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Abstract  

This paper relates our experience in developing a mechanism for reasoning about the 

differential diagnosis of cases involving the symptoms of heart failure using a causal model 

of the cardiovascular hemodynamics with probabilities relating cause to effect. Since the 

problem requires the determination of causal mechanism as well as primary cause, the model 

has many intermediate nodes as well as causal circularities requiring a heuristic approach 

to evaluating probabilities. The method we have developed builds hypotheses incrementally 

by adding the highest probability path to each finding to the hypothesis. With a number 

of enhancements and computational tactics, this method has proven effective for generating 

good hypotheses for typical cases in less than a minute. 
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2 Introduction 

Over the past few years we have been developing a system to assist the physician in the diagnosis 

and management of patients with diseases that may cause or resemble heart failure. The program 

will be used by interns, residents, house staff, and other physicians who are managing patients 

with complex disorders over a period of days in a setting such as an intensive care unit. It will 

assist the physician in reasoning about the patient for both diagnosis and management. The 

physician can enter information about the history, physical examination, and laboratory tests 

(i.e., the findings) and the program will provide a differential diagnosis list with a graphical 

explanation of how each set of causes could produce the findings, suggestions about what other 

information would help to differentiate among the possibilities, suggestions about therapies that 

could correct the causal paths leading to undesirable states, and provide predictions about the 

overall effects of various therapies given the patient's pathophysiological state. 

The focus of this paper is the problem of providing useful information about the diagno- 

sis. The cardiovascular domain, as well as many others in medicine, is full of uncertain causal 

mechanisms. This has lead to a representation of the domain knowledge as a network of causal 

probabilistic links between physiologic parameter states. However, this network contains multi- 

ple paths between nodes and forward cycles, necessitating the development of heuristic methods 

for evaluating the state of the network when findings are known. These methods are used to 

produce multiple hypotheses representing possible explanations for the findings, which are put 

together as a differential diagnosis. We have found that these methods are effective for interactive 

use in a model that contains about 150 internal nodes and about 300 possible findings. 

The following sections will discuss the special problems of the medical domain, the nature 

of a differential diagnosis, the kinds of causal relationships and the way they are modeled as 

probabilities in the program, the approach to producing diagnostic hypotheses, and an example 

of its use. The emphasis throughout is on the lessons we have learned about the nature of the 

problems and the practical concerns in building tools to meet the needs of the users. 



3 The Domain Context 

The first issue in designing an expert system is to determine an appropriate view of the domain 

and of the reasoning required in problem solving. It may be easier to take a solution and look 

for a suitable problem, but the potential for addressing the needs of the user are greater if we 

investigate the problem first and find or develop methods to address the problems that are there. 

The medical domain for our program is the diagnosis of patients with heart failure. Heart 

failure is the state of the patient when some disease process makes cardiac output inadequate 

for the demands of the body. There are many possible causes of heart failure including diseases 

of or damage to the myocardium (heart muscle), dysfunction of a heart valve, restriction of 

the heart by the pericardium (enclosing membrane), electrical dysfunction, and so forth. The 

cardiovascular system has strong mechanisms that attempt to compensate for the inadequate 

output. One mechanism alters the capacitance and volume of fluid compartments to increase 

the heart input pressure (preload) in an attempt to increase cardiac output. A longer term 

mechanism also starts retaining fluid to increase the blood volume to also increase preload. If 

the patient has lost blood, these are appropriate responses. When the problem is not low blood 

volume, the mechanisms can produce high pressures in the lungs, stiffening them, and causing 

fluid to leak into the air space, producing the common symptoms of pulmonary congestion. 

When the pressures increase on the right side of the heart, the pressure balance changes in the 

systemic venous circulation and the patient gets edema in the ankles and up the legs. Low cardiac 

output also causes the systemic blood vessels to contract to maintain the blood pressure to the 

important organs. While this is appropriate when blood volume is low, it often puts excessive 

stress on an already weakened heart. Since many different causes produce some combination of 

the same overt symptoms, they are grouped together as the syndrome of heart failure. 

