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Abstract

Wind energy has emerged as a strong alternative to fossil fuels for power
generation. To generate this energy, wind turbines are placed in a wind farm. The
extraction of maximum energy from these wind farms requires optimal placement
of wind turbines. Due to complex nature of micrositing of wind turbines, the
wind farm layout design problem is considered a complex optimization problem.
In the recent past, various techniques and algorithms have been developed for
optimization of energy output from wind farms. The present study proposes an
optimization approach based on the cuckoo search (CS) algorithm, which is
relatively a recent technique. A variant of CS is also proposed that incorporates a
heuristic-based seed solution for a better performance. The proposed CS algorithms
are compared with genetic and particle swarm optimization (PSO) algorithms,
which have been extensively applied to wind farm layout design. Empirical results
indicate that the proposed CS algorithms outperformed the genetic and PSO
algorithms for the given test scenarios in terms of yearly power output and
efficiency.

Introduction

Globally increasing population, fast technological development, and luxur-
ious and materialistic life styles have resulted in un-proportionate increase in
power requirements. Hence new and renewable sources of energy in addition
to regular means of power generation are being explored to meet the
increasing demands. Exploitation and utilization of clean energy sources
reduce the dependence on fossil fuels, which means reduction in greenhouse
gases (GHG) emissions, and at the same time it facilitates energy supply at
places where there is no national or regional electrical grid. The fast devel-
oping and widely used sources of clean energy include wind, solar thermal,
solar photovoltaic (PV), hydro, geothermal, and biomass. Of these clean
sources, wind energy has been accepted commercially due to its availability,



ease of maintenance, and low cost of operation. The global cumulative wind
power installed capacity reached 369.597 GW by the end of 2014 compared
to 318.644 GW in 2013, an increase of 16%, (GWEC: Global Wind Energy
Council annual report 2015). The global annual cumulative wind power
growth is shown in Figure 1. With cumulative installed capacity of
91.413 GW, China remained the leader in wind power industry as of
December 2014. The USA, Germany, Spain, and India remained at 2nd,
3rd, 4th, and 5th place with total cumulative wind power installed capacities
of 65.879 GW, 39.165 GW, 22.987 GW, and 22.465 GW, respectively. With
respect to new additions in 2014, China was number one with 23.196 GW
(45.1%) and Germany at number two with 5.279 GW (10.2%) new installa-
tions. However, USA, Brazil, and India remained 3rd, 4th, and 5th with new
capacity additions of 4.854 GW (9.4%), 2.472 GW (4.8%), and 2.315 GW
(4.5%), respectively.

The wind farm layout optimization is the process of finding out the
optimal positions of wind turbines within a wind farm to maximize and/or
minimize a single objective or multiple objectives, while satisfying certain
constraints (Feng and Shen 2015). Although there are many commercially
available software packages for wind farm layout design, researchers have
also directed their interests in employing computational intelligence techni-
ques for the purpose. It is due to the fact that, despite their elegance, these
software packages simply provide assistant to human designers, and the
responsibility of an efficient design mainly lies on the experience and intelli-
gence of the designer. This may lead to inefficient designs. On the other
hand, computational intelligence techniques have proven successful for a
variety of complex optimization problems. The primary reason is that these
techniques are least dependent on human intervention and are capable of
generating efficient solutions due to their built-in intelligence.
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Figure 1. Global cumulative annual wind power installed growth, GWEC (GWEC: Global Wind

Energy Council annual report 2015).



Several computation intelligence techniques, such as genetic algorithms,
particle swarm optimization (PSO), differential evolution, and simulated
annealing, have been applied to the wind farm layout design problem.
However, there is a wide range of potentially good algorithms that have
not been exploited and tested for the wind farm design problem. One such
algorithm is cuckoo search (CS), which is a recent algorithm and has shown
promising results for complex optimization problems in comparison with
other established algorithms, such as genetic algorithm and PSO (Civicioglu
and Besdok 2011; Guerrero, Castillo, and Garcia 2015; Kumar and
Chakarverty 2011; Yang and Deb 2010).

There are several reasons that make CS more efficient and distinct from
other iterative algorithms. It has been shown that CS satisfies the global
convergence requirements and thus guarantees global convergence properties
(Wang et al. 2012). Furthermore, CS possesses two search capabilities: local
search and global search. These search directions are controlled by a switch-
ing/discovery probability. According to (Yang and Deb 2014), the local
search is very intensive with about 1/4 of the search time while global search
takes about 3/4 of the total search time. This allows the search space to be
explored more efficiently on the global scale, and consequently the global
optimality can be found with a higher probability (Yang and Deb 2014).
Another advantage of CS is that its global search uses Lévy flights or process,
instead of standard random walks. As Lévy flights have infinite mean and
variance, CS can explore the search space more efficiently than algorithms
that follow standard Gaussian process (Yang and Deb 2014). This advantage,
combined with both local and global search capabilities and guaranteed
global convergence, makes CS very efficient (Yang and Deb 2014).

This paper is motivated by the above observations and proposes a CS-based
algorithm for efficient wind farm layout design, which will be the first such
attempt to the best of our knowledge. Another contribution of this paper is the
use of heuristic-based seed solutions that further enhance the performance of CS
algorithm. Furthermore, to assess the performance of the CS and for bench-
marking, comparisons are done with genetic algorithm and PSO algorithm.

The rest of the paper is organized as follows. In Section 2, a brief review of
the existing literature is presented. The description of the wind farm layout
optimization problem is given in Section 3. Section 4 describes the wake and
cost models used in this study. This is followed by a discussion on the
proposed CS algorithm in Section 5. Section 6 provides the results and
discussion, followed by a conclusion in Section 7.

