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In this paper, a methodologyfor document classification and understanding is proposed. It is
based on a multistrategy approach to learning from examples. By document classification, we
mean the process ofidentification of the particular class to which a document belongs. Docu­
ment understanding is defined as the process ofdetecting the logical structure ofa document.
The multistrategy approach for document classification and understanding has been imple­
mented in a system called PLRS, which embeds two empirical learning systems: RES and
lNDUBIIH. Given a set ofdocuments whose layout structure has already been detected and
such that the membership class has been defined by the user, RES generates the knowledge
base ofan expert system devoted to the classification ofa document. The language used to
describe both the layout of the training documents and the learned rules is a first-order lan­
guage. The learning methodology adopted for the problem oflearning classification rules in­
tegrates both a parametric and a conceptual learning method. As to the problem ofdocumelll
understanding,lNDUBIIH can be used to generate the recognition rules, provided that the
user is able to supply examples of the logical structure. RES and INDUBIIH are implemented
in C language. PLRS is a module oflBlsys, a sofrware environment for office automation dis­
tributed by Olivetti.

Processing paper documents is currently one of the important tasks in office
automation. It involves much more than just a simple acquisition of a paper
document by means of a scanner, Generally speaking, a paper document is a
collection of printed objects (characters, columns, paragraphs, titles, figures, and so
on), each of which needs to be detected and then processed in the most appropriate
way, Therefore, the main objective of a document processing system is the transfor­
mation of a digitized document into a collection of information to be stored,
classified, retrieved, combined, and updated, In order to do all that, the structures of
a document must first bedefined,

According to the office document architecture/office document interchange
formats (ODA/ODIF) standard (Horak, 1985), any document is characterized by
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34 F. Esposito et al.

two different document structures, representing both its content and its internal
organization: the geometric (or layout) structure and the logical structure.

The geometric structure is the result of repeatedly dividing the contents of a
document into increasingly smaller parts, on the basis of the presentation (Tang et
a!., 1991). Generally, this structure associates the contents of the document with a
hierarchy of layout objects, such as text lines, vertical/horizontal lines, graphic
elements, photographic elements, columns, and pages (see Figure I). The leaves of
a layout tree, representing a hierarchical geometrical structure, are called basic
objects (or basic blocks), and they typically correspond to rectangular areas that
delimit portions of contents on the presentation medium. All the internal nodes of

D

Figure 1. The hierarchical layout structure of a document is the result of repeatedly dividing
the content of a document into increasingly smaller parts, on the basis of the presentation.
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Multistrategy Learning for Document Recognition 35

the layout tree are named composite objects, since they are obtained by grouping
together basic blocks as well as composite objects of lower level. The root of the
layout tree represents the whole document. In multipage documents, such as books,
a composite object can represent a set of pages, where a page is a rectangular area
that corresponds to a unit of the presentation medium. All other internal blocks are
named frames and correspond to rectangular areas within a page. Henceforth, we
will consider only single-page documents; thus, the root of the layout tree will
always be a page.

The logical structure is the result of repeatedly dividing the content of a
document into increasingly smaller parts, on the basis of the human-perceptible
meaning of the content. Generally, this structure associates the contents of the
document with a hierarchy of logical objects, such as title, abstract, paragraphs,
sections, chapters, tables, figures, and footnotes (see Figure 2). Even for the logical
structure, it is possible to distinguish basic logical objects, which appear at the
bottom of the logical tree, from the composite logical objects, which are represented
as internal nodes of the logical tree. Obviously, the types of logical objects in a
document are strongly application dependent; thus, for a journal it is possible to
define title, abstract, subtitle, paragraph, header, footnote, page number and caption
(Tsujimoto & Asada, 1990), while for a letter it is sensible to look for sender, receiver;
date, logotype, reference number, body, and signature. :

Both layout and logical objects can be described by a set of attributes. FOf
instance, layout objects can be characterized by

• the type of enclosed content (text, picture, etc.)
• their absolute position on the page according to an orthogonal coordinate system
• tlheir shape (if not always rectangular) I

• their dimensions
• numerical properties of their bitmaps

while logical objects can be described by

• the type (abstract, paragraph, etc.)
• some keywords contained in the text (date, figure, etc.)
• formatting properties (spacing, indentation, etc.)

Relationships among different objects are also possible. Of course, the hierarchy
in the layout/logical structures defines some hierarchical relationships among ob­
jects of the same structure. However, other more interesting relationships exist
among layout objects (layout-layout relationships) and among logical objects (logi­
cal-logical relationships). An example of a layout-layout relationship is the mutual
position of two layout objects, while the cross reference of a caption to a figure or
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36 F. Esposito et al,

Paper

Paper-H) .----- Page No.

Figure 2. The hierarchical logical structure of a document is obtained by repeatedly dividing the
content of a document into increasingly smaller parts, on the basis of the human-perceptible
meaning.

the reading order of some parts of a document are two examples of logical-logical
relationships.

Finally, layout-logical relationships between one or more elements of the layout
hierarchy and one element of the logical hierarchy can be defined. These relation­
ships are the most interesting for our task. Indeed, they allow us to identify some
logical components of a document without necessarily reading its content by means
of an optical character recognizer (OCR) but using only layout characteristics. For
instance, in a standard English letter, the date is under the sender's address, which
is in tum, in the top right-hand comer. Thus, this simple layout information can be
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Multistrategy Learning for Document Recognition 37

profitably exploited by a document management system to reconstruct the logical
structure of a document, starting from its layout structure. Furthermore, the distinc­
tion between text and picture regions is also important in order to limit the applica­
tion of the OCR, so that only information useful for storing and retrieval purposes I

is read. '
In literature the process of breaking down a document image into several layout

components (blocks), without any knowledge regarding the specific format, is called
document analysis (Tsujimoto & Asada, 1990). The document analysis process
produces the layout tree of a document. On the contrary, the term document
understanding denotes the process of identifying the logical structure of a document.

Several approaches to the problem of document analysis have been presented.
in the literature. They can be classified as top-down and bottom-up (Srihari, 1987;
Nagy et aI., 1988). Top-down (or model-driven) approaches first divide the docu­
ment into major regions, which are further divided into subregions, while bottom-up
approaches first extract individual connected components and then group them
together. The run length smoothing algorithm (RLSA) (Wong et aI., 1982) and the
projection profile cuts (Nagy et aI., 1986) are two examples oftop-down approaches,
while the neighborhood line density method (Kubota et aI., 1984) and the connected
component analysis (Fletcher & Kasturi, 1988) follow the bottom-up approach. In
some cases, document analysis is performed by a rule-based system, where layout
and composition rules are defined for specific classes of documents (Nagy et al.,
1986). In other cases, a rule-based system is used in order to discriminate text from
nontext regions in a segmented document (Fisher et aI., 1990).

As to document understanding systems, they can be characterized to a certain
extent by the degree of specialized domain knowledge used. Indeed, some systems
apply an OCR to the document in order to recognize the logical components by
means of keywords (Eirund & Kreplin, 1988; Pagurek et aI., 1990), while others
make use only of the spatial structure (Dengel & Barth, 1988; Nagy et aI., 1986).
However, a characteristic shared by all such systems is that production/grammar
rules are always defined by an expert of the application domain. This means that
approaches proposed so far analyze succesfully only those documents having a
previously defined structure and they fail when a new kind of form has to be analyzed
and understood.

On the contrary, our approach to the problem aims at a complete automatization
of the different processes, so that no prior knowledge on the specific format of a
document should be provided by the user. Such a requirement leads to a great
flexibility of the document processing system, which should be customized quickly
and easily, but it forces us to distinguish clearly between the two problems of
document analysis and document understanding.

As to document analysis, we use both a top-down approach for segmentinga
page into basic blocks, namely, the RLSA (Wong et aI., 1982), and a bottom-up
approach for grouping layout blocks into higher level frames (Ciardiello et aI., 1988).
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38 F. Esposito at al.

Heuristic knowledge on the structure of a printed document is employed in the latter
step; for instance, "long text blocks with the same spacing can be grouped together"
or "near blocks of the same type can be grouped together."

As to document understanding, we use a rule-based approach in order to map
the geometrical structure of a document into its logical structure. Our approach does
not require that the user define the rules of a knowledge-based system but simply
that he is able to provide the system with some examples ofdocuments whose logical
structures have been previously defined. Thus, the problem of understanding a
document can be cast as a problem of inductive generalization (learning from
examples), since the rules for the recognition of logical objects can be inferred. It is
worthwhile to note that, iii. this way, we deal only with automatically detected and
constructed characteristics of the document, namely, the geometrical characteristics
of the layout objects (height, width, spacing, alignment, etc.).

Nevertheless, when several kinds of documents have to be automatically hand­
led, document understanding becomes a difficult process due to the different
layout-logical relationships met in each kind ofdocument. For instance, letters from
various companies will present different writing standards, so the identification of
the sender or receiver would be hard if only layout information were used. Thus, an
intermediate step becomes necessary: document classification, that is, the identifica­
tion of the particular class the document belongs to. The idea is that in any office it
is always possible to group documents into classes according to some specific
criteria, such as the kind of processing or the common subject. Some examples of
classes may be invoices, business letters, letters received from a particular firm, and
magazine indexes. In many cases, documents belonging to the same class have a set
of relevant and invariant layout characteristics, called page layout signature, which
allow for recognizing the document class. Our approach is based on the idea that
humans are generally able to classify office documents (invoices, letters, order
forms, papers, indexes, etc.) from a perceptive point of view, by recognizing the
structure of a form or by reading only the content of particular parts of the document.
Once again, we expect that the user is able to provide some examples of documents
whose class has already been established (such documents are the same used for the
document understanding problem). Thus, it is possible to discover the layout
similarities and to derive the discrimination rules employed in the recognition step
by means of a process of inductive generalization.

To sum up, in order to automatically recognize a document, that is, to classify
and understand it, three processing steps are necessary: first document analysis, then
document classification, and finally, document understanding. All these steps raise
questions that can be partially solved by using AI techniques. A novelty of our
approach is the application of inductive learning algorithms to both document
classification and document understanding in order to get a document processing
system that can be easily customized. The methods have been implemented and
tested in an application for automated recognition of paper documents using layout
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Multistrategy Learning for Document Recognition 39

information developed in the workpackage AP (application for automatic classifica­
tion of documents) of the INTREPID' (innovative techniques for recognition and
processing ofdocuments) Project (1993). Indeed, the main activity in the workpack­
age concerns the automated acquisition of the knowledge base of an expert system
devoted to the recognition of office documents, namely, the recognition of docu­
ments as a whole (document classification) and the recognition of logical objects
within a given document (document understanding) based upon the layout structure
alone.

