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Modern robots, like today’s smartphones, are complex devices with
intricate software systems. Introductory robot programming courses
must evolve to reflect this reality, by teaching students to make use of
the sophisticated tools their robots provide rather than reimplementing
basic algorithms. This paper focuses on teaching with Tekkotsu, an
open source robot application development framework designed
specifically for education. But, the curriculum described here can also
be taught using ROS, the Robot Operating System that is now widely
used for robotics research.

Keywords: robotics; Tekkotsu; ROS (Robot Operating System);
curriculum design

1. Introduction
Outside of our most elite universities, robotics courses offered to computer
science majors today use hardware and software that were designed for
middle school children. The undergraduates in these courses are limited to
programming simple reactive behaviors rather than exploring the big ideas
that underlie intelligent perception and action (Touretzky, 2010).

This paper presents a vision of what an introductory robotics course for
computer science undergraduates should look like. I have been offering a
course based on these principles at Carnegie Mellon for the past eight years,
and have worked with colleagues at several Historically Black Colleges and
Universities (HBCUs) in a consortium called the ARTSI Alliance (Williams
et al., 2008) to develop similar courses at their schools (Boonthum-Denecke,
Touretzky, Jones, Humphries, & Caldwell, 2011). The software framework,
Tekkotsu, and the curriculum materials used in these courses are freely
available at wiki.Tekkotsu.org. Some other schools offering serious robotics
courses are using ROS, the widely used Robot Operating System from
Willow Garage (Quigley et al., 2009). Tekkotsu and ROS are both free,
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2 D.S. Touretzky

open source projects, and have many similarities. But they also differ in
some important respects, which are discussed below.

Unlike most other areas of computer science where students need only
a laptop to participate, robotics courses are laboratory courses requiring
access to specialized equipment for substantial periods of time. The main
impediment to the maturation of robotics education for CS undergraduates
has been the scarcity of appropriate equipment.

A decade ago, the Sony AIBO robot dog was an ideal platform for
teaching classic robotics topics such as computer vision, path planning,
landmark-based navigation, and forward and inverse kinematics (Veloso,
Rybski, Lenser, Chernova, & Vail, 2006). It has taken years to recover from
Sony’s surprise 2006 exit from the robotics market. But, reasonably priced
and capable mobile robots – albeit without the charm of the AIBO – are
again available today. The advent of a new robotics competition specif-
ically for computer science students (Carnegie Mellon University, 2013)
will help publicize the existence of these robots. And the development of
improved software frameworks means that algorithms and representations
once considered graduate-level material are now accessible to undergrad-
uates. Computer science educators who take advantage of these tools can
lead their students far beyond the reactive line tracking and wall following
exercises they undertook in middle or high school.

2. Essential questions and big ideas
A first course in robotics should introduce students to the “essential ques-
tions” and “big ideas” of the field (Wiggins & McTighe, 2005). Table 1 gives
a list of 10 such questions, the big ideas they introduce, and their underlying
technologies. An earlier version of this list was presented in Touretzky
(2012). A robotics survey course can discuss these big ideas, but real mastery
requires hands-on experimentation. Section 5 will discuss current options
for hardware platforms suitable for an undergraduate robotics lab.

An introductory robotics elective should not assume prior experience
with robots, but it is essential that students be competent programmers and
debuggers. Thus, it is important to distinguish between an introductory
robotics course and an introductory programming course that happens to
use robots. The ACM/IEEE Joint Task Force on Computing Curricula
refers to the latter as a “thematically-focused introductory course” and
cites two other popular themes: computational biology and digital media
manipulation (Joint Task Force on Computing Curricula, 2013). Any of
these may be effective ways to kindle student interest in computing, but
a course that uses robots to introduce such elementary concepts as vari-
ables, conditionals, and loops can cover very little of the content from
Table 1.
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Computer Science Education 3

Table 1. Essential questions and big ideas that capture the essence of robotics.

Essential
question

Big idea Underlying technologies

1. How do
robots know
what to do?

Autonomous robot behaviors
are mechanisms constructed
from carefully designed algo-
rithms and representations

State machines; event-based
architectures

2. How do
robots see the
world?

Robots use sophisticated but
imperfect computer vision al-
gorithms to deduce real world
object representations from
arrays of pixels

Hough transforms; AprilTags;
object recognition algorithms
such as SIFT and SURF; face
detection algorithms; etc.