Brief overview of existing literature
Various computational intelligence techniques have been employed for opti-

mal design of wind farms, with genetic algorithms (GAs) (Goldberg 1989)
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being the first and the highest utilized algorithm so far (Khan and Rehman
2013). Early researchers such as Mosetti et al. (Mosetti, Poloni, and Diviacco
1994) and Grady et al. (Grady, Hussaini, and Abdullah 2005) employed GA
for wind farm design. These algorithms have received noteworthy attention
by many other researchers for wind farm design problems. Emami and
Noghreh (Emami and Noghreh 2010) utilized matrix binary chromosomes
which reduced computational time and improved the quality of results. They
also proposed a new objective function, which allowed for more control on
cost, power, and efficiency of the wind farm. The GA proposed by Gonzalez
et al. (Gonzalez, Santos, and Payan 2010) considered investment financial
risk as the optimization factor. Results suggested that with risk analysis
included in the optimization process, the wind farm produced solutions,
which were less sensitive to uncertainty than the deterministic solution.
Wang et al. (Wang et al. 2015) utilized a GA for optimization while con-
sidering lands belonging to different owners. They claimed that if the divi-
sion of land is complex, then the optimization with traditional penalty-based
approach is not efficient. With the proposed approach, the obtained results
were satisfactory, and in some scenarios, optimal or near-optimal solutions
were achieved. Huang (Huang 2009) proposed a GA that was hybridized with
hill-climbing property. The main achievement of this was reduction in
computational time in the range of 88-92% when compared with simple
GA on the same test scenarios.

Wang et al. (Wang, Liu, and Zeng 2009a) proposed a nonlinear wake
model, combined with benefit evaluation model to find the optimal con-
figuration of the wind farm. The models were incorporated in a GA for
optimization. A GA proposed by Sorkhabi et al. (Sorkhabi et al. 2016)
considered energy and noise as the optimization objectives. The most
appealing finding of the study was that variation in the severity of land
use constraints does not affect the energy generation to the same extent
that they affect noise propagation. Mora et al. (Mora et al. 2007) assumed
a variable-size chromosome-based GA while considering the economical
aspect of optimization through Net Present Value (NPV) function. The
experimentation showed that the proposed GA resulted in profit on the
investment in an optimal way. Sisbot et al. (Sisbot et al. 2009) proposed a
multiobjective GA with Pareto ranking to design a wind farm for a real
site. The results revealed that the proposed GA could predict optimal
turbine placement. Wan et al (Wan et al. 2009) proposed a GA with
improved wind and turbine models. The results were compared with a
previous model by Grady et al. (Grady, Hussaini, and Abdullah 2005) and
demonstrated a better performance by the GA based on new model.
Herbert-Acero et al. (Herbert-Acero et al. 2009) employed a virtual gene
GA with the objective being maximization of the power generated by the
wind farm.



Kusiak and Song (Kusiak and Song 2010) utilized a bi-criteria GA con-
sidering maximization of power and minimization of certain constraints. The
proposed scheme was tested in an industrial setup and was found to be
effective. Bilbao and Alba (Bilbao and Alba 2010) employed CHC-GA, which
exhibits the elitist approach in the search process. This produced high-quality
results. Gonzalez et al. (Gonzalez et al. 2010; Gonzalez et al. 2010; Gonzalez,
Santos, and Payan 2012) proposed two nested GAs for optimizing NPV for
the wind farm. Performance evaluation of the proposed scheme showed
suitability of the two-level GAs to find the optimum configuration of the
wind farm. A GA proposed by Saavedra-Moreno et al. (Saavedra-Moreno
et al. 2011) employed a greedy heuristic, which generated an initial solution
of reasonable quality. This approach resulted in layouts of higher quality
compared to ones that were produced by simple GA, resulting in increased
economic benefits from the wind farm. Yang et al. (Yang et al. 2015)
proposed a fuzzy genetic algorithm to the design of the layout while con-
sidering wake loss, terrain effect, and economic benefits. The results demon-
strated that the proposed algorithm produced results of better quality with
reduced computational cost when compared with simple GA. Song et al.
(Song, Zhang, and Chen 2016) utilized SPEA which is a multiobjective GA
and investigated the possibility of maximizing the expected wind farm power
output through optimizing the layout of wind turbines as well the respective
hub heights. The proposed model indicated that the power output could be
increased by choosing wind turbines with different heights.

PSO (Kennedy and Eberhart 1995) is another technique that has been
utilized for wind farm layout design. Rahmani et al. (Rahmani et al. 2010)
made the first attempt to solve the wind farm layout design problem using
PSO, considering cost per unit energy produced as the optimization objec-
tive. The results were compared with GA and indicated the effectiveness and
efficiency of PSO. Chowdhury et al. (Chowdhury and Zhang 2010;
Chowdhury et al. 2012) adapted PSO to design a wind farm to explore the
influences of the number of turbines, the farm size, and the use of a
combination of turbines with differing rotor diameters, on the optimal
power generated by a wind farm. Their findings indicated that the use of
an optimal combination of turbines with differing rotor diameters signifi-
cantly increases the net power generation. The PSO proposed by Wan et al.
(Wan et al. 2010) assumed a continuous space for turbine placement as
opposed to previous studies, which assumed discrete positions for turbine
placement. Maximization of generated power was sought and the results were
of notable quality. The PSO algorithm by Song et al. (Song et al. 2016)
employed computational fluid dynamics and the virtual particle model for
the simulation of turbine wake flow and proposed a sensitivity index to
quantitatively evaluate the variation of power generation under varying
wind direction. The results indicated that regularly arranged turbine layouts



are not suitable for stable power production. Case studies on flat terrain and
complex terrain both demonstrated the effectiveness of the proposed method.

Pookpunt and Ongsakul (Pookpunt and Ongsakul 2013) proposed a
binary PSO with time-varying acceleration coefficients to optimize the place-
ment of wind turbines within a wind farm for maximum power output. The
results indicated that the investment cost of power generation for both
uniform and nonuniform wind speed with variable wind direction were
lower than those obtained from genetic and evolutive algorithms leading to
maximum power extraction with least investment. Rehman and Ali (Rehman
and Ali 2015) proposed a PSO algorithm, which incorporated heuristic-based
initial solutions. The objective was to minimize the total cost versus total
power generated for a given number of turbines. Results were compared with
GA and basic version of PSO, which indicated that the heuristic-based PSO
outperformed both GA and basic PSO.

