strategy is also different from the feedforward and feedback approach pro-
posed, for instance, in Marchetti et al. (2008) and in Abu-Rmileh and Garcia-
Gabin (2010), because in these works the controllers are designed based on
a mathematical model of the patient; conversely, the proposed ILC approach
is essentially model free and the control action is learned based on the con-
tinuous interaction with the patient. A Proportional + Derivative (PD) feed-
back control with a very dominant derivative contribution has been widely
used in the management of T1IDM due to its anticipatory effects (Doran
etal. 2005; Lam et al. 2002; Zarkogianni et al. 2011). Building on this, in the
present study, we propose a simple derivative feedback control strategy.
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Furthermore, as an additional contribution, the issue of autonomous
meal detection and hypoglycemia prevention is addressed, introducing two
novel mechanisms called Meal Detention Logic (MDL) and a Hypoglycemia
Prevention Logic (HPL), respectively. Specifically, the purpose of the MDL is
to detect the occurrence of a meal from the analysis of the sc BG signal and
to classify the detected “meal event” as a breakfast, lunch, or dinner. The pur-
pose of the HPL block is to detect possible future hypoglycemia conditions
and to regulate the insulin administration accordingly.

The resulting scheme is thus fully autonomous in the sense that it does
not require any modeling information about the patient’s glucose/insulin
response and does not require any announcement information on the
mealtimes and on the estimation of ingested carbohydrates. The proposed
approach provides an important step forward compared to the ILC pro-
posed by the authors Fravolini and Fabietti (2013) whose scheme requires
the interaction by the patient to manually announce the beginning of a
meal.

The tuning parameters of the ILC scheme are the insulin bolus quanti-
ties and the gains of the feedback controllers to be used during the breakfast,
lunch, and dinnertime intervals. These parameters are iteratively learned
using a P-type ILC updating law (Chien and Liu 1996; Saab 2004).

The proposed ILC can be considered as an alternative to conventional
PID autotuning strategies that are widely used, for example, in industry
(Cominos 2002). The main difference is that the ILC exploits fully the
approximate circadian repetitiveness of the patient lifestyles as the key mech-
anisms of the learning. In addition, in the ILC paradigm it is imperative
to insert time-domain constraints. This is particularly relevant for the con-
trol of TIDM because possible violations of the normoglicemia region can
be explicitly penalized in the ILC objective function. Furthermore, the
proposed learning procedure does not require any administration of test
glucose injections to set up the controller gains (Xu and Huang 2007);
instead, the tuning is carried out during the normal feedback operation.

The overall control scheme has been evaluated in silico on a prototype
nominal T1DM adult and on a set of eight additional patients derived from
the recently developed nonlinear physiological model proposed by Dalla
Man et al. (2007). The results of long-term simulation studies are discussed
to show the efficacy and robustness of the proposed ILC scheme in the pres-
ence of uncertainty on the mealtimes, carbohydrate quantities, time-varying
insulin sensitivity on glucose utilization, and interpatient variability.

METHODS
Virtual Patient Modeling

The simulation model employed in this study was the well-known
meal-insulin-glucose physiological model recently proposed in Dalla Man,



Tterative Learning Control of Diabetes 535

Camilleri, and Cobelli (2006) and in Dalla Man, Rizza, and Cobelli (2007)
and modified by Magni et al. (2007) and by Dalla Man et al. (2007) to
take into account the subcutaneous insulin kinematics and the absence of
endogenous glucose production in T1DM patients. The model has been
recently approved by the American Food and Drug Administration as substi-
tute for animal trials in preclinical testing of a closed loop control algorithm
(Kovatchev et al. 2009); for this reason this model is deemed particularly
appropriate for our study.

Modeling of the Subcutaneous Glucose Sensor

The proposed control scheme relies on the continuous measurement
provided by an sc blood sensor. Interstitial blood glucose fluctuations are
related to BG via a diffusion process, this leads to a number of modeling
issues, including time lag, distortion, and calibration errors that need appro-
priate mitigation, filtering, and prediction (Cobelli et al. 2009). It is a
recognized fact that the glucose measurement is a major limiting factor
in the development of continuous feedback systems for diabetes control
(Klonoff 2005), and a number of studies have been dedicated to the investi-
gation of this important issue (Boyne et al. 2003; Kulcu et al. 2003). In this
work, the sc sensor was modeled as a first-order diffusion model with a time
constant of T = 10 min as proposed by Abu-Rmileh et al. (2010), plus, an
additive sensor noise described by the stochastic model proposed by Breton
and Kovatchev (2008) and by Kovatchev et al. (2009). The model relating
the BG to the noisy measurement of the sc glucose is summarized below:

dGe(t) 1 .
= (G — Ge1)

e(k) =0.7(e(k—1) + ¢ (k)),

6(1) = £ + Asinh (MT_V)

(1)

G(1) = Gie (1) +0(1)

where Gy (¢) is the sc glucose, Gy(?) is the blood glucose, G(¢) is the sensor
reading, and 0 (k) is an added, colored, non-Gaussian sensor noise generated
using an autoregressive moving average (ARMA) model. The ARMA model
is driven by ¢ (k), which is a white noise with zero mean and unity covariance
and &,y ,A are the Johnson transformation parameters. Based on experimen-
tal tests, Kovatchev et al. (2009) concluded that this model was accurate
enough for simulation purposes of TIDM control schemes. A detailed review
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on commercial glucose sensors and on BG sensor calibration algorithms can
be found in Rossetti et al. (2010).

The Proposed ILC Control Scheme

The proposed control architecture is shown in Figure 1. The inner
loop consists of a feedback controller Uf;(¢) (a derivative contribution in
this study) that regulates the insulin infusion rate as a function of the
current value of the derivative of the (filtered) tracking error of the BG
concentration.

The direct control path features the HDL as an additional module
that activates in case a hypoglycemic condition is detected. The HPL block
decides whether to interrupt the insulin injection or to limit its rate to the
basal value Utgql.