The architecture of the implemented system, named PLRS (page layout recog-'
nition system), is shown in Figure 3. After having scanned a document, the system;
detects a possible skew in the document image and corrects it by means of a rotation.
The bitmap of the deskewed document is then segmented by using the RLSA. In a'
preliminary global layout analysis, the presence of text columns is detected by using
the horizontal and vertical profiles. Then, the basic blocks are assembled into greater

I

blocks (frames) in a bottom-up way, by exploiting information on text columns and
by using a number of perceptive criteria, such as same starting/ending columns and
same spacing. This procedure groups together different portions of the document
contents, from basic elements to various frame levels, as well as pages. When the
page layout of a document has been completely determined, the system generates a
numeric/symbolic description of the document layout. The descriptions of the
training documents are exploited by a learning system to generate recognition rules
both for document classification and document understanding. Such rules constitute
the knowledge base ofan expert system devoted to the classification and subsequent
understanding of a new (test) document. Finally, the document can be reconstructed,
by exploiting textual information read by the OCR in those logical objects that are
of interest for the application. Since textual, graphic, and layout information is
properly managed, the document can be efficiently stored and retrieved. I

In the next section we will present in detail the document analysis performed
by PLRS, that is, the preprocessing phase that precedes the learning steps. In the
third section, we will describe a hybrid inductive learning methodology for docu­
ment classification that integrates both a parametric and a conceptual learning
method. We will also present a solution to the problem of classifying documents
when their layout descriptions are noisy. It is based on a distance measure between
structural symbolic descriptions that allows us to realize a form of flexible matching.
The third section is completed by some experimental results on large sets of real
office documents. The problem of learning rules for document understanding, which
is presented in the fourth section, is more complex than the problem of learning

,

lThe work in the INTREPID project is done within the framework of the ESPRrr program and partly fund~d
by the Commission of the European Community. The following partners form the consortium: AEG Electrocom
(D). eTA (E). Nottingham Polytechnic (G8). Olivetti Systems & Networks (I), Pacer Systems Ltd. (GB), University
of Bari (I). University of Koblenz (D), and University of Naples (I).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
1
:
2
6
 
2
6
 
J
u
l
y
 
2
0
1
0



40 F. Esposito et 81.
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Figure 3. Architecture of PLRS. After having scanned a document, the system detects a pos­
sible skew in the document image and corrects it by means of a rotation. Then the document
image is segmented into blocks, which are grouped together by the layout analysis. The super­
vised inductive learner produces rules useful for both document classification and document
understanding. Finally, the document is reconstructed by exploiting information read by the
OCR.
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Multistretegy Leeming for Document Recognition 41

recognition rules for classifying documents. The main difficulty is that the concepts
to be: learned refer to a part of a document rather than to the whole document, and
since parts of a document may be related to each other according to logical-logical
relationships, this leads to the problem of learning contextual rules. In the fourth
section, we hypothesize that contextual rules have a higher predictive accuracy than:
rules learned by assuming concept independence. Such a hypothesis is empirically'
evaluated by means of experiments on a set of letters belonging to the same class.'
Positive results confirm that learning contextual rules is a better approximation of
reality.

DOCUMENT ANALYSIS I

The first step of a document processing system is that of obtaining an electronic
representation of the printed page by means of a scanner. In order to do that, we have
to define two parameters: the resolution, expressed in dots per inch (dpi), and the
amount of information for each dot. PLRS acquires black-and-white bitmaps of
documents with a resolution of 300 dpi (Figure 4a). This means that each dot is
represented by a single bit, so a bitmap of an A4 document takes 2,496 x 3,500 ,;,
1,092,000 bytes when stored. I

After having scanned a document, its bitmap is enhanced in order to reduce the
noise level or in order to correct some flaws that may affect the subsequent
processing steps. In particular, PLRS detects and corrects the skew of a document,
since the RLSA algorithm used to segment the document is generally ineffective
when applied to skewed documents. Deskewing is accomplished by evaluating a
horizontal projection profile (Figure 4b), and then by selecting sample regions for
computing the average density of black pixels per row (Figure 4c). The sample

a bed e

Fi'9ure 4. (a) Scanned document, (b) horizontal histogram, (c) sample region RO and its succes­
sive rotations Rl, R2, R3, R4, where the last three determine the points of the interpolation, (d)
the horizontal histogram after the rotation, (e) result of the smoothing process. I
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42 F. Esposito at al.

region is rotated by an angle of O.T, and the relative histogram is reevaluated until
the mean-square deviation of the histogram is maximized. The actual document
skew is determined by evaluating the vertex of the parabola obtained by the
interpolation of the last three points in the space rotation-angle/mean-square devia­
tion. If required, the document is rotated (Ciardiello et aI., 1988) (Figure 4d).

Even though the skew detection and correction are accomplished on the original
bitmap, it is not necessary to deal with so much detailed information for the
subsequent phase of segmentation. Therefore, the document image is reduced to a
resolution of 75 dpi, which allows the RLSA to work more efficiently. The basic
RLSA was developed by Wong, Casey and Whal and is described by Wong et al.
(1982). It is applied to a binary sequence of black (represented by 1) and white
(represented by 0) pixels, and transforms an input sequence x into an output sequence
y according to the following rules:

(1) The Os in x are changed into Is in Yif the number of adjacent Os is less than
or equal to a constant C.

(2) The Is in x are unchanged in y.

In practice, the RLSA has the effect of linking together neighboring black areas
that are separated by less than C pixels. Obviously, the choice of C is crucial in order
to get areas including a common data type (text or graphic). The transformation
process presented above is applied to both the horizontal and the vertical sequences,
yielding two distinct bitmaps, which are then ANDed together. After an additional
horizontal smoothing process (Figure 4e), we get the segmented document. Each
block is described by a set of features such as

• total number of black pixels in the block after the AND operation
• total number of black pixels in the original bitmap delimited by the block
• number of horizontal white-black transitions in the original bitmap delimited by

the block
• eccentricity
• mean length of the black runs.

Such features, which allow us to cluster blocks into classes, are used to classify
each block into one of the following classes: text, horizontal line, vertical line,
graphic, and picture (halftone image). The classifier is a linear parametric classifier,
whose coefficients were defined by Wong et al. (1982) after having considered a
variety of documents.

Information on the segments of the page layout can be effectively exploited by
an OCR, since text and graphics are now separated, but it is too detailed for the tasks
of document classification and understanding. In this case, it is necessary to locate
columns, paragraphs, words, titles, and captions, which are then useful for the
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Multistrategy Learning for Document Recognition 43

reconstruction of the document (O'Gonnan & Kasturi, 1992). Such a process is
called layout analysis. PLRS detects the layout of a page by

(1) analyzing the projection profile cuts
(2) grouping blocks and frames according to general heuristic criteria

Basically, the first step is accomplished by creating two arrays, one for the
horizontal profile and the other for the vertical profile. Each contains the number of
black pixels of text blocks that fall in a point of the horizontal/vertical projection:
axis (in a reduced document there are 640 points on the horizontal axis and 875.
points on the vertical axis). The graphical representation of an array, by means of
histograms, is a waveform whose deep valleys correspond to the blank areas of the
document along one of the projection axes. The deep valleys with a base larger than,
a fixed threshold can be cut, thus indicating two parallel edges of a possible frame.'
At the end of the process, we obtain information on which columns and paragraphs,
are present in the document. ,

The second step is, in turn, subdivided into three distinct phases, according to'
the kind of heuristic criteria adopted for grouping blocks:

(2.1) Adjacent text blocks with almost the same height and belonging to the
same column are grouped together (in this way, we group fragments of a text line
in a column).

(2.2) A group of text blocks in the same column, with the same spacing and
length, forms a frame corresponding to a paragraph. Paragraphs are grouped together
if they are in the same column. ,

(2.3) A block/frame 132 is grouped with a block/frame 13 1 if either 132 is just
below 13 1, or 132 is aligned with 13 I, or 132 has almost the same width as 13 1, or 132
partially overlaps 13 1.

As to the type of a composite layout object, if the object is obtained by grouping
together simpler objects of the same type, then it inherits the type of the composing
objects; otherwise, it is defined as mixture type. Figure 5 illustrates the result of the
segmentation process and layout detection of the cover page of an issue of IEEE
Transactions on Computers.

The final output of the document analysis process is an ASCII file containing
three tables: BasicBlocks, Framesl, and Frames2. Each entry in the tables describes
a layout object by means of two couples of coordinates: those of the top left-hand
corner and those of the bottom right-hand corner. For each logical block, the type
code is also reported (1 for text, 2 for horizontal line, 3 for picture, 4 for vertical
line, 5 for graphics, and 6 for mixture). There are two levels of frames, which are
described in distinct tables. For each frame the list is provided of layout component's
that have been grouped together to obtain the frame, while for each basic block ,a
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Figure 5. Sample document: (a) 75 dpi bitmap, (b) segmented document, (c) final layout.

set is reported of numerical features, which are useful to derive the statistical
descriptors (as illustrated in the next section).

DOCUMENT CLASSIFICATION

As already pointed out in the introduction, document classification aims at
identifying the membership class of a document, provided that the user is able to
define a set of classes that are relevant for her/his specific application. We approach
such a classification task by means of machine learning techniques in order to
directly acquire classification rules from a set of training documents. The learning
system, devoted to the subtask of document classification and embedded in the
supervised inductive learner of PLRS, is called RES (Esposito, 1990). It implements
a hybrid approach to learning from examples. More precisely, RES integrates a
parametric method for linear classification [Fisher's (1936) discriminant functions]
with a conceptual learning method [hypothesis generation and test by means of the
STAR methodology (Michalski, 1983)]. The integration aims at obtaining a more
powerful and efficient learning system, by combining the advantages of both
methods. Indeed, the conceptual learning methods

• use a symbolic representation of knowledge, including qualitative dependencies
between subparts

• work on the structure of an object and treat relations between subparts
• generate hypotheses that depend on the context and satisfy the background

knowledge of the trainer
• produce easily understandable, human-oriented decision rules

On the contrary, the parametric methods
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I

• efficiently manipulate quantitative knowledge
• work on the global characteristics of a class of objects
• are suitable when a deep background knowledge on the problem is not available:
• tolerate irrelevant and noisy features

As a result, an integrated approach allows for

• coping with a heterogeneous set of features (qualitative and quantitative)
• reducing the effects of noise on quantitative features
• effectively describing the background knowledge
• improving the computational efficiency of the learning process by realizing ~

form of constructive induction (Michalski, 1980) !

• producing useful posterior probabilities of class membership
,

Before presenting the integrated approach to inductive generalization irnple­
mented in RES, it is necessary to explain how the layout of a document is described,
in order to clarify where the numeric/symbolic features come from. I

I

According to Muggleton (1992), in the general inductive problem we are,
provided with

• .La, the language of observations
• LB, the language of background knowledge
• LH, the language of hypotheses
• 0, a set of examples or observations described by means of La
• B, some background knowledge described by means of LB

and we want to find a hypothesis H described by means of LH, such that

B,H 1-0

where I-- is the symbol of logic derivation.
In the application ofdocument classification, La is the language used to describe

the training documents, namely, the VL" logic language (Michalski, 1980). Such a
language is a variable-valued extension of the first-order predicate logic (FOPL).
The main difference with respect to FOPL lies in the definition of an atomic formula.
Indeed, in VL2 1 the equivalent to the FOPL atom is the notion of selector or relational
statement, which is written as

[L =R]
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46 F. Esposito at al.

where L, named referee, is a function symbol with its arguments and R, named
reference, is a set of values in the referee's domain.

The semantics of a selector is the following: it is true if L takes one of the values
in R. Function symbols of referees are called descriptors. They are n-ary typed
functions (n ~ 1), mapping onto one of three different kinds of domains: nominal,
linear, and tree structured.

A nominal, or categorical, domain is a domain in which no relation is imposed
on its values. For instance, the domain of the descriptor type, used to describe the
type of a block of a page layout, is nominal, since there is no relation between the
values text, hor_line, ver_line, etc.

A linear domain is one in which a total order is imposed on its values. For
instance, the domain of the descriptor width is linear, since it is possible to say that

Finally, a tree-structured domain is a partially ordered set whose elements can
be represented as nodes of a tree. There are no tree-structured domains in the
description language we adopted to represent documents. However, as we will show
later, we feel the need to define a fourth and more general kind of domain, called
dag-structured domain, in which values can be represented as nodes of a directed
acyclic graph (dag).

In VL210 monadic functions are named attributes, while n-adic functions, with
n > 1, are called relations. Moreover, a predicate is considered as a particular
function whose nominal domain is {false, true}.

