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This paper presents the results ofa feasibility study on the application ofmachine learning to 
knowledge acquisition in transponation engineering. An eight-stage knowledge acquisition 
process is proposed and its individual stages justified and described. Machine learning is used 
10 learn about urban rail control. The dewlopment of the representation space for this prob­
lem is discussed, including the analysis ofmotion and stopping regime for a train, and of both 
decision and performance attributes. Traveltime, energy consumption, and passenger comfon 
are used as performance attributes. Six automated kno'wledge acquisition processes were con­
ductedfor various performance (dependent) attributes, taking into consideration two different 
clusterings ofperformance attribute values inlO three and seven subranges. All the examples 
usedfor learning were computer generated. using REGIME. which separately produces es­
timations ofindividual performance attributes for a given train-driving scenario and an as­
sumed rail corridor. The decision rules produced are discussed. and their verification. based 
on the overall empirical error rate. is reported. This paper also contains conclusions and sug­
gestions regarding future research on applications of machine learning to knowledge acquisi­
tion in transportation engineering. 
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Transportation engineering is a subarea of civil engineering concerned with 
various transportation systems and their modeling, design, and maintenance, includ­
ing physical maintenance and the control of vehicle flow. This domain can be 
characterized by three major features: a large number of complex problems whose 
solution requires the use of complicated mathematical models, the probabilistic 
nature of transportation phenomena, and the availability of records of past events: 
accidents, traffic flow patterns, traffic control scenarios, etc. Because of complexity 
of the formal models in transportation engineering, their use is difficult and time 
consuming. Therefore, the classical deductive engineering approach to problem 
solving is often of limited value. The availability of examples in such cases makes 
the inductive approach particularly attractive, especially when it is based on the use 
of machine learning and on knowledge produced by knowledge-based decision 
support systems. 

The long-term objectives of our research are to investigate and to determine the 
feasibility of various forms of machine learning in transportation engineering and 
to explore the advantages and disadvantages of the individual learning paradigms 
and learning systems on which they are based. In this paper, we present an improved 
understanding of the methodological aspects of automated knowledge acquisition 
in transportation, and we report some new domain knowledge produced as the result 
of our research. The experiments were conducted in the area of traffic control in an 
urban rail corridor with closely spaced stations. This study is designed to supplement 
research on intelligent vehicles highway systems (IVHS) in order to demonstrate 
the feasibility of machine learning in knowledge acquisition for control of intelligent 
vehicles. 

The concept of preprogrammed driving for urban rail corridors has been 
proposed in the literature. It will permit an automated selection of driving scenarios 
consistent with the distribution of ridership demand along the corridor. The driving 
scenarios are likely to change as demand changes with the time of the day. This 
concept is consistent with IVHS technology that aims at the integration of the 
vehicle, the facility, and the driver using state-of-the-art communication, computer, 
and electronic technology (Mobility 2000 Working Group, 1990; UndelWood et al., 
1989). 

PROJECT JUSTIFICATION 

Transportation engineering is a rapidly changing area, characterized by the 
development of new transportation systems and technologies. Particularly important 
is the current research on intelligent vehicles technology, which includes develop­
ment of new methodologies of traffic control for both road and rail vehicles. As 
mentioned earlier, the direct use of formal mathematical models in traffic control is 
difficult because of their complexity and the time required to produce results. For 
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these reasons, a knowledge-based approach to traffic control is considered a promis­
ing alternative. However. this approach requires the availability of formal 
knowledge in a form suitable to knowledge-based systems. preferably decision 
rules. Since traditional manual methods of knowledge acquisition are unreliable in 
the case of complex engineering problems (Modesitt 1992), the determination of 
the feasibility of automated knowledge acquisition was crucial to progress in 
intelligent vehicles research. The actual engineering needs to be satisfied have thus 
led us to consider machine learning and to explore various learning systems in the 
automated acquisition of knowledge about urban rail driving scenarios. 

