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Abstract

This paper presents a data mining methodology for driving condition moni-

toring via CAN-bus data that is based on the general data mining process. The

approach is applicable to many driving condition problems and the example of

road type classification without the use of location information is investigated. Lo-

cation information from Global Positioning Satellites and related map data are

often not available (for business reasons), or cannot represent the full dynamics

of road conditions. In this work, Controller Area Network (CAN)-bus signals are

used instead as inputs to models produced by machine learning algorithms. Road

type classification is formulated as two related labelling problems: Road Type (A,

B, C and Motorway) and Carriageway Type (Single or Dual). An investigation

is presented into preprocessing steps required prior to applying machine learning

algorithms, namely, signal selection, feature extraction, and feature selection. The

selection methods used include Principal Components Analysis (PCA) and Mutual

Information (MI), which are used to determine the relevance and redundancy of

extracted features, and are performed in various combinations. Finally, as there is

an inherent bias towards certain road and carriageway labellings, the issue of class

imbalance in classification is explained and investigated. A system is produced,

which is demonstrated to successfully ascertain road type from CAN-bus data, and

it is shown that the classification correlates well with input signals such as vehicle

speed, steering wheel angle, and suspension height.

Keywords: Data mining, Driving condition monitoring,

Feature selection, Road classification
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1 Introduction

Driving conditions monitoring aims to detect parameters about the road and a vehi-

cle’s surroundings (Huang et al., 2011), such as the road surface, level of congestion, or

weather. Knowledge of the current driving conditions can have several benefits: user

interface adaptation, engine power management, and driver monitoring (Huang et al.,

2011; Langari and Won, 2005; Murphey et al., 2008; Park et al., 2008); all of which strive

to improve driver safety and vehicle efficiency. In this paper we present a data mining

methodology, based on the general data mining process, for driving condition monitoring

via Controller Area Network (CAN)-bus data. Two related classification problems are

considered, Road Type labelling (into types A, B, C and Motorway) and Carriageway

Type labelling (into types Single or Dual). Road Type labelling aims to detect the state

or governmental designation of roads from vehicle telemetry data. Using the same inputs,

Carriageway Type labelling aims to detect whether the vehicle is being driven on a single

or dual (or multi) track road.

In some instances, the road type can be determined with location and map data

using Global Positioning Systems (GPS). However, although in principle it is an accurate

system, it can be impractical or unsuitable because in many vehicles and locations, GPS

signals are unavailable, or access to digital maps is costly and unreliable, and map data

may be unavailable or outdated for a region. Another issue with digital map data with

state road type designations is that these may not be reflective of the current driving

conditions. In the UK, for example, class A roads can be fast dual carriageway roads in

the countryside as well as restricted speed single track roads in congested urban areas.

Furthermore, location information does not take into account changes in traffic flow,

which may fluctuate throughout the day and is affected significantly by accidents and

roadworks. For these reasons it can be preferable to make a business decision to exclude

GPS data for certain driving conditions monitoring applications.

This paper, therefore, approaches the road type classification problem without re-

course to GPS and maps, and instead relies on data mining of sensor data that is ac-

cessible via a vehicle’s CAN-bus (Farsi et al., 1999). Vehicle sensors provide signal data

including steering wheel angle, wheel speed, gear position, and suspension movement.

The CAN-bus enables the communication between such sensors and actuators in the ve-

hicle via a message-based protocol, without a central host. Messages sent between devices
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in the vehicle can be recorded and post-processed in order to sample sensor measurements

at a certain frequency. Our proposed classification system uses machine learning, in a

data mining framework, to correlate CAN-bus signals to pre-learned class labels, such as

road types. With this approach, sudden and unexpected changes in driving conditions on

a road can be taken into account, which is not possible when using location data with-

out external data sources. If an accident significantly affects the driving conditions on a

motorway, for example, a model based on speed and suspension measurements should be

able to change its output appropriately.

CAN-bus data consists of thousands of signals sampled at high frequencies for hours

at a time, generating very large datasets. Selecting which signals, and features of signals,

to use is a challenging task, with engineers often hand picking model inputs from thou-

sands of signals (Taylor et al., 2012). This manual selection, as well as being tedious, can

introduce deficiencies into systems, as selection may be due more to an engineer’s knowl-

edge and preferences rather than the true usefulness of a signal. In this work, we also

propose an automatic feature selection framework which might aid engineers in building

better models for environment monitoring problems in general.

This paper makes the following key contributions:

• A methodology, based on the general data mining process (John, 1997), is presented

for driving conditions monitoring problems such as road classification.

• Two related temporal classification problems are presented, using data collected

from two cars with multiple drivers over 16 journeys. This provides a strong evalu-

ation framework where models are tested on data from different journeys to those

that were used to build them.

• An approach to the pre-processing of CAN-bus data is developed; including signal

selection, feature extraction and feature selection.

• The methodology is applied to create a system that is able to successfully detect

the current road type in real time, using only 2.5 seconds of historical data.

The remainder of this paper is structured as follows. In Section 2, literature on data

mining of CAN-bus data and driving conditions monitoring is reviewed. Section 3 outlines

a data mining methodology for problems of this kind. Details of the data and experimental
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process are described in Section 4, including the feature extraction and selection processes

used. The results of our investigations are then presented in Section 5. Finally, in

Sections 6 and 7, we discuss the results, draw conclusions and identify future steps.

2 Related work

Data mining of CAN-bus data has been used in several applications, including fault de-

tection (Crossman et al., 2003; Guo et al., 2000), driver monitoring (Mehler et al., 2012;

Taylor et al., 2013b), and driving conditions monitoring, which is surveyed by Wang and

Lukic (2011) and is the focus of this paper. Fault detection aims to determine whether

there is a vehicle failure and what may have caused the it. Whereas fault detection is usu-

ally performed offline in a workshop, driver monitoring and driving conditions monitoring

operate while the vehicle is being driven. For instance, they aim to predict parameters

about the driver and their surrounding environment, so that the driver interface can be

adapted or the engine tuned.