The set of descriptors used for the symbolic description of the page layout is
reported in Table 1.The domains of width and height are derived by discretizing two
numeric intervals according to a preliminary study of the statistical distribution of
the integer values on such intervals. As to the position of blocks, the descriptor
contain_inyos takes nine values, since an A4 page has been split into nine areas
(this is a sort of discretization of the numerical coordinates of the center of each
block). Figure 6 illustrates the way in which a page has been partitioned. Special
attention must be paid to the relations on_top, toJight, and aligned. In fact,
DDOCUM, the module of PLRS that produces page layout descriptions for the
problem of document classification, generates the selector

[aligned(X, y) = both_columns]

if two blocks, X and Y, are almost aligned by columns (there is a tolerance due to
noise), while it generates the selector

[aligned(X, Y) = starting coli ([aligned(X, Y) = ending colv;
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Table 1. Descriptors used for the symboLic description of the page layout in document classification

Descriptors

widthiblock}

height(block)

type(hlock)

contain_inyos(docblock)

on_wp(blockJ ,blockl)
toJight(blockJ ,blockl)
aligned(blockJ ,blockl)

Definition

Linear domain:
very_very_small, very_small. small, medium small, medium,
medium_large, very_large, vef)'_vct}' large

Linear domain:
smallest, very_very_small, very_small, small. medium small. medium,
medium large. large, very_large, very very Iarge, largest

Nominal domain:
text, picture. graphic, hor_line. ver_line, mixture

Nominal domain (denotes the relative position of block in doc):

north west, north, north_cast. west. center, east, south_west, south,
south east

True if blockl is above block2
True if blocks is to the right of blockJ
Nominal domain (denotes the mutual alignment between blockJ and

block2):
starting_row, ending_row. middle_row, hoth_rows, starting_col,
ending col, middle_col. both_columns, no_alignment

if two blocks, X and Y, are almost aligned by left (right) column alone, In this
application the predicate aligned is not commutative, For instance,

[aligned(X, Y) = startinLcolj

means that X and Yare aligned by left column and X is above Y, while

north-west nonh north-east

west center east

south-west south south-east

Figl~re 6, Partitioning of an A4 page into nine areas. Each area name denotes a possible value,
of the descriptor contain_in_pos.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
1
:
2
6
 
2
6
 
J
u
l
y
 
2
0
1
0



48 F. Esposito at al.

[aligned(Y. X) = starting_col]

means that X and Yare aligned by left column and Y is above X. However, this does
not imply that every time X and Yare aligned by columns that X is on_top Y, since
the selector [on_top(X, Y) = true] means that X is above Yand it is not too far from
Y (less than 50 points on the vertical axis). Analogously, it should be noted that

[aligned(X, Y) = startingJow]

means that X and Y are aligned by the upper row and X is to the right of Y. Once again,
this does not imply that every time X and Yare aligned by row thatX is toJight Y, since

[toJight(X, Y) = true]

means that X is to the right of Y and their distance is less than 100 points on the
horizontal axis.

Another property that does not hold for the descriptor aligned is the transitive
property. This is due to the introduction of a tolerance in the alignment, that is, two
blocks are aligned by left/right/middle/both column(s)/row(s) even if the co­
ordinates of the blocks (or their centroids) are not exactly the same. Therefore,

[aligned(xl, x2) = starting_col] and [aligned(x2, x3) = starting_col]

means that xl and x2 have approximately the same abscissa, as do x2 and x3.
However, this does not mean that x I and x3 have approximately the same abscissa,
since the algebraic sum of the differences along the horizontal axis can be greater
than a fixed threshold.

Descriptors listed in Table I, which are called conceptual descriptors, are not
the only ones used to describe the page layout of a document. Indeed, another
ninety-three numerical attributes, called statistical descriptors, are used by the
parametric method. While conceptual descriptors are derived from the table Frame2
of the layout description, statistical descriptors are derived from the table Basic­
Blocks produced by the segmentation process. Some examples of statistical descrip­
tors are the mean length of text blocks (mean_ll) or the maximum area of image
blocks (max_03). All statistical descriptors refer to the characteristics of the whole
document; therefore the only variable contained in the referee of a selector with a
statistical descriptor is always the same and denotes the document. The same
statistical descriptor, therefore, cannot occur more than once in the same example.
Due to the fact that in the hybrid approach each feature should be processed by the
proper method, only interval or ratio level measurements are specified as statistical
descriptors, while nominal, ordinal, and partially ordered level measurements are
treated as conceptual descriptors.
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Multistrategy Learningfor Document Recognition 49

VL21 selectors can be combined by applying different operators, such as /\, Y,

:: (decision operator), and => (logic implication) in order to defme

• decision rules, used for representing examples from a class (the action part of a
rule specifies the class to which the observation belongs)

• inference rules, used forrepresenting background knowledge, that is, the relation­
ships among various descriptors

• generalization rules applied to concept descriptions with the aim of including.
more examples '

,

Henceforth, we will adopt the convention of omitting the 1\ operator between I

selectors, as well as the reference of a predicate when it is true. Figure 7 shows an i

example of a VLz, decision rule describing the page layout of the document depicted in :
Figure 5. For the sake of brevity, only some of the statistical descriptors have been­
reported, namely, those that will be selected by the stepwise feature selection algorithm ~

used by the parametric method. It is worthwhile to observe that constants X; introduced'
in the referees of selectors denote distinct parts of the document (the whole document:
is denoted by xl). Variables appearing in the generalization rules are considered
existentially quantified and distinct. This means that variables with different names'
denote distinct objects (object identity) (Esposito et al., 1993f), and this must be taken
into account while matching a rule against the description of a document.

Finally, an important difference between the language of observation Loand the
languages L8 and LH is that the reference of each selector in an example is made up
of exactly one value.

Conceptual Method

As we have already pointed out, page layout is made up of frames often strongly
related to each other. Nevertheless, the structural nature of the domain makes the
task of inductively developing efficient and effective classification rules for office
documents more difficult, so that many well-known learning systems are unsuitable:

[conlain_in-POs(x l.x2)=nonh_west] [conlain_in-POs(x I ,x3)=nonh] [conlain_in-POs(x l.x4)=nonh]
[colllain_in-POs(x l.x5)=lIonh_west) [conlain_ill-POs(x l.x6)=cenler] [conlain_in-POs(x l.x7)=centre]
[wiclth(x2)=large] [width(x3)=very_large][width(x4)=mediunumalJ] [width(x5)=large] [width(x6)=very_large]
[wiclth(x7)=very_large1[beigbl(x2)=medium] [beigbt(x3)=very_very_small] [beigbt(x4)=small]
[beigbt(x5)=very_very_small) [beigbl(x6)=smallest] [beigbt(x7)=very_large) ][type(x2)=mixture1[type(x3 )=text].
[tYTe(x4)=picture] [type(x5)=text] [type(x6)=ho<-!ine] [type(x7)=mixture] [on_top(x2,x3)] [on_top(x3,x4)]
[on._top(x3,x5») [oll_top(x6.x7») [to_rigbl(x5.x4)] [aligned(x2,x3)=startinlLCOI) [aligned(x3.x5)=staninlLcol]
[ali gned(x5.x4 )=middle_row] [aligned(x5.x6)=staninlLcol] [aligned(x6.x7)=both_columns] [sd_11(x I )=223.874]
[min_e3(x 1)=1.091] [max_e3(x I)=9.838J [denu(xl )=0.21] [symm_y(x1)=·O.049] [sd_p(x I)=893.429J
::> [class=icomp]

Figure 7. Description ofthe page layout of the document in Figure 5.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
1
:
2
6
 
2
6
 
J
u
l
y
 
2
0
1
0



50 F. Espositoat al.

A learning system that is able to deal with structural knowledge is INDUBI
(Semeraro, 1987), a system developed in C language at the Department of
Informatics of the University of Bari. INDUBI is a problem-independent system
for the automated acquisition of classification rules from examples, that draws
its inspiration from the STAR methodology (Michalski, 1983). Such a methodol­
ogy is definable as a general framework for empirical supervised learning and
consists of a conceptual method for generating disjunctive covers, one for each
class.

At a high level, INDUBI implements a separate-and-conquer search strategy
(cf. Algorithm I), while it adopts a beam search strategy at the low level, that is, for
the construction of a single disjunct. More precisely, INDUBI starts with a positive
example e' (defined as seed) and generates a set MQ of at least m distinct maximally
general conjunctive generalizations, which are consistent and match against e', The
set MQ is called Star, hence the name of the methodology. The best generalization
is selected from MQ according to a lexicographic evaluation functional (LEF)
(Larson, 1977), which takes into account the number of positive examples covered,
the complexity expressed by the number of selectors, as well as the total cost ofeach
generalization, Then, positive examples covered by the best generalization are
removed from the set of positive examples, and a new disjunct is generated if the
set of remaining positive examples is not empty.

INDUBI outputs symbolic discriminant descriptions of the concepts (classes),
expressed in the form of classification rules, such as

Pattern :: > C

where Pattern is a concept description in disjunctive normal form (Pattern = D1 v
D2 V , . , v D" for some n) that satisfies both the completeness and the consistency
conditions. Here, completeness means that every training example of a class C must

Algorithm 1: High-level strategy for learning a set of VL2I generalization rules

E' := set of positive examples

E' := set of negalive examples

LeamedRuies := 0

while E' ;t 0 do
randomly select e' from E'

MQ := Beam_Search_for_consislen,-hypotheses(e'. E'. E'. m)

Best := FindBest(MQ)

LeamedRules := LeamedRules v {Best}

E':= E' - Covers(Best, E')

endwhile

output the set LeamedRules of VL" generalization rules
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Multistrategy Learning for Document Recognition 51

match against the class description for C, while consistency means that no training
example of a given class C matches against the description of a class different from
C. In the domain of office document automatic classification, Pattern represents the
page layout signature of the document, while C represents the class of a document.
In Figure 8 an example of decision rule is reported, generated by INDUSI for the
class icomp, to which the document described in Figure 7 belongs. As we would
expect, the rule captures some regularities in the layout of the covers of the IEEE
Transactions on Computers.

Parametric Method

INDUSI implements a conceptual leaming method that produces human­
oriented classification rules, but it is not very suitable for numeric descriptors.
Furthermore, due to the consistency and completeness criteria described above, the
method produces poor results when various sources of noise affect the document
descriptions. These limits are overcome by traditional techniques studied in statis­
tical pattern recognition.

In the statistical approach, examples are represented in terms of N numerical
features (feature vector representation) and viewed as points in an N-dimensional
space, namedfeature space (Duda & Hart, 1973). Then, the problem can be simply
stated as follows:

• Feature selection: select M features, M :5; N, such that examples belonging to
different classes will occupy different regions in the reduced feature space.

• Discrimination: establish decision boundaries in the feature space to separate
examples belonging to different classes.

(on_lopiS I.S2)J [aIign(S3.S4)=sUU'linll-column] [on_lOpiS I.S3)] [widlh(S2)=mediunumaIl]
(beigbt(S2)=smaIl] [type(S2)=picture]

v
[on_lop(SI.S2)] [OIuop(S3.S4)] [on_lOp(S4.sS)] [aIign(S2.S3)=bolh_co:umns] [aIign(SI.S2)=sUU'linll-column]
(aIign(S3,S4)=both-<olumns] [aIign(S4,SS)=both_columns] [on_lop(S2,S3) ][lype(S I )=boUine,mixture]
[beigbt(S2)=large] [beigbl(S4)=very_very_smaIl .. small] [lype(S2)=text,mixture]

v
(aIign(S2,S3)=sUU'linll-column] [on_top(SI,s2)] [on_lOp(S2,S3)] [aIign(SI,S2)=sUU'linll-column]
(widtb(S I )=Iarge] [beigbt(S I )=medium] [type(S2)=tex~mixture] [type(S3)=tex~mixtureJ

[widtb(S3)=large ... very_large]
::> [class = icomp]

Figuro8. Generalization rule for the class icomp of documents. It contains three or-atoms, the '
first of which matches against the document description of Figure 7, according to the substitu­
tion o = {51 ..... )(.3, 52 ..... x4, 53 ..... xS, 54 ..... x6).
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52 F. Espositoat al.

