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ABSTRACT
In the present study, Artificial Neural Network (ANN)
approaches were adopted for the prediction of thrust force
(Fz) and torque (Mz) during drilling of St60 workpiece, accord-
ing to important cutting parameters such as cutting velocity,
feed rate, and cutting tool diameter. During the setup of an
ANN, some essential difficulties like the determination of net-
work architecture, the determination of weight coefficients and
the selection of training algorithm should be addressed.
A combination of genetic algorithm and neural networks (GA-
ANN) formulates those difficulties as an optimization problem
and resolve it by the help of a suitable optimization method.
Finally, a comparison between ANN with network architecture
determined by a simple trial and error approach and ANN with
architecture determined by a GA-ANN approach is conducted.
The comparison of the models showed clearly that adopting
genetic algorithm (GA) equals to the improvement of the
efficiency of the network performance.

Introduction

The development of today’s world has increased the need for the production
of necessary products for the consumers. From the manufacturing point of
view, this equals to the increased demand for raw materials and energy.
Manufacturing operations is an important part of energy consumption dur-
ing the whole life cycle of a product. Sustainable manufacturing is dealing
with the efficiency of production processes. Many efforts have been done in
order for manufacturing sustainability to be improved. Among these is the
creation of mathematical models focused on the maximization of productiv-
ity and cost reduction by identifying crucial parameters and processes influ-
encing manufacturing effectiveness (Sujova, Marcinekova, and Hittmar 2017;
Vijayaraghavan and Castagne 2016). Drilling is one of the most widely used
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machining processes in the industry. The high pressure of the competition
makes time and quality of the process to be considered as very crucial factors
for the success. For this reason, many researchers have dealt with the
modeling of machining in general as well as with drilling in particular. Any
optimization in the process directly equals to a greener machining. This
paper deals with the determining of ANN parameters and improving the
efficiency of network performance by adopting genetic algorithm (GA).

Literature Review

Drilling is one of the most widely used machining operations in the industry.
Therefore, many researchers have used the application of ANN for the
purpose of prediction and modeling manufacturing effectiveness by identify-
ing crucial parameters and processes. Nassef et al. (2018) used an ANN
during a drilling process of a glass using abrasive jet machining. The ANN
focused on the development of a model of kerf taper as a function of the
process parameters. Genetic algorithm used for the optimization of the
model by identifying the conditions to minimize the kerf taper. They proved
that the kerf taper is reducing by applying an axial feed to the nozzle so that
the standoff distance is kept constant during the machining process. Hynes,
Kumar, and Sujana (2017) developed an ANN predictive model for the
bushing length in thermal drilling of galvanized steel. Bushing length is
directly linked with the tapping process and input parameters of the process
play a basic role in fastening galvanized steel. The maximization of the
bushing length was done by the use of a genetic algorithm under constraint
limits. Kannan et al. (2015) tried to face out problems in drilling operations
such as poor surface roughness and ovality. They developed Artificial Neural
Network modeling technique and Genetic Algorithm (GA) optimization
technique for the drilling process of 6 mm hole in brass plate. They found
that suitable parameters selection plays a vital role in the improvement of
drilled holes quality.

Goyal and Dubey (2014) provided artificial neural network and genetic
algorithm for the modeling and optimization of geometrical quality charac-
teristics such as hole taper and circularity during Laser trepan drilling (LTD)
of 1.6 mm thick Inconel718 superalloy sheet. They verified that higher values
of laser pulse frequency and trepanning speed in the used range had resulted
in more circular holes with reduced taper. Kilickap and Huseyinoglu (2010),
under the investigation of the influence of the cutting parameters on burr
height produced when drilling AISI 304 stainless steel, developed an applica-
tion of response surface methodology (RSM) and genetic algorithm (GA) for
the selection of the optimum combination values of those parameters. The
results showed that the minimum burr height was obtained at lower cutting
speed and feed rates while at higher point angle. Even in Geological
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Engineering, Khandelwal and Armaghani (2016) developed a multiple regres-
sion, artificial neural network (ANN) and hybrid genetic algorithm (GA)-
ANN models for the estimation of a drilling rate index (DRI) prediction
model based on rock material properties. The comparison of the three
different models showed that the hybrid GA-ANN technique is the much
better predictor of DRI compared to other developed models.