In fault detection, both Guo et al. (2000) and Crossman et al. (2003) successfully apply

wavelet analysis to split telemetry signals into segments, from which several features are

extracted. The extracted features include the segment length, minimum and maximum

values, as well as averages and fluctuations. A fuzzy rule classification algorithm is then

used to determine whether the original signal was normal, or abnormal and indicative of

a fault.

Driver monitoring aims to determine parameters of the driver, such as their atten-

tiveness to the road or skill level. Detection of inattention is often performed from both

CAN-bus data and other physiological measurements, such as heart rate or electroder-

mal activity (Mehler et al., 2012; Taylor et al., 2013b). In particular, when a driver is

performing additional tasks unrelated to driving and is under higher workload, changes

can be observed in features of the steering wheel angle (SWA) (Mehler et al., 2012). To

determine the skill level of drivers, Zhang et al. (2010) use vehicle simulator telemetry

data from typical and expert drivers as they performed several manoeuvres. As typical

drivers were more numerous than experts, the data was re-sampled so that it included the

same number of typical drivers as experts, although under-sampling of manoeuvres from

all drivers may have been more appropriate. The Discrete Fourier Transform of the SWA
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was used in Artificial Neural Networks, Decision Drees, and Support Vector Machines,

achieving comparable performances.

In this paper, we consider the driving conditions monitoring problem of road classi-

fication. Whereas driver monitoring focusses on driver state inside the vehicle, driving

conditions problems relate to the outside environment, including the traffic levels, and

road type (Huang et al., 2011; Langari and Won, 2005; Wang and Lukic, 2011). Driving

conditions and road type can be defined in several ways, including level of service (Carl-

son and Austin, 1997; Langari and Won, 2005; Murphey et al., 2008), descriptive (Haupt-

mann et al., 1996; Huang et al., 2011; Qiao et al., 1995; Tang and Breckon, 2011; Taylor

et al., 2012), and government classification (Taylor et al., 2012). Possibly the most used

definition in research is that provided by Carlson and Austin (1997), based on level of

service and driving cycles. Level of service and driving cycles are qualitative measures

describing observed operational conditions (Langari and Won, 2005), and therefore may

be subjective. Descriptive definitions are of most use, as they have a direct relationship

to the current situation and environment. For example, Huang et al. (2011) use the la-

bels highway, urban road (both congested and flowing), and country road. Hauptmann

et al. (1996) use an even more direct classification structure, based upon current car

behaviour. Their five labels range from very fast, straight line driving on flat roads, to

very low speeds or stop. These are used to represent further driving situations, such as

highway driving, and traffic lights or parking.

Wang and Lukic (2011) provide a survey for driving conditions prediction, with the

focus on Hybrid Electric Vehicles. They recognise that many researchers use drive cycles

for a road definition, and use only information from the vehicle speed in their models. For

example, average velocity and acceleration, as well as peak accelerations and percentage

of time in certain speed intervals are often used (Huang et al., 2011; Langari and Won,

2005; Murphey et al., 2008; Park et al., 2008). These features are also often extracted

from 150 seconds of data in order to produce good classification performances (Wang

and Lukic, 2011). These approaches have clear limitations in determining the current

driving conditions. First, steering wheel behaviour is likely to differ in different situa-

tions, providing additional predictive information. Second, if features are extracted from

large amounts of temporal history, the model is likely to be slow to react to changes in

environment.
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Other authors have used different features in addition to those extracted from speed

cycles. Hauptmann et al. (1996), for example utilize engine speeds, accelerations, and

gradient. Additionally, Qiao et al. (1995) extract features from the pedal positions,

temperatures and selected gear. These features, however, although they contain different

information from the vehicle speed, are all related to it. Engine speed, for example, has a

Pearson correlation with vehicle speed of 0.96 on data we have collected, meaning that it

is adding little new information into the system. Qiao et al. (1996) note that the length

of the temporal window that features are extracted over is an important factor in the

system’s reaction time and they use a much smaller window length of 6.25 seconds. One

shortfall in their work, however, is that automatic feature selection is not performed and

features are selected based on the intuition of the researchers.

Examples of feature selection being used in this domain are mainly those that use

features extracted from speed cycles. Murphey et al. (2008) and Park et al. (2008)

proposed a selection procedure based on binary class separability of single features: if a

feature is able to distinguish one class label from the others, then that feature is selected.

Huang et al. (2011) also use a non-parametric, one-way analysis of variances to ensure

that features used are relevant, and use cross correlation analysis to remove redundancy.

They investigate 11 features in total, with only 4 being manually selected for classification.

When dealing with CAN-bus data, however, the number of signals and features can be

in the order of 1000 seconds, meaning automatic approaches are necessary (Taylor et al.,

2013a).

A final approach to the problem of road classification is the use of visual inputs, e.g.

from front mounted cameras, and applying image processing techniques (Jansen et al.,

2005; Tang and Breckon, 2011). In their work, Tang and Breckon (2011) use color, texture

and edge features from image sub-regions as inputs into a neural network, and using colour

analysis, Jansen et al. (2005) identify the terrain type. Such systems are limited because

they rely on non-standard sensors, generally need greater computational processing and

are severely affected by poor lighting conditions, such as night-time driving.
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3 Data mining methodology

The methodology we present is based on a general framework for data mining outlined

by John (1997). As in (Huang et al., 2011; John, 1997), and others, we use the term

data mining to refer to the process of collecting, processing, and learning from data as a

whole. The methodology presented in this paper is of a similar form to those found in

many temporal data mining applications, including (Constantinescu et al., 2010; Huang

et al., 2011; Kargupta et al., 2004; Manimala et al., 2012; Sagheer et al., 2006; Shaikh

et al., 2011; Wollmer et al., 2011) and others, and is split into stages of: data collection;

feature extraction; feature selection; classification and evaluation. In this paper, we

also consider selection of signals, prior to feature extraction. This has the advantage of

saving computation, as only selected signals have to be processed later in the data mining

process.