Apart from GAs and PSO, several other algorithms have been applied to
variations of wind farm layout design problem. Herp et al. (Herp, Poulsen, and
Greiner 2015) proposed a sequential optimization algorithm and compared it with
PSO algorithm. They proposed a co-operative control strategy between the
turbines. Results revealed that both algorithms were able to reach the optimal
solutions, but the sequential optimization algorithm was efficient in terms of
computational time. Salcedo-Sanz et al. (Salcedo-Sanz et al. 2014) presented a
novel algorithm for wind farm layout optimization using the Coral Reefs
Optimization algorithm and showed the proposed method outperformed the
results of other methods such as Evolutionary Approaches, Differential
Evolution, or Harmony Search algorithms. Eroglu and Segkiner (Eroglu and
Seckiner 2013) used particle filtering approach to obtain an optimized layout of
a wind farm having minimum wake effects and maximum power generation. The
results showed that the particle filtering approach can compete with ant colony
and evolutionary strategy algorithms available in the literature. Feng et al. (Feng
and Shen 2015) used a random search algorithm based on continuous formulation
to improve the wind farm layout iteratively in the feasible solution space. The
optimized layouts consistently showed better performance in power production
than the original layout, despite of considerable variations in wind direction and
speed. Simulated annealing algorithm was used by Herbert-Acero et al. (Herbert-
Acero et al. 2009) for one-dimensional arrangement of turbines, i.e. arrangement
of turbines in one line. The optimization objective was to maximize the total
power generated by a wind farm. Results were compared with GA and were found
to be of similar quality. Bilbao and Alba (Bilbao and Alba 2010) employed
simulated annealing and compared with their self-proposed CHC-GA. The
results, however, showed better performance by CHC-GA compared with simu-
lated annealing. Rasuo and Bengin (Rasuo and Bengin 2010a, 2010b) employed
differential evolution algorithm while considering energy output and investment
costs as the optimization objectives. Ant colony optimization was used by Eroglu



and Seckiner (Eroglu and Seckiner 2013) while considering maximization of
expected energy output. Results were promising.

Wind farm layout optimization problem

The wind farm layout design problem is concerned with optimal placement
of wind turbines in a wind farm. This optimal placement is vital for mini-
mizing the power losses due to various effects such as wake decay, transmis-
sion line loss, and turbulence. Furthermore, an optimal placement of wind
turbines also plays a pivotal role in minimizing the costs associated with
installation, functioning, and maintenance of these turbines. Considering
these issues, numerous design objectives can be defined, noting the fact
that the fundamental aims of a wind farm are to minimize capital and
operating costs and to maximize energy production (Rasuo and Bengin
2010b). Collectively, these two objectives relate to maximizing profit from
the farm, which is considered another important objective.

The area where turbines are placed can be characterized through a discrete
or a continuous representation. In either case, the solution space (i.e. number
of all possible solutions) is huge. Assume a wind farm layout design problem
with an area of 40D x 40D, where D represents the rotor diameter of a wind
turbine. If discrete representation is used and the area is divided into 100
equal size squares, then each square will be comprised of an area of 16D>.
This will result in the turbine placement with 2'% possible solutions, con-
sidering whether a square contains a turbine or not. Thus, the wind farm
layout design problem can be characterized as an NP-hard problem. In this
scenario, exact algorithms would be inefficient due to their high computation
time. Therefore, it would be necessary to employ some heuristic to intelli-
gently search the solution space and reach an optimal or quasi-optimal
solution within a reasonable amount of time.

Wake and cost modeling

The assumptions made in this paper are the same as used in the previous studies
in the domain (Bilbao and Alba 2010; Emami and Noghreh 2010; Gonzalez et al.
2010; Gonzalez et al. 2010; Gonzalez, Santos, and Payan 2010; Grady, Hussaini,
and Abdullah 2005; Huang 2009, 2007; Mittal 2010; Mosetti, Poloni, and
Diviacco 1994; Rahmani et al. 2010; Wan et al. 2010; Wang, Liu, and Zeng
2009a, 2009b). Accordingly, a simplified version of Jensen model is used in this
paper to find the optimal layout design of a wind farm. The following notations
have been used in the present study:

The schematic of the wake model is shown in Figure 2. The typical wind
farm grid used in the present work is shown in Figure 3. For fair comparison
of the proposed CS algorithm with other techniques, the grid size and other



A Axial induction factor

E  Entrainment factor

z, Surface roughness

Z Hub height

Cr Thrust coefficient

x; Distance downstream from turbine j to turbine i (i.e., distance between the current turbine and the
turbine creating wake effect on it)

u;  Wind speed downstream under multiple wakes

N Total number of turbines

m; Set of all turbines creating wake effect on turbine i

rso Wake radius immediately downstream of the wind turbine

rqy; Wake radius at x distance downstream of the wind turbine

K Number of rows and columns that exist in the solution space
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Figure 2. Schematic of the wake model.

properties are the same as used in previous studies (Bilbao and Alba 2010;
Emami and Noghreh 2010; Gonzalez et al. 2010; Gonzalez et al. 2010;
Gonzalez, Santos, and Payan 2010; Grady, Hussaini, and Abdullah 2005;
Huang 2009, 2007; Mittal 2010; Mosetti, Poloni, and Diviacco 1994;
Rahmani et al. 2010; Wan et al. 2010; Wang, Liu, and Zeng 2009a, 2009b).
Following these properties, the grid is divided into 100 possible turbine
locations. A turbine can be placed at the center of a cell. The size of each
cell is taken as five times the rotor diameter (D). More precisely, since a rotor
diameter of 40 m is assumed, a cell size becomes 200 m. A hub of the turbine,
directly facing the wind direction, is not under effect of any wake. Therefore,
the wind speed remains unaffected as visible in Figure 3. The equations to
calculate the wake, generated power, and optimization objectives (Equations
(1)-(12)) have been adopted from Mosetti et al. (Mosetti, Poloni, and
Diviacco 1994) (since the same model was followed by various other studies
Bilbao and Alba 2010; Emami and Noghreh 2010; Gonzalez et al. 2010;



Figure 3. A 10 x 10 wind farm grid.