Artificial Intelligence Methods

Artificial Neural Networks

Artificial neural networks (ANN) constitute one of the most important
Artificial Intelligence methods. They are inspired by the actual function of
neural networks in nature, e.g. the neural system of living organisms.
Biological neural networks are complex networks composed of a large num-
ber of neurons connected by synapses (Basheer and Hajmeer 2000). The
neurons receive inputs via synapses and produce a suitable output after they
are activated. The same principles regulate the function of ANNs; usually,
ANNs contain a number of artificial neurons organized in a number of
connected layers. In the case of Multi-layer Perceptron (MLP), the most
common network architecture comprises an input layer, an output layer
and a hidden layer between them.

In this type of network, data enters from the input layer and is processed
towards the output layer (feed-forward). The basic element of ANN is the
determination of weighting coefficients, or weights, which are related to the
artificial synapses between neurons of different layers (Jain, Mao, and
Mohiuddin 1996). Several methodologies have been proposed for the deter-
mination of network architecture, such as empirical rules or more organized
schemes (Curteanu and Cartwright, 2011). For each neuron, a summation
operation is first performed for the inputs which are multiplied by the
appropriate weights, and then the output is produced with the use of an
“activation function”. The activation function should produce output in the
range [0, 1] and exhibit a behavior comparable to that of the activation of
a biological neuron. For that reason, functions with a sigmoid shape such as
the hyperbolic tangent are preferred.

In order to establish a reliable correlation between input and output
quantities, a training process consisting of three parts is realized. More
specifically, during this process the appropriate weight values are determined
based on data from input/output pairs. The data are usually divided into
three sets: the training, validation and test sets. During training, weights are
adjusted in order to learn the given input/output pairs. During validation, the
weights are adjusted until the decrease of error stops, and finally, the test data
are employed to determine the generalization ability of the networks, i.e. the
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capability to predict the response to unknown inputs. Training process is
conducted by comparing the actual and predicted outputs and propagating
the error from the output to the input layer (back-propagation of error)
(Murata, Yoshizawa, and Amari 1994). Suitable termination criteria regulate
the end of the training, after several iteration or epochs. The prediction ability
of the error can be usually evaluated by the Mean Square Error (MSE):

MSE ¼ 1
n

Xn
i¼1

Y
_

i � Y
� �2

(1)

where n is the number of input or output data, Y
_

represents the predicted
data and Y represents the actual output data. Furthermore, the correlation
coefficient R or the coefficient of determination R2 can also be used.

Genetic Algorithm

Genetic Algorithm (GA) constitutes one of the most commonly used meth-
ods for solving optimization problems. This method belongs to the
Evolutionary Algorithms, which is the oldest and most important category
of bio-inspired artificial intelligence methods. It was proposed originally in
by Holland in the 1970s (Holland 1973) and then was further advanced by
researchers such as Goldberg (Goldberg 1989). Since its invention, GA was
successfully employed in many scientific disciplines and a considerable num-
ber of variants and combinations with other methods were proposed to
increase its efficiency.

The basic idea behind GA is the use of the process of natural selection as
a metaphor, in order to create an algorithm which can efficiently derive
solutions close to the optimum ones. Natural selection is a biology term,
which is related to the process of biological evolution; according to this
theory, several biological mechanisms are responsible for the survival or
modification of various characteristics of living beings during the timeline
of evolution. In GA, various terms are related to biological ones, such as the
population or the selection, crossover and mutation operators. The candidate
solutions are conceived as chromosomes and the individual traits of the
chromosome are the genes. The whole process is driven by the theory of
survival of the best individuals, as evaluated by the fitness function, which
reflects the goal of the optimization problem.

Thus, GA algorithm starts by determining an initial population of indivi-
duals- candidate solutions. Then, an iterative process begins, and the initial
individuals are evolved towards more improved ones. At first, the fitness of
the individuals is evaluated and using a selection process the individuals
produce new offspring by combining their features; moreover, the features of
the offspring can be determined at random by mutation. Apart from these
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basic operators, other strategies are also employed, such as the elitism, which
aims for the preservation of the best solutions for a number of generations,
or the use of multiple populations which evolve in parallel and eventually
exchange features between them.

GA-ANN Method

As aforementioned, some of the fundamental problems appearing in the case
of neural networks include: the determination of network architecture for
each problem, the determination of weight coefficients as well as the selection
of training algorithm. For that reason, it is possible to formulate this problem
as an optimization problem and resolve it by the aid of a suitable optimiza-
tion method. In the relevant literature, several researchers have employed
a combination of genetic algorithm and neural networks, denoted in the
present work as GA-ANN method, in various scientific disciplines.