Our analyses were conducted in the area of traffic control of an urban rail 
corridor with closely spaced stations. This specific area was selected for several 
reasons. First, it is a relatively well-understood domain, and results of automated 
knowledge acquisition could be verified by human experts. Second, it was feasible 
to develop formal mathematical models describing traffic in such corridors; this was 
necessary to prepare examples for machine learning experiments. Third, IVHS 
technology is expected to be used for rail vehicles, and therefore, we wanted our 
research to be concentrated in an area of practical impact. 

A learning system based on rough sets was chosen for our research for several 
reasons. First, the theory of rough sets provides mathematical models of imprecise 
knowledge representation, analysis, and acquisition developed with full formal rigor 
by logicians and computer scientists (Pawlak, 1992). This makes the theory and its 
leaming, or analytical methods, well understood and traceable in terms of formaL 
unbiased reasoning methods. The method of rough sets in its application to clas­
sification problems has also been proven in a number of areas ranging from medical 
diagnosis to process control (Pawlak et al., 1992; Slowinski, 1992). These sound 
theoretical foundations, combined with promising existing applications and the 
availability of commercial software packages for data analysis and machine learning 
based on rough sets, are the primary reasons behind our choice of the rough sets 
approach to machine learning in the experiments reported in this paper. Second. over 
the last 2 years, good cooperation has been established between the Intelligent 
Computers Laboratory at Wayne State University and Reduct Systems, inc., of 
Regina, Canada. As a result of this cooperation, we have developed a good under­
standing of the methodological aspects of using learning systems based on rough 
sets in engineering. Also. these systems have proven to be reliable and user friendly, 
and they have special features that were developed to address our specific engineer­
ing needs, for example, a component for automatic knowledge verification. 

However, there are several other classes of experimental and commercial 
leaming systems that could be used in our project. For example, the learning 
algorithm ID3 proposed by Quinlan (1986) has been implemented in SuperExpert, 
a commercial learning system developed by Intelligent Terminals (1986). Also, a 
class of learning algorithms AQ proposed by Michalski (Michalski & Chilausky, 
1980) has been implemented in various experimental learning systems developed 
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at the center for Artificial Intelligence Research at George Mason University, 
Fairfax, Virginia. The possibility is considered that these systems, in particular, could 
be used for our experiments. Therefore, at present it would be premature to claim 
that the selected learning system has an absolute superiority to the other systems 
available. However, the performance of various learning systems on the transporta­
tion engineering data should be investigated in the future. 

Our research was planned to address existing research needs in a specific 
subarea of civil engineering. However, this subarea was also selected for general 
reasons. From the methodological point of view, the control of traffic in a rail 
corridor is similar to other types of traffic control, e.g., air, road, or sea. Also, rail 
traffic control is a specific form of process control, and therefore, our conclusions 
can, at least partially, be generalized for other forms of process control, including 
the control of manufacturing processes. Thus. we hoped that our research would 
produce results useful for both transportation engineers and engineers in other 
specialties interested in the control of complex processes and in the use of learning 
systems to acquire knowledge about these processes. 

METHODOLOGY OF KNOWLEDGE ACQUISITION 

This research is one of the first attempts to use machine learning in transportation 
engineering. and therefore, no domain-specific methodological experience was avail­
able that could be used to design the knowledge acquisition process. For this reason, 
significant attention was paid to studying known processes of automated knowledge 
acquisition in civil engineering, in order to develop a proper methodology ofknowledge 
acquisition for our specific area of rail corridor traffic control. Finally, our methodology 
was partially based on that developed for automated know ledge acquisition in structural 
engineering (Arciszewski et al., 1987; Mustafa & Arciszewski, 1992; Reich & Fenves, 
1992) and partially on the general engineering methodology of automated knowledge 
acquisition proposed by (A.rciszewski and Mustafa (1989). Also, recent results were 
utilized on the development of learning engineering at the Center for Artificial Intel­
ligence Research at George Mason University. Learning engineering is a new subarea 
of knowledge engineering, which deals with the methodological aspects of using 
learning systems in knowledge acquisition in science and technology. It encompasses 
the evaluation and selection of learning systems, the methodology of knowledge 
acquisition, and the verification of knowledge. In our project, the empirical error rates 
developed as a part of the method for the performance-based evaluation of learning 
systems (Arciszewski et al., 1992) were used for knowledge verification. As a result of 
our studies, the following eight-stage knowledge acquisition process was designed: 