Gonzalez et al. 2010; Gonzalez, Santos, and Payan 2010; Grady, Hussaini, and
Abdullah 2005; Huang 2009, 2007; Mittal 2010; Rahmani et al. 2010; Wan
et al. 2010; Wang, Liu, and Zeng 2009a, 2009b) and are presented below for
the sake of clarity and completion. An interested reader may find more
details in Mosetti et al. (Mosetti, Poloni, and Diviacco 1994) on the wake
and power efficiency model. According to this model, we have

U = U (1)

If the hub is subjected to only one wake, then the wind speed is affected
according to

2A
o 2
(1+2(2))
Tdo

However, if any hub is subjected to multiple wakes, then the wind speed is
determined by

(2)

U =ug|l—

24
w=up|l— [Y | [1-—— 3)

Xij 2
Tdo

The radius ryy of the wake downstream immediately after a turbine is

calculated using
1-A
o — 4
rao =1\|T 54 (4)

Furthermore, the radius rd1 of the wake at a distance x;; downstream of any
wind turbine is calculated using the following equation:



ra1 = Exij + 140 (5)
The relationship between thrust coefficient and axial induction factor is
given by

Cr=4A(1-A) (6)
The thrust coefficient is normally known for the system. Therefore, we can
calculate axial induction factor a instead of CT. (The solution of Equation (6)

gives two values of A. We select one which gives a real value for ry, in
Equation (4)). Finally, the entrainment factor E is found out using

E——22 (7)

In (Z/z 0)

Total cost of placing N turbines in the grid is calculated using the following
equation:

2 1 i
Cost = N(§ + 56—0.001741\1 ) )

Total power generated by N turbines under multiples wakes is calculated
using the following equation:

i
Pictual = Z ZO“? (9)
N

Total power generated by N turbines without any wake is calculated using the
following equation:

i
l)ideal = Z Zoug (10)
N

The efficiency of the wind power generation is calculated using the following
equation:

Efficiency = Factul (11)
Pideal
With the above equations, the wind farm layout design problem is fundamen-
tally the wind turbine placement problem, where the objective is to minimize
the total cost versus total power generated for N number of turbines. Therefore,
the objective of this optimization problem can be stated as

Cost
Objective = min( o ) (12)

actual



11

Cuckoo search algorithm for wind farm layout design

This section discusses the proposed CS algorithm. The section first provides a brief
background of the CS algorithm, which is followed by the proposed adaptation of
the CS algorithm for the wind farm layout design. Furthermore, modified CS
algorithm that incorporates a heuristic-based seed solution is also discussed.

CS algorithm

CS algorithm was originally proposed by Yang and Deb (Yang and Deb 2009)
as an optimization tool for numerical functions and continuous problems.
The algorithm is based on the brooding parasitism of cuckoo species in
natural habitat. Some cuckoo species lay their eggs in the nests of other
host birds (of other species). Some host birds can engage in direct conflict
with the intruding cuckoos. The original CS algorithm evolves from the
following three behavioral patterns of real cuckoos (Yang and Deb 2009):

e Each cuckoo lays one egg at a time. The egg is dumped in a nest
randomly chosen by the cuckoo.

e The best nests with high quality of eggs (solutions) will carry over to the
next generations.

e The number of available host nests is fixed, and a host can discover an
alien egg with probability p, [1 (0,1). In this situation, the host bird can
either throw the egg out of its nest or abandon the nest in order to build
a completely new nest in a new location.

Each nest represents a potential solution in the search space. The CS
algorithm also determines how to update the position of an egg laid by a
cuckoo. Each cuckoo updates its position of laying egg based on current step
size via Lévy flights. Lévy flight is a natural phenomenon noticed in some
birds and fruit flies. It is a combination of short and very long steps, with
sudden turns (typically around 90°). These sudden turns are of essential
importance for the CS algorithm, and determine the next position of the
bird/fly using the following equation:

xi(t+1) = xi(t) + ax Levy()) (13)

where a > 0 represents a step size. This step size should be closely related to
the scale of the test function that the algorithm is applied on. In most cases, a
can be set to the value of 1 (Rasuo and Bengin 2010a). It has been shown that
the use of Lévy flight is much more efficient in exploring the search space as
its step length is significantly longer when a large number of steps are
performed compared to a simple random walk. The random step length is
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drawn from a Lévy distribution, which has an infinite variance with an
infinite mean:

Levy~u=t"=21¢€(0,3] (14)

The consecutive positions generated through steps/iterations of a cuckoo
create a random walk process, which obeys a power-law step length distribu-
tion with a heavy tail.

Proposed cuckoo search algorithin

As mentioned in Section 1, wind turbine placement is an optimization
problem with n x n dimensional search space. Each dimension has two
possible values (i.e., 0 or 1). If a turbine is placed on any one of the n x n
locations (i.e., n x n search space) then a value of “1” is assigned to that
location, otherwise a “0” is assigned.

The objective of CS algorithm for wind turbine placement problem is to
perform the Lévy flight in n x n dimensional search space to find the best egg
among all eggs in nests. In CS, each nest contains one egg at a time and each
egg represents a possible solution to a given problem. Therefore, for the wind
farm layout design problem, each egg represents a solution in n x n dimen-
sional space, with n x n locations in the wind farm. In this study, n = 10 is
used, resulting in a farm of dimensions 10 x 10. Moreover, for each iteration
there are 10 nests with 1 egg each. Hence, 10 solutions are generated in each
iteration. Since CS is a population-based algorithm, seed solutions need to be
generated for each nest. These seed solutions are generated randomly.

Steps of the cuckoo search algorithin

The following are the steps of the proposed CS algorithm:

e The objective function given in Equation (12) is minimized for any fixed
number of turbines N (where N have any value between 1 and n X n).

e A turbine present at any grid position is represented by a “1” and
absence is represented by a “0”.

e Apply Cuckoo algorithm using Lévy distribution [Equations (13) and
(14)] to update all current nest’s egg (i.e., each nest contains only one
egg and that egg represents a solution) in n x n dimensional search
space using the difference between each solution “s” and the overall best
solution “b”. Here, a nest’s egg in each of the n x n dimensional search
space represents one possible turbine position (i.e., having either “1” if
turbine is placed or “0” if turbine is not placed at the selected grid



position) and all eggs represent one complete possible solution to wind
turbine placement problem.

e The original CS was designed for problems in continuous domain (i.e.,
an egg in each of n x n dimensional space has any real value). However,
the wind turbine placement problem is a discrete problem, considering a
“1” or a “0” for each dimension. Therefore, the algorithm has to be
transformed to work in the discrete domain. To deal with this issue, we
used the following rules in the given order for conversion from contin-
uous domain to two-valued discrete domain of “0” and “1”.