The MDL block monitors the insulin and BG signals with the purpose of
detecting the occurrence of possible meals. The MDL output information
is used by the outer loop (the ILC module) to coordinate the control and
learning actions. The proposed learning scheme can be classified as a mixed
direct-indirect approach. The direct part manages the adaptation of the
parameters characterizing the feedforward bolus profile U whereas the indi-
rect part manages the adaptation of the gains of the feedback controller K.

Design Specifications

The objective of the control is to keep the intraday BG concentration
within a desired range in presence of uncertainty. In Wang, Dassau, and

lterative
— Learning
Algorithm

Meal Detection & Classification

MDL

.. |Feedforward| .’
— Controller” U,
d } L
G, g

N E | Feedback |~ A U
+ Y- Controller” Y

> lu,
Gf » |

Filter

A HPL Hpatient— Seecse H G
G

basal

G,
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FIGURE 1 The proposed architecture. The inner loop consists of the feedforward and feedback con-
trollers and of the hypoglycemia prevention logic. The outer loop consists of the meal detection logic
and of the iterative learning control module.
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Doyle (2010) hyperglycemia was defined as a BG concentration greater than
180 mg/dL and significant hypoglycemia was defined as a BG concentration
of 60 mg/dL; a BG concentration in the range between 60 and 180 and
mg/dL was considered as the safe range for the control of TIDM. The same
range was also assumed in the present study to assess the closed-loop control
performance. In this study, it was assumed that the patient takes a defined
number of meals a day; specifically, we considered three meals: breakfast,
lunch, and dinner at nominal times [8, 13, 20] = [t;, to, t3]; these times
define implicitly the meal intervals: [8-13, 13-20, 20-8] = [AT;, ATy, ATs].

The Control Algorithm

This section describes the operations of the blocks in Figure 1. To sim-
plify the explanation, assume for the moment that the meals times [t], to,
t3] were known. The data acquired during a generic meal interval AT;
(¢ = 1,2,3) are used to drive the learning process for the parameters of the
feedback and feedforward controllers that will be applied in the same AT;
interval the next day. The proposed scheme allows independently adapting
for the parameters of the controllers in the three intervals of the day, which
allows, in turn, taking into account possible physiological variation in the
meal-glucose-insulin response in the different meal intervals.

During an interval AT;, the administered insulin consists of three contri-
butions: a basal (Upasal;) , @ feedforward (U, (¢, k)), and a feedback (Uyy, (¢, k))
component:

(-]tOt,'(t> k) = Ubasal + Ubi(t> k) + l]fbi(ta k) 2 = 1; 2, 3 (2)

The quantities in Equation (2) represent insulin administration rates and
are expressed in insulin units/hour (U/h); the integer k indicates the day
index (repetition cycle index) and ¢ (0 < t < 24) indicates continuous
intraday time.

The Basal Contribution

The Upasal contribution is a constant basal infusion rate that is designed
to keep the fasting BG concentration of the TIDM patient at a nominal
fasting steady-state value.

The Feedforward Contribution

The feedforward Uy, (¢, k) contribution is a bolus of insulin that is admin-
istrated at mealtime #; whose infusion duration is fixed at At (10 min in
this study). The bolus infusion rate is computed according to the formula:
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Upi(t, k) = (Uhoi + AU (k) /ATt < t < t; + Aty 1 =1,2,3, (3)

where the Uyo,i = 1,2, 3 are fixed baseline doses that may take into account
therapeutic indications when available. The increments AU, (k) are iter-
atively adjusted following the learning procedure described in the next
sections. In practice, as will be explained shortly, the bolus is activated as
soon as the occurrence of a meal is detected at time #; by the MDL block.

The Feedback Contribution

Because the feedback control contribution is based on the noisy mea-
surement of the glucose sc signal, it was necessary to filter the sensor noise
in the G(¢,k) before employing the signal in the feedback control law
(Saracino, Facchinetti, and Corbelli 2010). A first-order unit gain low-pass
filter was used:

D~ L6t — G m) 4
dt - Tf ’ f b 2

where Gy (1, k) is the filtered sc glucose signal and {/is the filter time constant

that was fixed at 10 min in this study. Define now the (filtered) sc blood

tracking error as: E(1, k) = Ger(t, k) — Gy (1, k) where Gieg(Z, k) 1s the desired

reference for the Gy(¢, k) signal (110 mg/dl in this study). The proposed

feedback insulin infusion rate is computed with the following derivative law:

Uy, (t, k) = max (—Upasar, Kdi (k) - E(1,k)) ; <t < ti1i=1,2,3,  (5)

where E(t,k) is the time derivative of the filtered error signal that was
computed using the incremental ratio of E(¢, k). The gains Kd;(k) in
Equation (5) are constrained to be negative so that the insulin admin-
istration is active (Kd;(k) - E(t, k) is positive) in the time intervals when
E (¢, k) < 0, namely, when the Gy (¢, k) is increasing. Note that Uy, (1, k) is
allowed to be negative but not smaller than the basal infusion rate Uy The
initial value, at day k = I, for the feedback gains are set to Kd;(1) = Kdy;.
The choice of the pure derivative control law in Equation (5) instead of a
typical PID control law was based on the considerations made, for example,
in Carmen et al. (2005) and in Lam et al. (2002) where, in similar applica-
tions, a PD control with heavy emphasis on the derivative term was proposed
so that the derivative action dominates the control input during the rise
and fall of the BG. The motivation of this approach is that, whereas a pro-
portional controller infuses significant insulin quantities only for high BG
levels, heavy derivative control predicts the approach of a high BG level from
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the steep gradient and infuses insulin preventively, thus enabling a faster
response to the increasing BG.