3. How do
robots know
where they
are?

Robots estimate their position
in the world using a com-
bination of odometry, visual
landmarks, and other types of
sensor information

Particle filters; SLAM
(Simultaneous Localization
and Mapping) algorithms

4. How do
robots know
where to go?

Robots navigate through the
world using a path planner
to search for routes around
obstacles

Path planning algorithms such
as RRTs (Rapidly-exploring
Random Trees)

5. How do
robots control
their bodies?

Robots describe their bodies
as kinematic trees and use
kinematics solvers to translate
between joint angles and body
coordinates

Kinematic description files;
Denavit-Hartenberg conven-
tions; forward and inverse
kinematics solvers

6. What can
we do when a
robot becomes
too complex
for one person
to fully
understand it?

Robots are complex software
systems that employ standard
abstraction and software engi-
neering techniques to manage
complexity

Modular design; coding
standards; class libraries;
documentation generators

7. How do we
calculate the
quantities
needed to
make a robot
function?

Geometry, trigonometry, and
linear algebra are the mathe-
matical underpinnings of much
of robotics

Software libraries for linear
algebra, angular arithmetic,
quaternions, etc

8. How can
robots solve
complex
problems?

Robots use task planning to
search a space of world states
to find a path to a goal state

Task planners; domain
description languages; plan
execution and monitoring
architectures

9. How should
robots behave
around
people?

Successful human–robot inter-
action requires awareness of
humans in the environment
and adherence to social con-
ventions such as not following
too closely

Human-tracking tools such as
the Microsoft Kinect; face and
gesture recognition software;
speech recognition systems;
natural language dialog sys-
tems

10. How can
robots work
together?

Inter-robot communication
and multi-robot coordination
algorithms allow robots to
collaborate

Communication primitives;
multi-robot planners
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4 D.S. Touretzky

3. Software frameworks: Tekkotsu and ROS
Tekkotsu (a Japanese word for framework) is an open source robotics appli-
cation development framework based on C++, with an extensive collection
of GUI tools written in Java for portability (Tira-Thompson & Touretzky,
2011). Tekkotsu was originally developed to facilitate programming the
Sony AIBO robot dog (Tira-Thompson, 2004), but was later made platform-
independent, with support added for a variety of robot types including
a hand-eye system (Nickens, Tira-Thompson, Humphries, & Touretzky,
2009), the Chiara hexapod robot (Atwood & Berry, 2008), and the Calliope
family of mobile manipulators (Touretzky, Watson, Allen, & Russell, 2010).
The code base currently consists of roughly 250,000 lines of C++ and Java,
with some utility programs written in Perl and Ruby.

Tekkotsu makes extensive use of advanced C++ features such as tem-
plates, multiple inheritance, polymorphism, namespaces, and functors. As
a consequence, students who learn Tekkotsu programming also frequently
report that they have developed a better understanding of C++. Because it
is a large software system, students also gain experience with basic software
engineering concepts such as class libraries, and they learn to navigate
online documentation that is generated automatically using doxygen. Baltes
and Anderson, describing a mixed reality infrastructure for robotics in-
struction, have likewise observed that working on robotics assignments
gave students useful software engineering experience (Baltes & Anderson,
2010).

Tekkotsu’s main competitor is ROS from Willow Garage (Quigley et
al., 2009). ROS was developed as a research platform, but it is also used
for teaching. Tekkotsu was designed with education as the primary goal,
although it is also used for research. The different emphases led to different
design choices, which are discussed in more detail in Tira-Thompson &
Touretzky (2011). To briefly summarize: Tekkotsu utilizes a single language
and single address space model with tightly integrated software components,
whereas ROS emphasizes orthogonality of components, which may be writ-
ten in multiple languages (primarily C++ and Python), with each running in
a separate process. The ROS approach provides for greater modularity and
scalability, while Tekkotsu is able to make greater use of C++ abstraction
facilities and offers a shallower learning curve and easier debugging.

The curriculum described in this paper could be taught using either
Tekkotsu or ROS. Some features that are presently unique to Tekkotsu
could be ported to ROS in the future.

4. Supporting infrastructure
Mobile robots are complex software systems. To make these systems com-
prehensible to and usable by undergraduates, it is important to provide
good supporting infrastructure at multiple levels, from fundamental math-
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Computer Science Education 5

ematical operations to high level mechanisms for communication among
software components.

4.1. Mathematical support

Vectors and matrices appear extensively in robotics and graphics program-
ming (ref. Big Idea #7); yet aside from Matlab, none of the popular lan-
guages used in these areas (e.g. C, C++, Java, or Python) includes linear
algebra support in the language specification. Instead, there are multiple,
incompatible matrix packages from which users must choose.