Arifovic and Gençay (2001) investigated the use of genetic algorithm in
order to determine the optimum neural network architecture and other
network parameters and compared the effectiveness of this approach with
models based on Schwarz and Akaike information criteria. Correa and
Gonzalez (2011) employed two different algorithms, namely Genetic
Algorithms and Binary Particle Swarm Optimization (BPSO) to optimize
the architecture of a MLP neural network. The design variables for the
optimization problem included not only the number of hidden layers and
neurons, but also the type of activation function for hidden and output layers
and the bias terms. They concluded that the optimization approach was
superior to that of the default process of network architecture determination
and that this approach led to a solution very close to the global optimum.
Boithias, El Mankibi, and Michel (2012) also used an approach for neural
network optimization using GA for prediction of indoor discomfort and
energy consumption. In their model, they used parameters relevant to net-
work architecture, training process and also included additional variables,
which indicated if any of the input variables were unnecessary for the ANN
model. This approach showed considerable accuracy and it was proposed
that the derived model could be used for on-line controller setting purposes.

Idrissi et al. (2016) proposed a multi-objective optimization approach,
with a view to determine both network architecture and suitable values for
network weights. Their objective function had two goals: the minimization
of the number of hidden layers and neurons and the minimization of
MSE, while the constraints of the problem were the existence of at least
one hidden layer and the removal of neurons of a hidden layer if it was
not used. They concluded that their approach was capable of predicting
results from three datasets with significant accuracy. Ul Islam et al. (2014)
employed GA to optimize ANN architecture by determining which
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connections of neurons would be active or not. They employed an evalua-
tion function based on MSE, minimization of number of connections and
neurons. Their results indicated sufficiently low MAPE values, showing the
efficiency of their approach. Benardos and Vosniakos (2007) developed
a GA-ANN with novel criteria, in order to determine network architecture
in a sufficiently reliable way. Their objective function included terms
related to training error, generalization error, network architecture and
solution space consistency and was helpful to obtain relatively low training
and generalization errors.

Jeong, Min, and Kim (2012) employed a Generalized Additive Model
(GAM) and GA algorithm to fine-tune the architecture of ANN model and
the decay coefficient. After proper determination of the input factors for the
model and suitable initial values were conducted, GA was employed to
provide optimum architecture and decay coefficient value. The proposed
approach was compared to other classification methods, as well as to a non-
tuned NN and it was observed to outperform them. Khorani, Forouzideh,
and Nasrabadi (2011) compared several optimization methods for the train-
ing of MLP. Using optimization algorithms, the network architecture and
weights could be determined and the objective function was the minimiza-
tion of MSE. They found that the combination of Imperialist Competitive
Algorithm and GA was the optimum approach.

In their review paper, Ojha, Abraham, and Snášel (2017) thoroughly
presented the advances conducted in the field of metaheuristic design of
neural networks. They pinpointed that the main categories of metaheuristic-
based training of neural networks are: connection weight optimization,
architecture optimization, node optimization, and learning rule optimization,
as well as their combinations. In their work, they did not only present details
about the GA-ANN approaches, but provide useful information about future
challenges in this field. Zhang and Wang (2008) presented a GA-ANN
approach, with which they optimized the initial interconnecting weights
and thresholds of an MLP network and observed its superiority against
ordinary ANN networks.

Methodology

In this study, a St60 workpiece (150 mm×150 mm×15 mm) was placed in
HAAS VF1 CNC machining center for the drilling operations. During the
drilling experiments cutting forces were measured by a Kistler four compo-
nents dynamometer type 9123 with all the appropriate accessories. The
dynamometer signals were processed via charge amplifiers and an A/D
converter to a personal computer. Thrust force and torque measurements
were displayed and analyzed in order to implement an early error detection
strategy.
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The cutting tools which used for the experiments were solid carbide drill tools
(Kennametal – multilayer TiAlN-PVD-coated universal fine-grain grade) with
diameters 6, 8, 10, 12, and 14 mm (Figure 2). The number of the total experi-
ments was 45 as the full factorial combination of cutting speeds (10, 30, 50m/
min), feed rates (0.05, 0.15 and 0.25mm/rev) and tool diameters were performed.
The workflow of the research is depicted in Figure 1, and the cutting parameters,
units, and notations are listed in Table 1.

The experimental results are illustrated in Figure 3. It presents the thrust
force and the cutting torque measured, for all the cutting tools while all the
combinations of the feed rates and cutting speeds were used. It is obvious
that the thrust force and the cutting torque are directly related to different
feed rates and cutting speeds. From the cutting tool point of view, according
to the results, it is clear that when the tool diameter increases, both the thrust
force and the cutting torque values are increased. The same is the case for the
feed rate with respect to both the thrust force and the cutting torque. On the
other side, cutting speed affects barely the experimental values. As a result, it
seems that the importance of cutting speed is much lower than the impor-
tance of cutting tool diameter and feed rate, related to thrust force and
cutting torque.