Hypoglycemia Prevention Logic

It is a well-known fact that hypoglycemia is very dangerous for a
TIDM patient, especially if it persists for long periods. In order to limit
the occurrence of hypoglycemia, a specific HPL was designed. In T1DM,
hypoglycemia typically occurs in case an excessive amount of insulin is
injected compared to the ingested quantity of CHO. The HPL stops the
insulin injection if it detects the approach of a hypoglycemic condition.
The HPL block is governed by a rule-based inference engine that decides
whether to inhibit the insulin infusion. The HPL is governed by the
following two laws:

e Rationale for Law-1: If G(¢, k) is decreasing and its value is below a safety
threshold (80 mg/dL), then the overall administration is stopped. This
action clearly limits the administration of insulin in case the patient is
reaching hypoglycemia. The following law is applied

if G(1,k) < 0and G(1, k) < 80 then Uy, (¢, k) = 0. (6)

® Rationale for Law-2: The overall administration is stopped in case G(¢, k)
is below 60 mg/dL also in the case G(t, k) is increasing. The following law
is applied

if G(¢, k) < 60then Ui (2, k) = 0. (7)

Meal Detection Logic

In this study, it was assumed that meal announcement information
(times ty to t3) are not requested; this implies that the meals’ occurrences
have to be estimated, online, from the available signals.

Because the occurrence of a meal typically causes an increase of the BG
concentration, the slope of the (filtered) time derivative Gf(t, k) was, here,
employed as the basic signal for meal detection. A well-known problem asso-
ciated with the employment of the filtered derivative of the sc signal for
meal detection originates from the significant noise superimposed to the sc
measurement. To limit the occurrence of false meal detections, we propose,
here, a nonlinear filtering of the Gf (¢, k) signal that de-emphasizes the ampli-
tude of this signal in the periods that are distant from the nominal mealtimes
t;, while it keeps the signal unchanged around the nominal mealtimes. This
filtering strategy produces a robustified signal that is maximally sensitive to
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the glucose increase in the time intervals when the meal occurrence is likely.
To implement this mechanism, the following robustified signal is defined

Grobust (1, k) = Gr(t, k) - p(1, k), (8)

where p(¢, k) is a sensitivity function that weights the “probability” of a
meal occurrence along the 24 hours. In this study, p(¢, k) was defined
as a combination of bell-shaped functions centered around the nominal
mealtimes:

_u=p? _t—)? _=13)?

p(tLk) =sat|a+ (1 —a)le 24 2 4, @ 1), (9)

where sat[x(¢), M] is the saturation of the function x(¢) at amplitude M. Itis
immediate to verify that o < p(¢,k) < 1, where the parameter o represents
the minimal allowed sensitivity in the 24 hours and o; defines the width of
the sensitivity period around the nominal ith mealtime. Figure 2 shows the
function p(¢, k) employed in the simulative section of this article.

p(t.k)

0‘3 1 1 1 1 1 1 L 1 1 1 1 1 1 1
012 3 456 7 8 8101112131415 161
[h]

718 19 20 21 22 23 24

FIGURE 2 Sensitivity function p(¢,k) for [ty,te,ts] = [8,13,20], « = 0.4 and o; = 0.707h.
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The detection of a meal is based on the following binary signal, which is
derived from the robustified sc filtered BG:

1 Grobust(ta k) > thresholdG

0 otherwise ’ (10)

.Gbinary(t’ k) = {

where thresholdg is a user-defined value that is tuned such that, in the case
that Grobust(t, k) exceeds this threshold, this means that a meal has reason-
ably occurred or it is still occurring. According to this logic, a meal event
occurs in correspondence to the rising edges of the Gbinaly(t, k) signal. The
estimated mealtimes are thus defined as

lmeal = rising — edges (Ginary (4, k) . (11)

The next step, following the detection of a generic meal event at ¢ =
Imeal, 1s the assignment of the meal to one of the three possible classes: break-
fast, lunch, or dinner. The class assignment, here, was based on a temporal
distance criteria: following a detection, the temporal distances d; from the
nominal mealtimes (d; = |tmeal — 4] = 1,2,3) are computed, then, fyeql is
assigned to the meal leading to the smallest d; (i = 1: “Breakfast”; ¢ = 2:
“Lunch”; ¢ = 3: “Dinner”). The output of the MDL block is, thus, a three-
valued logic signal (11, %,1;) that triggers the beginning of a specific meal
interval that lasts until the detection of the next meal event.

The detected mealtimes are used, in practice, for the online computa-
tion of Equations (1-7) in place of the nominal values ¢, to, 5. This scheme,
although simple, proved to be very effective and robust in simulation. Other
interesting meal detection strategies were proposed also in Lee et al. (2009)
and in Wang, Dassau, and Doyle (2010).

Note 1: Considering the minimal meal sensitivity coefficient @ in the
sensitivity function (9), its value should be selected carefully because a very
small & can make the system insensitive to overtime meals; therefore, a com-
promise value should be selected to ensure a reduced number of false alarms
while maintaining a sufficient meal sensitivity. In practice, in the experi-
ments we experienced that it is not critical to define an effective compromise
sensitive function (see Figure 3).

Iterative Learning of the Controller Parameters

In this study, the so-called P-type learning approach (Chien and Liu
1996; Saab 2004) was applied for updating of the controller’s parameters
that are the feedforward insulin boluses A Uj, (k) and the feedback controller
gains Kd; (k).
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FIGURE 3 (a) The evolution of the BG signal G;(t,70) (dotted line), of the s.c measured signal G(t,70)
(solid line), the meal “disturbances” and the meal detection signal for Scenario S1 during day 70. (b)
The evolution of the overall control signal Uy, (¢,70).

The learning strategy works as follows. Considering a generic day k and
a generic detected meal period A?} =11 — 1;i=1,2,3, the controllers are
updated at the end of AT; so that the parametric values that will be used
the next day (k+1), in the same time interval AT;, are those applied in the
current day (k) plus a contribution depending on a performance measure
A;(k) that qualifies the system response in the period AT; at day k. The
resulting incremental learning rules for the tuning parameters are
AUy (k+1) = AU, (k) +np, - Ai(R) .
Kdi(k+1) = Kdi(k) +mp, - Ay = 0% (12)
where the gains ng; and n;; represent are learning rates; the larger these
gains are, the more significant is the effect of the current performance
A;i(k) on the learning process. The performance function Ai(k) in ATZ- is
measured as a function of the response of the Gy (¢, k) and of the E(t, k) sig-
nals in that period. In detail, the following quantities are used to measure
the performance: maximum glucose Gpax; (k), minimum glucose Gpip, (&),
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maximum error Fp,y, (k), minimum error Fy;y, (k) and terminal error at end
of the period E(tiy1, k).