Tekkotsu includes a package called fmat that provides efficient support
for the small, fixed-sized vectors and matrices commonly used in robotics.
It includes column and row vectors, general m ×n matrices, and specialized
rotation matrices and 3D transformation matrices utilizing homogeneous
coordinates. Fmat also includes support for quaternions and axis-angle
representations which are used to express 3D rotations. The Eigen package
used by ROS provides similar facilities.

Many undergraduate CS programs include a linear algebra requirement,
but these courses are usually taught by Mathematics departments and in-
volve no programming. This illustrates an unfortunate disconnect in the
CS curriculum: students take a substantial amount of math – typically
three semesters of calculus, plus linear algebra, and some other mathe-
matical topic such as differential equations or probability, yet they have
few opportunities to apply any of this material in their computer science
work.

Schools that do not require a linear algebra course may find it advan-
tageous to teach linear algebra in the context of a robotics or graphics
elective. For example, Full Sail University’s BS in Game Development
program includes a linear algebra course that combines the traditional
mathematical material with coding of graphical display and collision de-
tection routines that are common in gaming (Full Sail University, 2013).
Since putting concepts to use promotes both understanding and retention,
computer science programs should seriously consider replacing their linear
algebra math requirement with a graphics or robotics application-themed
version.

Besides linear algebra, another area where Tekkotsu provides mathe-
matical support is angular arithmetic. Tekkotsu provides four classes for
representing ranges of angular values. The AngTwoPi class represents angles
from 0 to 2π and is used to encode robot headings, while the AngSignPi class
represents angles from −π to π and is used to encode differences between
two headings or bearings. The other two classes are AngPi, used to encode
orientations of symmetric objects such as lines, and AngSignTwoPi, used to
encode turns with an explicit turn direction. Each class includes the usual
overloaded arithmetic operators and assures that value are always within
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6 D.S. Touretzky

the specified range, wrapping around as necessary. By using these classes
instead of the generic float type, programmers can make their assumptions
clear and avoid some common programming errors.

4.2. Frames of reference

Tekkotsu provides explicit support for three fundamental frames of ref-
erence: the camera image (cam-centric), the robot itself (egocentric), and
the world (allocentric). An innovative feature of Tekkotsu’s Point class is
that it includes a reference frame in addition to the x, y, and z coordinate
values. Arithmetic operators on Point objects are therefore able to check
for reference frame compatibility, which helps detect coding errors in which
programmers inadvertently mix reference frames. Points are displayed with
a reference frame prefix, e.g. the notation e:[500,0,0] indicates a point
in egocentric coordinates 500 mm ahead of the robot.

4.3. The Tekkotsu “crew”

The Tekkotsu “crew” is a collection of interacting software modules that
provide high level functionality for perception, navigation, and manipula-
tion (Touretzky & Tira-Thompson, 2010). Users can invoke these compo-
nents directly by filling out a request template. Requests can also be sent
from higher level crew members to lower level ones. From lowest to highest,
the members are:

(1) Lookout: manages the robot’s sensor package: pointing the head;
taking camera images or rangefinder readings; simple scanning and
tracking operations.

(2) MapBuilder: visual perception: object detection, mapping from
camera coordinates to local and world coordinates.

(3) Pilot: path planning, navigation, localization, and collision
avoidance.

(4) Grasper: object manipulation using the robot’s arm or gripper.

The interactions between crew members include the MapBuilder
invoking the Lookout to obtain camera images; the Pilot calling on the
MapBuilder to detect visual landmarks; and the Grasper utilizing the Pilot
to position the body so that the arm can reach an object, and then calling
on the MapBuilder to obtain updated object position estimates.

The algorithms used by the crew are tuned to work well on the specific
robots Tekkotsu supports. For example, on the Calliope2SP robot, which
has a simple two degree-of-freedom arm with gripper, the Grasper acquires
an object by pre-positioning the gripper and then using the Pilot to drive
it into the object. On the Calliope5KP, which has a more capable five
degree-of-freedom arm, the Grasper uses an entirely different strategy. First
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Computer Science Education 7

it uses the Pilot to position the body at an optimum distance from the object,
then it uses an arm path planner to calculate a trajectory that will bring the
gripper to the correct pose for grasping while avoiding collisions with the
body or other objects.