There are two main reasons for performing feature selection. First, computing
decision boundaries in an M-dimensional space is less expensive than dealing with
the data in a higher dimensional space. Furthermore, a lower misclassification rate
can sometimes be achieved by using a reduced feature space. The latter reason is
explained by both theoretical and empirical considerations. In particular, it has been
proved that the performance of a classifier, based on estimated densities, improves
up to a point, then starts deteriorating as further features are added to the feature
space (Hand, 1981). This phenomenon is also known as the curse ofdimensionality.
Generally, the number of training samples per class should be at least five to ten
times the number offeatures used for computing the decision surfaces (Trunk, 1979).

There are two aspects concerning the problem of feature selection:

(l) A measure of class separability for observations described by a certain set
of features is required.

(2) An algorithm for finding the best (or an optimal) subset of features is
needed.

As to point (I), we have studied the properties of Wilks' lambda, which is
defined as follows:

A= lw / IW+BI

where W is the within-class scatter matrix and B is the between-class scatter matrix
(Hand, 1981). Notice that as IB I increases relative to Iw], the value of A
decreases; thus A close to 0 indicates a good separation between classes and a high
cohesion (homogeneity) within each class, while A close to 1 indicates a lack of
discriminating power of the selected features. The A test of the null hypothesis

Ho: 11, = 112 = ... = Ilk = 11

with a significance level n = peA < c, IHo) can be cast as the problem of evaluating
the probability P(F > c21 Ho), where C2 is the upper lOOn percentage point of a
particular F distribution (Cooley & Lohnes, 1971). This is a test of the statistical
significance of the separation of the class centroids (class means) when a subset of
variables has already been chosen.

As to point (2), we have implemented the stepwise selection (Hand, 1981). At
each step, a feature is considered for selection if the statistical significance of the
amount of class centroids separation added by that feature is sufficiently high, given
the separation due to the previously selected features. This involves a test on the
partial F ratio. Then the most discriminating feature that passes the test for inclusion
is added to the set of selected features (the discriminating power is evaluated by
using the A statistic). After the inclusion, the amount of separation between classes,
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Multistrategy Leaming for Document Recognition 53

added by each of the selected features, given the other selected variables, is
evaluated. Indeed, it is possible that some of the features entered earlier are no longer
relevant for discrimination purposes. In such a case, at least one of such features can
be removed from the set without affecting the discriminant power of the whole set.
The stepwise selection stops when no feature passes both the inclusion and the
removal tests. The description of the feature selection algorithm is provided in
Algorithm 2.

Indiscrimination, once the variables have been selected, it is necessary to define
the decision boundaries. They are described by mathematical functions, usually
linear or quadratic, which are determined by the statistical distribution of the
examples. Generally, such distributions are not known a priori, so an assumption of
their form is made. In this case, the problem of establishing the decision boundaries
is cast as a parameter estimation problem, in which the unknown parameters of the
assumed distribution are estimated from the training examples. This is why the above
functions are also called parametric classifiers. A popular choice for parametric
methods is the normality of the class-conditional densities. In fact, the normal form
is a good model for many naturally occurring phenomena (as a consequence of the
central limit theorem) and it is uniquely defined by a mean vector J..l and a variance­
covariance matrix L. Under this assumption, the decision surfaces are generally

Algorithm 2: stepwise feature selection.

1. All the features are in SELECTABLE
2. The set SELECTED is empty
3. Select the first variable by a univariate-F lest,

add such a leature to SELECTED
remove such a feature from SELECTABLE

4. While a new variable is added to SELECTED
4.1. Repeat

4.1.1. The set POSSIBLE_REMOVALS is empty
4.1.2. For each feature in SELECTED

4.1.2.1. Evaluate the partial F-rafio F....._
4.1.2.2. If F1<><_ is too small then add the feature

to the set of POSSIBLE_REMOVALS
4.1.3. II POSSIBLE_REMOVALS is not empty then select the feature

with the minimum F,_ and pertomn the A test on it
4.1.4. II the A test is accepted then remove such a leature from SELECTED

and add it to SELECTABLE
untii no more removals are possible

4.2. The set of POSSIBLE_INCLUSIONS is empty
4.3. For each feature in SELECTABLE

4.3.1. Evaluate the partial F-ratio F....,.
4.3.2. II F,_.. is not too small then add the feature

to the set of POSSIBLE_INCLUSIONS
4.4.11 POSSIBLE_INCLUSIONS is not empty then select the feature with

Ihe maximum F,__ and perform the A test on it
4.5.11 the A test is accepted then remove such a feature to SELECTABLE

and add such a feature to SELECTED
5. The optimal set of features is SELECTED
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54 F. Espositoat al.

quadratic, and they become linear under the further hypothesis of an identical
variance-covariance matrix for all the classes. The linear discriminant functions
also present the advantage of robustness when data are nonnormal (Lachenbruch,
1975).

In PLRS, we have implemented a linear parametric classifier, namely, Fisher's
(1936) linear discriminant functions, taking the following form:

q;(x) = v . x - vo

where

x is an M-dimensional feature vector representing an observation (in our application
domain it is the collection of numerical attributes describing the layout of a
single page document).

v is a vector ofcoefficients, which in tum, are functions of the estimated parameters
u and ~.

Vo is a constant term.

For instance, for the class icomp, to which the document described in Figure 7
belongs, the parametric classifier defined on the set of selected features is

q;,omp(sd_ll, min_e3, max_e3, dens_t, symmy. sdy)
= 1.134· sd_ll - 3.719· min_e3 + 18.2· max_e3 + 76.055· dens_

+ 142.89· symmy + 0.003· sdy - 216.42

Finally, it is important to note that the higher q;(x) is, the higher the likelihood
that the observation described by x belongs to class i. Therefore, an observation will
be assigned to the class with the maximum value of q;(x), since i has the highest
posterior probability P(i Ix).

Integrated Method

The conceptual and the statistical methods. mentioned' above present some
similarities, as follows:

• Both approaches are model-driven. that is, the examples are considered all
together in order to generate the decision rules.

• Zeroing a coefficient in a linear discriminant function is equivalent to the
dropping-condition rule used in the STAR methodology.

However, they also exhibit some relevant differences:
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Multistrategy Learning for Document Recognition 55

• A symbolic hypothesis describes aconcept, while a discriminant function delimits
a boundary surface.

• The symbolic method works in a sequential way, generalizing from a single example
each time, while discriminant analysis works on all observations together.

• Conceptual methods allow multiple-entity (structural) representations, while the
statistical methods manage only single-entity representations (nonstructured
objects).

A first step toward an integration of the parametric and the symbolic methods
concerns the representation language VL21• Indeed, each document is described by
a set of statistical and conceptual descriptors, so we have a unique representation
formalism, both for conceptual and for statistical discrimination.

Only the statistical descriptors are considered by the statistical analysis in order
to compute the coefficients of the linear discriminant functions. These are also used
for computing the posterior probabilities of the class membership of each document,
P(i Ix), so that the maximum probability determines the class to which each
recognized document is assigned. The classification result is encoded in the follow­
ing VL21 selector:

[class_disc_analysis(variable)=value]

where

• class_disc_analysis is a descriptor specifying the class assigned to the document
by the discriminant analysis: it represents the value of a mathematical function
mapping the feature vector associated with the document to the class identifier,

• variable is the name of the document as a whole, and
• value is the class identifier.

Such a selector synthesizes the numerical information on thecommon geometri­
cal characteristics of a class and is appended to the symbolic description of each
document. The selector can play an important role in making the concept learning
process efficient, since it realizes a form of constructive induction (Esposito et al.,
1993a).

INDUBI, the symbolic rule generator of RES, extracts the selectors containing:
the conceptual descriptors and the selector class_disc_analysis from the page layout:
description of each training document. The results are VL21 discriminant rules
generated according to the STAR methodology and stored in the document know 1- ,
edge base, together with the document descriptions and the results of the dis­
criminant analysis (see Figure 9).

The main purpose of the page classifier is to match the symbolic descriptions i

of new documents against the previously stored rules. First, a test phase is necessary.
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statisticalf~alUrQ 01
train;", docuIIJmls

\ \

" Crimi= nJl unCliOns.
class membership

"Q posteriori" probabilities

Jayoutddta

----t>

I)
SY;;;':i~~:;;:':::''':,01

Ins ifi· / symbolic classification rules,
c $1 Ic~tlO" resu u discrimmam functions.
and usn S assessmau description of the docummt to c/assify

page
classifier . VIcl4uificallon resu Is

Figure 9. Schema of the integrated method implemented for the layout-based document
classification. From the page layout description of training examples. a set of statistical fea­
tures is selected. It is used by the discriminant analysis, which produces the discriminant
functions, and the posterior probabilities of each class for all training examples. Posterior
probabilities are used in order to define the value of the selector class_disc_analysis, which
is appended to the symbolic descriptions of the training examples. The latter are used to
train INDUSI, which produces symbolic classification rules. Finally, the page classifier ex­
ploits both the discriminant functions and the symbolic rules in order to classify new test
documents.

Some statistical features of the document descriptions are used for computing
Fisher's discriminant scores. The posterior probabilities are evaluated, and the class
with the highest probability defines the value of the selector class_disc_analysis.
The posterior probabilities are also exploited to define the order in which the VL21

classification rules have to be matched against the document descriptions. This
speeds up the classification process, provided that the true error rate of the dis­
criminant analysis is low enough. The result of classification may be a single class
with probability equal to 1, that is, the system is sure of its recognition of the new
document. However, it might occur that the document does not match against any
classification rule. In such a case, the system shows a set of probabilities representing
the degree of similarity between the document description and that of each class. If
the system fails in the recognition process, the user can give a negative assessment
together with the proper class and force the system to produce new classification
rules.

For instance, the classification rule produced by the hybrid method for the class
icomp, is as follows:
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[contain_in yos(S I ,S2) = north] [on_top(S2,S3) I
[class_disc_analysis(Sl) = icomp] [type(S2) = texthorfinepicture.mixturei
[width(S2) = very_small. . very_large]
[height(S2) = smallest. . large] :: > [class = icompi

By comparing this rule with that presented in Figure 8, it is evident that the
recognition rule is now simpler. Consequently, the learning process takes less time
to generate it. Time requirement is an important factor for our real world application.
Indeed, another workpackage of the INTREPID project, namely, HD (HW/SW
architecture definition and prototype implementation), is aimed at defining suitable
architecture for an efficient implementation of a real-time recognition system. As
we will show in the section devoted to experimental results, the classification
accuracy of the above rule improved significantly as well.

Flexible Matching for Noisy Structural Descriptions

When noise is present or the training sample is insufficient to properly train the
system, the predictive accuracy cannot be guaranteed. A classifier working in an
all-or-none fashion is useless, and it is necessary to rely on a continuous measure of
similarity between objects. In Esposito et al. (l992a, 1992b), we propose a com­
plementary measure, the distance, based on a probabilistic interpretation of the
matching predicate. It is used to classify examples that do not present exactly all the
regularities appearing in the corresponding recognition rule.