1. learning about the domain 
2. methodological studies 



[y, 

ld 
m 
ns 
a-

IC 

'al 
iil 
lil 
1S 

19 
ld 
er 

In 

1­
n, 
~e 

;e 
;y 
11 
s, 
;e 
'e 
1­
a 
g 
:s 
e 
:s 
g 
,f 

Machine Learning in Transportation Engineering 113 

3. development of the representation space 
4. development of mathematical models 


. 5. implementation of models 

6. preparation of examples 
7. learning decision rules 
8. knowledge verification 

[n the frrst stage, learning about the domain, the available literature on the 
control of traffic in an urban rail corridor was analyzed, and a list was prepared of 
the most appropriate sources of knowledge, including books, papers, and research 
reports that were found potentially useful. All this material was discussed by the 
transportation engineers on our team, and a final collection of relevant publications 
was identified. Next, these publications were studied to learn the state-of-the-art in 
the area of interest, to identify available formal models for the control of rail traffic, 
and to fmd an initial collection of attributes to describe our problem. 

In the second stage, methodological studies, an analysis of similar feasibility 
studies regarding the use of machine learning in civil engineering was conducted, 
including studies in the areas of architectural building design (Gero et aI., 1989), 
design of tall buildings (Arciszewski & Ziarko, 1988), design of bridges (Reich & 
Fenves, 1992), and construction safety (Arciszewski & Usmen, 1993). Several 
computer scientists who work on machine learning and its engineering applications 
were contacted for their suggestions and input. The most important response was 
that the representation space should be particularly carefully prepared and that 
nominal binary attributes should to used, if possible, to improve the performance of 
a learning system on actual engineering examples. Both recommendations were 
followed, and the development of knowledge representation space even became a 
separate stage in the knowledge acquisition process. This stage resulted in the design 
ofour knowledge acquisition process and provided a methodological framework for 
our project. 

As expected, the third stage. development of representation space, was par­
ticularly difficult. Because of its importance, it is discussed separately in some detail 
below. Similarly, stages three through five were difficult and time consuming. and 
are discussed jointly in the section on preparation of examples. 

[n the seventh stage, learning decision rules, all the examples prepared were 
utilized to produce decision rules using DataLogic, which is briefly described in 
the section on knowledge acquisition. In the eighth stage, knowledge verifica­
tion, the decision rules produced were verified using empirical error rates 
assumed in accordance with the work of Arciszewski et al. (1992). These error 
rates and the results of the knowledge verification are given in the section on 
knowledge verification. 

Our knowledge acquisition process was adequate for the problem of learning 
about rail corridor traffic controL It is relatively simple, but at the same time 
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Figure 1. Interstation travel regime. (a) Regime A; (b) Regime B; (e) Regime C; (d) Regime D. 
(Vuehie,1980) 
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sufficient to produce the expected results, and therefore, it can be recom­
mended for other knowledge acquisition projects in the area of transportation 
engineering. 

DEVELOPMENT OF REPRESENTATION SPACE 

The learning about the domain stage in our knowledge acquisition process 
resulted in a good understanding of traffic control along an urban rail corridor with 
closely spaced stations, in the context ofboth decision making and machine learning. 
It has been concluded that this traffic can be considered as a sequence of decision­
making stages. When a train on an urban corridor connecting two terminal points 
with a large number of intermediate stations is considered, it can follow various 
regimes of motion and stopping, which identify individual driving scenarios. By a 
scenario, we mean a unique combination of decisions (decision attributes and their 
nominal values) that are taken into account by the traffic controller. Execution of 
individual scenarios may result in different values of performance attributes to 
describe driving scenarios from the performance point of view, namely. travel time, 
energy consumption, and comfort. In this case, decision attributes, which are 
controlled by the urban rail corridor operator, can be considered as independent 
attributes. The performance attributes are only indirectly controlled by the operator 
through decision attributes, and they can be considered as dependent attributes. The 
entire problem of control of an urban rail corridor can then be described by two 
classes of attributes: independent and dependent. The development of the repre­
sentation space for this problem must then involve the identification ofall attributes, 
both independent and dependent, and the determination of their values, preferably 
nominal. 