General Description

In the present paper, a GA-ANN approach is proposed to model the experi-
mental data with increased accuracy. The investigation, concerning the

Figure 1. The workflow used for the research.
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efficiency of the proposed approach, will consist of several steps and it will
contain a comparison with an ANN model, created using a simpler approach.
Thus, at first, an investigation on the optimum architecture of ANN for the
prediction of Fz force and Mz torque is conducted using a trial-and-error
approach and an empirical rule, separately for Fz and Mz. Then, the pro-
posed GA-ANN approach is employed. The developed model consists of
several input variables, presented in Table 2 and the objective function
consists of several terms, regarding the prediction accuracy of ANN. More
specifically, two different GA-ANN models are examined, with one contain-
ing only the network architecture parameters as inputs and the second
containing parameters concerning the training process as well. For each

Figure 2. Cutting tools analytical description.

Table 1. Cutting variables used for the experiments.
Parameters Values

Cutting velocity (m/min) V 10, 30,50
Feed rate (mm/rev) f 0.05, 0.15, 0.25
Tool diameter (mm) D 6, 8, 10, 12, 14
Axial depth of cut (mm) ap 15
Workpiece dimension (mm) 150 × 150 × 15
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model, several cases (denoted hereafter as “scenarios”) of optimization func-
tions, presented in Table 3, are evaluated in order to determine also the
overall best network. Every network has three inputs, namely cutting tool

Figure 3. Results of the Fz and Mz for all the experiments conducted.
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diameter, cutting speed and feed and one output, Fz or Mz. All ANN and
GA-ANN models are developed in MATLAB.

Details for the Development of ANN Models

Simple ANN
As aforementioned, the trial-and-error approach for the optimum ANN archi-
tecture for the prediction of Fz andMz will be based on an empirical rule for the
determination of lower and upper limit for the number of hidden neurons. It is
generally accepted (Zhang et al. 2012) that, for simpler problems with a small to
medium dataset, a single hidden layer is sufficient and the range for the number
of hidden neurons can be determined using the following formula:

Nh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ninp þ Nout

p þ a (2)

In the case examined in the present work, Ninp = 3, Nout = 1 and a is considered
to vary between 0 and 10, so the range of hidden neurons number is 2 to 12. For
each case, the networks are retrained 10 times in order to eliminate the influence
of initial weight values to the result. Except for the number of hidden neurons,
other ANN parameters are considered constant; training algorithm is
Levenberg–Marquardt and early stopping technique is adopted to end training
after MSE is not decreased after 6 consecutive epochs.

Results using the ordinary ANN approach are presented in Section 3.1.
Although the performance of ANN for the determination of an optimum
number of neurons was mainly assessed by MSE values, mean percentage

Table 2. Design variables and their limits.
Variable Lower bound Upper bound

N_layers 1 2
Neurons1 2 15
Neurons2 2 15
TrainRatio 0.60 0.75
TestRatio 0.10 0.15
Train_algorithm 1 5
PerformFcn 1 2
Max_fail 6 15
Regularization 0.2 0.7
Gen_type 0 1

Table 3. Different optimization functions used in the present work.
Scenario No. Objective function

1 MSE
2 0.5*MSE + 0.5 (1/R2)
3 0.25*MSE + 0.25 *(1/R2) + 0.25 *t + 0.25 *MPE
4 0.20*MSE + 0.20 *(1/R2) + 0.10 *t + 0.50 *MPE
5 0.15*MSE + 0.15 *(1/R2) + 0.05 *t + 0.65 *MPE
6 0.10*MSE + 0.10 *(1/R2) + 0.025 *t + 0.775 *MPE
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error (MPE) is also calculated and used in the comparisons with GA-ANN
approach. MPE can be calculated as follows:

MPE ¼ 100%
n

Xn
i¼1

Yi � Ŷi

Yi
(3)

GA-ANN
The GA-ANN approach actually generalizes the process of determining the
optimum network architecture for a given case. The main optimization problem
is the minimization of prediction error and is achieved by altering the network
architecture or other parameters. Thus, the objective function is related to error
terms, whereas network architecture features, such as the number of hidden layers
and hidden neurons (or also training parameters), are the design variables. The
lower and upper limits for each design variable are presented in Table 2. The
optimization process starts with random initial values, within the defined limits,
for the design variables. At the end of the process, the best network determined
has the optimum architecture or also optimum training parameters. For each
scenario which was evaluated, five different runs of the GA-ANNwere conducted
and the best one was selected. The ANN models for the prediction of Fz and Mz
were determined separately. For the genetic algorithm parameters, default values
were assumed and all cases are run for a maximum of 500 generations.