The distance measure, ~, suitable for structural deformations, is defmed on the
space of the VL21 well-formed formulas (wffs). Let Fl and F2 be two VL21 wffs, then

~(Fl, F2) = 1-flex_match(FI, F2)

where flex_match(Fl,F2) is a function taking on values in [0,1] that represent the
probability that Fl perfectly matches against F2. Therefore,

flex_match(Fl, F2) = P[match(Fl, F2)]

where match is the canonical matching predicate defined on the same space.
The latter definition marks the transition from deterministic to probabilistic
matching.

The main application of the distance measure is concept recognition in noisy
environments. Therefore, from now on, Fl will denote the description of a concept,
and F2 the observation to be classified.

The functionflex_match is computed according to a top-down evaluation scheme:

(J) F I and F2 are disjunctions of conjuncts:
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flex match(Fl,F2) = P[match(or atom"F2) v ... v match(or atomN,F2)]- - -

where oratom, is the generic conjunction of selectors in FI, while match(or_atom.Fls,
with i E [I,N], are independent events.

(2) Fl and F2 are conjunctions of selectors:

{

max n w, .flex match, (sel" F2) if there exists a substitution o,
flex_match(FI,F2)= c, ' suchthatF2~crj(Fl')

o otherwise

where

a, is one of the possible substitutions among variables,
sel,is the generic selector in FI,
flex _match, is the measure of fitness between sel, and F2 when the variable substitu­

tions are fixed by e;
w, denotes the weight of the function in sel, and
Fl' is the shortest conjunction of selectors in FI, such that all the distinct variables

in FI are also in FI'.

(3) FI and F2 are selectors:

flexjnatch, (Fl,F2) =max P[equal(g"e)]
ie (1,.1:1

where

g, is one of the values of the reference of FI,
e is the only element in the reference of the observation F2, and
equal(x,y) denotes the matching predicate defined on any two values x and y of the

same domain.

The term P[equal(g"e)] is defined as the probability that an observation e may
be considered a distortion of g" that is,

P[equal(g"e)] = P[I)(g,,x) ~ I)(gi,e)]

where

X is a random variable assuming values in the domain of the function contained in
FI (or F2) and

I) is the distance defined on the domain itself.
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The definition of P[equal(gi,e)] takes into account both the type offunction and
the probability distribution of its domain.

The function flex_match(Fl,F2) actually computes the probability that any
observation of the concept described by Fl would be farther from the centroid Fl
than the case F2 being considered. Ifflex_match(Fl,F2) is too small, it signals the
possibility that F2 is not an instance of the class described by Fl, even though it is
the closest. The function flex match(Fl,F2) can be considered from a theoretical
point of view. In fact, the probability that the referee's value changes is a deformation
probability, so finding the most similar concept description is equivalent to detecting
the most probable deformation. In Esposito et al. (1991c), the definition of distance
measure has also been extended in order to deal with incomplete descriptions.

Decision making based on a distance measure is more expensive than a true/false
matching procedure; therefore, a multilayered framework is more suitable (Esposito
et al., 1991a). Moreover, two distinct methods have been applied in order to reduce
the computational complexity: a branch-and-bound algorithm and a heuristic ap­
proach (Esposito et al., 1991b). The former is an algorithm that performs quickly
on average, while the latter produces acceptable answers in an acceptable amount
of time. From an empirical comparison of the two methods, we draw the following
conclusion: classification results do not change at all if the heuristic method is used
and the class corresponding to the highest value of similarity is taken as the
membership class. However, by considering the throughput time, we conclude that
the branch-and-bound method needs much more time than the heuristic method, and
this is a great limitation for a real-time document processing system. :

Here we provide an example of application of the distance measure to the'
problem of document classification. In a first experimentation described by Esposito!
et al. (1990a), we considered a set of seventy-two single-page documents belonging:
to nine different classes. Four classes are business printed letters, sent or received'
by four different companies, while four other classes are magazine indexes. The
ninth class is a reject class, representing the rest of the world. Fifty instances were
selected as training examples, leaving the remaining twenty-two documents for the
test phases. In Table 2 the recognition rules for each class and the corresponding
flexible matching values (FM) for the document in Figure 10 are reported. '

As an example of computation of the flexible matching, let us consider the
recognition rule for the third class. When Fl is equal to the first or-atom, then Fl'
becomes the following conjunct:

Fl' =[toJight(SI,S2)][toJight(SI ,S3)][toJight(S4,S2)]

which does not strictly match against the description of the test document, that is
F2. Consequently, we have
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Table 2. Flexible matching of the test document against each rule

Class VL21description

[toJight(SI.sZ)][aligned(SI,SZ) = startingJ0I][height(SI) = medium_small]
[width(SZ) =medi"m]

Z [toJight(S I.sZ)][aligned(SI,SZ) = endingJow][height(SI) = very_small]
[width(SI) = medium_small][width(SZ) = very_smaIl,small]

3 [toJight(S I.S2)][to_right(S 1,S3)][toJight(S4,SZ)][toJight(S3,SZ)]
[height(S2)= very_very_'arge]

Value

0.0

0.40

0.909

4
5
6

7

8

v
[on_top(SI,SZ)][toJight(SZ.S3)][on_top(SI,S3)][aligned(SI,SZ) =starting_col]

[height(SI) = medium][height(S2) = medium_small] [height(S3) = medium ..
very_very_large]

[a/igned(SI,SZ) = endingJol][widlh(SI) = medium_smaIl][height(SI) = medium_small]
[toJight(SI ,SZ)][height(S I) =very_large .. largesl]
[toJight(SI,S2)][loJight(S3,S I )][on_top(S 1,S4)][on_top(S5,S1)]

[width(SZ) =medi"m_small][height(SZ) =very_very_small]
[contain_inyos(SI,S2) =north_west][contain_inyos(SI,S3) =center]

[a/igned(SZ,S3) =slartinLcol][heighl(S3) =very_very_large, largest]
[a/igned(S I,SZ) =middleJOW][IOJight(S3,S4)][on_top(S5,S I )][on_top(S 1,S3)]

0.444
0.454
0.0

0,90

0.0

-.3 ,- ImJl5iOiiI.,
.6

.,
.,

Iwidlh(xZ)=large)
(widlh(x3)=mediumJ
Iwidlh(x4)=medium_large]
Iwidlh( x5)=medi urn_small]
[widlh(x6)=medium_small]
[heighl(xZ)=medium_small]
[heighl(x 3)=medi urn_small]
[height(x4)=very _very_large]
[height(x5)=very_small]
[heighl(x6)=small]
[contain_i n..]JOs(x1.x2)=norlh)
[contain_in_(JQs(x I ,x3)=norlh_west]
[containjnpostx I,x4)=centrc]
[contalnjnpostx l,x5)=wcst]
[contain_in_(JQs(x l,x6)=west]
[on_top(x2,x3)]
(on_lOp(x2,x4)]
lon_top(x3.x5)]
IIO_righl(x3.x4)]
[lo_righl(x5.x4)]
[align(x2,x3)=firsl_column]
Ialign( x2.x4 )=Iast_column]
[align(x3,x4)=firsuow]
::> [classethree]

Figure 10. The page layout of a test document and its description in VL21-
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On the contrary, when Fl is equal to the second or-atom, then we find two
substitutions, such that

(Ft' = [on_top(SI,S2)][toJight(S2,S3)])

namely, c, = lSI f- x2, S2 f- x3, S3 f- x4} and cr, = lSI f-x3, S2 f- x5, S3 f- x4}.
According to the substitution o., only the fifth selector of the or-atom does not strictly
match the description F2; therefore, we have

Ilflex_match,(se/;,F2) = 1 . 1 . 10/11 . 1 . 1 = 0.909
;=3

since the linear domain of the descriptor height has eleven values and we are
assuming that each value of the domain has the same probability [for further
explanation, see Esposito et al. (1991a)]. Itis easy to verify thatthe flexible matching
computed according to the substitution cr2 gives a lower value, so we can conclude
that

flex_match(or_atom" F2) = 0.909

and then flex_match(Fl, F2) = 0.909. The highest FM value in Table 2 is that
associated with the third class; therefore the document is correctly classified. The
document is not rejected because the FM values are all higher than the fixed'
threshold (0.85). Results for all the test documents are reported by Esposito et al.
(199lb). Here we give some hints on the system performance: about 6 s for
generating the symbolic description of a document and about 3 s for matching and
classifying a document.

These results refer to an implementation in C on an Olivetti PC M280. The total
processing time for a single document is less than 1 minute, including the scanning
process.

Experimental Results

As already pointed out, RES has been used to automatically produce the rules
of a knowledge-based system for the recognition of optically scanned documents,
Inorder to produce the classification rules, some significant examples of document
classes, which may be of interest in a specific environment, were used as a training
sample to discover the layout similarities within each class.

In a second experiment, we considered a set of 161 single-page documents,
namely, printed letters and magazine indexes, belonging to 8 different classes (the
last was a reject class, representing the rest of the world). Fifty-one instances were
selected as training cases, leaving the remaining 110 documents for the testing phase,
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62 F. Esposito at al.

Once again, all the sample documents were real letters, received or sent by com­
panies, or copies of the indexes of international magazines, so that several forms of
noise actually affected them.

Working on the layout structural characteristics, the conceptual method pro­
duced seven maximally specific classification rules, expressed as VLzl decision
rules, satisfying both the completeness and consistency conditions. Most of these
rules pointed out the invariant parts of the physical layouts, such as logos and titles
of fixed sizes in fixed positions, and their relations with other parts of the documents,
such as alignment with other blocks. However, due to the limited number of training
cases, the predictive accuracy was low. In fact, only 76 of the 110 test cases were
correctly classified, although the recognition rate increased by using the flexible
matching (see Table 3).

A training set of 121 examples was then selected, independently of the 110 test
samples. The training set included the old 51 instances. The predictive accuracy for
the whole set increased up to 92%, but disjunctive and trivial rules were generated.
Two disjunctive rules with three or-atoms were generated both for IEEE Transac­
tions on PAMI indexes and for IEEE Transactions on Computers indexes (see Figure
8), because of the variability of page layout and the presence of noise. Table 4
illustrates the results of the testing process. The learning process in the training phase
took about 4 hours and 30 min on a Sun3/280. Half of the training time was spent
in generating these rules.

With a consistent number of training cases, it is possible to use and to evaluate
the performance of the parametric classifier on the statistical descriptors concerning
the layout. Initially, ninety-three features were chosen to describe each document,
but only six were selected by the stepwise variable selection process, minimizing
Wilks'lambda:

(I) maximum eccentricity of image blocks (max_e3).
(2) standard deviation of the number of black pixels (sdy).

Table 3. Results of the application of the conceptual method by a strict matching
and a flexible matching (training set 51 cases; testing set 110 cases)

No. of No. correct Strict Flexible
Class cases classifications matching, % matching, %

Olivetti letter 27 20 74 96
Sifi letter 20 12 60 90
Sims letter 15 7 46 91

Sogea letter 10 8 80 98
PAMI index 21 17 81 85
Spectrum index 8 4 50 70
Computer index 9 8 88 90
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Multistrategy learning for Document Recognition 63

Table 4. Confusion matrix for the conceptual method (t rsdining set 121 cases;

testing set 110 cases)

Olivetti Sifi Sims Sogea PAMI Spectrum Computer Reject

Olivetti 96 4

Sifi 100

Sims 100

Sogea 100

PAMI 90 10
Spectrum 75 25
Computer II 67 22

Values arepercentages.

(3) standard deviation of the length of text blocks (sd_/I).
(4) minimum eccentricity of image blocks (min_e3).
(5) symmetry along the vertical direction (symmy).
(6) percentage of the textual part (dens _t).