Regime of Motion 

Any urban rail corridor can be divided into a number of segments. The operator 
selects suitable regimes of motion for individual segments from four basic regimes, 
called A, B, C, and D, which are as follows (Vuchic, 1980): 

Regime A: The interstation spacing is less than the critical spacing; critical spacing 
is the minimum spacing between stations needed for the train to attain its 
maximum speed (Figure la). 

Regime B: The interstation spacing is longer than the critical spacing. The train 
maintains a sustained level of maximum speed before deceleration is initiated 
for the next stop (Figure 1 b). 

Regime C: The interstation spacing is longer than the critical spacing. However, as 
an energy conservation measure, the train starts coasting (decelerating at a very 
slow rate) immediately upon reaching its maximum speed. and continues to 



116 T. Arciszewski et al. 

travel at coasting speed until deceleration is initiated as the train approaches the 
next station (Figure Ic). 

Regime D: This regime is a combination of regimes B and C. It allows the train to 
travel at its maximum speed for some time and to coast between two stops. 
Within regime D, an infinite number of combinations is possible, depending on 
the instant when coasting is initiated. The limiting cases are regime B ifcoasting 
begins immediately prior to braking and regime C if coasting is initiated 
immediately upon the attainment of maximum speed. 

Energy Consumption 

Studies of Hamburg rail systems by empirical and computer simulation tech­
niques have demonstrated the importance of different driving regimes for energy 
consumption (Mies, 1969). The trade-off between energy consumption and travel 
time was developed from time-speed-energy consumption data. The results were 
used in this study to develop surrogate measures of energy consumption for varying 
travel times in the form of an empirical relationship between time and energy 
consumption. Although this relationship does not explicitly consider different 
regimes ofmotion described above, lower energy consumption resulting from longer 
coasting and consequent longer travel times are incorporated in the above relation­
ship (Mies, 1974). 

A total of four models were developed for estimation of energy consumption 
using the Hamburg data (Vuchic, 1980). These models were a simple model, a 
polynomial model, a logarithmic model, and an exponential model. The following 
exponential model was used for the study: 

R2 =.983 

where X is travel time surrogate and Y is energy consumption surrogate. 

Passenger Comfort Levels 

Every change in acceleration/deceleration phase is associated with a level of 
discomfort for the passenger. A change in the rate of acceleration/deceleration 
(second derivative of speed with respect to time) is commonly termed a "jerk." 
Therefore, it has been assumed that the level of discomfort experienced by a 
passenger is measured by the number ofjerks during a given pass of the train along 
the entire corridor. Ideally. not only the frequency but also the respective magnitudes 
of jerks should be considered. However, magnitudes were considered too complex 
to quantify for the purpose of this study. 

For a typical interstation travel, two instances ofjerks will be experienced duiing 
the acceleration phase, two during the deceleration phase, and one during the 
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beginning of the coasting operation. Further, for every skip-stop operation a total of 
four instances of jerk can be "saved." resulting from the elimination of deceleration 
and acceleration operation as the train approaches and leaves the station in question. 

Regime Simulation Model 

When controlling a given urban corridor, the operator usually selects driving 
scenarios to optimize one of the three performance attributes, e.g., to minimize travel 
time or energy consumption, or to maximize comfort. The values of the performance 
attributes for individual driving scenarios are usually calculated in advance, using 
optimization models prepared to deal separately with travel time, energy consump­
tion, and comfort. A simulation model called REGIME developed for our project, 
is briefly discussed in the following section (Khasnabis et al., 1992). 

The general model of the control of an urban rail corridor with any number 
of stations and a large number of driving scenarios would be complex and would 
require the use of many attributes to describe it. This would, consequently, lead 
to a large representation space, and learning over this space would require a large 
number of examples. Therefore, the development of the representation space and 
examples would be highly complex. Since our objective was to conduct a 
feasibility study only, we decided to consider a hypothetical urban rail corridor 
and to learn traffic control decision rules for this corridor. However, our hy­
pothetical rail corridor was assumed as a realistic example of an urban rail 
corridor of average complexity. 