As for the design parameters of the problem, the parameters that regulate ANN
architecture are the number of layers, the number of neurons in the first and
the second hidden layer (denoted as N_layers, Neurons1, and Neurons2 in Table
2). It was chosen that the number of layers should not exceed two, as in fact, it
would be unnecessary to implement a three-layer ANNmodel for amedium-sized
problem. Furthermore, the lower and upper limits for the number of neurons in
each layer were chosen as 2 and 15, respectively, in order to be close to the limits
predicted by the empirical Equation (2).

The two next parameters regulate the ratio of data (TrainRatio and
TestRatio) reserved for training and testing procedure. The value of these
parameters is important, as it will affect significantly the prediction accuracy.
The default values were 0.7 and 0.15, respectively, but it was intended to
investigate the optimum values of these parameters for the specific problem
through an organized procedure.

The next parameter regulates the choice of training algorithm for the
ANN. The choice of the training algorithm is also crucial for the neural
network, as it has a direct impact on the efficiency of the network. Some
algorithms perform better for smaller or larger network sizes and have also
different memory requirements and scalability. In this work, five different
training algorithms, namely BFGS quasi-Newton, Scaled Conjugate gradient,
Conjugate gradient with Powell–Beale restarts (CGPB), Conjugate gradient
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with Polak-Ribière updates, and Levenberg–Marquardt, are tested. The
choice of each training algorithm is encoded by integer numbers in the
range 1–5.

As an additional parameter, it was chosen that the performance function
(default:MSE) should be allowed to be changed between MSE and SSE. SSE is
encoded as 1 and MSE as 2. The last parameters are related to the generalization
capability of the network. The first of the two (max_fail) is related to the early
stopping technique, as it regulates the allowed maximum number of epochs with
no improvement in the performance function value and the second is related to
the regularization procedure. For max_fail parameter, the lower bound is 6
(default value in MATLAB) and the upper is 15. As for the regularization
parameter, it is allowed to vary in the range [0.2, 0.7]. If the value of Gen_type
is 0, only early stopping technique is used, and if it is 1, regularization is also
performed.

As for the scenarios, which are presented in Table 3, they reflect which is
the objective function used in the present work. The first scenario is chosen
to be the most common goal for neural network training, the minimization
of MSE. The second scenario is a more complex one, and it takes into
account the effect of correlation coefficient R as well, with equal weight. At
last, the four other scenarios take into account all the possible performance
and error indicators; the third one is considering equal weight for each
parameter, namely MSE, R, MPE and time for training the neural network,
but as the most effective goal is thought to be the minimization of minimum
percentage error (Benardos and Vosniakos 2007), three different weight
coefficients for MPE are tested, with subsequent alteration of the weights
for the other parameters. It is to be noted that, when it is needed, scalariza-
tion was applied to ensure that the real weighting of each term will not be
altered, due to large differences between the values of various constituents of
the objective functions.

Results and Discussion

Results Using Simple ANN Approach
From the several runs conducted with one hidden layer and 2 to 12 neurons,
results concerning prediction errors were obtained. The optimum network
architecture is considered to be the one that minimizes MSE test, in order to
obtain a model with sufficient generalization ability. The MSE test values for
the best models of Fz and Mz are presented in Table 4. The minimum MSE
value was attained with the ANN model with five neurons in the hidden layer
for Fz and with the ANNmodel with seven hidden neurons for Mz. In Table 4,
the values for Rtest and MPE are presented, as well as the number of predicted
values with the error between 5% and 10% (denoted as N5) and the number of
predicted values with error over 10% (denoted as N10). It can be seen that
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R values are high, both for Fz andMz models, MPE is low, but especially for Fz
model, there exist several values with error more than 5%, something that
could be ameliorated with the use of the GA-ANN approach.