In this study it was assumed, only for the purpose of controller’s tun-
ing, that the target interval for the filtered sc glucose is 80 < G (¢, k) <
170 mg/dL (note that this interval is tighter than the range previously
selected for performance evaluation, which is 60 < G(¢, k) < 180 mg/dL).
The following strategy defines the performance function A; (k).

® In case, during A T;, the control keeps the glucose within the desired range
80 < Gr(t, k) < 170, then the objective of the learning is focused on reduc-
ing the terminal value of the tracking error E (141, k). In this case, the
performance function is defined as: Ai(k) = E(liz1, k).

e In case the control, in some subintervals of ATi, is not able to keep the
glucose in the range 80 < Gy (1, k) < 170, then the tuning is focused on the
recovery of the safety range for Gy (¢, k) rather than minimizing E(lis1, k).
In this case, A;(k) is computed as a combination of the maximum and
minimum error according the following rules.

If Ginax, (k) = 170 and Ginin, (k) = 80 A;(k) = 2 - Emax, (k) + Ein, (k).
Imeaxi(k) < 170 and Gmini(k) <30 Al(k) = Emaxi(k) +10- Ernilli(k)-

Imeaxi(k) = 170 and Gmin,-(k) < 80 Az(k) =2 Ema_xl(k> +10- Emmz(k)
(13)

Note that in Equation (13), a larger gain is assigned to the violation of the
hypoglycemia threshold compared to the gain associated with the violation
of the hyperglycemia threshold, because the correction of hypoglycemia is
considered a priority over hyperglycemia.

RESULTS

A set of virtual patients and the ILC scheme were implemented in the
MATLAB/Simulink environment (Mathworks 2009); a software interface
was also developed to set up the parameters that characterize the virtual
patients and the controllers.

Virtual Patient Modeling and Control Setup

The proposed ILC was first applied to a prototype TIDM patient that
was simulated using the model and the parametric settings given in Dalla
Man, Rizza, and Corbelli (2007) and in Magni et al. (2007); in particular, it
was considered that an adult of 50 years, 1.75 m in height, weighting 80 Kg,
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whose glucose-to-insulin sensitivity is 10.8 mg/dL/U (the glucose-to-insulin
sensitivity is the maximum glucose drop due to 1 U of insulin). For this
patient, the daily Basal Metabolic Rate was computed according the Mifflin
rule (Mifflin et al. 1990); and a diet with a 50% content of carbohydrates
(resulting in 182 grams/day) was assumed and 4 Kcal for a gram of CHO
was considered. The nominal times for the three meals were fixed at [8, 13,
20] = [t1,te,t3]. The daily CHO amount was partitioned for the three meals
according to the percentage: [25%, 37.5%, 37.5%]. The nominal need of
daily units of insulin (40 U) was set assuming a need of 0.5 U/Kg (Doran
et al. 2005). The 50% of this daily insulin was continuously administrated
through the basal contribution Upas and the remaining 50% was divided
in 3 fixed bolus contributions Uy, ¢ = 1,2, 3 according to the percentage

[25%, 37.5%, 37.5%].

ILC Setup

The learning algorithm, the HPL, and the MDL blocks were set up
as described in the previous sections. As for the learning process, it was
assumed that no prior information on the patient is available, therefore, in
Equation (12) atday k = 1, it was set at AU, (1) = 0 and Kd;(1) =0 for i =
1,2,3. The glucose reference Gyer(k) was set at 110 mg/dL.

The learning rates in Equation (13) were chosen so that the tuning
parameters reach almost stationary values in about a week. Following this
guideline, the values were fixed at 7, = 0.024 and ng = —0.005 based on
simulations. Note that 74 is negative since a positive A;i(k) should produce
a negative increment of the Kp; gain. Higher values for the learning rates
are not recommended because, in that case, the ILC tends to track the daily
fluctuations in the CHO quantities producing overcorrection and/or under-
correction in the administrated insulin. As for the meal detection threshold
in Equation (10), this was fixed at 0.4 based on simulative analysis and the
parameters defining the sensitivity function p(t, k) in Equation (9) were
fixed at 0; = 0.707 and o = 0.4. These settings were chosen as a compro-
mise solution between a good meal sensitivity and a low level of false alarms
(see Note 1).

Control Scenarios

To evaluate and compare the efficacy of the three control contributions
in Equation (1), the following control scenarios were analyzed:

® S1: Feedback + Feedforward + HPL+MDL.
e S2: Feedback control only + HPL+MDL.
® S3: Feedforward control only + HPL+MDL.
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Scenario S1, which exploits all three contributions, is considered as the
reference baseline scenario.

Ideal Conditions

In the first set of experiments, ideal conditions were assumed; in other
words, the mealtimes and the CHO amounts for the three meals were
assumed constant over time. Quantitative results obtained for the three
scenarios derived from long-run simulations of 100 days are reported in
Table 1. To avoid the effects of the transients, which typically dominate the
first days, the quantitative analysis was restricted to the data collected from
the 10th to the 100th day. For each scenario, the percentage of time the
patient is in hypoglycemia (%-hypo) and in hyperglycemia (%-hyper) was
computed, and the corresponding mean durations of the hypoglycemia and
hyperglycemia events. The mean value of the daily BG and of the overall
units of administrated insulin is also reported.

To assess the control performance of the scheme the so-called control
variable grid approach (CVGA) with the grid partition proposed by Magni
et al. (2009) was adopted, where regions A and B means good BG control,
regions C and D means over corrections of hypoglycemia/hyperglycemia,
and region E means erroneous control (Zarkogiovanni et al. 2011). The
CVGA section of Table 1 reports the days, expressed in percentages; the
control performance belongs to one of the five regions.