An urban rail corridor of fifty intermediate station-spaces (sections) was as­
sumed. The corridor was divided into five segments (Figure 2). Segments one and 
five are end segments, each consists of four station spaces. Segments two and four 
are the two intermediate segments, each consisting oftwelve station spaces. Segment 
three is the central segment and contains eighteen station spaces. Each spacing was 
assumed to be 2000 ft for a total corridor length of 100.000 f1. The urban rail corridor 
analyzed is thus symmetrical, with segments one and two being mirror images of 
segments five and four respectively, and segment three being the central portion of 
the corridor. 

1 2 3 4 5 

• II • I1II1I1 • " 1111 f II III 1/ • III f fI I • I fI 
2 1 

Figure 2. Schematic of the study corridor consisting of five segments. Segment 1 and segment 
5 are symmetrical. Segment 2 and segment 4 are symmetrical. Segment 1 and 5 have four in­
terstation spacings at 2000 ft each. Segment 2 and 4 have twelve interstation spaCings at 2000 
ft each. Segment 3 has eighteen interstation spacings at 2000 ft each. Total length is 100,000 ft 
with 50 station spacings. 
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It was assumed that the decisions made for the first and fifth segments would 
be identical. Similarly, it was assumed that the second and founh segments were 
controlled by identical decisions. Therefore, the rail corridor was completely de­
scribed when decisions for the first, second, and third segments were known (values 
of decision attributes or independent attributes). For each of these three segments. 
five decisions concerning train operations are to be made. Thus, the entire process 
of train control can be considered as a sequence of fifteen decisions. The nature of 
the individual decisions was determined using domain knowledge, and they were 
designed as binary decisions to improve the performance of the learning system on 
examples regarding our problem, as suggested by one of our machine learning 
consultants. These binary decisions require YES or NO answers. and the inde­
pendent attributes representing these decisions are given in Table I. Thus the 
representation space includes fifteen binary nominal independent attributes and 
three nominal dependent attributes. The total number of possible scenarios is then 
(2)1\ 15, 32,768. 

PREPARATION OF EXAMPLES 

All examples were prepared for a hypothetical urban rail corridor, as described 
in the preceding section. For each driving scenario the values of the performance 
attributes were calculated using REGIME, a computer program developed for the 
purposes of our research. 

REGIME has three basic components, which separately produce estimates of 
perfonnance attributes for a given train driving scenario along an assumed corridor. 

Table 1. Knowledge representation 

Segment Attribute 

I and 5 constant speed 
constant speed and coasting 
one StOP skipped 
two stops skipped 

2 and 4 constant speed 
coasting 
constant speed and coasting 
one stop skipped 
two SlOpS skipped 

3 constant speed 
constant speed and coasting 
one stop ski pped 
two stops skipped 

Passenger comion 
Traveltime 
Energy consumption 

yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes. 
yes 
yes 

high 
high 
high 

Attribute values 

no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 

medium low 
medium low 
medium low 
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Jld For each scenario and performance attribute, REGIME conducts the analysis of 
~re various train operations to produce an estimate of the performance attribute con­
ie­ sidered. The component for the analysis of travel time was developed for individual 
tes regimes using the time and travel speed analysis algorithms developed by Vuchic 
:ts. (1980). The analysis of energy consumption was based on an exponential model of 
!Ss the relationship between travel time and energy consumption, which was developed
of as a part of earlier research (Mies 1969, 1974). It was assumed that comfort can be 
:re measured by the number of jerks. 
on REGIME was used to analyze 102 representative scenarios, for which values 
ng of all three performance attributes were separately produced. These scenarios were 
le­ selected using the domain experience of the transportation engineers on our research 
he team. The number of scenarios was very small when compared with the size of the 
nd representation space: only 0.3% of the representation space was covered by the 
en scenarios. However, the scenarios were "balanced," in that they were carefully 

selected to cover the entire representation space uniformly (Arciszewski & Mustafa, 
1989). Balanced examples were chosen in our study because their use significantly 
improves the performance of a learning system more so than use of randomly 
selected examples (Mustafa & Arciszewski, 1992). 