Abstraction is a primary design goal for the crew: it is important that
the user be able to write a generic request to pick up an object and let
the Grasper worry about the best way to achieve that intent. But, finer
control is available if desired, e.g. on the Calliope5KP robot the user has
the option of choosing a specific grasp strategy: side grasp, overhead grasp,
or unconstrained, rather than allowing the Grasper to decide.

The ROS equivalent of the Tekkotsu crew is a collection of “services” for
functions such as localization and navigation. ROS decouples its services
so that different implementations of a service can be substituted without
affecting other services.

4.4. Shape spaces

A powerful unifying feature in Tekkotsu is the “shape space”: a collection
of objects describing 2D and 3D shapes in a specific coordinate system
(Touretzky, Halelamien, Tira-Thompson, Wales, & Usui, 2007). There is a
separate shape space for each of the three fundamental frames of reference
(camera, local, and world). These spaces serve multiple purposes and are
used by the entire crew, and by user applications.

Information can enter a shape space in three ways. The first is perception:
a vision algorithm can recognize a geometric figure (e.g. a line, an ellipse, a
polygon) or an object (e.g. a cylinder, or an AprilTag) and create a shape in
camera space that describes it. The MapBuilder then uses the camera pose
and other information to perform a coordinate transformation and infer
the location of the shape in 3D egocentric (local) space. Finally, the robot’s
position and heading are used to transform the shape to allocentric (world)
coordinates and add it to the robot’s world map.

A graphical tool called the SketchGUI allows the user to examine any of
the shape spaces in real time. Thus, as the robot looks around and constructs
a map, the user can watch the map develop.

The second way that information can enter a shape space is by the user
creating shapes directly. For example, if the robot is to use a pre-defined
map, that map can be created in the world shape space by constructing
shapes that represent arena boundaries or maze walls, visual landmarks, and
the initial positions of objects. Another important use of user-constructed
shapes is communicating a request to the crew. If the user wants the robot
to go to an arbitrary location on the world map, they can construct a point
shape with those coordinates and drop that shape into a Pilot request.
Because the world shape space is visible in the SketchGUI, the user will

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
1:

36
 0

7 
N

ov
em

be
r 

20
13

 



8 D.S. Touretzky

see a graphical representation of their request, and then see the robot’s pose
change on the map as the Pilot guides the robot to the destination.

The third way that information enters a shape space is that it can be
put there for illustrative or diagnostic purposes by the crew. For example,
the Pilot uses a particle filter to estimate the robot’s position and heading.
These particles are displayed on the world map (i.e. they are represented
in the world shape space) and updated automatically as the robot moves.
As position uncertainty accumulates, users can watch the particle cloud
disperse. When the robot relocalizes, the cloud collapses again.

The Pilot uses an RRT-based path planner (Kuffner & LaValle, 2000)
to generate a navigation plan that avoids obstacles and ensures that the
robot arrives at its destination with the proper orientation. When the Pilot is
executing a navigation request, it draws the planned path in the world shape
space. If the user requests the Pilot to display the search tree, a graphical
representation of the tree is also added to the shape space, as in Figure 1.
This can be helpful when path planning fails and the user needs to diagnose
the problem (Pockels, Iyengar, & Touretzky, 2012).

One reason a Pilot or Grasper operation might fail is that the requested
goal state is in collision with some obstacle. In this situation, the Pilot or
Grasper automatically displays the bounding boxes of the robot’s compo-
nents and those of the obstacles, so that the collision is easily visualized.
The display is accomplished by creating additional shapes in the world shape
space.

ROS uses the rviz visualization tool to display graphical objects in a
manner similar to Tekkotsu’s SketchGUI. But in keeping with Tekkotsu’s
emphasis on integrated functionality, the SketchGUI does more than dis-
play shapes. It also conveys semantic information, such as whether an object
has been marked as a landmark to be used for localization, or marked as
an obstacle to be avoided by the path planner.

4.5. State machine language

State machines are very commonly used to specify robot behaviors.
Tekkotsu’s state machine formalism is built on top of an event-based, mes-
sage passing architecture that was Tekkotsu’s original programming
metaphor. Today, users code almost exclusively in the state machine lan-
guage. They construct behaviors in two stages. First, they define their own
classes of state nodes that inherit from a variety of built-in node classes
and contain additional task-specific functionality in C++. They then specify
how these state node classes and various transition classes are instantiated
to construct a state machine instance.