The efficacy of the MDL was measured computing the number of missed
meal detections (N°-miss), the number of false meal detections (N°-false)
and the number of correct meal detections (N°-corr). Finally, the mean meal
detection delay was also computed, which is the mean time between the
beginning of a meal and its detection.

Uncertainty on the CHO Quantities

To evaluate the robustness of the control scheme in compensating for
uncertainties, a study was carried out that considered increasing levels of
uncertainty on the meals times and CHO amounts. In this study, we consid-
ered uncertainty as having amplitudes comparable with those considered in
Wang, Dassau, and Doyle (2010). In a first study the mealtimes were assumed
fixed to the nominal values ¢; and uncertainties ranging from +10% to +60%
of the nominal CHO amounts for the three meals were considered. These
uncertainties were induced by adding, to the nominal CHO, uniformly dis-
tributed random variables in the interval [£10%, +60%]. Results achieved
for the baseline control scenario S1 are reported in Table 2 (upper).
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Uncertainty on the Mealtimes

In this experiment, the CHO amounts were assumed fixed to the
nominal values while uncertainties ranging from £10 to 60 min were con-
sidered, adding independent uniformly distributed random variables to the
nominal ¢. Results for control scenario S1 are reported in Table 2 (lower).

Joint Uncertainty on the Mealtimes and CHO Amounts

In a realistic context, both the mealtimes and CHO amounts can vary
independently, therefore, it is of interest to evaluate the performance in
presence of joint uncertainties. An analysis was carried out considering max-
imum uncertainties of & 40 min on the nominal mealtimes ¢; and maximum
uncertainties of & 50% on the nominal CHO quantities for the three meals.
These ranges are deemed to be adequate to capture realistic uncertainties
(Wang, Dassau, and Doyle 2010). This challenging context is particularly
suited also for the evaluation of the efficacy of the HPL block; for this rea-
son it was introduced as an additional control scenario in which the HPL is
disabled (only for comparison purpose):

® S4: Feedback + Feedforward + MDL, HPL (disabled).

Quantitative results for the scenarios S1, S2, S3, and S4 are summarized in
Table 3 (upper).

Time-Varying Insulin Sensitivity

Previous studies were carried out assuming a constant glucose-to-insulin
sensitivity for the virtual patient. In practice, the insulin sensitivity can vary
due to many endogenous and exogenous causes, therefore, it is of interest
to evaluate the performance of the learning control scheme assuming time-
dependent insulin sensitivity profiles.

Considering the adaptation properties of the ILC scheme, it should be
noticed that, because the duration of the repetition cycles is 24 h, the pro-
posed learning scheme is not suitable to compensate for dynamic changes
having a shorter period, such as intraday insulin sensitivity variations. This
fact can be appreciated when observing that the scheme requires a horizon
of some days (repetitions) to reach the almost steady-state values both for the
feedforward and for the feedback control gains (see Figure 5). It should be
also observed that, due to this limitation, an increase of the adaptation learn-
ing rates in Equation (22), in the attempt to track fast dynamics, might be
ineffective and even dangerous, causing excessive oscillations in the control
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signal. For these reasons, the following analysis was carried out consider-
ing dynamic changes with a period longer than one day. The effects of
a time-varying insulin sensitivity were simulated by varying the parameter
expressing the insulin effect on glucose utilization. In the first study, a linear
variation of the parameter was introduced along the 100 days starting from
—-60% and reaching +60% the last day.

In a second study, a sinusoidal variation with amplitude 60% of the nom-
inal value and a period of 10 days was superimposed to the nominal value.
The two control scenarios are defined as follows:

e S5: (Feedback + Feedforward + HPL+MDL) + Linear variation of the
insulin sensitivity from —60% to +60% in 100 days.

® S6: (Feedback + Feedforward + HPL+MDL) + additive sinusoidal vari-
ation of the insulin sensitivity with amplitude 60% of the nominal value
(period 10 days).

In scenarios S5 and S6, the same joint uncertainties used in S4 were applied
for the mealtimes and for the CHO amounts. Table 3 (lower) reports the
results for scenarios Sb and S6.

Comparison with a Standard PD Control Strategy

The performance of the ILC controller was also compared to those
of a standard fixed gain PD controller assuming that the feedforward pre
meal boluses and the basal insulin are fixed to the nominal values while the
joint uncertainty for the mealtimes and for the CHO amounts are the same
of S4. The implemented PD control law was defined as follows: Upp (¢) =
max (— Ubasal, Ky - E(1) + Ky - E(t)). Because the system under investigation
is strongly nonlinear with an hard constraint on the sign of the control
signal, the tuning of the PD controller was performed by trials and error
through a simulation study. The starting value for the derivative control gain
K, was fixed at the mean value achieved in scenario S1 while the propor-
tional gain K, was incrementally decreased starting from zero. The objective
of the tuning was to select a PD controller that maintains the glucose concen-
tration in the desired range most of the time avoiding, as much as possible,
long periods of hyperglycemia and hypoglycemia. The values selected for
the gains were K, = —0.05 and K; = —5. The following scenario is defined
for the standard PD control:

e S7: PD control: U = Ubasat + Uy + Upp (1) (HPL disabled, bolus adapta-
tion disabled, MDL enabled).
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It should be noted that Scenario S7 (still) requires the operation of
the MDL block to detect meals and to command the administration of the
feedforward insulin bolus. Results for scenario S7 are reported in Table 3
(lower).

Comparison with a Manual Feedback/Feedforward ILC

In the case when one renounces to the autonomy of the ILC scheme,
allowing the interaction by the patient to indicate the beginning of the meal
intervals, then, the scheme simplifies because the MDL block is no longer
necessary with the important advantage that the meal detection delay and
false alarms are zeroed. Therefore it is of interest to evaluate the possible per-
formance improvement produced in the case of a “manual” ILC operation
comported to the fully autonomous scenario S1. The following “manual”
scenario is defined:

e S8: Feedback + Feedforward + HPL (MDL disabled: the beginning of the
meals is manually indicated by the patient).