3.1 Data collection

The data collection must be planned carefully for data mining to be successful. First, the

conditions under which data is to be collected, as well as what data should be recorded

must be decided. It is important to control the acquisition conditions so that results

become meaningful. Deciding on which data to record from vehicle telemetry is non-

trivial, because of the thousands of signals available via the CAN-bus (Farsi et al., 1999).

Recording and analysing all of them is an impossible task, so most researchers make

educated guesses based on domain knowledge.

Second, the data representation should be in a form that is suitable for subsequent

processing. For instance, the CAN-bus is an event based communications network where

sensors broadcast data at varying rates (Farsi et al., 1999), so consequently, some data

mining methods will not be directly applicable. It is typical therefore to re-sample the

data at a common rate, e.g. between 10 − 100Hz, producing M signals, S1, S2, . . . , SM ,

with samples of the same frequency.

Finally if the problem is to be posed as one of classification, the ground truth used

to derive the labels must be assigned in a consistent and reliable way. Improper label

assignment can lead to noise in the learning process leading to poorer classification results.

Drive cycles can be generated for each label and treated as separate in order to simplify
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later processing (Huang et al., 2011). Treating the data in this way, however, ignores any

transition periods where a label change occurs. This may cause an evaluation to prefer

models that use large amounts of historical data, but have slow reactions to changes in

environment. In this paper, we consider the more realistic scenario of journeys which

contain several periods of differing labels. Although this introduces noise during label

changes, we believe this approach will provide more accurate performance estimates that

do not ignore these reaction times.

3.2 Feature extraction

In temporal data mining, it is advantageous to include historical information when per-

forming classification (Antunes and Oliveira, 2001). Without this, an individual sample

contains only information about the exact point that sensor measurements were made,

which may be noise. This means that no trend or statistical information can be used

in determining the classification. We refer to this process of incorporating historical

information into the current sample as temporal feature extraction.

Consider a signal, S, of length T , such as the vehicle speed or SWA.

f(S(t), S(t− 1), ..., S(t− l + 1)) = f(S(t, l)),

where f(S(t, l)) is a temporal summary of the values between times t and t − l + 1. If

t < l, because it is at the beginning of the recorded signal, t samples are used. Features

can generally be split into two categories, namely structural and statistical. Structural

features describe the trend of the signals, whereas variations, peaks, and averages are

represented by statistical features.

In each time instance, m signals, S1(t), S2(t), ..., Sm(t) are sampled, from each of which

k features, f1, f2, ..., fk are extracted. Therefore, after feature extraction, a sample, x(t),

at time t, is represented as,

x(t) = {f1(S1(t, l)), ..., f1(Sm(t, l));

f2(S1(t, l)), ..., f2(Sm(t, l));

...;

fk(S1(t, l)), ..., fk(Sm(t, l))}.
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It should be noted here that in some cases, different features may be extracted over

different temporal windows from each signal, meaning that the value of k and l may vary

between signals and features in the same dataset. Finally, whereas Huang et al. (2011)

extract features from windows with no overlap, in this paper features are extracted over

sliding windows with an overlap of l − 1. This means that a temporal dataset of length

T , is a sequence of samples,

X = x(1), x(2), ..., x(T − 1), x(T ).

This method both maximizes the number of samples and means their number is not

dependent on window length. The overlap in windows does increase the autocorrelation

in the data, however, which can be problematic for some data mining methods.

3.3 Signal and Feature selection

As previously stated, signals and features are often hand selected using domain knowl-

edge. This is sub-optimal and time consuming, however, and may introduce biases toward

the engineer’s preferences. We therefore use automatic selection of both signals, prior to

feature extraction, and features, after feature extraction. We consider two common fea-

ture selection methods, Principal Component Analysis (PCA), an unsupervised method

for redundancy feature selection, and Mutual Information (MI), a supervised method for

relevancy feature selection (Witten and Frank, 2005).

PCA transforms a dataset onto a set of orthogonal dimensions which are linearly

uncorrelated, referred to as principal components (PCs) (Witten and Frank, 2005). This

is done through computing Eigen values from the covariance matrix of the data. The

idea is that because the dimensions produced are linearly uncorrelated, there is very little

redundancy in the dataset. Also, if the PCs with the highest variance are selected (i.e.

those associated with the largest Eigen values), they are also likely to contain the highest

entropy and be good predictors.

Whereas PCA is an unsupervised method of feature selection, MI takes into account

relationships between features and the class labels. MI is defined as,

MI(fi, C) =
∑

vi∈vals(fi),
vc∈vals(C)

p(vi, vc) log2

p(vi, vc)

p(vi)p(vc)
,
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where fi is a feature and C is the class labels. A high MI indicates that the feature is a

good predictor of the class labels and that it should be included in a predictive model.

Both of these feature selection methods are able to provide a ranking of features. PCA

ranks the PCs by their variance, where those with a larger variance are ranked higher.

With MI, features are ranked by the closeness of their relationship with class labels.