The problem for the physician is not simply to determine what disease the patient has and 

order an appropriate therapy. Since many of the most important diseases are incurable short of 

replacing the heart, the physician must determine how the disease is causing the findings in order 

to identify points where therapy can reduce the undesirable effects. If the disease is correctable, 

it is important to recognize that - indeed to rule out all correctable diseases. Fortunately, with 

most of the incurable diseases the patient is usually able to live an active and relatively normal 

life if the treatable problems and compensatory mechanisms are appropriately controlled. Since 



these tend to be chronic problems, many of the cases admitted to the hospital have multiple 

diseases - often a new problem added to a chronic problem. In addition, the patients are 

usually on therapies which may change the symptoms of the diseases or cause symptoms of their 

own. The physician needs to determine what diseases the patient has and the causal mechanisms 

by which they are producing the observed symptoms in order to determine whether there are 

treatable causes and what therapies might limit or correct the undesirable effects of the other 

causes. Thus, the goal of diagnosis is to determine the pathophysiological state of the patient 

in enough detail to guide therapy. 

These diagnostic requirements imply that we need a disease model with enough intermediate 

states to distinguish among situations where different therapies are appropriate. For example, a 

myocardial infarction (heart attack) can produce both diastolic (ventricular filling) and systolic 

(ventricular emptying) dysfunction, each of which has different implications for therapy. To make 

such distinctions, a simple associational scheme such as those used by DXplain[Barnett87], or 

QMR[First85] would not be sufficient. 

4 Differential Diagnosis 

While the goal of diagnosis is to determine the pathophysiology in sufficient detail to suggest 

a rational approach to therapy, this goal usually can not be achieved from the initial history, 

presenting complaints, and physical examination. Tests or reexamination may be needed to 

determine the appropriate diagnosis. The tool for directing the diagnostic process is the dif- 

ferential diagnosis. The differential diagnosis identifies possible explanations for the known 

findings, identifies states that have been ruled out, and provides the data needed to determine 

what information can be used to refine the diagnosis. 

Over the course of this research our view of differential diagnoses has evolved. Initially, 

we used the model and findings to identify parameter states that were well supported. For 

example, pulmonary findings would be used to decide whether pulmonary congestion was true 

or false in the patient. Then these states (e.g., pulmonary congestion) could be used as evidence 

for other parameter states. In this way the diagnosis could be built state by state. At any 

point in the process, the differential diagnosis was the union of the possible values of the states 

not yet known with the states known to be true. This is essentially the approach that was 



taken by CASNET[Weiss78] to reason from a causal network. There are two problems with 

this approach. First, it assumes there will always be enough evidence local to a parameter 

state (easily computable causes or consequences) to determine its truth, either immediately or 

given more test results. In fact, what often happens is that there are parameters with states 

whose probabilities are not overwhelmingly true or false, but any decision about one parameter 

state will change the probability of the others with possible far reaching consequences. For 

example, a minor decision of whether the right ventricle has decreased compliance versus fixed 

capacity in the model could determine whether the best diagnosis is restrictive cardiomyopathy or 

constrictive pericarditis - a minor distinction on which to make the diagnosis. Second, the view 

of the differential as all unknown states does not give a good picture of the likelihood of different 

possibilities, especially the significant combinations of states that would have consequences in 

patient management. 

Because of the restrictions of the parameter by parameter view of the diagnosis problem, 

we started considering complete hypotheses - hypotheses that include causal chains from the 

primary causes (causes that do not require a further cause) to the findings and that cover all 

of the patient findings. With these it is possible to get a complete picture of what might be 

happening in the patient. This approach also allows the user to evaluate the reasoning of the 

computer. Since the hypotheses are complete, there are no hidden assumptions or implications. 

The user can decide whether the scenario proposed by the computer is reasonable and if not, 

why not. 

Given that a hypothesis is complete from primary cause to findings, we are still left with the 

problem of how to form a differential. The set of all possible hypotheses is much too large to list 

and the hypothesis with the highest probability gives no indication of the alternatives. One could 

generate alternative hypotheses by taking the best hypothesis and proposing alternate paths for 

single parameter states or short chains of states. However, many of the alternatives that might 

be generated would differ from the starting hypothesis in inconsequential ways, while major 

alternatives would be overlooked. We have addressed the issue of what constitutes important 

alternatives by designating a subset of the parameter states (nodes) in the model as diagnostic 

nodes. Hypotheses are significantly different if they contain a different set of diagnostic nodes. 