In this scenario the feedforward bolus A U, (k) is injected as soon the patients
announces the beginning of the meal; results for scenario S8 are reported
in Table 3 (lower).

Interpatient Performance

A final study was performed examining the interpatient performance.
For this purpose, a set of additional eight virtual diabetic subjects was imple-
mented with the parametric values in the ranges suggested by Kovatchev
etal. (2009). The main features of the nine subjects are reported in Table 4;
these represent a significant class of subjects characterized by a large spec-
trum of the glucose to insulin sensitivity index. The performance achieved
in case on joint meal and CHO uncertainty are reported in Table 5.

TABLE 4 The main features for the nine subjects. The glucose-to-insulin sensitivity is defined as
maximum glucose drop due to 1 U of insulin

Subject 1 2 3 4 5 6 7 8 9

Glucose to insulin sensitivity 10.8 13.2 8.7 4.5 5.5 3.5 28.9 34.6 23.6
(mg/dL/U)

Nominal Daily Insulin (U) 39.8 26.1 59.3 39.8 26.1 59.3 39.8 26.1 59.3

Nominal Daily CHO (g) 181.6 150.8 2255 181.6 150.8 2255 181.6 150.8 225.5




G'G% 696 I 9 0 ¥81 Il &9 €9 06¢ 166l 6’99 ¥e 1ag o 6-d
196 896 4 11 g¢ 088 611 9¢€9 ¢ T0¢ 6921 108 89 0°3¢ 70 8-d
8¢ 896 ¢ 6 0 605 9¢ 90, 19 9%6¢ §Vel §YL ¢'g 'eg G0 Ld
10T L96 3 11 0 0%l 0 €@ L¥ 664 1061 00T 'L 608 90 9-d
L@l 998 ¥ 81 g01  @'s6F 0 80y 99 98 L0sT ¥ell RNt 8'46 8'¢ ad
0L L96 3 91 6'¢ 906 0 904 09 LSL 666l 1’601 ¥'6 6°L9 60 d
1’08 696 I 8 00 LS 0@ 806 9¢ &I L7061 G'SL 0¢ 'r9 60 6d
T'L3 L9g 3 ql 8¢ T¢s 8@ €99 0¢ Le09  T'18l I'16 L8 1911 L0 ¢d
0'9¢ 896 ¢ I 0 L9491 TIL Leg g6l 909 G081 6’18 69 9°¢L 60 (reurwou) 1-g
(urur) 10D N SSTW N S[EI N %A %d %D %9 %v (1) (Ip/Suw) (urur) 1adig (urur) odAH 9 juaneq
Kepp 10Qq urmnsuy 9 JeIn( uean A JeIn( uean
uondA(] [N (VOAD) 20UBULIOIdJ [0IIUOY) SUBI eruwaoA[Srod4Hy eruao4[SodAR]

Aep U] o) WOIJ SUNILIS BIBP SIIPISUOD
sisd[eue oy 1, ‘stuaned auru o) 10J [§ OLIBUIIS 10] (% (GF) siunowre OHD Yl UO Pue (UIW (o F) SoWN[edw 2y} uo Aurerrddun juiofJo ased oy ur HNsoy § FIIV.L

552



Tterative Learning Control of Diabetes 553

DISCUSSION

Before discussing the results it is useful to analyze the operation of
the proposed ILC strategy during normal operation. For this purpose, in
Figure 3 it is shown the evolution of the BG signal G;(¢,70) (dotted line),
of the sc-measured signal G(¢,70) (solid line), of the administrated insulin
and of the meal detection signal during a sample day (day 70) in case of
Scenario S1. Specifically in Figure 3, two consecutive meal “disturbances”
cause the increase of the BG. The MDL, following a short delay, detects the
occurrence of the meals classifying the first as a breakfast and the later as a
lunch. Immediately after the detections it is enabled the administration of
the breakfast and of the lunch boluses respectively (Figure 3(b)). In these
periods also the feedback derivative controllers continuously inject their por-
tion of insulin. Note that at time 70.77 G(t,70) falls below 70 mg/dL and the
HPL stops immediately the injection of insulin. It should be also noticed that
the oscillations in the administrated feedback insulin arise from the sc sen-
sor noise. This effect could be easily reduced by increasing the filter time
constant associated to the Gy(t, k) filter at the price of causing a delay in
the control action that could weaken the typical anticipatory effects of the
derivate control strategy. However it should be also observed that, thanks
to the natural lowpass filtering property of the insulin-glucose system, the
control signal oscillations do not have any practical effect on the actual
GB concentration G;(¢,70) that remains substantially smooth. Therefore
the current setting of the Gr(¢, k) filer is deemed adequate for the current
application.

As for the MDL operation, Figure 4(a) shows the evolution of the of meal
sensitivity signal p(¢, k) at day 89. As expected the sensitivity is low (40%) in
the time interval that is far from the nominal mealtime, while reaches the
100% around the nominal mealtime. Figure 4(b) shows the evolution of
the Cf(t, 89), of Crobust(t, 89) and of the meal detection binary signal. It can
be observed that, far from the meal, the signal Crobust(t, 89) remains well
below the threshold while the Gf(t, 89) signal causes two false meal detec-
tions before time 89.30. As the nominal mealtime approaches the signal
Grobust(t, 89) get closer to Cf(t, 89) and from time 89.35 the two signals are
almost undistinguishable. Both signals detect the “true meal” at time 89.375,
thus proving the efficacy of the proposed scheme in preventing false alarms
without penalizing the meal detection capacity.

Ideal Conditions

Results in Table 1 indicate that control scenarios S1 and S3 are par-
ticularly effective in fact no hypoglycemia and moderate hyperglycemia
episodes (less than 0.7%) were observed, while, in case of pure feedback
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FIGURE 4 (a) Evolution of the meal sensitivity function p(¢,89) at day 89. (b) Evolution of the signal
Gy (t,89) (dotted line), of Gypyst (1,89) (solid line) and of the binary meal detection signal.

control (scenario S2), a significant degradation results in the control of
hyperglycemia (%Hyper about 4%). Last consideration revels, implicitly, the
importance of the feedforward bolus in decreasing the number of hyper-
glycemic events even if the bolus is administered following a mean meal
detention delay of about 25 min. As for the performance of the MDL block
this resulted particularly effective in fact all the 270 meals were correctly
detected without false alarms or wrong detections.