The formalism includes several useful extensions: state machines can
nest hierarchically; multiple states can be active simultaneously; and states
can pass messages to their successors as part of a transition’s firing.
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Computer Science Education 9

Figure 1. Using the RRT-Connect algorithm to escape from a box. The robot’s current
pose is shown by the small triangle, and a goal location below the box is shown as a hollow
circle. The search tree rooted at the robot’s location is shown as a thin black line, while the
search tree rooted at the goal is shown as a dashed gray line. When the trees meet, a solution
has been found. After applying a smoothing algorithm, the resulting solution path is shown
as a thick line.

Building state machines on top of the C++ class system ensures that
users have the full power of C++ available in every state node. The principal
drawback is verbosity: there is a lot of boilerplate involved in defining
new classes and then instantiating the classes and linking the nodes and
transitions together. Generating all this code is tedious and is an oppor-
tunity to introduce errors such as forgetting to register a node with its
parent. To alleviate these problems, we developed a state machine short-
hand notation. Users code in a mixture of this shorthand and C++, and
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10 D.S. Touretzky

a preprocessor converts this to pure C++ just prior to compilation. Code
written in the shorthand form is 25 to 50% shorter than the pure C++
version.

The state machine language includes direct support for the crew. There
are built in node types for constructing MapBuilder, Pilot, and Grasper
requests, and built in transition types that detect specific Pilot or Grasper
events, e.g. collision detection or path planning failure.

Figure 2 shows a complete Tekkotsu program written in the shorthand
notation. The program has the robot look around for red cylinders, and if
one is found, pick it up. The program defines a custom node class Find-
Cylinder, a subclass of MapBuilderNode, to search for the cylinders. The
node composes a MapBuilder request that will be sent to the MapBuilder
upon completion of the node’s doStart method on lines 7 and 8. A second
custom node class, GrabIt, is a subclass of GrasperNode. It composes a
grasper request by specifying the object that is to be grasped. This object
is a cylinder shape in the world shape space. If no cylinder was found, the
find_if function will return an invalid shape, similar to a null pointer.
Lines 13 and 14 check for this case and cancel the grasp request, so it is
never sent to the Grasper.

The$setupmachine section instantiates node and transition classes to
construct a state machine instance. This state machine consists of five nodes,
two of which are explicitly named: startnode is an instance of FindCylinder,
and grab is an instance of GrabIt. The other three nodes are speech nodes
that do not require explicit names.

Transitions between nodes are written as labeled arrows. The =C=>
arrow is a completion transition that fires upon normal completion of a
node action, such as when the MapBuilder completes the request sent
to it by a MapBuilderNode, or when a SpeechNode finishes speaking its
assigned text. The =F=> is a failure transition; it fires when a node sig-
nals that it has encountered some type of failure. In the GrabIt node, the
cancelThisRequest() call signals such a failure. The two =GRASP=>
transitions check for normal and abnormal completion of the grasp request.

4.6. Kinematics

Kinematics can be introduced using just a bit of linear algebra, but if
students are to become proficient at applying these ideas to real robots,
a substantial amount of infrastructure is required that is not covered in
standard textbooks.

The first issue is how to describe the structure of a robot as a tree of kine-
matic reference frames, one per joint or end-effector. Denavit-Hartenberg
conventions specify how to link these reference frames together via a series
of translations and rotations, which can be expressed using transformation
matrices and homogeneous coordinates. A textbook will typically describe
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Computer Science Education 11

Figure 2. Tekkotsu state machine program to find a red cylinder and pick it up.

these conventions and then work out the DH parameters for some example
robot arms. This is as far as one can go without committing to a soft-
ware implementation, but that is precisely what students need in order to
experiment.

Tekkotsu provides the infrastructure for students to experiment with
kinematic calculations. This includes a data structure for representing kine-
matic trees and conventions for describing such trees as human-readable
XML files. Real kinematic descriptions contain more than just the four DH
parameters (d, θ, r, α). They must include limits on joint travel, since most
joints in physical robots cannot rotate a full 360◦, and joint offset values,
since the zero position on a servo does not necessarily align with the origin
of a joint’s reference frame.

Tekkotsu provides a graphical tool called the DH Wizard that allows stu-
dents to browse a kinematic tree, alter any of its parameters, and immediately
observe the effect on the modeled robot in the Mirage simulator. Figure 3
shows the tool being run on the kinematic description of the Calliope5KP
robot.