Results Using GA/ANN

Model with Inputs Related Only to Network Architecture
At first, the results concerning the ANNmodel for Fz, as presented also in Table 5
and depicted also in Figure 4(a,b), will be discussed. For the cases performed by
the use of the first objective function, the best network architecture was deter-
mined as 3–4-9–1. As it was expected, the goal of minimizing theMSEwas proven
effective and the total MSE was 7.05*10−5. Moreover, the total R was 99.97% and
total MPE −0.098%, with all prediction errors lying below 5%. In the case where
R was also included in the objective function, the results for the best network
(3–6-1) indicate slightly worse values for MSE and R (3.98*10−4 and 99.65%,
respectively), whereas MPE value is significantly lower (0.008%). The same is
observed in the case of the third scenario, where theMSE and R values are slightly
worse, but the MPE value is very low, something that constitutes a strong indica-
tion that the change in error values occurs as a result of the minimization of all
objective function terms, and not specifically one term. This is also evident at the
last three scenarios, where the initial combination (scenario 4) exhibits slightly
worse results, especially for MSE, but the results are ameliorated at the next two
scenarios, as the weighting factor for MPE is larger. Another general conclusion is
that, with the exception of scenario 2, in all other cases, the MPE error for all
predicted values is below 5%, meaning that the GA-ANN approach manages not
only to lower the average error, but keeps the individual values of error within
acceptable limits. As for the training time, it varied between 0.04 and 0.11 seconds.

From the results, the best architecture can be also determined. As can be
seen from Table 5, several networks have acceptable values of errors, but the

Table 4. Optimum network architecture and prediction accuracy indicators for the simple ANN
approach.
Output variable Number of hidden neurons MSEtest Rtest MPE N5 N10

Fz 5 8*10−4 98.5% 1.315% 11 4
Mz 7 5*10−4 99% −1.264% 3 4

Table 5. Results using the GA-ANN approach for Fz model with inputs related to network
architecture.
Scenario
No.

Number of hidden
layers

1st layer
neurons

2nd layer
neurons MSEtot Rtot

MPE
(%) N5 N10

1 2 4 9 7.05*10−5 99.98% −0.0981 0 0
2 1 6 - 0.0004 99.65% −0.0085 5 0
3 2 12 3 0.00379 99.09% −0.0080 0 0
4 1 4 - 0.00124 99.74% 0.0136 0 0
5 1 8 - 0.00054 99.59% −0.0040 0 0
6 1 5 - 0.00047 99.89% −0.0036 0 0

APPLIED ARTIFICIAL INTELLIGENCE 893



network for the 6th scenario is superior, as it does not only have relatively low
errors, but it also has the simplest architecture, something that leads to
a quicker model and more capable to generalize (Ojha, Abraham, and
Snášel 2017). It is also to be noted that, in the majority of the cases, the
final network architecture consisted of only one hidden layer and in the most
cases the number of hidden neurons was below eight, something that bears
resemblance to the suggestions of the empirical rule and the results of simple
ANN approach. However, as it will be later discussed, the GA-ANN
approach provides a superior and more reliable way for the determination
of an overall best performing architecture.

For the cases concerning Mz torque, for which results are presented in
Table 6 and depicted in Figure 5(a,b), the predicted values obtained using the
first objective function exhibited significantly low MSE value, high R value,
and acceptable MPE value. The use of the second objective function led to
the deterioration of these values, especially for MPE. However, the use of the
most complex objective function led to an improvement for the MPE and
from the 4th scenario to the 6th, the values of MSE and R were gradually
ameliorated as well. All scenarios provided solutions with a single hidden
layer as best and 4–6 hidden neurons. The solution of the 6th scenario can be
considered as the best solution among them, as it exhibits the smaller MPE,
large Rtot value and has the simplest architecture. Finally, the training time
for these networks varied from 0.054 to 0.135 seconds.

Models with Additional Design Variables

In the cases presented in this subsection, the design variables of the optimi-
zation problem included not only the network architecture but several para-
meters related to the training procedure. Thus, conclusions for the optimum
values of these parameters will be also drawn.

Figure 4. Results concerning: (a) MSE and (b) MPE for the best ANN models for Thrust Force
according to each scenario.
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As for the GA-ANN models for Fz, the best results for each scenario are
presented in Table 7 and depicted also in Figure 6(a,b); moreover, the opti-
mum values for the additional input parameters are presented in Table 8. It can
be observed that the use of the 3rd scenario is deteriorating the MSE and
R values, but the use of complex objective function with increasing weight for
MPE provides significantly better results. For this case, the network obtained
with the 5th scenario is chosen as the best, as it has one of the lowest MSE, high
R value, and no predicted values with error over 5% in comparison to
the second best network for the 6th scenario.

As for the additional design variables, training ratio varies between its
whole range (0.6–0.75), as well as test ratio, whereas in most cases the best
training algorithm is Levenberg–Marquardt and only once is the Conjugate
Gradient with Powell–Beale restarts. The MSE performance function is the
best in most cases and early stopping technique with about 10–12 values is
sufficient for most cases. When regularization is also chosen, the max_fail
epochs number is smaller than in cases with no regularization. Finally, the
training time for these networks varied from 0.011 to 0.156 seconds.