~d REGIME produced estinlates ofthe performance attributes in the following ranges: 
:e 
le 	 travel time (seconds) 2057-3709 

energy consumption (surrogate) 64-129 units 
passenger comfon (number of jerks) 72-250of 

)r. 

Two levels of categorization were used, one consisted ofsubranges 1-3 of equal 
length, and the second consisted of subranges 1-7 of equal length. In this way, two 
collections. each with 102 examples, were produced for each performance (depend­
ent) attribute. The first collection was with three categories of the dependent attribute 
and the second with seven categories. 

In our study, two different numbers ofcategories of the dependent attribute were 
considered, to determine the sensitivity of the performance of a learning system to 
the number of dependent attribute categories. For rail corridor control, the larger 
number of dependent attribute categories has many advantages, including more 
precise decision making and decision rules that may be more specific. However, we 
were aware that increasing the number of dependent attribute categories usually 
worsens the performance of a learning system. The trade-off between the number 
of dependent attribute categories and the domain usefulness of the decision rules 
produced using these categories is important in engineering, and therefore any result 
improving this trade-off can be useful. 

. For our experiments, six collections of 102 examples each were prepared, two 
for each of the three performance attributes considered. In total, 612 examples were 
developed. 
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KNOWLEDGE ACQUISITION 

Learning was conducted using the commercial system DataLogic, which was 
developed by Reduct Systems, Inc., of Regina, Canada. DataLogic is a general­
purpose software package for automated knowledge acquisition and for building 
classification expert systems. The learning component of the system is based on 
a learning methodology derived from the mathematical theory of rough sets 
(REDUCT Systems, 1991; PaWlak, 1992). The particular algorithm implemented 
in DataLogic performs the major processing stages. It accepts a relational table 
of training data. The user is required to mark a selected subset of attributes as 
conditions, and exactly one attribute is marked as a decision. The decision 
attribute represents the classification the system is trying to learn. The generation 
of rules involves the following steps: 

1. Formation of higher order attributes to represent the original information. 
Essentially, the precision of original data is reduced by replacing the individual 
values with range symbols after dividing each attribute domain into a predefined set 
of ranges. 

2. Classification of the original data into identified classes based on the range 
attributes. 

3. Elimination of redundant attributes, which are the attributes that can be 
eliminated without affecting the quality (accuracy) of classification. The rough-set 
concept of reduct (Pawlak, 1992) is used at this stage. 

4. Reclassification of the original data based on the reduced collection of 
attributes. 

5. Elimination of redundant attribute values from the collection of reclassified 
data obtained in step 4. At this stage, the concept of "value reduct" (Pawlak, 1992) 
is used. After step 5, a set of decision rules is produced. The details of the rule 
extraction procedure can be found in the work by Pawlak (1992). 

Six separate automated knowledge acquisition processes were conducted, each for 
a different collection of examples, as described in the previous section, on preparation 
of examples. For individual processes, different collections of decision rules were 
obtained. Numbers of these decision rules in all collections are given in Table 2. 

It has been observed that in all cases the use of a larger number of dependent 
attribute categories results in a larger number of decision rules, as expected. In our 
experiments, the average relative difference calculated with respect to the number 
of decision rules for a collection with a smaller number of dependent attribute 
categories is approximately 33%. However, the complexity of the decision rules, in 
terms of the number of independent attributes used in these decisions. is surprisingly 
comparable, although different combinations of attributes are used. For example, 
when the dependent (performance) attribute "travel time" was considered, the 
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Table 2. Numbers of decision rules for indivldualleaming cases 

Automated No, of dependent 
Performance knowledge attribute No, of Relative change in the 
attribute acquisition process categories decision rules no. of decision rules (%) 

Travel time 3 37 38 
2 7 51 

Energy 3 34 15 
consumption 

2 7 39 
Passenger comfort 3 38 47 

2 7 56 

following two corresponding decision rules were obtained for the cases with three 
and seven values of the perfonnance attribute, respectively. When 

S14 =1 S24 = 1 532 =0 

then 

travel time = 2056--2607 

or to achieve travel tinle between 2056 sand 2067 the following conditions must be 
fulfilled. 