The second issue when teaching kinematics is how to perform forward
kinematics calculations. Mathematically, this is just a chain of matrix-vector
multiplies, but if we want students to experiment, we must provide in-
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12 D.S. Touretzky

Figure 3. Using the DH Wizard to edit the kinematic description of the Calliope5KP
robot.

frastructure to facilitate this. Tekkotsu provides methods for calculating
the transformation matrix between any two kinematic joints or reference
frames, and it includes a special instance of the kinematics engine that is
tied to the robot’s state representation so current joint angles can be used
in the calculation. With these tools, for example, the current position in
3D space of the gripper relative to the robot’s origin (the “base frame”) can
be computed in a single line of code. We do this by extracting the translation
portion of the gripper-to-base transformation matrix:

fmat::Column<3> gripperPosition
= kine->jointToBase(GripperFrame).translation();

The third big issue in kinematics instruction is inverse kinematics. Tekkotsu
includes analytic solvers for common cases such as pan/tilts, 2 and 3 degrees-
of-freedom planar arms, and simple 3-dof legs. It also includes a gradient
descent solver that can handle more complex cases, such as solutions for
the 5-dof arm on the Calliope5KP that involve orientation constraints.

Using these tools, we can construct compelling kinematics demos, such
as the CameraTrackGripper and GripperTrackCamera demos built in to
Tekkotsu. In CameraTrackGripper, the robot relaxes its arm so that it can
be freely manipulated by the student. The demo uses forward kinematics to
calculate the gripper position from the arm joint angles, and then inverse
kinematics for the pan/tilt to keep the camera pointed at the gripper. By
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Computer Science Education 13

monitoring the camera image while moving the arm around, the student
can verify that the calculations are accurate. GripperTrackCamera on the
Calliope5KP is even more impressive. The student drives the pan/tilt using
the standard teleoperation tool, and the demo performs an inverse kine-
matics calculation for the arm to keep the left finger centered in the camera
image and, as far as possible, a fixed distance from the lens. Students who
do not have access to a Calliope5KP can run the demo in simulation.

Forward kinematics calculations in ROS are done using the tf package,
while inverse kinematics uses the MoveIt! motion planning package.

5. Hardware platforms
The ability to interact with the physical world is a key part of robotics’
appeal. While simulated robots can be used to some extent and are even
preferable for some types of debugging, keeping students motivated requires
giving them access to real robots. Another consideration is the limited
fidelity of present day simulation environments. For efficiency reasons, they
do not accurately model natural lighting, camera idiosyncrasies, backlash,
friction, and so on. As a result, applications that work in simulation may
not function reliably in the messier environment of the real world. The only
way to be sure is to test on a physical robot.

A robot platform suitable for the type of course described here should
provide five things: a camera, an accurate pan/tilt mechanism so the robot
can track objects and landmarks, reasonable odometry to support naviga-
tion, some sort of manipulator, and a computer with sufficient processing
power to implement the algorithms discussed in the course. The inexpensive
robots used in robot-themed CS1 courses do not meet these criteria.

The best low-cost solutions presently available mount a netbook or
laptop on a small mobile base such as the iRobot Create. One such robot is
the Calliope2SP, jointly developed by Carnegie Mellon and RoPro Design,
Inc. Beginning in 2014, it will serve as the platform for a national robotics
competition sponsored by the Institute for African American Mentoring in
Computing Sciences (iAAMCS) and held in conjunction with the annual
Tapia Conference. A more advanced model, the Calliope5KP, is presently
in use at Carnegie Mellon. The Turtlebot 2, developed by Willow Garage
for use with ROS, is also in this class, although it lacks a pan/tilt and
manipulator. Table 2 gives the specifications for these robots, which are
shown in Figure 4.

Besides Create-based platforms, the robot with the most significant pen-
etration in the university market is the Nao humanoid from Aldebaran
Robotics, which replaced the Sony Aibo as the standard platform in the
RoboCup robot soccer competition. The Nao retails for $12–16,000; there
is also a legless version for roughly $6800. The Darwin-OP from Robotis is
a similar humanoid that retails for $10–12,000. Unfortunately, the relatively
high prices of these robots has impeded their wider adoption.
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14 D.S. Touretzky

Table 2. Educational robots for undergraduate robotics courses.