In Figure 5(a), it is shown the evolution of the BG and of the measured
sc BG signals along with the meal detection binary signal tye, computed by
the MDL for the first 5 days. Note that, following an initial transitory phase,
the BG enters and remains within the desired range 60 < G;(t, k) < 180
mg/dl. Figure 5(b) shows the adaptation of the feedback controller’s gains
Kd; (k) for the three time intervals AT;, AT, and ATj;. It can be observed
that the gains stabilize to almost stationary values in about a week; similarly,
Figure 5(c) shows the adaptation of the total amount of the feedforward
insulin bolus Uy (k) for the three meals. The ripple superimposed to the
Kd;(k) and Uy (k) signals originates, mainly, from the stochastic sc sensor
noise. As for the control performance the CVGA produced results mainly in
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the A and B regions proving that the control performance can be deemed
satisfactory for the three scenarios. In conclusion, for this ideal context,
results indicate that control scenario S1 and S3 are the most effective reveal-
ing that a bolus based feedforward control might be sufficient to provide a
good BG control. This fact is not surprising since the effect of the feedback
control is expected to be important mainly in presence of uncertainties.

Uncertainty on the CHO Quantities

Considering the study dealing with the uncertainty in the CHO amounts,
data in Table 2 (upper) highlight a remarkable robustness of the scheme
in avoiding hypoglycemia in fact no event was reported even for a + 50%
uncertainty. An almost linear worsening effect was instead observed for the
hyperglycemia compensation performance; for instance, an uncertainty of
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+60% produced a 8.9 %-hyper index. Note that the daily mean BG and
the mean meal detection delay do not increase with the amplitude of the
meal uncertainty. The scheme shows also a remarkable robustness in terms
of meal detection ability and avoidance of false alarms; conversely there is an
increase of the mean duration of the hyperglycemia events with the increase
of the uncertainty.

Uncertainty on the Mealtimes

As for the study dealing with the uncertainty in the mealtimes, data in
Table 2 (lower) confirm the efficacy in avoiding hypoglycemia for uncer-
tainties smaller or equal to £30 min, while modest hypoglycemia events
appear only with uncertainties larger than £40 min. The good performance
in terms of hypoglycemia prevention has an impact on the capacity of com-
pensating for hyperglycemia that indeed produced a %-hyper time indexes
ranging from 4.4% to 8.4%. This fact can be rationally explained noting
that in Equation (13) it was intentionally decided to assign a higher penalty
to the violations of the hypoglycemia threshold compared to the penalty
assigned to hyperglycemia violation. The logical effect is that the learning
algorithm “favors” hyperglycemia events in order to prevent, as much as
possible, hypoglycemia. A more balanced performance could be achieved
by decreasing the hypoglycemia penalty at the cost of increasing the occur-
rence of hyperglycemia. Because of the uncertainty in the mealtimes, it is
also observed that the scheme is no longer able to avoid false meal detections
whose number, indeed, increases with increasing uncertainties; conversely,
the scheme is still able to detect correctly all the meals.

Joint Uncertainty on the Mealtimes and CHO Amounts

Considering the case of joint uncertainty on the mealtimes and on the
CHO quantities (Table 3, upper), the best performances were achieved
in the control scenario S1. In more detail, S1 is better than S2 in the
hypoglycemia management, in fact, S1 produced a remarkable 0.3%-hypo
time index whereas S2 and S3 produced a much higher value of 2.0% and
1.1%, respectively. For S2 and S3, the extension of the mean time duration
of the hypo events is also noticed. The evolution of the BG in scenario S1 is
shown in Figure 6(a).

The comparative analysis of the results reveals that, in contrast to
the ideal case (Table 1), the performances of scenario S1 are definitely
better than those of control scenarios S2 and S3. This fact is impor-
tant because it proves the superior performance of the proposed mixed
feedback/feedforward strategy in compensating for realistic mixed uncer-
tainties compared to a pure feedback or to a pure feedforward control
scheme.
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FIGURE 6 (a) The BG response G;(¢) in the first 30 days for the Scenario S1. (b) Scenario S5. (c)
Scenario S6.

Considering scenario S4, the disabling of the HPL block causes the %-
hypo time index to increase from 0.3 to 1.8, while the %-hyper index remains
substantially unchanged. This fact highlights the efficacy of the HPL block
in decreasing the hypoglycemia events without increasing, significantly, the
occurrence of hyperglycemia.

As for the performance of the MDL, a satisfactory robustness of the meal
detection algorithm is still observed in terms of the high number of correct
meal detections, the small number of missed meals, and the limited number
of false meal detections; a small increase in the mean meal detection delay
compared to the ideal case is also noticed.

In conclusion, considering the significant magnitude of the joint uncer-
tainties and the fact that the control performance falls mainly in the A, B,
and C regions, the robustness of the control scenario S1 can be considered
acceptable and comparable with the results reported for example in Wang,
Dassau, and Doyle (2010).

Note 2: A deep analysis of the operation in scenario S1 reveals that one
possible cause of the hyperglycemia originates from the false meal detec-
tions that enable, incorrectly, the administration of unnecessary boluses of
insulin. However, it should be also observed that, in the event the HPL
block detects the approach of hypoglycemia, the administration of insulin is
immediately stopped. Therefore, the HPL block also provides a natural and
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effective remedy to counteract the effect of the false alarms that unavoidably
can occur in a completely autonomous conduction.