As for the models concerning Mz, the results for the six scenarios are
presented in Tables 9 and 10 and in specific, the MSE and MPE values for
each scenario are depicted in Figure 7(a,b), respectively. The results are again

Table 6. Results using the GA-ANN approach for Mz model with inputs related to network
architecture.

Scenario
Number of hidden

layers
1st layer
neurons

2nd layer
neurons MSEtot Rtot

MPE
(%) N5 N10

1 1 6 - 4.2*10−6 99.99% 0.0521 0 0
2 1 6 - 1.4*10−5 99.99% −0.3488 0 0
3 1 5 - 4.3*10−4 99.90% 0.0217 0 1
4 1 4 - 4.8*10−5 99.97% −0.0151 0 3
5 1 4 - 4.9*10−5 99.76% −0.0158 0 0
6 1 4 - 5*10−4 99.98% −0.0061 0 0

Figure 5. Results concerning: (a) MSE and (b) MPE for the best ANN models for Mz torque
according to each scenario.
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overall better with the use of higher weighting coefficient for MPE, as for that
case, the best MPE, low MSE, and high R total values are obtained. As with
the previous cases, networks with a single hidden layer and 4–8 neurons have
the best performance.

For the Mz models, training ratio value varied between 0.67 and 0.74, test
ratio between 0.10 and 0.13, the best training algorithm was Levenberg-
Marquardt, the best performance function was MSE for many cases and, in
half of the cases, both early stopping and regularization were chosen. The
best network architecture is shown to be that of the 6th scenario. Finally, the
training time varied between 0.047 and 0.249 seconds.

Table 7. Results using GA-ANN approach for Fz model with additional design variables.
Scenario
No.

Number of hidden
layers

1st layer
neurons

2nd layer
neurons MSEtot Rtot MPE (%) N5 N10

1 1 5 - 0.00013 99.87% −0.11042 6 0
2 1 11 - 7.2*10−5 99.97% 0.10055 0 0
3 1 7 - 0.00530 99.75% −0.04141 0 0
4 1 5 - 0.00364 99.75% 0.01876 6 0
5 1 6 - 0.00056 99.88% −0.00169 0 0
6 1 3 - 0.00090 99.71% −0.00346 3 0

Figure 6. Results concerning: (a) MSE and (b) MPE for the best ANN models for Thrust Force
according to each scenario.

Table 8. Values of additional design variables for each scenario.

Scenario
Tr.
ratio

Test
ratio

Training
algorithm

Performance
function Max_fail

Regularization
parameter Gen_type

1 0.6012 0.142 CGPB MSE 11 - 0
2 0.7387 0.1124 LM MSE 14 - 0
3 0.6898 0.1317 LM SSE 8 0.5901 1
4 0.6669 0.1481 LM MSE 10 - 0
5 0.7437 0.1232 LM SSE 12 0.4120 1
6 0.7486 0.1126 LM MSE 15 - 0
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Comparison of Models

By observing the results obtained by GA-ANN models with 3 design variables
and GA-ANN models with 10 design variables, several similarities and differ-
ences can be detected. At first, it becomes evident that, for cases with small to
medium size datasets the theoretical rule of choosing a single hidden layer is
proven correct, as the vast majority of resulting network architectures exhibited
only a single layer. Moreover, the number of hidden neurons in most GA-ANN
models was between 4 and 8. For all developed models R value was very high,
over 99%, indicating the strong correlation of input and output data. MSE values
varied in the range of 10−3 and 10−6 and MPE values between 10−1 to 10−3

(percent) in all cases. The number of predicted values with error 5%-10% and

Table 9. Results using GA-ANN approach for Mz model with additional design variables.
Scenario
No.

Number of hidden
layers

1st layer
neurons

2nd layer
neurons MSEtot Rtot MPE (%) N5 N10

1 1 8 - 9.4*10−6 99.99% −0.18889 0 0
2 1 8 - 4.4*10−5 99.99% 0.00298 0 0
3 1 4 - 0.0002 99.98% −0.07751 1 0
4 1 5 - 5.3*10−5 99.99% −0.00920 0 0
5 1 5 - 0.0006 99.96% 0.00130 3 0
6 1 6 - 0.00015 99.98% 0.00128 1 0

Table 10. Values of additional design variables for each scenario.