Calliope2SP Calliope5KP Turtlebot 2

Source RoPro Design, Inc. RoPro Design, Inc. Willow Garage

Base iRobot Create iRobot Create Yujin Kobuki

Camera Sony PlayStation Eye Microsoft Kinect Microsoft Kinect or
ASUS Xtion

Pan/tilt Yes Yes No

Arm 2 dof + gripper 5 dof + 2 fingers None

Servos Robotis AX-12 (5) Robotis AX series (3)
and RX series (6)

None

Computing Netbook with dual-core 1.6 GHz Intel Atom processor, 2 GB RAM,
and 320 GB hard drive

Price (assembled) $2500 Approx. $4000 $1600

Figure 4. The Calliope2SP, Calliope5KP, and Turtlebot 2 robots.

6. Teaching the big ideas
The concepts in Table 1 can be introduced to beginning students by demon-
stration without going into implementation details. Tekkotsu’s emphasis on
making robot operations transparent means that some of these demonstra-
tions happen automatically. For example, Figure 5 shows a code fragment
that requests the Pilot to take the robot to a point one meter north and half a
meter west of its starting location, and to arrive there on a southerly heading.
When this demo is run, students will see the planned path displayed in the
world shape space. They may not yet know how a path planner works, but
they can see its effects. As the robot executes the path, both the robot shape
and its localization particles move through the shape space, and the particle
cloud begins to disperse due to accumulated error.
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Computer Science Education 15

Figure 5. Pilot request that invokes the navigation path planner.

We can make the situation more interesting by introducing objects into
the environment that act as both obstacles and landmarks. Now the path
planner must calculate a trajectory around the obstacles. (It finds the
obstacles by looking in the world shape space). As the robot moves, the
Pilot can correct its motion error by visually acquiring the landmarks and
relocalizing. It does this automatically if it finds suitable objects in the world
map.

The next step for teaching path planning would be to introduce the RRT-
Connect algorithm (Kuffner & LaValle, 2000). This algorithm is typically
described using an oversimplified domain where the robot is symmetric and
holonomic, so orientation is not a factor. Students can read pseudo-code for
the algorithm and examine pictures of the search trees it constructs. They
can also learn how collision detection is accomplished using the separating
axis theorem.

Once students are familiar with the RRT-Connect search algorithm, they
can deepen their understanding by constructing test cases and seeing where
the algorithm succeeds and where it fails (Pockels et al., 2012). This can
be done in Tekkotsu by setting up simulated worlds with various obstacle
configurations, and varying the path planning parameters in the Pilot re-
quest. The results can be visualized by displaying the search trees in the
world shape space along with the robot’s start and goal locations and any
obstacles the user defined. An example is shown in Figure 1.

For still deeper understanding, students can learn to call the path planner
directly instead of invoking it implicitly via the Pilot. Tekkotsu provides a
simple x–y planner for a symmetric, holonomic robot that can be used
for such exercises. Alternatively, students can use the more complex non-
holonomic x–y–θ planner that is actually invoked by the Pilot. Both plan-
ners pull obstacles from the world shape space and can display their results
in that space.

The most advanced students can read the C++ code for the path planners
to appreciate how they are implemented, including how path smoothing
is accomplished and how collision detection is performed efficiently on
complex shapes.

A summary of our approach to teaching the big ideas is:

(1) Begin by demonstrating how the idea is actually realized on the robot.
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16 D.S. Touretzky

(2) Explain the algorithm, possibly in simplified form.
(3) Have students experiment with the algorithm to gain an appreciation

of its parameters, performance characteristics, and limitations.
(4) Have students put the new functionality to use as part of a larger

behavior, possibly in a final project at the end of the course.

Besides path planning, this approach fits several of the other big ideas
well: computer vision, localization with a particle filter, forward and inverse
kinematics, and (potentially) human-robot interaction technologies such as
face detection and speech understanding.

Examples of student projects over the years include getting two AIBO
robots to cooperate to push an object, getting a Chiara to calculate depth
from stereo by shifting its body left or right while pointing its single camera
at a scene, and getting a Calliope5KP robot to locate and pick up a packet of
crackers, carry it to another robot, and toss it into a basket mounted on top.

Many of the students in the Carnegie Mellon course choose to de-
velop novel extensions to the framework as their final project. The DH
Wizard tool, Tekkotsu’s inter-robot communication primitives, and the
WorldBuilder tool that eases creation of virtual environments for the Mirage
simulator all started out as course projects. Non-undergraduates have also
produced some striking projects. A graduate student who had taken the
course as an undergraduate went on to program the Chiara to play chess on
a real chessboard for his masters thesis (Coens, 2010). And a high school
student, who learned Tekkotsu programming in a summer enrichment pro-
gram, programmed the Chiara to walk up to a keyboard and play Ode to
Joy with its right front leg. His video explaining how he used Tekkotsu’s
vision and kinematics primitives to accomplish this (Iyengar, 2011) won a
prize in the 2011 Association for the Advancement of Artificial Intelligence
video competition.