3.4 Classification

In this paper, we employ three widely used machine learning algorithms: Näıve Bayes,

Decision Tree, and Random Forest, that are all available in the Waikato Environment

for Knowledge Analysis (WEKA) machine learning suite (Witten and Frank, 2005). The

Näıve Bayes algorithm learns class conditional distributions from the data and uses Bayes

rule to make inferences. For the Decision Tree classifier, we use the C4.5 algorithm which

splits nodes based on MI. Once the full tree is built, pruning of nodes with few applicable

samples is performed to prevent over-fitting. The Random Forest algorithm builds several

Decision Trees, each on different sub-samples of the data and sub-sets of features. Each

of these algorithms are chosen because of their wide-spread use and the ease with which

models produced by them can be understood by a domain expert.

In road classification, there is an inherent class imbalance where one or more class

labels dominate the training data. For example, there is a 5:1 ratio of single lane road ex-

amples to multiple lane roads, and a smaller number of motorways than other road types

in our data. This imbalance can lead to biases in models, which tend to prefer to label

instances that are a majority (He and Garcia, 2009). We consider two approaches to deal-

ing with class imbalance, namely over-sampling and under-sampling. In over-sampling,

samples of the minority class label are duplicated to increase their representation, while

in under-sampling, some proportion of the majority class samples are decimated. Dupli-

cation and decimation is performed by selecting samples at random.

In the multi-class problem of road type classification, we adopt Error Correction

Output Coding (ECOC) (Berger, 1999; Escalera et al., 2008; Soda and Iannello, 2010),

which has been shown to have resilience to class imbalance (Berger, 1999; Escalera et al.,

2008; Soda and Iannello, 2010). ECOC is an ensemble classification algorithm which

splits a multi-class classification task into several binary-class problems. A unique binary

code, Ci, is given to each of the classes as in Table 1. A classifier is built to predict each

10



Taylor et al. Data Mining for Vehicle Telemetry

Class Code

A Road 1000111

B Road 0100100

C Road 0010010

Motorway 0001001

Table 1: Example exhaustive coding for Road classification.

of the bits in these codes, i.e. there will be as many models as there are bits in the codes.

In this example, the classifier predicting the third digit of the codes would predict 1 for

C roads, and 0 for the remainder. The true code with the smallest Hamming distance

between itself and the predicted code is then output as the sample classification.

Some of the binary class models will have better performance than others, because of

the difficulty of distinguishing the classes. A and B roads, for example, are much more

closely related than C roads and Motorways, so we would expect a model distinguishing

between A and B roads to have worse performance. Because of this, it is sometimes

beneficial to take account of this in the Hamming distance calculation by weighting it

with expected performance (Zhang et al., 2012). This is done by updating the Hamming

distances by multiplying them by the expected performances and can be illustrated using

the example in Table 1. Suppose, for example, that the expected success rate, estimated

using the training data, for each of the dichotomies is W = [0.75, 0.5, 1, 1, 1, 0.5, 0.5]. If

the base models then output a bit string of 1100101, the weighted Hamming distances

would be 1, 1.25, 4.25, 3.25 for A road, B road, C road and Motorway respectively. With

these distances, the output the classification is of type A road.

3.5 Evaluation

For evaluation, we use random sub-set validation over sub-datasets, a variation on cross-

folds validation. Each iteration consists of a training and a testing phase, where the

model is built using data from a subset of the journeys and then used to label instances

from unseen journeys. In each training phase the same number of datasets are used to

select features and build a model, and the remainder of data is used as testing data.
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This is repeated for several combinations of training and testing data, producing a large

number of predictions made by the models. These predictions are then compared against

the ground truth to produce a performance metric. Because it is possible to use some

samples multiple times in an evaluation, the performance metrics exhibit Monte Carlo

variation.

Unlike other work in environment classification, we choose to not use accuracy or error

rates as a measure of performance. Instead, in this paper we use Area Under the ROC

(Receiver Operating Characteristic) curve (AUC), as it is better suited in situations with

a high class imbalance (Huang and Ling, 2005). This is because the imbalance may bias

the output of a classifier, which is not accounted for by accuracy. Consider a model that

outputs a probability distribution over the class labels and trained with an imbalanced

binary classification dataset with numerous times more 0 labels than 1s. When using

accuracy, an output of p(0) = 0.7, p(1) = 0.3 with a decision threshold of 0.5 would mean

that the prediction is 0. In this case, a model that outputs p(0) = 1 for all inputs, always

predicting 0, may provide a very high accuracy on the dataset due to this being correct

for most of the samples. When used in the real world, however, predicting 0 regardless

of the situation is not useful. The ROC curve accounts for any class biases by computing

true positive and false positive rates over several thresholds, ranging from 0 to 1. A

threshold of 1 for a class means that the class label is never predicted, producing no false

negatives and no false positives. Conversely, a threshold of 0 would mean all instances

are predicted as the class label, producing a false negative rate and false positive rate

of 1. The true positives are then plotted on the y-axis against the false positives on the

x-axis, with the ideal curve following the y-axis as close as possible, having an AUC of 1.

4 Experimental Setting

4.1 Data collection

We used a Video VBOX Pro for the data recording, which allowed for the recording of

video streams synchronized with selected CAN-bus signals. In order to have the CAN-bus

signals at a constant frequency, the VBOX interpolates signals by taking the last-seen

value. This method ensured that nominal, integer or binary signals are not averaged

outside of their domains. For instance, if a binary signal is only broadcast every second
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but sampled at 20Hz using linear interpolation, a value change would produce some

samples between 0 and 1. Also, using the last broadcast value ensures that the signal is

as up-to-date as possible, although it may mean it is more susceptible to noise.