Rule # 1: If 5;;< 0 then s; = randomly assign either 0 or 1
Rule # 2: If 5;;>0 then s; = randomly assign either 0 or 1
Rule # 3: If 5;;< 0.5 then s5;; = 0
Rule # 4: If 5;; > 0.5 then s;; = 1

e In each nest, discover alien eggs using p, (i.e., alien discovery probabil-
ity). Generate new nests for all nests containing alien eggs using random
walk around the alien egg.

e Compare each new nest with the actual nest. If the updated nest has
improved value of objective function then replace the actual nest with
the updated nest otherwise keep the actual nest for the next generation.

e If turbines placed in the grid are greater than total turbines N then
randomly remove extra turbines from the grid.

e If turbines placed in the grid are less than total turbines N then place the
remaining wind turbines in the grid using the following approach:

o Determine the nest egg, which contains the best solution of the updated
population. Compare the population best solution with the global best
solution (i.e., overall best solution from population of all generations). If
the population best solution is better than the global best solution then
update the global best solution, otherwise keep the global best solution
unchanged. The global best solution will be used by the CS algorithm to
update the nest egg of each member of the population.

Cuckoo search algorithm with heuristic-based seed solution

In order to have faster convergence, the CS algorithm described above is
augmented with a seed solution, which is generated using a heuristic instead
of a random solution. For this purpose, the following heuristic is proposed: a
special configuration of wind farm grid is assumed which would serve as the
seed solution. This configuration is [1 10 6 4 8 3 57 9 2]. In this seed
solution, each value represents a row in the farm grid. The turbines are first
placed in all columns of row “1” from left to right followed by row “10” and
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at row “2” in the end. This heuristic is best if the wind is coming from the
north (i.e., at angle of 0 degree). So, turbines are first placed according to the
configuration, and further solutions are generated after rotating the grid at
various angles (for e.g., if the grid is rotated at 90 degrees clockwise then the
turbine in row “1” will be moved to column “10” in the respective order).

Results and discussion

The performance of the proposed CS algorithm was evaluated empirically through
simulations. Two sets of experiments were performed. The first set of experiments
provided a preliminary comparison between CS with random initial solution and
CS with heuristic-based seed solution. In the second set of experiments, a com-
parative analysis of CS with GAs and PSO algorithm was conducted. All compar-
isons measured three aspects: fitness of solution (calculated using Equation (12)),
yearly power output, and efficiency of the wind farm with the obtained config-
uration. Two test scenarios were used depicting different wind conditions and
directions. These scenarios have been used in several earlier studies (Emami and
Noghreh 2010; Gonzalez, Santos, and Payan 2010; Grady, Hussaini, and Abdullah
2005; Herp, Poulsen, and Greiner 2015; Huang 2009; Mosetti, Poloni, and
Diviacco 1994; Wang, Liu, and Zeng 2009a; Wang et al. 2015). The scenarios
are briefly discussed below for the sake of completeness. Furthermore, 50 inde-
pendent runs were made for each scenario, and the run which gave the best results
(out of 50 runs) was reported. In order to have fair comparisons between algo-
rithms, CS, GA, and PSO were executed for the same amount of time.

Case A

This scenario assumes that the wind is coming from all the directions with equal
probability, while considering mean wind speed of 12 m/s. For simplified calcula-
tions, wind directions were divided into 36 equal intervals with 10-degree differ-
ences (i.e., 0 degree, 10 degrees, 20 degrees, ..., 350 degrees). It is also implicitly
assumed that each turbine in the grid rotates along with the prevailing wind
direction, while it is installed at the center of the cell in the grid. Thus, each turbine
is facing the prevailing wind direction. The turbines affected by wake from
preceding turbines will receive downstream wind speeds as per Equations (2)
and (3) for single and multiple wakes, respectively. It is important to mention that
since the wind directions may be approaching from all directions, it is required to
determine the wake effects geometrically on the turbines downstream.

Case B
In this scenario, wind is assumed to be coming from all possible directions with

equal probability but with varying mean wind speeds of 8, 12, and 17 m/s. This
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case is similar to Case A except for the wind speeds. Therefore, as in Case A,
wind direction was divided in to 36 equal intervals with an angle difference of 10
degrees (i.e., 0 degree, 10 degrees, 20 degrees, ..., 350 degrees). Furthermore,
turbine installation and calculations of wake effect remain similar to Case A. The
complexity of Case A is intensified by the fact that the probability of having wind
direction may be different for different mean wind speeds. In particular, pre-
vious studies (Grady, Hussaini, and Abdullah 2005; Mosetti, Poloni, and
Diviacco 1994) have used the probability distribution as shown in Figure 4,
where it is observed that wind distributions from 270 degrees to 350 degrees are
higher than the remaining wind directions, with the peak at around 310 degrees.
The same distribution was used to evaluate the performance of the CS algorithm
and comparison with GA.

Comparison of basic cuckoo search and heuristic-based cuckoo search
algorithms

A preliminary comparison of the basic CS and CS with heuristic (CSWH)
was performed. Tables 1 and 2 provide the results for the two algorithms
with respect to the two scenarios and different number of turbines. As seen
in Table 1, for Case A with 19 turbines, CS and CSWH were almost equal in
terms of power generation and efficiency. The power generation by CS was
only 3 KW more than that of CSWH. However, for 39 turbines, the differ-
ence in power generation by CS was slightly higher than that of CSWH, with
70 KW additional by CS. The difference in efficiency was also slight. As far as
scenario B is concerned, results in Table 2 are slightly favorable for CSWH.
For both 15 and 39 turbines, CSWH was able to produce more power and
higher efficiency than CS. For 15 turbines, CSWH produced 31 KW more
than CS, and for 39 turbines, this number was 15 KW. These results indicate

Wind Distribution - Case B

W17 m/s
W12 m/s

m8m/s

Wind Fraction of Occurrence

0 50 100 150 200 250 300 350
Angle (degrees)
Figure 4. Varying wind speeds for different directions (developed from (Mosetti, Poloni, and
Diviacco 1994)).
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Table 1. Comparison of CS and CSWH for Case A using 19 and 39 turbines.

Attributes cs CSWH (&) CSWH
Total (kw/year) 9385 9382 17861 17791
Efficiency (%) 95.29 95.26 88.34 88.00
No. of turbines 19 19 39 39
Run time (sec) 2584 2584 2428 2428

Table 2. Comparison of CS and CSWH for Case B using 15 and 39 turbines.