This heuristic has proven effective in limiting the differential diagnosis to a reasonable number 



of alternatives that have significant differences. 

5 The Causal Disease Model 

Developing an appropriate disease model requires two major steps, deciding what diseases need 

to be included and determining the causal structure among the diseases, intermediate states, 

and findings. The domain is management of the hemodynamic consequences of heart failure. 

Therefore we need to include the diseases that alter the hemodynamics. However, there are many 

definitions of a disease. One important disease of the myocardium is congestive cardiomyopathy. 

This disease can be further classified by causes (alcohol, sarcoidosis, idiopathic, etc.) but no 

matter what the cause, the effect on the cardiovascular hemodynamics is the same. That is 

not to say that the entire treatment is the same - if there is a treatable cause weakening 

the heart, that must be treated - but those aspects involved in correcting the hemodynamic 

dysfunction remain the same. Therefore, we have one node for congestive cardiomyopathy and it 

is considered a primary cause. Since there is also a node for ischemic heart disease in the model 

which can cause congestive cardiomyopathy, that causal link must be included. Thus, congestive 

cardiomyopathy may be primary or caused by other nodes. The decision about what to include 

is not always so simple. There is an uncommon disease, left atrial myxoma, that partially 

obstructs the mitral valve and produces the same hemodynamic dysfunction as mitral stenosis. 

The physical examination clues to distinguish the two diseases are quite subtle, but if either 

disease were suspected, an echocardiogram or other imaging test would be done which would 

clarify the situation. Therefore, there is no advantage to including the less common disease and 

the common disease node is used to cover both. There are also a number of congenital diseases 

that have been left out of the program because such diseases are not initially found in the adult 

(our target population). Thus the model has in it the cardiovascular causes of the hemodynamic 

dysfunctions at the level needed to distinguish the different hemodynamic manifestations. 

There are also a number of diseases with findings similar to those produced by hemodynamic 

dysfunction. For example, the pulmonary findings of pneumonia are often very difficult to 

distinguish from those of cardiac pulmonary congestion. Since such diseases are often the most 

important differential diagnoses, they must be included. The problem again is the level of detail. 

Both low cardiac output and renal insufficiency cause retention of fluids, but there are many 



Figure 1: Circularities in the Causal Structure 

different kinds of renal insufficiency because there are many kinds of kidney disease. Our solution 

has been to only cover such diseases to the extent that they produce findings similar to cardiac 

findings. Thus, we have entities such as renal insufficiency and primary liver disease. The result 

is a model with decreasing specificity as one gets away from the central focus of hernodynamic 

disorders. 

Developing the model requires a change of perspective for the cardiologist expert. Usually 

the cardiologist thinks in terms of diseases and findings and not in terms of the intermediate 

causal mechanisms. To develop a model that includes the intermediate nodes, we started with 

lists of associations between diseases and findings, identified findings generated by the same 

mechanisms, and added intermediate nodes representing those mechanisms. For example, many 

diseases cause shortness of breath, rales (noises in the lungs), and certain X-ray findings. These 

are all produced by fluid buildup in the lungs, so an intermediate node was added for pulmonary 

congestion. Identifying intermediate nodes was not done blindly. We started with the model 

used in the program to predict the effects of therapy[Long88]. This model has equations relating 

the constraints among parameters and dependencies on physiologic state. Since diagnosis of the 

patient provides much of the information needed to establish the pathophysiologic state for this 

model, the intermediate nodes must be compatible. 

The use of the predictive model also pointed out situations requiring circularities in the 



causal structure. Two circularities are shown in Figure 1. In both cases low cardiac output 

causes a high sympathetic state. The high sympathetic state increases the heart rate, but a 

high heart rate can decrease cardiac output, especially in situations such as aortic stenosis, 

when ejection time is prolonged. The high sympathetic state can also increase the systemic 

vascular resistance, which increases blood pressure and the load on the heart, which decreases 

left ventricular emptying and cardiac output. Both of these situations are positive feedback 

loops. If any of the nodes is triggered by some pathophysiological situation, there is a significant 

probability that the succeeding nodes in the loops will result. Indeed, one reason that therapies 

to decrease heart rate or decrease vascular resistance are often effective in patients having low 

cardiac output is that these mechanisms often overdo their jobs. 