The data used in this paper was collected over 16 drives across the Midlands, UK, in

two cars. Each journey involves at least one driver, with a mean journey length of 51

minutes. Output from 15 CAN-bus sensors, listed with brief explanations in Table 2, were

recorded each at 20Hz for a total of 49403 seconds, which is comparable to the length

of data used in (Huang et al., 2011). Some sensors used are expected to have very little

relevance in determining the road type, and others are highly redundant. As previously

stated, these expectations may be incorrect, as is the case with the ambient temperature

signal. Although it may initially be expected to be a poor predictor, it has one of the

higher MI scores (0.197 for carriageway type) in data we have collected. On further

inspection we find that its Pearson correlation with vehicle speed, which is expected to

be a good predictor, is 0.774. This makes some intuitive sense, as the temperature near

the engine will rise with vehicle speed as the engine works harder. With this insight we

can say that ambient temperature is a good predictor of road type, but that it is somewhat

redundant to other signals. After signal and feature selection, only the features which

are useful for the problem should be used in classification.

The ground truth for the dataset was achieved using GPS and applied by hand using

Google Earth. GPS coordinates are looked up in Google Earth and a label is decided, and

assigned to samples. For the carriageway classification, the number of lanes is decided

by looking at the satellite images provided. If there is more than one lane, the sample is

dual, otherwise it is single. For road type, the road name is looked up on the map and

the first letter taken. If no road name is provided, because it is a dirt track or car park,

the label given is C. The distribution of labels is provided in Table 3.

4.2 Signal selection, feature extraction and feature selection

For temporal feature extraction, we use two statistical features, the mean,

fµ(s) =
1

|s|

|s|∑
i=1

si,
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Signal Description

Ambient temperature Outside temperature (measured behind grill).

Brake pressure Pressure on brake pedal.

Gear position (Automatically) selected gear.

Longitudinal/lateral accelerations Forward and Side-to-side accelerations of the

vehicle, measured by an accelerometer.

Suspension height (each wheel) Heights of suspension (Front-Right, Front-Left,

Rear-Right and Rear-Left).

SWA Angle of steering wheel.

SWA speed Rate of change of SWA.

Vehicle speed Vehicle speed (measured from wheel speed).

Wiper status Speed status of the front window wipers.

Table 2: List of signals recorded.

Label Percent (%) Description

Single carriageway 85 Single lane roads

Dual carriageway 15 Roads with multiple lanes

A road 48 Town road or non-highway arterial roads

B road 26 Smaller town or country roads

C road 21 Other types of road and car parks

Motorway 5 Highway with multiple lanes

Table 3: Label counts for the data.
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and standard deviation,

fσ(s) =

√√√√ 1

|s| − 1

|s|∑
i=1

(si − fµ(s))2,

where s is a temporal window of the signal. We also use two structural features, the first

and second derivatives, which are computed by taking the mean difference between each

pair of points in the signal window,

δ(s) = [s2 − s1, s3 − s2, . . . , sl − sl−1].

The first derivative is then,

fδ1(s) = fµ(δ(s))

and second derivative is,

fδ2(s) = fµ(δ(δ(s))).

The standard deviation provides a measure of signal variance, while the derivatives pro-

vide information on the gradient and shape of the signals. All four features are extracted

from each signal with a window length of l = 2.5 seconds, or 50 samples. This length

allows sufficient historical data for the features to be of use, while being small enough to

be updated rapidly if the conditions change (Qiao et al., 1995). Also, in a previous study,

we have shown that a window length of over 2.5 seconds can not provide much increase

in performance without causing over-fitting (Taylor et al., 2012).

In many cases of learning from CAN-bus data (Huang et al., 2011; Murphey et al.,

2008; Taylor et al., 2013a; Wollmer et al., 2011), feature selection is performed after

feature extraction has taken place. However, because of their number, selecting from the

full set of extracted features is computationally prohibitive. It is beneficial to perform

selection on signals prior to feature extraction, because there are fewer signals than total

features. Therefore, we investigate signal selection prior to feature extraction and explore

the impact combination of redundant and relevant feature selection.

Figure 1 outlines the signal selection, feature extraction and feature selection methods

investigated. The process starts at the top with the raw signal data, and moves downward

through paths of feature extraction or selection. At the bottom, an evaluation of the

resulting classification is performed to provide a measure of the quality of the feature

set produced. As an example, in the left-most path the signals are ranked by MI prior
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Supervised 
selection (MI)

Unsupervised 
selection (PCA)

Feature 
extraction (FE)

Evaluation

Raw 
signals

Supervised 
selection (MI)

Feature 
extraction (FE)

Feature 
extraction (FE)

Feature 
extraction (FE)

Supervised 
selection (MI)

Supervised 
selection (MI)

Unsupervised 
selection (PCA)

Supervised 
selection (MI)

MI-FE PCA-MI-FE PCA-FE PCA-FE-MI FE-MI FE-PCA-MI FE-PCA

Figure 1: Processing methods for data, for Principal Components Analysis (PCA), Mu-

tual Information (MI) and Feature Extraction (FE). Some selection is performed on

signals, prior to feature extraction. In this diagram, for example, the leftmost path of

MI-FE first performs signal selection with MI, and then extracts features on the selected

signals.

to feature extraction, which are then all input into the evaluation procedure. We refer

to this particular path as MI-FE. Some paths are equivalent and are therefore omitted

from our investigations. For instance, any path that has an MI stage followed by PCA is

equivalent to performing solely PCA.

4.3 Classification and evaluation

Features selected by a selection path are evaluated using a random sub-set validation over

sub-datasets. In each iteration of the sub-set validation, a random half of the datasets

are used as training data and the other half are used as testing data. There are a total

of
(
16
8

)
= 12870 possible train-test iterations over the sub-datasets, of which a uniformly

randomly selected 200 are performed. The feature selection process is performed on each

training data set to rank the features. For computational reasons, the evaluation data is
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sub-sampled by a factor of 10 at this point. Thirty models are then built using different

numbers of the ranked features, (1, 2, . . . , 30), and each are used to label the test dataset.