Attributes CS CSWH CS CSWH
Total (kw/year) 14,769 14,800 34,548 34,563
Efficiency (%) 97.61 97.82 87.82 87.86
No. of turbines 15 15 39 39
Run time (sec) 2463 2463 5271 5271

that, overall, CS and CSWH performed more or less the same, although the
performance of CSWH was slightly better than that of CS for scenario B.
In order to further understand the behavior of the two CS algorithms, the
search pattern of the two with respect to the two scenarios is depicted in
Figure 5. The figure shows the search pattern for the best run (the run that

(a) Fitness vs. runtime - Case A, 19 turbines (b) Fitness vs. runtime - Case A, 39 turbines
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Figure 5. Progression of fitness versus runtime for CS and CSWH with (a) Case A, 19 turbines; (b)
Case A, 39 turbines; (c) Case B, 15 turbines; and (d) Case B, 39 turbines.
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Table 3. Comparison of CS, CSWH, GA, and PSO for Case A using 19 turbines.

Attributes CS CSWH GA PSO
Total (kw/year) 9385 9382 9245 9334
Efficiency (%) 95.29 95.26 93.86 94.77
No. of turbines 19 19 19 19
Runtime (sec) 2584 2584 2584 2584

Table 4. Comparison of CS, CSWH, GA, and PSO for Case A using 39 turbines.

Attributes CS CSWH GA PSO
Total (kw/year) 17,861 17,791 17,220 17,737
Efficiency (%) 88.34 88.00 85.17 87.73
No. of turbines 39 39 39 39
_Runtime (sec) 2428 2428 2428 2428

Table 5. Comparison of CS, CSWH, GA, and PSO for Case B using 15 turbines.

Attributes cs CSWH GA PSO

Total (kw/year) 14,769 14,800 13,460 14,700
Efficiency (%) 97.61 97.82 94.62 97.16
No. of turbines 15 15 15 15
Runtime (sec) 2463 2463 2463 2463

Table 6. Comparison of CS, CSWH, GA, and PSO for Case B using 39 turbines.

Attributes CS CSWH GA PSO

Total (kw/year) 34,548 34,563 32,038 34,715
Efficiency (%) 87.82 87.86 86.62 88.25
No. of turbines 39 39 39 39
Runtime (sec) 5271 5271 5271 5271

generated the best results out of the 50 runs) for scenarios A and B with
different number of turbines. For all four plots depicted in the figure, it is
observed that the CSWH was able to start with better quality of initial
solutions for both scenarios and turbines. This is evident from better fitness
values in the early stages of the search (note that objective is to minimize the
fitness value). For example, in Figure 5(a) during the first 400 seconds, the
titness value of CSWH is better than that of CS; even the fitness value of
CSWH at the very start is better than that of CS. Similar patterns are
observed in Figures 5(b), (c), and (d), where CSWH was able to reach
solutions with higher fitness values than CS during the early stages of the
search. However, as the search progresses and continues for longer duration,
both CS and CSWH reach the same quality of solution in Figures 5(a) and
(d), while CSWH reaches better quality of solution in Figure 5(c). A different
trend is observed in Figure 5(b) where CS was able to reach solution with
better fitness than CSWH, despite the fact that CSWH started with better
titness value initially.
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Figure 6. Best layouts for Case A with 19 turbines using (a) CS, (b) CSWH, (c) GA, and (d) PSO.

The above results and discussion indicate that CS with heuristic-based
seed solution was able to provide a better start to the algorithm as compared
to simple CS (which uses a random seed to start), and could be helpful if the
algorithm was run for shorter durations. However, given a much longer
duration, both CS and CSWH reach the same level of performance. Thus,
the advantage of the heuristic seed solution is more prominent for execution
for shorter durations.

Comparison of cuckoo search with genetic algorithm and particle swarm
optimization algorithm

In order to benchmark the performance of the proposed CS algorithms,
comparison with genetic algorithm and PSO algorithm were also performed.
GA and PSO have already been applied to the same wind farm layout design
problem (Rasuo and Bengin 2010b; Rehman and Ali 2015). Therefore, a
comparison with the proposed CS algorithms would be more logical.
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Figure 7. Best layouts for Case A with 39 turbines using (a) CS, (b) CSWH, (c) GA, and (d) PSO.

The genetic algorithm used in this study is the same as used in various
previous studies (Bilbao and Alba 2010; Grady, Hussaini, and Abdullah 2005;
Mittal 2010; Wan et al. 2009). The solution representation is a binary string
representing the 2-dimensional structure of the grid. Crossover probability
was varied between 0.6 and 0.9 with a step size of 0.1 (i.e. 0.6, 0.7, 0.8, and
0.9), while mutation probability was varied between 0.01 and 0.1 with a step
size of 0.03 (i.e. 0.01, 0.04, 0.07, and 0.1). After experimentation with the said
values, values of 0.9 for crossover and 0.07 for crossover were found suitable.
These values were used in the subsequent experiments.

For PSO, the parameters to tune are inertia weight, w, and acceleration
coefficients ¢; and c,. For acceleration coefficients, various combinations as
follows were tried: ¢; = 4 and ¢; = 2, ¢; = 2 and ¢; = 4, ¢; = ¢, = 2, and
¢j = ¢g = 4. The best results for PSO were found for both scenarios when ¢; = 2
and ¢, = 4. For inertia weight, values of 0.5, 0.72, and 0.9 were tried. The
value of 0.72 was specifically chosen since it has been widely used in
literature. It turned out that a value of 0.9 gave the best results. Therefore,
all empirical work was done using ¢; = 2, ¢, = 4, and w = 0.9.
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Figure 8. Best layouts for Case B with 15 turbines using (a) CS, (b) CSWH, (c) GA, and (d) PSO.

Tables 3-6 display the results produced by CS, CSWH, GA, and PSO (the
results for CS and CSWH are reproduced here for the sake of completeness).
It is observed from these tables that, in general, both CS and CSWH were
able to produce better results (in terms of yearly power generation and
efficiency) than GA and PSO for both test scenarios and the number of
turbines considered. There is one exception (Case B) where PSO generated
the best yearly power output and efficiency using 39 turbines. Furthermore,
GA demonstrated the worst performance for all test scenarios and turbines.
Figures 6-9 display the best layouts generated by CS, CSWH, GA, and PSO
for different test cases.