Using the therapy model and clustering the nodes by physiologic mechanism, we built a model 

that covers the pathophysiology of cardiovascular hemodynamics. The resulting model has as 

many as a dozen intermediate nodes between a primary node and a terminal node. It makes 

explicit the mechanisms that produce the findings and allows the representation to distinguish 

the variations and combinations of diseases and alterations due to therapies. Because we started 

with the list of associations, we also have that as a check of the expanded model. That is, we 

can compare the expected associations in the expanded model to our initial list of associations 

and use the differences to refine the model. 

6 Probability Model 

Given the form of the causal disease model, the next step is to represent the relation between 

each cause and effect. To simplify reasoning with the causal relations, we have imposed a uniform 

view of probabilistic causality on the model. That is, each causal relation is summarized as a 

probability of the cause producing the effect. Furthermore, causes precede effects and nodes 

are either true or false. By imposing this view, we are able to handle the circularities in the 

model in a consistent manner. The causation can be viewed as growing an acyclic subgraph 

from primary causes within the model graph. Anytime a circularity in the causation would be 

encountered, the effect node is already true and further causation is blocked. This causal view 

eliminates anomalous conditions such as circular causation with no initiating primary cause. 

The probabilities on the links summarize several kinds of causality in the model. Some of 



the relations are randomly triggered causal events. For example, there is a probability that a 

patient with obstructed coronary arteries will have a myocardial infarction. The probability is 

partially dependent on other factors, such as the heart rate, blood pressure, and so forth, but 

the event is essentially random and binary. 

Many other relations can be expressed as equations. For example, blood pressure is a function 

of cardiac output, systemic vascular resistance, and right atrial pressure. Usually however, not 

enough of the parameter values are known to constrain the equation and the easiest way to 

represent the potential for low cardiac output or low systemic vascular resistance to produce low 

blood pressure is to approximate the relationships as causal probabilities. 

Other causal relations are dependent on duration or severity of the cause to produce the effect. 

For example, cardiac dilitation usually takes weeks to occur but a severe myocardial infarct can 

cause it in days or even hours. In such cases, the probability on the link is approximating the 

more complex relation of duration and severity. The probability could be defined as a function of 

duration and severity, but even without information about either, there must be an average time 

after an acute infarct when the diagnosis is done and an average severity and the probability 

reflects those averages. 

Representing the states of cardiac output, blood pressure, and other measurable parameters 

with qualitative descriptors such as low, normal, and high is a compromise to constrain the 

diagnostic problem. The ranges of the parameters could be divided into much finer intervals, 

approximating their probability distribution functions. Such a scheme requires a high computa- 

tional cost without much benefit because the distinctions between states are harder to recognize 

from the findings, and the differences between hypotheses become insignificant. The method 

used is to define the qualitative values by causal distinctions and let the relationship between the 

qualitative values and the quantitative measures be probabilistic. The criteria for distinct states 

is a difference in the causal structure. Thus, low cardiac output is different from normal cardiac 

output because low cardiac output can produce fatigue, inadequate renal perfusion, sympathetic 

response, or other effects. If there are different causes or effects, it is a different state. For the 

most part, simple designations such as low, normal, and high have been appropriate for the 

parameters. Since the parameter state is determined by the existence of causes and effects, the 

relationship to measured values is not always easily defined. The level of cardiac output at which 



the effects of low cardiac output start happening varies from patient to patient. The program 

handles this by specifying the probability that each qualitative state produces a measured range 

of the parameter: 

low: (range cardiac-index 0.7 2.3 0.2 2.5 0.1 2.7 0.0) 

normal: (range cardiac-index 0.0 2.3 0.05 2.5 0.05 2.7 0.9) 

Thus, 70% of low cardiac outputs have a cardiac index (cardiac output normalized for body 

size) below 2.3, 20% between 2.3 and 2.5, and so forth. Similarly, no normal cardiac outputs are 

below 2.3, but 5% are between 2.3 and 2.5, and so forth. These distributions allow the program 

to handle the cardiac index as evidence for the qualitative values of cardiac output in the same 

way as it would a categorical measurement value. 