As previously stated, each repetition of the non-random sub-set validations provide

AUC values as measures of performance. These AUC values are then plotted against

the number of features used in the repetition. It is expected that the AUC values will

increase as additional features are added, plateauing and then decreasing after a certain

number (Kohavi and John, 1997). A good feature ranking will have a high peak or plateau

which appears with a small number of features. In order to compare feature rankings

therefore, both the magnitude and location of the peaks are inspected.

As discussed above, Näıve Bayes (Witten and Frank, 2005), Decision Tree (Witten

and Frank, 2005), and Random Forest (Breiman, 2001) classification algorithms were

used in this evaluation. The class imbalance problem was also tackled by using under-

sampling and over-sampling for the binary classification task, and Weighted-ECOC for

the multi-class classification task. For computational reasons, classifier parameters are

not optimized, and the default options provided by WEKA are used (Witten and Frank,

2005). The results are discussed in the following section.

5 Results

In this section the results of the feature selection investigations are discussed, presenting

AUC performances of the Näıve Bayes, Decision Tree, and Random Forest models, for:

• Carriageway and road classification with no class imbalance techniques being ap-

plied.

• Carriageway classification, having applied under-sampling and over-sampling to the

training data.

• Road classification with Weighted-ECOC learning.

First, we provide evidence for why AUC is used as a performance measure instead of

accuracy in this paper. Figure 2 shows accuracies for the Näıve Bayes classifier with

features selected by the PCA-FE-MI path. The accuracies shown are over four decision

thresholds, ranging from a threshold of 0 where the output is always single, to a threshold

of 0.9. A threshold of 0.9 means that the output is single if the classifier reports that the
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Figure 2: Plots showing mean accuracies of the 200 evaluation folds when using several

decision thresholds for carriageway classification using Näıve Bayes without using class

imbalance techniques and with features selected by PCA-FE-MI. The error bars are

95% confidence intervals computed using the standard deviation of accuracies of the 200

evaluation folds.

probability of a single is less than 0.9. The lines in this plot show the mean accuracies over

the 200 folds performed in the evaluation, and the error bars for 95% confidence intervals

computed on their standard deviation. In this example, a threshold of 0 provides a

constant classification accuracy of 0.84, which is only bettered by using the threshold of

0.1. This 0 threshold means that the model will output single regardless of the input,

which is not useful in the real world even though it achieves a high accuracy performance

when compared to other thresholds. Therefore, when class imbalance is present, as is

in our data, accuracy is not a good performance measure to use. ROC curves overcome

this by computing error rates over many thresholds, and AUC then provides a measure

of performance considering all thresholds.

The AUC performances for carriageway classification are shown in Figure 3, plotted

against the number of selected features for the different selection paths. Overall, the

Näıve Bayes classification algorithm has the best performance, with any selection path

including an MI stage achieving at least 0.7 in AUC. The same performance is achieved by

the Random Forest classifier, but only with the FE-MI and MI-FE selection paths. Other

selection paths have a maximum AUC performance of around 0.65, with PCA-FE and

FE-PCA again scoring lowest. The results of the Decision Tree classification algorithm
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(a) Näıve Bayes
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Figure 3: Carriageway classification AUC values against number of features used in the

(a) Näıve Bayes and (b) Random Forest classifiers. Performance of the Näıve Bayes and

Random Forest models are comparable when considering the FE-MI and MI-FE selection

paths. Other selection paths perform less well using Random Forest, and any selection

path containing a MI stage has good performance with Näıve Bayes.

are not presented because of its poor performance.

A similar pattern in the results is seen in the road classification AUC performances,

shown in Figure 4. Again, the Näıve Bayes classifier has the highest AUC performance

overall, with those feature sets produced by a selection path including an MI stage achiev-

ing at least 0.65 in AUC. One difference is that the FE-MI and MI-FE selection paths

no longer produce the highest performing feature rankings. Instead, the highest AUC

performance is given by performing an MI stage after a PCA stage, using either the

PCA-FE-MI or PCA-MI-FE selection paths. The FE-PCA-MI selection path does not

share this high performance, indicating that dealing with redundancy in the signals pro-

vides better features in this classification task.

Table 4 shows the peak performances of the Näıve Bayes, Decision Tree and Ran-

dom Forest classification algorithms on the carriageway type and road type problems

respectively. In both cases, the Näıve Bayes classifier built with features selected by the

PCA-FE-MI selection path provides the highest peak AUC performance. The Decision

Tree classifier has very poor performance in both classification tasks, and its peak per-

formance is achieved with a small number of features in several cases. This shows that
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Näıve Bayes Decision Tree Random Forest

FE-MI 0.724 (17) 0.571 (8) 0.711 (19)

FE-PCA-MI 0.704 (15) 0.608 (3) 0.640 (23)

MI-FE 0.717 (30) 0.571 (13) 0.715 (16)

FE-PCA 0.696 (30) 0.600 (28) 0.644 (28)

PCA-FE-MI 0.725 (11) 0.629 (1) 0.664 (21)

PCA-FE 0.681 (26) 0.625 (6) 0.655 (22)

PCA-MI-FE 0.714 (14) 0.635 (2) 0.661 (29)

(a) Carriageway Type

Näıve Bayes Decision Tree Random Forest

FE-MI 0.671 (30) 0.552 (10) 0.633 (30)

FE-PCA-MI 0.659 (13) 0.607 (6) 0.631 (11)

MI-FE 0.671 (26) 0.554 (2) 0.637 (28)

FE-PCA 0.652 (30) 0.606 (19) 0.625 (20)

PCA-FE-MI 0.682 (11) 0.628 (7) 0.653 (12)

PCA-FE 0.649 (26) 0.631 (22) 0.639 (26)

PCA-MI-FE 0.670 (14) 0.638 (2) 0.650 (15)

(b) Road Type

Table 4: Peak AUC values for the Näıve Bayes, Decision Tree and Random Forest classi-

fication algorithms on (a) carriageway and (b) road types, with the number of features in

braces. The highest AUC achieved for each model is highlighted in bold. These results

show that Näıve Bayes trained using features produced by PCA-FE-MI, will produce the

highest performance in both cases.
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Figure 4: Road-type classification AUC values against number of features used in the

(a) Näıve Bayes and (b) Random Forest classifiers. Näıve Bayes has highest AUC per-

formance with features selected by the PCA-FE-MI, while Random Forest has slightly

worse AUC performance for all selection paths.

the Decision Tree classification algorithm over-fits the data and often to the top ranked

features, which is not generally rectified by pruning.