It is fairly evident that image blocks, such as logos and magazine headings,
are important in the discrimination process. Another selected feature is the
standard deviation of the length of text blocks, which is relevant in order to
discriminate justified letters from those not justified, and magazine indexes with
a high variability in the length of some entries from others that are better
organized. The discriminant rules generated by discriminant analysis are not
sufficient to recognize the documents. In fact, some misclassifications occurred
when the same training documents were reclassified. This means that the eight
classes are not linearly separable. When using the features selected, the re­
substitution error rate is about 8%, nearly the same as that obtained using the
leaving-one-out criterion (Lachenbruch, 1975).

The throughput time for selecting the variables and computing the discriminant
functions was about 4 min on a 5003/280. Time needed for classifying a single
document was less than 1 s. Table 5 shows the results of the testing phase when only
the statistical method was applied.

In the integrated approach, the new selector [class_disc_analysis(variable) =
value], resulting from the applicationof discriminantanalysis, was appended to each
training/testing example. Moreover, a lower cost was assigned to class_disc_analysis
than to the other descriptors, due to the high discriminant power revealed by the
statisticalmethod.

With the application of INDUBI, the generated hypotheses often changed
significantly, especially for those classes characterized by disjunctive rules. This
was due to the fact that the new appended selectors alone were sufficient to
characterize some classes. The only rules that remained unchanged were those,
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64 F. Esposito at al.

Table S. Confusion matrix for the statistical method (training set 121 cases;
testing set 110 cases)

Olivetti S'ifi Sims Sogea PAMI Spectrum Computer Reject

Olivetti 96 4

Sifi 95 5
Sims 7 93
Sogea 100
PAMI 95 5
Spectrum 100
Computer 100

Values are percentages.

concerning two classes of letters, while all the others changed by including the new
selector in the condition part. The results of the testing phase are reported in Table 6.
The overall predictive accuracy of the combined approach is 98%. It is interesting
to notice the complementarity of the symbolic and the statistical methods, which
justifies the robustness of the integrated approach. Moreover, the application of the
distance measure is necessary when the training sample size is small, while it
becomes less important when the training sample size increases. This is due to the
presence of the new descriptor, which summarizes the class regularities and is robust
against the noise.

Finally, the time needed to train the system was nearly halved, since it took only
2 hours and 30 min, including the statistical analysis. This is a good result, bearing
in mind that the learning system handles about nine thousand selectors in the
complete training set. Once the rules have been generated, the knowledge-based
system is able to recognize a digitized document in 9 s.

The complete discussion of the experimental results is reported by Esposito et
al. (l990b).

Table 6. Confusion matrix for the integrated method (training set 121 cases;
testing set 110 cases)

Olivetti Sifi Sims Sogea PAMI Spectrum Computer Reject

Olivetti 96 4
Sifi 100
Sims 100
Sogea 100
PAMI 95 5
Spectrum 100
Computer 100

Values are percentages.
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DOCUMENT UNDERSTANDING

The success of the machine learning approach to document classification
induced us to investigate the possibility of adopting the same approach for thel

problem of document understanding, that is, for recognizing logical components of
a document once it has been classified. Given a set of documents whose layouts:
have already been analyzed, and assuming that some layout components have beeJ
correctly labeled according to their meaning-for instance, as a sender or receiver
block in a letter-then the problem is that of learning some rules that allow for
correctly labeling the layout components in previously unseen documents (Malerba:
1993).

The classes do not concern the whole document anymore, but the logical objects
within a document of a given class. The examples are descriptions in terms of
geometrical characteristics of the logical objects. The descriptors used in this phase

,

are

width(block), heightiblock), type(block), on_top(blockl, block2),!
toJight(blockl, block2), aligned(blockl, block2),

which are defined in Table 1, plus the predicate part_of(doc ,block) , and the nominal
descriptor position(block), which replace the descriptor contain_inyos(doc,block)
shown in Table I, and the nominal descriptor logic_type(block) describing the
logical class ofa layout block. For example, in the class of Olivetti letters the domain
of logic type is (sender, receiver, date, logo, ref, body, signature, unspecified) (see
Figure 11). It is worthwhile to note that a single document may generate a variable
number of examples for each logical class. This is due to the fact that more logical
objects of the same logical class may actually be in a document. Consider, f~r

instance, the existence of multiple receivers in a circular or the fragmentation
problem caused by the layout analysis (Esposito et aI., 1993b).

As pointed out in the introduction, the problem of document understanding can
be greatly simplified when the membership class of a document has already been
identified. Indeed, in this case we can define logical components more easily for
each class of documents, and we significantly reduce the variability of training
instances for this new learning problem. In spite of such shrewdness, the problem
of learning rules for document understanding is still more complex than the problem
of learning recognition rules for classifying documents. '

The main difficulty is that now concepts to be learned refer to a part of: a
document rather than to the whole document, and since parts of documents may be
related to each other according to logical-logical relationships, this leads to the
problem of learning contextual rules. Most of the studies on supervised inductive
learning presented in the machine learning literature make the implicit assumption
that concepts are independent (independence assumption) and, consequently, that
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Multistrategy Learning for Document Recognition 67:

training instances are independent. Henceforth, we will denote learning algorithms
based on this assumption as traditional learning algorithms. Of course, it is possible:
to use such algorithms in the problem of document understanding by simply:
neglecting logical-logical relationships, but it is our opinion that this is not the correct:
way to solve the problem. Indeed, we believe that by taking into account concept:
dependencies, it is possible to generate more accurate and simpler rules, since the i
learning paradigm is a better approximation of reality. :

Another difficulty with the problem of learning rules for document under- I

standing is the necessity to change the representation language. Indeed, VLZI, the
representation language adopted by INDUBI, does not allow variables to be intro­
duced in the action part of the decision rules, since it is implicitly assumed that the
condition part describes an observation and the action part defines the class to which
the whole observation belongs.

This means that by using VLZI, we cannot represent rules, like those neces­
sary for document understanding, in which the action part refers to a part of an :
observation rather than to the whole observation. By allowing variables and:
constants to be introduced in the referee of the action part of a VLZ1 decision rule, :
we get a new representation language, which has the same expressive power or:
Horn clauses (Genesereth & Nilsson, 1987). Henceforth, we will indicate such I
decision rules as VLZ1 definite clauses. In the next subsection we will pro-:
vide a brief introduction to the new representation language for document:
understanding.

From VL21 Decision Rules to VL21 Definite Clauses
I

A VLZ1 literal is a selector or the negation of a selector. Each VL21 expression,
may be obtained from a set of literals by applying different operators, such as /\, V, I

ands-- (logical implication). In particular, we will defme VLZ1 definite clause as any:
VLZ1 expression of the kind !

where f is a function symbol, t, may be constants or variables, Ai is a value of the fi;:
domain, and $(t1,tZ, ..., tm ) is a conjunction of VLz,literals, whose referee's arguments,
contain the terms tl,tz, ..., t.; The selector to the left side of the +- operator is called:
head, while the conjunction to the right is called body [for a translation of VL21,

clauses into Hom clauses, see Malerba (1993)]. ,
Both training/test examples and hypotheses are expressed as VLz, clauses, but

there are some differences:

(l) Each training/test example represents just one ground clause, that is, a
clause without variables. I
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68 F. Esposito et 81.

(2) Each hypothesis is expressed as a set of constant-free clauses having the
same head.

(3) The reference of each selector in any training/testing example is made up
of exactly one value.

(4) In theexamples, false predicatesare omitted,whileall the attributesare specified.
(5) In the hypotheses, every omitted selector is assumed to be a function taking

any value of its domain.
(6) Variables with different names denote distinct objects (object identity)

(Esposito, et al., 1993f; Semeraro et aI., 1993).

These points describe the main differences between the language of observa­
tion La and the languages LB and LH for the background knowledge and the
hypotheses, respectively.

VL21 clauses are an extension of the original definition of the VL21 language that
was adopted for the problem ofdocument classification. In fact, it is always possible
to translate VL21 decision rules into VL21 clauses with very little effort. For instance,
for the application of document classification, the constant x I was always used to
represent the whole training/testing document; therefore the decision rule in Figure 7
can be equivalently rewritten as

[class(xl) =icomp] ~ [contain_inyos(xl.x2) =north_west]
... [sdy(xl) = 893.429]

Moreover, VL21 clauses can represent concepts that could not be represented
with VL21 decision rules, as in the case of document understanding. For instance, let
us consider the document layout depicted in Figure II, in which x2 is a block sender,
x3 is a block receiver, x5 is a block logotype, and so on (not all blocks have an
associated label). Then, the description of the block sender is

[logic type(x2) = sender] ~ [part of(xl.x2)] [part of(xl.x3)] ...- --
[position(x2) = north_west] ...

while the description of the block receiver is

[logic_type(x3) = receiver] ~ [part_oftxl.x2)][part_oftxl.x3)]
... [position(x2) = north_west] ...

The only differences between these two instances are in the referee's argument
and reference value of the heads of the clauses. In the case in which we are not
allowed to define an argument for the referee of the action part, as in the previous
definition ofVL21 decision rules, there is no way to distinguish the instance of sender
from the instance of receiver.
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Multistrategy Learning for Document Recognition 69:

Finally, it is necessary to extend the definition of VL2J connected formula given
by Esposito et al. (1992a). For this reason, we give the following defmition of a VLz,!
linked clause: :

A VL21 clause is linked if all its literalsare. A literal is linked if at least one of its
referee's arguments is. An argumentof a literal is linked if either the literal is the
head of the clause or another argument in the same literal's referee is linked.

An example of a linked clause is the following:

[logic_type(XI) = logo] ~ [type(Xl) = picture] [on_top(X2,xl)]

while

[logic_type(Xl) = logo] ~ [type(X3) = picture] [on_top(X2,xl)]

is an example of a nonlinked YLZ1clause. It is worthwhile to note that nonlinked clauses
are generally meaningless, as in this case; therefore, in the learning process, only thb
space defined by linked clauses should be explored by search strategies. INDUBI/H

I

(Esposito et al., 1993e), an evolution of INDUBI that can deal with VLz, clauses,
searches for the best hypothesis by adding a literal to the (initially empty) body of the
clause to be learned only when the constraint on linkedness is not violated.

Learning Contextual Rules

Although inductive learning systems generally differ for the representation
language, the search strategy, and the amount and type of background knowledge,
they share the common assumption that concepts are mutually independent. Prob­
lems caused by such an independence assumption are particularly evident in at leaSt
three situations:

(I) learning multiple attributes in propositional calculus
(2) learning multiple predicates in first-order logic
(3) learning classification rules for labeling problems

As to the first situation, let us consider a relational database in which there are
multiple attributes to be learned; then training instances can be represented as follows:

where aiS are known attributes and CiS are target attributes to be learned. When c,has
a nominal domain, it is possible to interpret c, as a class attribute, and the problem
of learning c, can be cast as the problem of learning a classifier K; Dependency
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70 F. Esposito et al.

between class attributes c, and c, can be expressed by allowing K, to depend on the
outcome ofthe classifierK, and the known attributes. This means that while instances
of c, are not described by means of the attribute c.; the language used to describe
instances of c, will include c; Therefore, the learning task becomes more difficult,
since in addition to the problem of learning Kj , it is necessary to consider the
possibility of changing the description language. When concept dependencies are
intrinsically acyclic, we can use dependency hierarchies, that is, directed acyclic
graphs whose nodes are concepts to be learned, to represent them (see Figure 12).
The order in which concepts should be learned is completely defined by a depend­
ency hierarchy. In particular, the concepts in the lowest level of a dependency
hierarchy have to be learned first, since their definition does not depend on other
concepts (minimally dependent concepts). When a dependency hierarchy is pro­
vided, it is possible to use traditional learning systems, that is, systems based on the
independence assumption, in order to learn contextual rules. On the contrary, when
the dependency hierarchy is not known a priori, we may try to discover concept
dependencies first, Some studies in the field of causal inference and concerning
zeroth-order languages (Esposito et aI., 1993c) can already address this problem.