The probabilities on the links may be fixed, dependent on patient parameters, or dependent 

on the diagnostic hypothesis. In most cases there is not enough data or experience to  recognize 

situations in which the probability of a causal link will change. Therefore the probability on 

the link is just a number. In other situations the probability varies with measurable patient 

parameters, usually age and sex. For example, pneumonia is less likely to  produce a fever in the 

elderly than in a younger person and the probability on the link is: 

pneumonia: p(fever) = (0.9 (range age 0.95 70 0.9 80 0.8 90 0.7)) 

If nothing is known about the age, 0.9 is used. If the patient is less than 70, the probability of 

fever is 0.95. If the age is between 70 and 80, 0.9 is used, and so forth. 

Since the qualitative parameter state can represent a wide range of values, the probability 

of the state having an effect can be dependent on the actual parameter value. For example, 

the probability that high heart rate will cause low cardiac output is strongly dependent on the 

actual heart rate (as well as age). Many of the primary cause probabilities also vary with age 

and sex. The dependencies on patient parameters are handled by adjusting the probabilities on 

links before attempting to  compute a differential diagnosis. 

The probability of an effect being produced also varies with the number of causes. The 

approach we have taken is to  assume independence of causes and use the "noisy-or" combining 

function unless there is specific knowledge about how a combination of causes changes the 

probability. That is, the probability of the effect is 1 - n(l - pi), where p; is the probability of 



the cause producing the effect by itself. There are in addition, two kinds of combinations that 

are treated differently. First, there are factors that increase the probability of a cause producing 

an effect, but can not produce that effect themselves. For example, a high heart rate will make 

a myocardial infarct more likely but can not produce it without another cause being present. 

The probabilistic contributions of these worsening or precipitating factors are combined as if 

they were causes when another cause is present, otherwise they are treated as zero. Similarly, 

there are factors that decrease the probability of a cause producing an effect. Usually these 

are therapies but there are also pathophysiological states that prevent or make other states 

less likely. For example, mitral stenosis usually produces high pressure in the left atrium (the 

chamber before the constricted valve). However, if there is tricuspid regurgitation, the right 

side of the heart is less likely to be able to maintain an elevated pressure. Such factors are 

combined to existing causes and multiplicatively decrease the causal probability. For example, 

if the the causes imply a 0.5 probability of producing the effect and there is a correcting factor 

that prevents the effect 80% of the time, the probability of the effect is 0.1. 

With these mechanisms we are able to model the physiologic relationships in the medical 

domain as a probabilistic network. The network is the knowledge base from which diagnostic 

reasoning is done. 

7 Computing the Differential Diagnosis 

The knowledge base, with its binary nodes and probabilities, resembles a Bayesian belief network 

as defined by Pearl[Pearl86]. Such networks have been the subject of considerable research by 

Pearl, Lauritzen and Spiegelhalter[Lauritzen88], Cooper[Cooper86], and others. However, the 

network of our model does not conform to the definition of a Bayesian belief network because it 

has forward cycles. Even if we removed all of the forward cycles, there are still multiple paths 

between nodes. These are not forbidden in Bayesian belief networks, but they greatly increase 

the amount of computation required to compute the probabilities. The algorithms that have 

been developed to handle multiple paths are exponential and Cooper has shown that the problem 

is NP-hard[Cooper87]. We did an analysis of an earlier version of the model and determined that 

to use the method described by Pearl[Pearl86] and interpolate from a set of nodes whose values 

cut the multiple paths would require more than 40 nodes in the cut set. Since the probabilities 



in the network for all combinations of values of this set would have to be evaluated, an exact 

solution is infeasible. 

These observations led us to develop heuristic methods for approximating the probabilities 

of nodes and finding good hypotheses. The approach we developed is based on an observation 

about the nature of hypotheses. A hypothesis is a subset of the model such that every finding 

and node in the hypothesis is accounted for by another node or is primary. This subset can be 

viewed as the union of one or more paths through the model from a primary node to each finding. 