• There must be one skip-stop (514) in the first and fifth segment. 
• There must be one skip-stop (524) in the second and fourth segment. 
• There must not be any coasting (S32) in the third or middle segment. 

And when 

525 = 1 521 =1 511 = 1 

then 

travel time =2056--2293 

or to achieve travel time between 2056 s and 2293s, the following conditions must 
be fulfilled: 

• There must be two skip-stops (525) in the second and fourth segment. 
• There must be constant speed (S21) in the second and fourth segment. 
• There must be constant speed (511) in the first and fifth segment. 
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All the collections ofdecision rules obtained were analyzed from the domain point 
of view. They are clear in operational terms, but understanding and explaining them in 
the context of state-of-the-art urban rail control is difficult A review of the decision 
rules indicates that, as individual entities, they are logical and rational. However, the 
exact interpretation of these rules collectively is a matter of further research. 

KNOWLEDGE VERIFICATION 

In our project, we assumed that knowledge in the form of decision rules can be 
formally verified using empirical error rates that were initially developed for the 
evaluation ofthe performance oflearning systems (Arciszewski et al., 1992). Therefore, 
the knowledge produced by the learning experiments described in the preceding section 
was verified, using the overall empirical error rate detennined by multisampling 
conducted using the "leave-one-out" method (Weiss &Kulikowski, 1991; Arciszewski 
et al., 1992). This error rate is considered the most significant empirical error rate that 
can be used to evaluate the performance ofa learning system and to verify the knowledge 
automatically produced, as demonstrated by Arciszewski and Dybala (1992). 

The overall empirical error rate with multisampling using the "tenfold" method 
was also considered for use in knowledge verification, but was finally rejected. This 
decision was based on our observation (Arciszewski & Dybala, 1992) that when the 
number of examples is relatively small, as in our case, the overall error rate 
determined using the tenfold method is usually not significant, because it may 
undergo large changes when different groups of examples are selected. 

The overall empirical error rate is defined as 

Ef7'/ =number of errors/number of tests 

where "error" is a misclassification of a testing example and "number of tests" is 
the number of classification tests. 

In the "leave-one-out" resampling method (Weiss & Kulikowski, 1991), the 
empirical error rate is calculated as an average error rate for n repetitions (n is the 
number of examples). In each repetition a different example is removed from the 
collection of n examples, and the remaining n - 1 examples are used to produce 
decision rules, which are utilized next to predict the example that was removed. 

Automatic knowledge verification was conducted for all six collections of 
decision rules produced in our experiments. The calculations were performed using 
a special DataLogic component for know ledge verification. All values of the overall 
empirical error rates (the leave-one-out method) are shown in Table 3. 

A significant difference in the performance of the learning system, and of the 
quality of decision rules measured by this performance, can be observed between. 
decision rules produced for the case of three values versus the case of seven values 
of the dependent attribute. The average relative difference, calculated with respect 
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to results obtained for the cases with three dependent attribute categories, is 
approximately 50%. This result is not surprising, and it clearly demonstrates the 
well-known heuristic that the perfonnance of a learning system and the quality of 
decision rules produced by it rapidly deteriorate when the number of categories of 
the dependent attribute is significantly increased. 

In our experiments, a relatively small number of examples (0.3% coverage of 
the representation space) was used, and therefore, the overall empirical rate obtained 
was in the range 9-20%, which seems relatively high. However, this result should 
be compared with the perfonnance of human experts, who usually make decisions 
regarding complex engineering problems with accuracies of 70-80%, i.e., with an 
overall rate of 20-30%. In the research reported, this comparison was not conducted, 
but it is planned for the future. 

CONCLUSIONS 

The feasibility study reported in this paper was the first of its kind in transpor­
tation engineering. It took approximately 12 months to complete the project, with a 
graduate research assistant working 50% of his time during the academic year, and 
the remaining members of the team being involved on an irregular basis, as needed. 
The project successfully demonstrates the feasibility of using machine learning in 
knowledge acquisition process and to the methodological aspects of building 
representation space. The preparation of examples required conducting extensive 
domain studies and the development of mathematical models for the analysis and 
optimization of travel time, energy consumption, and passenger comfort, which 
were used in REGIME, a computer program prepared as a part of our research. 
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