No easy solution is yet available for the case of first-order languages. The
problem of multiple-predicate learning, which challenges researchers of inductive
logic programming (ILP) (Muggleton, 1992), is strictly connected to the problems
of intensional evaluation of predicates (De Raedt et al., 1993).

When learning multiple-predicate definitions in first-order logic, it may happen
that some predicate definitions have to use others, which implies that the order in
which clauses for different predicates are learned is important. De Raedt et al. (1993)
claims that extensional systems, such as GOLEM (Muggleton & Feng, 1990) and
FOIL (Quinlan, 1990), suffer from the problem that learned hypotheses might not
be intensionally complete and consistent. Further problems come from the fact that
Hom clauses allow recursion to be represented and there is no mechanical method
that guarantees the termination of a recursive logic program. Moreover, extensional
learning methods generally adopt O-subsurnption as a generalization model, which
is incomplete for recursive clauses (Plotkin, 197I).

Figure 12. An example of dependency hierarchy between concepts.
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Multistrategy Leaming for Document Recognition 71 I

As to labeling problems in pattern recognition (Haralick & Shapiro, 1979), the i
aim is that of learning rules that allow for correctly labeling subparts of a previously i
unseen structured object, provided that a set of instances ofstructured objects, whose I
subparts have already been labeled, is available. Such a learning problem can be i
called whole-to-part generalization. since it is complementary to Dietterich and'
Michalski's (1986) definition of part-to-whole generalization, in which the learning:
task is that of hypothesizing a description of the whole object, given selected parts!
of it. Both in the case of learning multiple predicates in first-order logic and in the
case of labeling problems, it is possible to use traditional learning algorithms, in:
order to learn contextual rules when the concept dependencies are intrinsically I
acyclic and the dependency hierarchy is known a priori. This can be done by learning I

a concept at a time according to the order defined by the dependency hierarchy and i
then by changing the observation language La after all concepts at the same I
hierarchical level have been learned. I

With reference to Figure 12,c,+! will be learned only after C, and C, are learned. I
Of course, we expect that the rule generated for Ck+! depends on the predicates:
denoting C! and C,. Such an expectation is explained by the fact that concepts C!
and C, are useful to explain or predict C,+!. However, it may happen that the rule!
generated for C,+! does not depend on either C, or C2• This means that either the
evidence in the observations is not enough to detect those concept dependencies, or
the bias of the search strategy does not allow a system to discover them, or the'
dependency hierarchy does not express real concept dependencies.

The influence of the bias on the learnability of contextual rules induced us to
select carefully the traditional learning system. In the next section, we present
INDUBI/H, which implements a beam-search strategy for building clauses. Its
search bias is weaker than that of FOIL and FOCL (Pazzani and Kibler, 1992). This
is the reason for which we chose it for performing experiments on the problem of
document understanding (Esposito et al., 1993e).

INnUBIIH

At the high level, there is no difference between INDUBI and INDUBI/H; thus
I

Algorithm 1 is still valid. At the low level, INDUBI/H proceeds top-down, specializ-
ing the unit clause

by adding one of the selectors in the positive example e+ and turning constants into
variables. Only a subset of n selectors among all selectors in the example e+ is
considered. Such selectors are chosen according to the cost associated with each
function symbol in the referee of the selector and according to the arity of the
function symbol, so that the greater the arity, the better. The former criterion offers
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72 F. Esposito at al.

the user a way to express a sort of preference for some literals, while the latter
criterion guarantees that relations are not treated unfairly. Obviously, selectors that
make the partial clause unlinked are not considered at all. All specialized VL21

clauses, which cover e' and possibly other positive examples, are reordered accord­
ing to another LEF, which takes into account the number of positive/negative
examples covered, the complexity, as well as the total cost. The first p generaliza­
tions are selected and stored in a set PS. The consistent ones are removed from PS,
extended-against, and stored into MQ (see Algorithm 3).

The extension-against generalization rule was introduced for the first time in
AQll (Michalski & Larson, 1983) and has been formally presented by Michalski
(1983). Here, we provide its extension to VL2 , linked clauses. Briefly, given a VL2,

generalization

its body can be factorized as a logical product of a conjunction <!>U(t'h ltz, ... ,t,,) of
selectors involving unary functions and a conjunction <!>R(t2h t22, ..., t2') of selectors
involving n-ary functions with n > 1. The aim of the extension-against rule is that
of generalizing <!>U(t'h t", ..., t,,), while preserving the original consistency property
of the generalization. This is done by possibly extending the references of the
selectors in <!>U(tll, t12, ••• , t,,).

Algorithm 3: Low-level beam search strategy for learning a single VL" clause

procedure Beam_Search_for_consislenChypotheses(e'. E'. E'. m)

PS := ([1(lpt,•...• 1,)=1.) +- }

OldPS :=0

MO:=0
while PS ¢ OldPS and IMOI S m do

OldPS:= PS

PS:=0

foreach VL" generalizalion G in OldPS do

S := choose_besUinked.seleclors(e'. G, n)

PS := PS v specialize.G.by_addinlLa_selecloUn_S(G,S)

endfor
CONS := consistenl(PS)

PS := PS - CONS

PS := selecl.bescp.generalizations(PS)

toraach VL" generalizalion G in CONS do

MO := MO v exlension_against(G, E'. E')

endlor

endwhile

relum MO

endproc
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Multistrategy Learning for Document Recognition 73 I
i

Let $*U(tll, t'2, ..., t,,) be the conjunctive formula $U(t'h t'2, ..., t,,), whose I

references have been extended to the whole domain. We define two sets of conjunc- !
tive ground formulae, C+ and C', as follows: if o. ('t,) is a substitution, according to :
whkh .

I

matches against a positive (negative) example e' (e), then C+ (C') is a set ofl
conjunctions ofselectors in e' (e) that unifies with $*U(tll, lvz, ... , t,,)cr, [$*U(tll, t'2, ...,i
t,,)'til- The extension-against generalizing operator produces a conjunction of sclec-l
tors that matches all formulae in C+and no formulae in C. i

For instance, let us consider the following generalization:

1fiX) =A,] f- [on(X,Y)], [color(X) =black], [shape(Y) = triangle]

then

ljl.(X,Y) == [on(X,Y)]

$u(X,Y) == [color(X) =black] [shape(Y) =triangle]

and

$*u(X,Y) == [color(X) =A,olo,][shape(Y) = ~"',"']

I

where A,o'o, = Iblack. white I and ~'h'p, = {triangle, square, circle} are the domains
of the functions color and shape respectively. If .

e,+: lfit) =A,] f- [on(t,u)], [color(t) =black], [color(u) =black],
[shape(t) = triangle], [shape(u) = square]

e;: lfiv) =A,] f- [on(v,w)], [color(v) =black], [color(w) =black],
[shape(v) =square], [shape(w) =triangle]

e": [((x) =Az] f- [on(x.y)], [on(x,z)], [color(x) =black], [color(y) =white],
[color(z) =white], [shape(x) =circle], [shape(y) =circle], [shape(z) =circle]·

then

C+ = {[color(t) =black][shape(u) =square];
[color(v) =black][shape(w) = triangle] I

C' = {Lcolor(x) =black] [shape(y) =circle]; [color(x) =black] [shape(z) =circle] i

An extension-against generalization is
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[color(X) = black, white][shape(Y) = trianglesquares

Thus, the final rule is

[((X) = A. l ] +-- [on(X,y)], [shape(Y) = triangle,square]

which is complete and consistent. The selector [color(X) = black, white] has been
dropped, since it has no discriminatory power.

Experimental Results

Several experiments have been organized in order to verify if learning con­
textual rules leads to better results than learning under the independence assumption.
What do we expect from this experimentation?

(I) A decrease in learning time. This is counterintuitive, since for some con­
cepts the search space is wider and not smaller, due to the introduction of new
predicates. Our guess is that when concepts are really dependent, this approach
should lead to better and not worse results, that is, information on the context should
help faster learning.

(2) An increase in accuracy. This is counterintuitive as well, since when a
prediction of a rule depends on the prediction made by another rule, it may happen
that an error in the first rule to fire is propagated to the second (dependent) rule. This
problem does not occur when rules are learned independently of each other. Once
again, our guess is that when concepts are really dependent, this error propagation
effect should not occur frequently, so that the global accuracy should not decrease
but possibly increase.

In our experiments, we considered a set of thirty single-page documents,
namely, copies of letters sent by Olivetti. In each experiment, six different replica­
tions were made by randomly splitting the set of documents into two subsets,
according to the following criterion:

• twenty documents for the training set
• ten documents for the test set

Seven concepts had to be learned, namely, sender of the letter, receiver, logotype,
reference number, date, body, and signature. Obviously, not all blocks were instances
of one of these concepts, that is, there were some unlabeled blocks that we were not
interested in classifying. Moreover, in some cases there was more than one block
with the same label in a document, since some logical components were fragmented
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I
I

into several layout blocks, which the layout analysis had not been able to group I

together. :
A preliminary experiment was intended to prove that the presence of a domain :

theory could improve the accuracy of the recognition rules (Esposito et aI., 1993d).:
However, a later experiment with FOCL confirmed that the use of background ~

knowledge alone did not significantly improve the classifier performance when
concept independence was assumed [for a detailed description, see Esposito et al..'
(1993b)]. Here, we present only the summary of the experiments made with:
INDUBI/H (1) under the independence assumption, (2) considering a user-dermed:
dependency graph, and (3) using a dependency order defined by a statistical I

technique.
Results in Table 7 were obtained under the independence assumption. Entries'

min in columns 1-6 report the number of commission (m) and omission (n) errors.
of each rule for each replication. The last column of the table reports the average of
the error rates ofeach rule, computed as the sum of commission and omission errors,'
divided by the number of logical components in the test set, for a given class. The,
average error of each rule is calculated as the average of the total errors made by the'
rule in each experiment, divided by the number of logical components (including
unlabeled blocks). Finally, entries in the lowest row report the total number of
commission/omission errors made in each experiment by the whole set of rules, and

I

the total average error.
As we can see, there are two logical objects that can be easily recognized in ~

letter, namely, logotype and signature, since the former corresponds to the only,
layout object of type picture, while the latter corresponds to a layout block, which
is generally classified as graphic by the document analysis. On the contrary, other

I

logical objects, such as sender, receiver, date and body, cannot be easily recognized
without looking at the relationships with other logical objects. An example of a rule
generated in the sixth replication for labeling the date is shown in Figure 13. It is
quite plain that in the recognition rule for date, relationships with neighboring layout

Table 7. Experimental results with lNDUBI/H: independence assumption

Average
Rule/replication 2 3 4 5 6 error, %

Logotype 0/0 0/0 0/0 0/0 0/0 0/0 0.0
Sender 0/0 0/1 0/1 0/1 0/9 0(2 16.9
Ref I/O 1/3 I/O 1/1 1/4 0(2 14.3
Date 0/4 1/4 0(2 0/4 0(2 0/4 28.8
Receiver 2/1 0/0 0/0 0/3 0/5 0(2 17.9
Signature 0/1 0(2 0(2 0/0 0/0 0/0 8.9
Body I/O 2/0 2/1 0(2 0/1 1(2 20
Total 4/6 4/10 3/6 1/11 1(21 1/12 II
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[Iogic_lype(SI)=dale) +- [widllJ(Sl)=medium_smalJ. medium] [beigbl(Sl)=very_very_small)

[aligned(S2.S I )=bollJ_rows]

[Iogic_type(S l)=date) +- [position(S I )=nortb_east) [lo_rigbt(S3.s4)) [aligned(S2.S \J=bol1J_rows)

[aligned(S3.S4)=endingJOw] [aligned(S4.S2)=bol1J_rows)

[IogiOype(S I)=date] +- [widllJ(S1)=medium_smalJ. medium] [on_top(S I.S3)) lon_lop(S2.S I)]

[to_rigbl(S4,S2)] [aIigned(S2.S I )=startinll-coIJ [aJigned(S2.S 5)=endinll-col]

[logic_lype(Sl)=dale) +- [widllJ(S\J=medium_smalJ) [on_lop(S3.S4)) [on_lop(S2.SI)] [to_rigbl(S3.S2)]

[aligned(S 3.S2)=endinll-rowI [aJigned(S2,S I)=endinll-row]

[aligned(S5.S3)=startinll-col)

[Iogic_lype(Sl)=dale] +- (posiLion(Sl)=nortb_easl] [on_lop(S5.S2)] [on_top(SI.S2)] [on_top(S3.S4)]

[In_right(S4.S2l) [lo_righl(S3.S6)]

Figure 13. Noncontextual rule for date generated in the sixth replication.

objects are very important. However, neighboring objects have a logical class
associated with them; thus, we expect that contextual rules should perform better.