Thus, the best hypothesis is the set of paths covering all of the findings which taken together 

has the highest probability. The problem is difficult because paths that share links have higher 

probability than the product of the individual path probabilities. Thus, the best explanation 

for two findings may not include either of the best paths for the findings taken separately. Still, 

in a reasonably behaved network, a good heuristic approach is to take the findings one at a time 

and build up a hypothesis using the best path to each finding. 

While this is the basic approach we are using, there are a number of enhancements that can 

be made, most of which have already been incorporated into our algorithm. Each of these is a 

heuristic for restricting the search and increasing the probability of the hypotheses found. The 

test of whether a subset of the nodes in a hypothesis is better than an alternative set of nodes 

is to compare the total probability of the hypotheses. 

1. Some nodes may be definitely true or definitely false from the findings. These are set and 

used as if they were findings. For example, if there is a finding with only one cause and 

that requires a cause (i.e., it can not exist by itself), the cause must be true. Similarly, 

if there is a node that always produces a finding and that finding is absent, the node is 

false. Often there are several nodes definitely known, significantly constraining the search 

for hypotheses. 

2. The search for a path for a finding can make use of the paths already selected for other 

findings. Often the best explanation of a finding is a short path from a node in the partially 

generated hypothesis rather than a path from a primary node. 

3. Since sharing of paths decreases the number of primary nodes in the hypothesis, the 

algorithm starts the search by selecting a cover set of primary nodes to account for all of 



the findings and restricts the search to these. Currently, the program uses the primary 

nodes that account for a large number of findings and for each of these generates all minimal 

additional sets of primary nodes needed to account for the findings. This way all minimal 

cover sets are used plus cover sets that include each primary node that accounts for a large 

number of findings. Care must be taken in generating cover sets because there are times 

when an explanation with two causes has a higher probability that an explanation with 

only one of the causes even though the single cause is sufficient. 

4. When there are multiple pieces of evidence (findings or true nodes) for a node, it is often 

possible to show that the node is the best explanation for the evidence under fairly con- 

servative assumptions by comparing the probability of the findings with the node in the 

hypothesis to an estimated maximum probability with the node false. If this comparison 

is done later in the hypothesis generation process, the probability estimates are better but 

there is less savings in search. This process takes considerable computation and we have 

yet to establish a definite benefit. 

5. The probabilities of the paths can be adjusted for the negative findings and nodes that are 

direct consequences of the nodes in the path. Since the probability that a node is false is 

n(l - pi),  where pi is the probability of true causes, (1 - pi) is the probability that the 

node will remain false when the node i in the path is true. This gives a better estimate of 

the probability that the path is part of the diagnosis. 

6. The diagnostic nodes provide a natural place to break the paths so that fewer paths have 

to be considered. Thus, if the probability of the diagnostic nodes can be approximated, 

they can be used as if they were primary and divide the search. When this approach was 

added to  the algorithm, the number of causal paths was reduced by a factor of about four. 

7. Ordering the findings by the difference in probability between the best path and the second 

best path, improves the chances that the best combinations of paths will be found. Thus, 

it is selecting first the paths that are most clearly indicated as best paths. We have tried 

several methods of ordering the findings and while i t  i s  clear that the ordering makes a 

difference, it is difficult to tell how much better thib  neth hod is than others. 



8. Pruning a hypothesis can sometimes improve it - essentially hill climbing to a local 

maximum probability. Sometimes a primary cause is unneeded because some findings may 

be better left unexplained or other primary causes cover them. Sometimes sections of 

paths are unneeded because paths added later account for all of the findings. Care must 

be taken in removing sections to insure that all nodes remain reachable from a primary 

node, because circularities in the causality appear to be self supporting. 

There are also a number of computational tactics that can be employed to make computing 

the differential diagnosis reasonably efficient. 

1. Precompute all of the causal paths in the model when the system is initialized. This can 

be done efficiently by generating a tree structure through the effects from each primary 

node and diagnostic node. Thus, the paths share structure and the only link unique to 

each path is the last link. Before the diagnostic nodes were used to divide the paths and 

unusable paths were eliminated, there were about 70,000 paths. There are now about 

7,000. 

2. Some paths can be eliminated if there is another path with a subset of its nodes and the 

minimum probability of the shorter path is always higher than the maximum probability 

of the longer path. (The longer path has a detour around one link in the shorter path.) 