For the carriageway classification task, the FE-MI selection path provides a very

similar AUC performance, but for road type classification it is lower. This again indicates

that redundancy feature selection is a necessary step for the highest performance in the

multi-class problem. Also from these results, there is some indication that the selection

paths that contain both a relevancy and a redundancy stage require fewer features than

those that only have one or the other. This can be clearly seen in the road classification

peak scores, where 11 – 15 features are needed for those with both PCA and MI, and

over 20 are commonly required for other selection paths.

Because the data collected for this study is imbalanced, we also tested techniques to

rectify this. For the binary class carriageway type problem, we investigated both under-

sampling and over-sampling. In Figure 5, AUC performance for the seven selection paths

is shown against the number of features for under-sampling of the training data. The

results for over-sampling are very similar to these and are therefore not presented in this

paper. In general for carriageway classification, applying sampling to the data to mitigate

class imbalance does not affect AUC performance by a large amount. Table 5 shows that
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Näıve Bayes Decision Tree Random Forest

FE-MI 0.735 (17) 0.581 (15) 0.725 (27)

FE-PCA-MI 0.712 (14) 0.660 (2) 0.681 (26)

MI-FE 0.730 (16) 0.581 (13) 0.718 (29)

FE-PCA 0.702 (30) 0.640 (5) 0.687 (27)

PCA-FE-MI 0.734 (11) 0.677 (1) 0.688 (28)

PCA-FE 0.687 (26) 0.655 (5) 0.685 (28)

PCA-MI-FE 0.724 (6) 0.676 (1) 0.689 (25)

(a) Under-sampling

Näıve Bayes Decision Tree Random Forest

FE-MI 0.718 (26) 0.582 (4) 0.713 (25)

FE-PCA-MI 0.712 (14) 0.665 (2) 0.668 (2)

MI-FE 0.711 (30) 0.583 (6) 0.715 (16)

FE-PCA 0.701 (30) 0.634 (1) 0.655 (27)

PCA-FE-MI 0.732 (11) 0.677 (1) 0.678 (1)

PCA-FE 0.686 (26) 0.590 (23) 0.666 (24)

PCA-MI-FE 0.721 (6) 0.676 (1) 0.677 (1)

(b) Over-samplnig

Table 5: Peak AUC values when applying (a) under-sampling and (b) over-sampling to

the data when using the Näıve Bayes, Decision Tree and Random Forest classification

algorithms on carriageway type, with the number of features in braces. The highest AUC

achieved for each model is highlighted in bold. Under-sampling shows higher performance

the over-sampling, with features selected using FE-MI and the Näıve Bayes classifier

performing the best overall.
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Figure 5: Carriageway classification with under-sampling AUC values against number

of features used in the Näıve Bayes classifier. The performance is highest with features

selected by the FE-MI or PCA-FE-MI selection paths.

the peak AUC performances increase in general by a small amount when under-sampling

or over-sampling is applied. One effect of performing re-sampling on the data is that the

peak AUC performances of the Decision Tree are now achieved with even fewer features

in many cases, indicating that the over-fitting problem is intensified.

Finally, for the multi-class road type problem we evaluated ECOC, which has shown

robustness to imbalance in other domains. Table 6 shows the peak AUC performances for

the Weighted-ECOC approach described in (Zhang et al., 2012). For both Näıve Bayes

and Random Forest classifiers the results are similar in distribution to when ECOC is

not applied, with a small decrease in AUC values in general. The Decision Tree classifier

now has a smaller peak AUC performance, but requires more features to achieve it.

6 Discussion

These results provide several insights into the best avenues for a data mining approach

to environment monitoring problems from CAN-bus data. They show that considering

both redundancy and relevancy in a feature selection process will generally provide the

highest performance. In fact, both are necessary for the highest performance in the

road type classification task. One exception to this is with the Random Forest model

used for the carriageway classification task, which performs best with features selected
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Näıve Bayes Decision Tree Random Forest

FE-MI 0.666 (30) 0.563 (5) 0.604 (30)

FE-PCA-MI 0.658 (29) 0.603 (27) 0.607 (11)

MI-FE 0.662 (30) 0.561 (13) 0.607 (27)

FE-PCA 0.654 (30) 0.602 (27) 0.599 (15)

PCA-FE-MI 0.666 (12) 0.621 (11) 0.627 (12)

PCA-FE 0.647 (26) 0.623 (30) 0.607 (26)

PCA-MI-FE 0.657 (14) 0.621 (15) 0.624 (15)

Table 6: Peak AUC values when using Weighted-ECOC with the Näıve Bayes, Decision

Tree and Random Forest classification algorithms on road type, with the number of

features in braces. The highest AUC achieved for each model is highlighted in bold.

These results show that Näıve Bayes trained using features produced by PCA-FE-MI

will provide the highest performance with fewest features.

using only relevancy. Also, any redundancy analysis should be performed on the signals

prior to feature extraction, and followed by a relevancy selection stage. Performing only

redundancy feature selection does not provide a good feature ranking in any case, which

is likely due to its unsupervised nature.