The superior performance of CS algorithms could be attributed to the fact
that CS is much more efficient in finding the global optima than GA or PSO
(Chowdhury and Zhang 2010). Furthermore, CS has higher capability than
PSO in terms of providing more robust and precise solutions (Chowdhury
et al. 2012) and provides faster convergence compared to GA (Song et al.
2016; Wan et al. 2010). This is due to the three essential components of CS
which are selection of the best, exploitation by local random walk, and
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Figure 9. Best layouts for Case B with 39 turbines using (a) CS, (b) CSWH, (c) GA, and (d) PSO.

exploration by randomization via Lévy flights globally. These characteristics
are achieved through only one parameter, p,, which requires tuning. In
comparison, GA and PSO both have a number of parameters to tune to
achieve the same (Chowdhury and Zhang 2010).

Conclusions

This paper presented a novel approach for optimization of a wind farm
layout. A recent optimization technique, namely, the CS algorithm, was
engineered to optimize the wind farm layout design. A variant of CS was
also proposed, which incorporated a heuristic-based seed solution. The
proposed CS algorithms were mutually compared and it was found that the
heuristic-based CS provides some leverage to the search process during the
early phase of algorithm execution. Furthermore, comparison was done with
genetic algorithm and PSO algorithm, which have been previously used in
many studies to solve different variations of the wind turbine layout design



22

problem. The results revealed that the proposed CS algorithms produced
higher yearly energy output and better efficiency for all the considered test
scenarios and different number of wind turbines. This signifies that the CS
algorithm was more efficient than genetic algorithm and PSO algorithms in
traversing the search space, which resulted in better solutions by CS.

Funding
This work was supported by Deanship of Research at King Fahd University of Petroleum and
Minerals under project number IN131012.

References

Bilbao, M., and E. Alba. 2010. CHC and SA applied to wind energy optimization using real
data. Proceedings of the IEEE conference on evolutionary computation, 1-8.

Chowdhury, S., and J. Zhang. 2010. Exploring key factors influencing optimal farm design
using mixed-discrete particle swarm optimization. Proceedings of 13th AIAA/ISSMO
multidisciplinary analysis and optimization conference, 1-16.

Chowdhury, S., J. Zhang, A. Messac, and L. Castillo. 2012. Unrestricted wind farm layout
optimization (UWFLO): Investigating key factors influencing the maximum power gen-
eration. Renewable Energy 38:16-30. doi:10.1016/j.renene.2011.06.033.

Civicioglu, P., and E. Besdok. 2011. A conceptual comparison of the Cuckoo-search, particle
swarm optimization, differential evolution and artificial bee colony algorithms. Artificial
Intelligence Review, 39 (4):315-346. Springer.

Emami, A., and P. Noghreh. 2010. New approach on optimization in placement of wind
turbines within wind farm by genetic algorithms. Renewable Energy 35:1559-64.
doi:10.1016/j.renene.2009.11.026.

Eroglu, Y., and S. U. Segkiner. 2013. Wind farm layout optimization using particle filtering
approach. Renewable Energy 58:95-107. doi:10.1016/j.renene.2013.02.019.

Feng, J., and W. Z. Shen. 2015. Solving the wind farm layout optimization problem using
random  search  algorithm. Renewable  Energy  78:182-92.  doi:10.1016/j.
renene.2015.01.005.

Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Publishing Company, New York, United States.

Gonzalez, J., A. Rodriguez, ]. Mora, M. Payan, and J. Santos. 2010. Overall design optimiza-
tion of wind farms. IEEE Systems Journal 99:539-40.

Gonzadlez, J., A. Rodriguez, J. Mora, J. Santos, and M. Payan. 2010. Optimization of wind farm
turbines layout using an evolutive algorithm. Renewable Energy 35:1671-81. doi:10.1016/j.
renene.2010.01.010.

Gonzalez, J., J. Santos, and M. Payan. 2010. Wind farm optimal design including risk.
Proceedings of IEEE international symposium modelling electric power systems, 1-6.

Gonzalez, J., J. Santos, and M. Payan. 2012. Optimization of wind farm turbine layout
including decision making under risk. IEEE Systems Journal 6 (1):94-102. doi:10.1109/
JSYST.2011.2163007.

Grady, S. A.,, M. Y. Hussaini, and M. M. Abdullah. 2005. Placement of wind turbines using
genetic algorithms. Renewable Energy 30 (2):259-70. doi:10.1016/j.renene.2004.05.007.

Guerrero, M., O. Castillo, and M. Garcia. 2015. Cuckoo search via lévy flights and a
comparison with genetic algorithms. In Fuzzy logic augmentation of nature-inspired



23

optimization metaheuristics, studies in computational intelligence, eds. O. Castillo, and P.
Melin, Springer International Publishing, Switzerland, Vol. 574, 91-104.

GWEC: Global Wind Energy Council annual report. 2015. Global Wind Energy Council.
http://www.gwec.net/wp-content/uploads/2012/06/GLOBAL_INSTALLED_WIND_
POWER_CAPACITY_MW_-_Regional_Distribution.jpg (accessed July 13, 2015)

Herbert-Acero, J., ]J. Franco-Acevedo, M. Valenzuela-Rendon, and O. Probst-Oleszewski.
2009. Linear wind farm layout optimization through computational intelligence.
Proceedings of the Mexican international conference on artificial intelligence, Lecture
notes in Artificial Intelligence, 692-703.

Herp, J., U. V. Poulsen, and M. Greiner. 2015. Wind farm power optimization including flow
variability. Renewable Energy 81:173-81. do0i:10.1016/j.renene.2015.03.034.

Huang, H. 2007. Distributed genetic algorithm for optimization of wind farm annual profits.
IEEE international conference intelligence system applied to power systems, 1-6.

Huang, H. 2009. Efficient hybrid distributed genetic algorithms for wind turbine positioning
in large wind farms, Proceedings of the IEEE international symposium industrial electro-
nics, 2196-2201.

Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization. IEEE International
Conference on Neural Networks 1942-48.

Khan, S. A, and S. Rehman. 2013. Iterative non-deterministic algorithms in on-shore wind
farm design: A brief survey. Renewable and Sustainable Energy Reviews 19 (3):370-84.
doi:10.1016/j.rser.2012.11.040.

Kumar, A., and S. Chakarverty. 2011. Design optimization using Genetic Algorithm and
Cuckoo Search, 1-5. IEEE International Conference on Electro/Information Technology.
doi:10.1109/EIT.2011.5978616.