Eliminating such paths more than halved the number of paths. 

3. Use bit vectors to do comparisons between paths and sets of nodes. For example, examining 

paths that come from the primary nodes in the cover set is done by checking for a non-zero 

intersection between the bit vector of the cover set and the bit vector of each path. Also, 

a path is discarded if its bit vector intersects the bit vector of the set of nodes known to 

be false. 

4. The probabilities along the paths can be computed once the user enters the findings. Since 

paths are examined multiple times and share structure, this is much more efficient than 

computing the probabilities as needed. 

5. Once consideration has been restricted to a small number of primary nodes in generating a 

hypothesis, there are often intermediate nodes that must be true because all causal paths 



from the selected primary nodes to the findings go through them. These can be found by 

intersecting bit vectors. 

6. Hypotheses can be compared by their total probability - essentially the probability that 

a patient with that mechanism producing that set of findings would exist in the general 

population. It is unnecessary to normalize by the probability of the findings because all 

of the hypotheses to be compared have the same findings. 

With these enhancements and computational tactics, the algorithm has proven effective for 

generating differential diagnoses in our domain. Even with the large size of the probabilistic 

model, the algorithm runs in less than a minute on a typical case with about a dozen abnormal 

findings on a Symbolics 3650. This makes it useful as an interactive tool for physicians analyzing 

a case. The method is still heuristic. Indeed we have found cases where there was a better 

hypothesis than any of those that were generated. These have all been hypotheses that differed 

from generated hypotheses in relatively minor ways. From the viewpoint of the domain, the 

performance is still adequate. It also appears that we should be able to extend the final pruning 

process to identify many of these situations and modify the hypothesis - in effect a local hill 

climbing process to make sure there is no better hypothesis in the region of the candidate. 

7.1 The Algorithm for the Differential Diagnosis 

With the approach and enhancements outlined above we will describe the implementation of 

the algorithm for the differential diagnosis. 

1. The facts about the patient are entered via a menu system that supports both categorical 

and numeric values. These facts are turned into finding objects that become the terminal 

nodes for the diagnostic network. 

2. The probabilities of the paths are computed, using the patient information to adjust the 

probabilities on the links. 

3. The input is searched for definite consequences. If any node is definitely true or definitely 

false because of a finding, it is asserted along with any definite implications of these nodes. 

These definite nodes provide the first constraint on the hypotheses that can be generated. 



4. All of the findings from the input list that potentially reflect abnormal states are selected 

to guide the hypothesis generation process. This list usually contains about ten to thirty 

items and is the list of findings that will need some kind of explanation. Each is either 

caused by a causal chain in the model or has some probability of existing independently 

(reflecting possible causes outside of the medical domain or occurrence of the finding in 

normal individuals). 

5. For each of the abnormal findings and any true nodes that need causes, a search is made 

to find all of the diagnostic nodes with causal paths to the finding. 

6. The diagnostic nodes and primary nodes that could account for findings are ordered by the 

number of findings they account for. The top node and any others that account for almost 

as many findings (almost is four fewer) are used as a seeds for generating hypotheses. 

7. For each of the seed nodes, the list of findings and unaccounted nodes (which may include 

the seed node, if it is a diagnostic node that is not primary) is checked for ones without a 

causal path from anything in the hypothesis. These cause additional diagnostic or primary 

nodes to be added to the hypothesis until all of the findings have at least one possible cause. 

The additional nodes are selected from the list of possible diagnostic or primary nodes that 

could cause the finding. 

8. The algorithm tries each explanation for the finding and adds each new covering set of 

causes that is not a superset of another generated from the same seed node. 

For each of the cover sets, a hypothesis is built. The hypothesis starts with the cover set 

and the known true nodes. 

9. First a search is made for states that would be true no matter which causal paths were 

chosen for the findings. These are added to the hypothesis. 

10. The findings and unaccounted states are sorted in decreasing order of the difference in 

probability between the first and second best path, where those paths start at one of the 

cover set nodes and include no false nodes. 