Scenario
Tr.
ratio

Test
ratio

Training
algorithm

Performance
function Max_fail

Regularization
parameter Gen_type

1 0.7212 0.1116 LM MSE 14 - 0
2 0.7064 0.1233 LM MSE 11 - 0
3 0.7310 0.1269 LM MSE 7 - 0
4 0.6735 0.1055 LM MSE 11 0.4077 1
5 0.7437 0.1292 LM SSE 15 0.323 1
6 0.6857 0.1306 LM SSE 11 0.6909 1

Figure 7. Results concerning: (a) MSE and (b) MPE for the best ANN models for Mz torque
according to each scenario.
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>10%was in all cases below 6, something that indicates that not only the average
error was small but also the predicted values were not far from this average
(towards unacceptable values, over 5 or 10%).

As for Fz models, the models with 3 design variables performed better in
terms of MPE, than the models with 10 design variables for the first four
objective functions, whereas the latter performed better in terms of the
correlation coefficient. However, for the last two objective functions, their
performance was more close and finally, the best network, as can be seen in
Table 11, is the one obtained by the 5th scenario of the GA-ANN models with
10 variables. This model, denoted as “10 d.v. −5” in Table 11, is slightly
inferior in terms of MSE, but clearly superior in terms of MPE and so it is
chosen as the best performing network.

As for Mz models, the models with 3 design variables exhibit generally
higher MPE values, almost equal correlation coefficient values and slightly
lower MSE values than the models with 10 design variables. As can be seen
from Table 12, the best performing network is clearly the one with the 10
design variables, as it is superior in terms of MSE and MPE.

After the brief comparison of results between the two types of GA-
ANN models is conducted, it is useful to compare these results in those
of the simple ANN approach, presented in Section 3.1. By comparing the
results from Tables 4, 11 and 12, it becomes obvious that the GA-ANN
models with the definition of suitable objective functions can decrease
the MPE very efficiently and also ensure that predicted values are kept
below an acceptable limit of error, e.g. 5%. Moreover, in the case of GA-
ANN models with 10 design variables, more important information is
obtained, so that other parameters concerning the training procedure,
e.g. training algorithm, performance function, etc. can also be properly
selected.

Table 11. Comparison of best-performing networks for Fz GA-ANN models with 3 and 10 design
variables (d.v.).
Scenario
No.

Number of hidden
layers

1st layer
neurons

2nd layer
neurons MSEtot Rtot MPE (%) N5 N10

3 d.v.-6 1 5 - 0.00047 99.89% −0.0036 0 0
10 d.v.-5 1 6 - 0.00056 99.88% −0.00169 0 0

Table 12. Comparison of best-performing networks for Mz GA-ANN models with 3 and 10 design
variables (d.v.).
Scenario
No.

Number of hidden
layers

1st layer
neurons

2nd layer
neurons MSEtot Rtot MPE (%) N5 N10

3 d.v.-6 1 4 - 5*10−4 99.98% −0.0061 0 0
10 d.v.-6 1 6 - 1.5*10−4 99.98% 0.00128 1 0
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Conclusions

During drilling process, cutting tools and cutting parameters are playing
a crucial role for the manufacturing sustainability. The better use of cutting
tools equals better product quality and longer tool life. In the present work, the
aim was the generation of mathematical models for the prediction of the thrust
force (Fz) and torque (Mz) related to the cutting tool diameters the feed rate and
the cutting velocity during the drilling process. ANN approaches were adopted
for the prediction of Fz and Mz during drilling of St60 specimen. More speci-
fically, a comparison between ANN models with network architecture deter-
mined by a simple trial and error approach and ANN models with architecture
determined by a GA-ANN approach is conducted. For the GA-ANN approach
several different objective functions based on network performance and accu-
racy indicators are tested and several useful conclusions are drawn.

● ANN with architecture determined by simple trial and error approach
can perform sufficiently, but lack in the minimization of MPE and
restriction of predicted values error below acceptable limits.

● ANN developed using the GA-ANN approach can exhibit significantly
lower MPE as well as no predicted values with error over 5%. The range
of varied parameters for the GA-ANN approach and the number of
candidate solutions checked can ensure that the developed ANN has
architecture close to the globally optimum one. The overall best models
had a network architecture of 3–6-1.

● Moreover, the results of GA-ANN approach are significantly useful, as they
can verify some of the theoretical suggestions concerning ANN design. For
example, it was shown that networks with a single hidden layer and 4–8
hidden neurons are sufficient for problems with small to medium datasets.
Furthermore, it was verified that the Levenberg-Marquardt training algo-
rithm is generally superior to the other for similar cases and that MSE is
a reliable performance function for the MLP ANN.

● The conclusions of the present work can be employed for the creation of
more advanced combined models of metaheuristics and ANN, with
a view to develop ANN models suitable for larger-scale applications.
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