Note 3: As a general observation, considering the performance of the
ILC scheme in the first days (see Figure 5), the initial transitory is strongly
influenced by the conservative assumption that no prior information on
the patient response is available; that is, at day k& =1, it was assumed that
AUy, (1) = 0and Kd;(1) = 0. In practice, it can be reasonable to assume that
the initial values for these parameters can be scheduled as a function of the
patient glucose-to-insulin sensitivity. In this case, it is expected that there
is a significant speedup in the stabilization of the BG and of the adaptive
parameters of the controllers since the first day.

Time-Varying Insulin Sensitivity

Good results were also achieved in the case of time-varying insulin effect
on glucose utilization for scenario S5 (linear) whose BG response is shown
in Figure 6(b). In fact, it can be observed that the responses in Figure 6(a)
(with constant insulin sensitivity) and in Figure 6(b) are comparable, prov-
ing the excellent capacity of the ILC scheme in compensating for a linear
time-varying glucose sensitivity. A performance reduction is instead observed
in scenario S6 shown in Figure 6(c), where it can be noticed that the control
is not fully able to compensate for the effect of the sinusoidal time-varying
glucose sensitivity that is confirmed by the increase of the %-hypo index in
Table 3. Overall, the above results highlight the capacity of the ILC scheme
in compensating for time-varying glucose sensitivity, but only in the case of
slow time-varying effects.

Figure 7 shows the adaptation, during the 100 days, of the feedback gains
Kd;(k) and of the total feedforward insulin boluses Uj; (k) for scenarios S1,
S5, and S6, respectively, in the case of joint uncertainties. Note that because
the significant uncertainties and because of the sc glucose sensor noise, the
adaptive parameters do not reach almost-stationary steady values as in the
ideal case. In particular, in the case of scenarios S5 and S6, a linear and
sinusoidal trend is perceived during the 100 days, testifying to the correct
activity of the learning scheme in compensating for linear and sinusoidal
time-varying glucose sensitivities.

Comparison with a Standard PD Control Strategy

Considering scenario S7, the PD control scheme + FF boluses produced
a significant degradation of performance not only in terms of the %-hyper
and %-hypo time indexes but also in terms of the increase of the mean
duration of the hyper and hypo events. This fact clearly reflects the diffi-
culty of a single fixed gain PD controller in compensating satisfactorily both
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FIGURE 7 (a-b) The adaptation of the three feedback gains Kd;(k) and of the total amount of insulin
boluses Up; (k) during the 100 days for Scenario SI in the first 50 days. (1 = “breakfast,” 2 = “lunch,”
3 =“dinner”). (c—d) Scenario S5: linear glucose sensitivity variation. (e—f) Scenario S6: sinusoidal glucose
sensitivity variation.

hyperglycemia and hypoglycemia in the presence of significant nonlineari-
ties and uncertainties.

Comparison with a Manual Feedback/Feedforward ILC

Considering the manual scenario S8, it can be observed that the %-hyper
index remains essentially equivalent to the fully autonomous scenario SI,
highlighting the important fact that the meal detection delay, which is
unavoidable in the autonomous control scenario S1, does not cause a sig-
nificant performance decrease in terms of the hyperglycemia avoidance
capabilities compared to the operation with manual meal announcement.
However, it is remarked that, under manual conduction (S8), it is possible
to avoid, completely, the occurrence of hypoglycemia. The mechanism that
induces hypoglycemia under autonomous conductions and the role of the
HPL in preventing hypoglycemia has been described in Note 2.
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Interpatient Performance

Analyzing the results of the proposed ILC applied to the population of
nine diabetic patients, Table 5 indicates that, despite the significant joint
uncertainties, the ILC scheme is still effective in the control of hypoglycemia
because the %-hypo index is less than 1% for most patients. The most
problematic patients are those having the lower insulin-to-glucose sensitivity
(subjects 4, 5, and 6) that produced a %-hyper index in the range 5%-12%.
Analyzing the CVGA performance, it can be noticed that some patients have
a control performance in the E region (“erroneous control”) with a percent-
age larger than 5%; for these patients it can be deduced that the ILC scheme
might not be robust enough to counteract very large joint uncertainties.
However, considering the significant magnitude of the considered uncer-
tainties, the overall interpatient performance for the noncritical patients
can be considered acceptable and comparable with the results reported, for
example, in Wang, Dassau, and Doyle (2010).

CONCLUSIONS

The application of a novel Iterative Learning Scheme relying on a mixed
feedback and feedforward control strategy was proposed to control the
blood glucose in Type 1 diabetes. Through a simulation study, it was shown
that the scheme is able to learn, day by day, the insulin-glucose response
of a T1IDM patient and it is also able to detect and classify the occurrence
of a meal. As a consequence, in some days, the scheme is able to con-
trol the subcutaneous insulin administration keeping the BG in the safety
range. The most relevant feature of the learning scheme is its high level
of autonomy; in fact, it does not require any mathematical model of the
patient for controller design and tuning purposes and does not require any
a priori meal announcement information, nor the estimation of ingested
carbohydrates or the computation of the insulin premeal boluses. Long-term
simulation studies showed that the proposed ILC scheme provides satisfac-
tory performance even in the presence of significant joint uncertainties on
the mealtimes and on the amount of ingested CHO. A comparative analysis
proved that the proposed ILC scheme provides better performances than
simpler ILC solutions based on pure feedback or on pure feedforward con-
trol strategies; in addition, the scheme performs significantly better than a
standard PD control scheme, especially in the management of hypoglycemia
and in the reduction of the number of hyperglycemia and hypoglycemia
events. The learning scheme has also shown a remarkable capacity to
counteract a slowly time-varying insulin effect on glucose utilization.

Intersubjects variability, in particular the patient glucose-to-insulin sen-
sitivity, plays a relevant role on the control performance, in particular, sim-
ulation studies revealed that subjects having a glucose-to-insulin sensitivity
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less that 5.5 (mg/dl/U) are the most problematic to control; similarly, for
low-weight subjects, the control can induce overcorrection of the BG con-
centration. For the nominal subjects and for noncritical patients, the control
performance of the ILC scheme are deemed appropriate also in the case of
significant joint time/CHO uncertainties.
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