11. For each finding the best path is found from any state in the accumulating hypothesis and 

the states on that path are added to the hypothesis. If the prevalence of the finding is 

higher than the additional probability of the path, the path is not added. However, that 

finding will be tried again later to make sure there is not a good explanation for it in the 

hypothesis. 

12. When the hypothesis is complete, the links among the nodes in the hypothesis are checked 

to make sure there are no circularities in the hypothesis. If there are, the last link before 

the loop is completed is marked as having probability zero. 

13. The hypothesis is then pruned of unnecessary causes and unnecessary paths that decrease 

the probability. 

14. The probability of the total hypothesis is determined by multiplying the probabilities of 

each node in the hypothesis, each node in the false set, and each finding given the truth 

of their causes in the hypothesis. 

15. The hypotheses are ordered by their probability. The differential diagnosis list consists of 

the best hypothesis and any others with a probability greater than one percent of the best. 

8 An Example 

Figure 2 is the computer display of one of the hypotheses for an actual case as generated by the 

program. The figure shows the causal explanation that the program is proposing as the most 

likely explanation of the patient's findings. The findings entered by the user are shown in lower 

case and the nodes of the hypothesis are in upper case. The four nodes and one finding that are 

considered primary or diagnostic are printed in bold. The numbers in parentheses following the 

names indicate the probability that the item is true without being caused by anything else - 

the probability of being primary. The arrows indicate the most important causal relationships. 

(Ones with low probability are left out of the display if there is a higher probability link in 

the hypothesis. For instance, digitalis can also cause nausea/vomiting, but renal insufficiency 

is a more likely cause.) The numbers on the arrows are the probability that the cause will 

produce the effect. The probabilities from nodes to findings have been left out to keep the 
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Figure 2: Congestive Cardiomyopathy and Renal Insufficiency Hypothesis 

display readable. The links with a W+ are worsening factors. For example, cardiac dilitation 

increases the probability of low left ventricular emptying, but can not cause it alone. Links 

with P- decrease the probability of the effect. For example, the use of furosemide (a diuretic) 

decreases the probability of high blood volume, but does not eliminate it. In this case there is 

direct and indirect evidence that the blood volume is still high. 

There are several points to notice about the hypothesis. First, there are a number of findings 

that can only be explained by one node. For example, the finding that the patient is on digitalis 

or furosemide (therapies), causes the corresponding nodes to be true. Also, some test results 

always indicate the condition (at least for our purposes). In this case, left bundle branch block 

(LBBB) on electrocardiogram always indicates that LBBB exists. These findings cause the 

corresponding nodes to be asserted true. Second, the program will generate hypotheses with 

multiple causes. In this case renal insufficiency and congestive cardiomyopathy are used to 

account for the findings, even though it is actually possible to account for the findings with just 

congestive cardiomyopathy. Third, the program will find multiple paths to a node. There are 

paths to  dyspnea at rest (shortness of breath) from both pulmonary congestion and high left 

atrial (LA) pressure. Pulmonary congestion has independent evidence and high LA pressure is 

needed to explain the pulmonary congestion. 

One of the advantages of this method of generating the hypothesis is the detailed information 



it provides about the internal nodes of the hypothesis - the mechanism by which the causes 

are producing the findings. In the medical domain, this information is useful both as a way for 

the user to  check that the hypothesis is reasonable and as a way of identifying therapies that 

may be beneficial. 

9 Summary 

Because of the requirements of our medical domain, we have developed a causal model of cardio- 

vascular hemodynamics that includes enough intermediate nodes to represent the mechanisms 

in sufficient detail to  account for the actions of therapies. The causal nature of several differ- 

ent kinds of mechanisms in the model have been represented as probabilities and to  uniformly 

account for potential circularities in the causal structure, we have introduced the notion of 

probabilistic causality. The requirements for a differential diagnosis in this domain led to  the in- 

troduction of diagnostic nodes to  capture the idea of significant differences between hypotheses. 

Finally, we have developed a heuristic method for generating differential diagnosis hypotheses 

based on causal paths from primary causes to the findings and the heuristic of building the hy- 

pothesis finding by finding. The mechanism has been tested on more than 40 patient cases and 

provides good hypotheses in less than a minute using the model which has about 150 internal 

nodes and about 300 terminal nodes. 
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