Table 8 shows results produced by INDUBI/H when the following linear
dependency order

logo -7 signature -7 body -7 sender -7 receiver -7 ref -7 date

is provided. Such an order is user defined and can be partly explained in terms of
spatial reasoning. In fact, when the logotype and the signature have been recognized,
the recognition of the contiguous blocks, namely, sender for the logotype and body
for the signature. should be easier. Following the same line ofreasoning, we expect
that the identification of the sender should help to identify the receiver, which
together with the identification of logo, should help to identify the ref and, finally,
the date. By comparing data in Tables 7 and 8, it transpires that there is a uniform
decrease in the error rate for all the logical classes when the independence assump-

Table 8. Experimental results wilh INDUBI/H: contextual rules with
predefined order

Average
Rule/replication 2 3 4 5 6 error, %

Logotype 0/0 0/0 0/0 0/0 0/0 0/0 0.0
Sender 0/0 0/1 0/1 0/1 0/9 0/1 15.6
Ref UO 0/1 0/1 0/1 1/1 0/2 10.6
Date 0/3 0/0 I/O 0/5 0/6 1/2 23.5
Receiver 0/1 0/0 0/0 0/2 0/5 0/2 13.5
Signature I/O 0/2 0/2 0/0 0/0 0/0 8.9
Body 0/1 UO Ul 0/2 0/1 1/1 18.3
Total 3/5 U4 3/5 0/11 1/22 US 9.0
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tion is dropped. Globally, the total average error is 2.0% lower for contextual than;
for noncontextual rules. Moreover, we did not observe any increase in the learning!
time for this latter experiment. An example of a contextual rule produced for the;
logical class date is shown in Figure 14. '

Since the dependency order is linear, we have also tried to learn the order by:
means of statistics. The idea is the following: the classification accuracy of a:
classifier that takes into account only the characteristics of each block can provide
information on how easily a logical component can be recognized without looking
at other logical components in the context. We are conscious of the fact that the
dependency order defined in this way may be just a rule of thumb, but as we will
show later, it can help to identify at least the minimally dependent concepts. The
classifier that we adopted for the third experiment is Fisher's (1936) linear dis"

I

criminant analysis. Obviously, discriminant analysis cannot be applied to symbolic
features like those induced by INDUBI/H; therefore, we used a different set of
statistical features, describing each single block and resulting from the layout
analysis. Some of them are height, width, coordinates of the centroid of a block,
eccentricity, number of black pixels per block, and so on. For each logical class C;
we computed the following coefficient: i

1C; '" (no. positive examples covered + no. negative examples not covered)/2

andl we ordered the logical classes according to 1C;. When two classes had the same
coefficient, the one with the greatest number of examples was preferred. In the
following, we list the different orderings obtained in the six replications:

1. logo -? ref -? date -? body -? signature -? sender -? receiver

2. logo -? ref -? signature -? date -? sender -? body -? receiver

3. logo -? signature -? ref-? body -? date -? sender -? receiver

[Iogioype(SI)=dale] t- [logiOype(S2)=ref] [width(SI)=small ... medium]

[height(S1)=smalles~very_very_small] [aligned(S2.S 1",both_rows]

[Iogic_lype(S 1)=dale] t- [Iogic~lype(S2)=receiver][Iogic_lype(S4)=receiverl [on_lop(S2.S1)]

lon_lop(S2.S3)] [IO_oghl(S4.S2)] [aligned(S2.s l)=startinl!-.coI]

[logiOype(SI)=date) t- [logiOype(S2)=ref] [Iogic_lype(S3)=logo]lwidth(SI)=medium_small]

[IO_oghl(S3.S2)] [aligoed(S2.S1)=endinl!-.row]

[Iogioype(SI)=date] t- [posiLion(SI)=nonh_easl] [on_tnp(S3,S2)j [on_tnp(SI.S2)][IO_oghl(S4,S2)]

Figure 14. Contextual rule for date generated in the sixth replication.
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78 F. Esposito at al.

4. logo ~ ref~ date ~ signature ~ sender~ body ~ receiver

5. logo ~ sender~ date ~ signature ~ ref~ body ~ receiver

6. logo ~ sender~ ref~ date -? signature ~ body ~ receiver

Table 9 shows the experimental results obtained by exploiting the ordering
defined by the discriminant analysis. The idea of using statistical methods in order
to define the linear dependency order seems to work well, since we obtained even
a slightly lower average error rate than that obtained with the predefined order. Only
in two experiments did the results deteriorate, but globally, the number of commis­
sion errors decreased. These encouraging results spur us to investigate further the
possibility of adopting a multistrategy learning approach to document under­
standing, in order to check if the integrated method applied to contextual rules
provides better results.

FURTHER DEVELOPMENTS

It is possible to improve the performance of the processes of document clas­
sification and understanding by defining a better representation of the page layout.
In fact, coarse descriptions may lead to inconsistencies between instances of
different logical components, since there may be no way to discriminate between
them, while descriptions too detailed may cause a high increase in time for the
learning process. Furthermore, not all learning systems can manage quantitative
information; thus, a qualitative spatial model seems more adequate (Mukerjee and
Joe, 1990).

A way to represent a page layout could be based on interrelationships between
projection intervals of each block along one axis. For instance, the interrelationships
between the blocks in Figure 15 can be described as follows:

Table 9. Experimental results with INDUBI!H: contextual rules with order defined by
discriminant analysis

Average
Rule/replication 2 3 4 5 6 error, %

Logotype 0/0 0/0 0/0 0/0 0/0 0/0 0.0
Sender 0/0 0/1 0/1 0/1 0/9 0/2 16.9
Ref I/O 0/1 0/1 0/2 I/O 0/2 9.2
Date 0/2 0/0 0/1 0/5 0/2 0/4 16.4
Receiver 0/1 0/0 0/0 0/3 0/4 0/2 13.5
Signature I/O 0/2 0/2 0/0 0/0 0/0 8.9
Body 0/1 2/0 2/1 1/2 0/1 0/2 20
Total 2/4 2/4 2/6 1/13 1/16 0/12 8.7
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Figure 15. Interrelationships between blocks.
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80 F. Esposito at al.

(I) I, I < 1/ A Ix' < 1/
(2) I 2 I 2 Il, ::; I, A x < I,
(3) Iy ' nl/ AI/<Ix '

(4) I , I 2 I 2 I I
ys;;yAx<x

Currently, only the spatial relation (3) is described by DDOCUM, provided that
the two blocks are nottoo far apart. Therefore, it is possible to improve the qualitative
description of a page layout by introducing two descriptors (or equivalently, two
predicates):

• proj-y, for the relationships between interval projections on axis y
• proj-x, for the relationships between interval projections on axis x

It is worthwhile to note that it is not necessary to describe relationships between
each couple of interval projections, but it is enough, for our purposes, to describe
relationships between subsequent or overlapping projection intervals along each
direction.

Another possible improvement concerns the shift of language during the docu­
ment understanding phase. In particular, we are planning to apply a more sophisti­
cated learning algorithm, in order to discover complex dependency graphs without
any prior knowledge. This involves the parallel learning of multiple predicates and
the capability of evaluating the appropriateness of the shift of language, when a
clause has already been learned.

As to the nominal descriptors position or contain_inyos, it would be better to
extend their domain by introducing new values, such as

top horiz band, central horiz hand, bottom horiz band, left vert band,- - - - - - --
central_vert_band, right_vert_band

in order to express the fact that two layout blocks are in the same band (a band is a
set of three contiguous areas in a page). However, we should be able to express also
the partially ordered relation that can be defined on values of such an extended
domain. This requires the introduction of a new kind of domain, called dag-struc­
tured domain, in which values can be represented as nodes of a directed acyclic
graph.

Further limitations in PLRS concern the document analysis process. In par­
ticular, we observed that RLSA, the segmentation algorithm used by PLRS, is not
adequate for some forms, in which a portion of content is contained within a frame
(invoice or order forms are classic examples). Indeed, in this case, the algorithm is
not able to separate text regions from the graphics represented by horizontal and
vertical lines of the frame. Detecting such lines and removing them before segment­
ing the document may be a solution to this kind of problem.
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Multistrategy Learning for Document Recognition 81

As to the segmentation process, it is possible to improve the performance of the
parametric classifier, which assigns types to layout blocks. Indeed, in some cases,
we observed bad classifications of some blocks, due to an inappropriate choice of i

parameters. However, it would be difficult to make these changes by hand; thus, we
aim at exploiting supervised learning techniques, such as decision trees, in order to I

obtain a more reliable set of classification rules.
Similar problems can be observed in the layout analysis, when some layout I

objects are grouped wrongly or are not grouped at all. In this case, it is difficult to ;
change parameters of the grouping criteria embedded in the code without affecting :
the global results. We are planning to build an intelligent system devoted to layout:
analysis, which exploits knowledge on human criteria used while grouping layout I

objects. In this way, it should be easier to understand why the layout analysis ~

produces unexpected results and, consequently, torevise the knowledge base. Once:
again, the knowledge base of the intelligent system can be automatically acquired I

and refined by machine learning techniques.

CONCLUSIONS

PLRS is an innovative system from several points of view. First, it applies:
machine learning techniques in order to generate recognition rules, which constitute'
the knowledge base of an expert system, devoted to document classification and;
understanding. This allows the document processing system to be easily customized,'
according to the needs of the end-user, as well as to deal with the variety of formats
exhibited by office documents. Moreover, the process of recognition is layout based,
that is, PLRS recognizes the class of a document and its logical structure by simply
using automatically detected geometrical characteristics. This means that it is not
necessary to read the whole document by OCR in order to process it. On the contrary;
once the logical objects have been identified, an OCR is used to read those parts
relevant for retrieval purposes. Other novelties concern the learning strategies
adopted by the inductive learning system of PLRS. In particular, in the phase of
document classification, we used a multistrategy learning system, called RES, that
integrates a parametric method with a conceptual one, in order to deal with noisy
symbolic/numeric data. As to the phase of document understanding, we used a
system that learns VL21 clauses, called INDUBI/H; by shifting the document

I

description language, it is possible to obtain contextual rules, which are more
accurate than those obtained under the independence assumption. Some experimen­
tal results have shown that it is convenient to adopt the same multistrategy learning
approach even for the problem of document understanding, at least for deriving a
linear dependency order between logical classes.

RES and INDUBI/H have been implemented in C and embedded in PLRS, which is,
a module ofIBIsys, a softwareenvironmentfor officeautomationdistributedby Olivetti.
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