The course materials are still evolving, and not all the big ideas from
Table 1 are covered yet. For example, Tekkotsu presently provides little in
the way of human–robot interaction facilities (Big Idea #9) besides sound
effects and text-to-speech, although some students have experimented with
gesture recognition, face detection, and speech recognition modules. Like-
wise, there is not yet any support for multi-robot coordination (Big Idea
#10) beyond basic inter-robot messaging, although a student project has
explored how to share world maps between robots. A task planner (Big
Idea #8) is currently in development. Covering all the big ideas using the
hands-on, experimental approach advocated here is probably not feasible in
a one-semester course, but should be easily doable in a two-course sequence.

7. Robotics in the CS2013 curriculum
Consider the complex software that goes into a modern web browser: an
HTML interpreter, renderers for various image types, a font manager, layout
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Computer Science Education 17

engines for text and tables, a JavaScript interpreter, client code for multiple
networking protocols, and more. We introduce students to the web by first
having them use a browser where all these technologies are seamlessly
integrated. Then we teach them how to create simple web pages of their
own. And then we introduce advanced features such as frames, forms, style
sheets, and scripts. Web designers need to understand some details of the
underlying technologies, such as the effects of JPEG or GIF encoding
on an image, but they are never asked to write their own JPEG or GIF
renderer. When a system depends on so many different technologies, it
becomes impractical to master all their implementation details. And in an
introductory course, these would be a distraction. A similar argument could
be made concerning application development for smartphones.

The software behind modern robots is already more complex than a
web browser or smartphone, and is continuing to advance. As a result,
I believe introductory robot programming courses need to evolve in the
direction of web design courses, where the focus is on understanding and
using the technologies rather than reimplementing simplified versions of
them. Contrast this view with the description of a robotics elective in the
CS2013 Ironman draft (Joint Task Force on Computing Curricula, 2013),
which reflects the current state of many robotics courses. Of the eight desired
learning outcomes for the robotics elective, three are skill-based. The first
of these is:

2. Integrate sensors, actuators, and software into a robot designed to undertake
some task.

If the sensor is a photodiode or ultrasonic rangefinder, the actuators are
a couple of servos, and the software is a few pages of C code running on
a microcontroller; we have the typical embedded systems view of robotics
found in an electrical engineering department. But the kind of robot com-
puter scientists should be using today is, like a smartphone, built from much
more sophisticated components that are already carefully integrated.

The second skill-based learning objective, which involves robot control
architectures, is more appropriate for computer scientists:

3. Program a robot to accomplish simple tasks using deliberative, reactive,
and/or hybrid control architectures.

The final skill-based learning objective in the CS2013 Ironman draft involves
reimplementing fundamental algorithms:

4. Implement fundamental motion planning algorithms within a robot
configuration space.
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18 D.S. Touretzky

When robots were less capable and there were no comprehensive software
frameworks available, reimplementing basic algorithms was a sensible thing
to do in an introductory course. And reimplementation of some key algo-
rithms might still be appropriate in an advanced robotics course, just as
reimplementation of a JPEG decoder or ray tracer might be assigned in
an advanced graphics course. But with today’s sophisticated hardware and
powerful software frameworks, it seems more important that students first
learn how to use their many components effectively.

Another important difference between the robotics curriculum described
here and the proposed CS2013 Robotics elective is the omission of vision
and kinematics. CS2013 does contain a separate Perception and Computer
Vision elective that includes both vision and speech recognition, and rightly
focuses on algorithms for feature extraction and pattern classification. But
vision is an integral part of modern robotics, essential for several of the
topics that are included in the elective, such as localization, mapping, and
navigation (the robot must be able to see the landmarks), and also motion
planning (so it can see the obstacles to be avoided or objects to be ma-
nipulated). Likewise, although forward and inverse kinematics are covered
in a CS2013 Computer Animation elective, these should not be entirely
omitted from Robotics.

The present time is a transition period in robotics education. More
capable hardware platforms are available but have not yet been widely
adopted. At the same time, students are being introduced to complex soft-
ware frameworks in contexts such as web design and smartphone applica-
tion design, but not yet in robot application design. As our robots become
even more complex and capable, a shift in instructional strategy appears
inevitable.
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