Kusiak, A., and Z. Song. 2010. Design of wind farm layout for maximum wind energy
capture. Renewable Energy 35:685-94. doi:10.1016/j.renene.2009.08.019.

Mittal, A., Optimization of the layout of large wind farms using a genetic algorithm. MS
thesis, Case Western Reserve University; 2010.

Mora, J., J. Baron, J. Santos, and M. Payan. 2007. An evolutive algorithm for wind farm
optimal design. Neurocomputing 70:2651-58. doi:10.1016/j.neucom.2006.05.017.

Mosetti, G., C. Poloni, and B. Diviacco. 1994. Optimization of wind turbine positioning in
large wind farms by means of a genetic algorithm. Journal of Wind Engineering and
Industrial Aerodynamics 51:105-16. doi:10.1016/0167-6105(94)90080-9.

Pookpunt, S., and W. Ongsakul. 2013. Optimal placement of wind turbines within wind farm
using binary particle swarm optimization with time-varying acceleration coefficients.
Renewable Energy 55:266-76. doi:10.1016/j.renene.2012.12.005.

Rahmani, R., A. Khairuddin, S. M. Cherati, and H. A. Pesaran. 2010. A novel method for
optimal placing wind turbines in a wind farm using particle swarm optimization (PSO).
Proceedings of IEEE international conference on power engineering, 134-39.

Rasuo, B., and A. Bengin. 2010a. Optimization of wind farm layout. FME Transformers
38:107-14.

Rasuo, B., and A. Bengin. 2010b. On aerodynamic optimization of wind farm layout.
Proceedings of the Applied Mathematics and Mechanics 10 (1):539-40. doi:10.1002/
pamm.201010262.

Rehman, S., and S. Ali. 2015. Wind farm layout design using modified particle swarm
optimization algorithm. IEEE 6th International Congress on Renewable Energy
Congress, March, Tunisia, pp. 1-6.

Saavedra-Moreno, B., S. Salcedo-Sanz, A. Paniagua-Tineo, L. Prieto, and A. Portilla- Figueras.
2011. Seeding evolutionary algorithms with heuristics for optimal wind turbines position-
ing in wind farms. Renewable Energy 36:2838-44. doi:10.1016/j.renene.2011.04.018.



24

Salcedo-Sanz, S., D. Gallo-Marazuela, A. Pastor-Sanchez, L. Carro-Calvo, A. Portilla-Figueras,
and L. Prieto. 2014. Offshore wind farm design with the Coral Reefs Optimization
algorithm. Renewable Energy 63:109-15. doi:10.1016/j.renene.2013.09.004.

Sisbot, S., O. Turgut, M. Tunc, and U. Camdali. 2009. Optimal positioning of wind turbines
on Gokceada using multi-objective genetic algorithm. Wind Energy 13 (4):297-306.
doi:10.1002/we.339.

Song, M., K. Chen, X. Zhang, and J. Wang. 2016. Optimization of wind turbine micro-siting
for reducing the sensitivity of power generation to wind direction. Renewable Energy
85:57-65. doi:10.1016/j.renene.2015.06.033.

Song, Z., Z. Zhang, and X. Chen. 2016. The decision model of 3-dimensional wind farm
layout design. Renewable Energy 85:248-58. doi:10.1016/j.renene.2015.06.036.

Sorkhabi, S. Y. D., D. A. Romero, G. K. Yan, M. D. Gu, J. Moran, M. Morgenroth, and C. H.
Amon. 2016. The impact of land use constraints in multi-objective energy-noise wind farm
layout optimization. Renewable Energy 85:359-70. doi:10.1016/j.renene.2015.06.026.

Wan, C,, J. Wang, G. Yang, X. Li, and X. Zhang. 2009. Optimal micro-siting of wind turbines
by genetic algorithms based on improved wind and turbine models. Proceedings of the
48th IEEE conference decision control, 5092-96.

Wan, C., J. Wang, G. Yang, and X. Zhang. 2010. Optimal micro-siting of wind farms by
particle swarm optimization, Proceedings of International conference on swarm intelli-
gence, LNCS, 198-205.

Wang, F., X. He, Y. Wang, and S. Yang. 2012. Markov model and convergence analysis based
on cuckoo search algorithm. Computer Engineering 38 (11):180-85.

Wang, F., D. Liu, and L. Zeng. 2009a. Modeling and simulation of optimal wind turbine
configurations in wind farms, Proceedings of the IEEE world non-grid connected wind power
energy conference, 1-5.

Wang, F., D. Liu, and L. Zeng. 2009b. Study on computational grids in placement of wind
turbines using genetic algorithm. IEEE world non-grid connected wind power energy
conference, 1-4.

Wang, L., A. C. C. Tan, Y. Gu, and J. Yuan. 2015. A new constraint handling method for
wind farm layout optimization with lands owned by different owners. Renewable Energy
83:151-61. doi:10.1016/j.renene.2015.04.029.

Yang, J., R. Zhang, Q. Sun, and H. Zhang. 2015. Optimal wind turbines micrositing in
onshore wind farms using fuzzy genetic algorithm. Mathematical Problems in
Engineering 2015:1-9. Article ID 324203, doi:10.1155/2015/324203.

Yang, X,, and S. Deb. 2009. Cuckoo search via levy fights. In Proceedings of IEEE Conference
on Nature & Biologically Inspired Computing, 210-14.

Yang, X., and S. Deb. 2014. Cuckoo search: recent advances and applications. Neural
Computing and Applications 24 (1):169-74. doi:10.1007/s00521-013-1367-1.

Yang, X. S., and S. Deb. 2010. Engineering optimisation by cuckoo search. International
Journal of Mathematical Modelling and Numerical Optimisation 1 (4):330-43. doi:10.1504/
IJMMNO.2010.035430.



	Abstract
	Introduction
	Brief overview of existing literature
	Wind farm layout optimization problem
	Wake and cost modeling
	Cuckoo search algorithm for wind farm layout design
	CS algorithm
	Proposed cuckoo search algorithm
	Steps of the cuckoo search algorithm
	Cuckoo search algorithm with heuristic-based seed solution

	Results and discussion
	Case A
	Case B
	Comparison of basic cuckoo search and heuristic-based cuckoo search algorithms
	Comparison of cuckoo search with genetic algorithm and particle swarm optimization algorithm

	Conclusions
	Funding
	References