Also, the choice of methods may change depending on requirements of a system with

respect to computing efficiency, rather than just predictive performance. For example,

performing selection prior to feature extraction as in MI-FE is much less computationally

expensive than selecting from the full feature set, while both methods will provide similar

performance with 15 features. We find, however, that features selected using FE-MI or

PCA-FE-MI provide higher AUC performances with fewer features than MI-FE or PCA-

MI-FE. This result may be valuable where there is limit on the feasible number of signals

that can be used in a model running on the vehicle’s electronic control unit. In this case,

it would also mean that any selection path including PCA is unlikely to be of use, because

the principal components produced are a linear combination of all inputs.

In almost all cases, the Näıve Bayes classification algorithm achieves the highest AUC

performance, followed closely by the Random Forest classifier. The Decision Tree classifi-

cation algorithm does not have good AUC performance in any case. In order to mitigate
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Figure 6: Road map showing correct predictions (Cyan), single roads incorrectly pre-

dicted as dual (Red) and dual roads predicted as single (Black) for carriageway classifi-

cation. Näıve Bayes classifiers, trained with under-sampled training data and 10 features

selected by the PCA-FE-MI selection path are used, with a decision threshold of 0.1. The

yellow lines are other roads that are not recorded in our data.

class imbalance in the carriageway classification task, under-sampling or over-sampling

the training data increases the AUC performance by a small amount. Although this in-

crease in peak AUC performance is also seen in the with the Decision Tree classifier, any

signs of over-fitting are exacerbated by under- or over-sampling. Using Weighted-ECOC

to mitigate any class imbalance in the road type classification task decreases performance

of all models. This may be because the class imbalance in this problem is less severe than

in the binary classification task.

Taking into consideration these results, the highest performing model for carriageway

classification by AUC is Näıve Bayes, trained with under-sampled data and features

selected by FE-MI. This is only a small improvement on the same model built with no

under-sampled training data, or with features selected by the PCA-FE-MI selection path.

For road classification, the highest performing model is Näıve Bayes, trained with features

selected by PCA-FE-MI. This is closely followed by the same model built with features

from any of the selection paths containing both a PCA and MI stage.

Finally, an illustration of carriageway classification performance overlaid on a map is

shown in Figure 6. The cyan regions show where predictions are correct, whereas single
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roads incorrectly labelled as dual roads are red and dual roads incorrectly labelled as

single are black. The predictions were made by 16 Näıve Bayes classifiers, each trained

using data from 15 journeys and tested on the remaining one. Data from each journey

is used as testing data exactly once and a decision threshold of 0.1 is used to make a

prediction for every sample in the dataset. The training data was under-sampled and 10

features selected by the PCA-FE-MI selection path are used in all the models. The image

shows a majority predictions are correct, scattered with some short periods of incorrect

classifications. These short periods might be labelled correctly if historical classifications

are taken into account, such as taking the modal prediction over a temporal window.

This, however, would introduce extra delay when the environment changes. The larger

red section of road toward the left side of the map is classified incorrectly as dual because

it is a straight road with wide lanes and a speed limit of 60mph. The cyan section of

road next to this that is incorrectly labelled as single is actually a road with three lanes,

where two are in the direction of travel. These are both examples of edge cases that are

sufficiently similar to the other label. It may be possible to detect these cases and act

appropriately if the classifier is unable to decide a label with sufficient confidence. One

such action may be to assume a default label such as dual and activate a lane departure

warning system.

7 Conclusions

In this paper we adapted and applied a data mining methodology to learning driving con-

ditions from CAN-bus data, illustrating the approach with the road classification prob-

lem. We investigated signal selection, feature extraction and feature selection to produce

a successful model for two sub-problems of this domain. Also, as the data collected was

imbalanced, techniques to solve this were tested. The data mining methodology was then

used to generate models that were capable of accurately predicting the carriageway type

or road type using only 2.5 seconds of historical data.

Our investigations suggest how an automatic feature selection process for vehicle

telemetry might be realised. We found that using both relevancy and redundancy is

likely to produce the highest performance with the smallest number of model inputs.

When PCA is used, however, inputs to the model are linear combinations of all signals or
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features, meaning that FE-MI or MI-FE may be preferable in deployment. Of these two

selection paths, FE-MI provides the best feature set to build a model with. In future,

however, we believe that relevancy and redundancy should be considered together (Kohavi

and John, 1997). For both carriageway and road classification we found that Näıve Bayes

is likely to provide the highest performance, which is improved upon by under-sampling

the training data in carriageway classification. The models built for the road classification

task were not improved by the Weighted-ECOC technique used to mitigate effects of class

imbalance.

In this work the same window length of 2.5 seconds was used in all experiments and for

all features, because we found this to be an appropriate size overall (Taylor et al., 2013a).

Shorter window lengths caused a decrease in performance, while longer window lengths

increased performance minimally and introduced errors shortly after label changes. This

may not be the case in general, however, as features extracted using different window

lengths capture different information. Two derivative features extracted using short and

long windows, for example, would capture short and long term trends in the signal.

Further, it may be the case that both of these features should be used in a model for the

highest performance.

In this paper, we have considered the problem where location and map data are

unavailable at any point (or their use is undesirable). However, if it is possible to obtain

a ground truth during driving, even for short periods of time, it may be possible to

develop an online learning system for road type classification. If this was the case, affects

of concept drift could be investigated (Li et al., 2010). For instance, as a driver becomes

more experienced over their lifetime, or tired during a journey, their driving patterns

may change with respect to road type. Therefore, it may be essential to update on-line

classification models with new information to maintain performance.
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