March 19, 2015 Computer Science Education journal-CSE-2014-main

To appear in Computer Science Education
Vol. 00, No. 00, Month 20XX, 1-37

ARTICLE

Open Source Projects in Software Engineering Education: A
Mapping Study

Debora Maria Coelho Nascimento®*, Roberto Almeida Bittencourt”, Christina Chavez®

@ UFS - Federal University of Sergipe, Brazil; ® UEFS - State University of Feira de
Santana, Brazil; *UFBA - Federal University of Bahia, Brazil

(Received 00 Month 20XX; final version received 00 Month 20XX)

Context: It is common practice in academia to have students work with “toy” projects
in software engineering courses. One way to make such courses more realistic and re-
duce the gap between academic courses and industry needs is getting students involved
in Open Source Projects (OSP) with faculty supervision. Objective: This study aims
to summarize the literature on how open source projects have been used to facilitate
students’ learning of software engineering. Method: A systematic mapping study was
undertaken by identifying, filtering and classifying primary studies using a predefined
strategy. Results: 72 papers were selected and classified. The main results were: a)
most studies focused on comprehensive software engineering courses, although some
dealt with specific areas; b) the most prevalent approach was the traditional project
method; ¢) studies’ general goals were: learning software engineering concepts and
principles by using OSP, learning open source software, or both; d) most studies tried
out ideas in regular courses within the curriculum; e) in general, students had to work
with predefined projects; f) there was a balance between approaches where instruc-
tors had either inside control or no control on the activities performed by students;
g) when learning was assessed, software artifacts, reports and presentations were the
main instruments used by teachers, while surveys were widely used for students’ self-
assessment; h) most studies were published in the last seven years. Conclusions: The
resulting map gives an overview of the existing initiatives in this context and shows
gaps where further research can be pursued.

Keywords: software engineering education; open source software; systematic
mapping study

1. Introduction

Learning software engineering (SE) requires more than just acquiring content
knowledge. It usually demands learning skills and attitudes that are hard to acquire
inside a higher education environment. For example, taking part in a long-term
project that usually lasts one or more years is an activity that does not fit well in
an undergraduate curriculum split into four-month academic terms. Authentic en-
vironments and situations, with different roles to play, with novices learning from
experts, with time and budget constraints, where customers dialogue with team
members, and where team members practice different skills such as communica-

*Corresponding author. Email: dmcnascimento@ufs.br

March 19, 2015

Computer Science Education journal-CSE-2014-main

tion, leadership, conflict resolution and decision making, are very hard to reproduce
inside academia.

Some initiatives to foster cooperation between undergraduate programs and in-
dustry have been reported, e.g., co-op programs (Reichlmayr, 2006). However,
typical schedules of co-op programs are limited by the delay between learning con-
cepts in class in one term, and practicing them in an industrial setting in another
term. In addition, concepts introduced by SE faculty are usually illustrated with
“toy problems” with reduced size and complexity, raising the issue of authenticity.

To deal with those issues, one approach is gaining momentum in SE courses:
having students take part in open source projects (OSP) with faculty supervision.
Practical sections of SE courses are performed and assessed from student participa-
tion in such projects. OSP give room to an environment where experts and novices
interact, real products are developed and evolved, where work structure is well-
defined, and different roles are played by stakeholders. Since this is an authentic
environment where real software is being produced, faculty can usually cover most
SE knowledge areas.

However, regardless of the authentic environment provided by OSP, students
must perform activities leading to significant learning. Previous studies provide
evidence that active learning approaches promote student engagement, enhance
academic achievement, student attitudes and student retention, offerong a natural
environment to enhance interpersonal skills, and to develop problem-solving and
life-long learning skills (Prince, 2004). Barg et al. (2000), for instance, reports that
problem-based learning (PBL) “without losing any of the technical skills, it makes
room in the course for activities that encourage generic skills”. We argue, thus,
that active learning practices are a good combination with OSP in order to learn
SE.

Given that context, we decided to perform a literature review of the scholarly
production that relates SE education to OSP, in order to uncover experiences
where OSP facilitates learning of relevant SE concepts. We were not particularly
interested in academic reports of open source software as a development tool or a
lab environment. Instead, we decided to focus on studies where students actively
engage with OSP, analyzing their source code, designing and implementing changes,
performing tests and other quality checks, and participating in their communities.
The present systematic mapping study was produced to achieve this goal and reach
a comprehensive view that allows steering future research.

Systematic mapping studies are secondary studies similar to systematic reviews.
Both studies search primary studies indexed in scientific databases, select revelant
studies, and classify them according to objective criteria. The main difference is
that while systematic reviews examine primary studies in depth, aiming to gener-
ate conclusions about a particular research question, mapping studies mainly in-
tend to categorize them, usually providing a visual summary of results (Petersen,
Feldt, Mujtaba, & Mattsson, 2008). Not only are evidence clusters identified, but
also evidence gaps where additional research could be conducted are uncovered
(Kitchenham & Charters, 2007). A mapping study is mainly an exploratory re-
search strategy, which fits well to the purposes of our research.

In this study, we extend a mapping study we previously published (Nascimento
et al., 2013). Here we add steps to the process, snowballing selected papers after
paper screening to find additional relevant studies not identified in the electronic
databases. We also added new facets to the classification scheme, to describe learn-
ing objectives, how the approach is embodied in the curriculum, how the OSP is

March 19, 2015

Computer Science Education journal-CSE-2014-main

Process Steps

Data Extraction and
Mapping Process

Definition of . « T Keywording
Research Question Conduct Search Screening of Papers 'Snow-balling Relevant Topics

Ll - —] 1 |

Classification
Scheme

Review Scope All Papers Relevant Papers Primary Studies Systematic Map

Outcomes

Figure 1. The systematic mapping study process, adapted from Petersen et al. (2008).

chosen, and how much control instructors have on student activities. As a result,
72 papers were selected and classified.

The main findings were: i) most studies focus on comprehensive software engi-
neering courses (50 articles), although there are some studies on specific areas, e.g.,
design/architecture, development/construction and evolution; ii) there is seldom
explicit information about a pedagogical theory or framework used as a basis to
the studies, and the most prevalent approach is the traditional project method; iii)
studies’ general goals are: learning SE concepts and principles by using OSP, learn-
ing OSS, or both; iv) most studies embody the approach in regular courses within
the curriculum; v) in general, students have to work with predefined projects; vi)
there is a balance between approaches where the instructor has either complete
or no control of the activities performed by students; vii) when learning is as-
sessed, software artifacts, reports and presentations are the main instruments used
by teachers, while surveys are widely used for student self-assessment; viii) most
studies were published in the last seven years in journals and conferences related
not only to computing education, but also in general venues related to comput-
ing, software engineering or OSS; ix) there are various active research communities
around the world, especially in the US, Canada and Europe.

The main contribution of this study is to provide a comprehensive view of the use
of OSP to learn software development and SE principles. Not only do we identify
the active research communities, long-term projects and venues for publication,
but we also provide an overview of objectives, contributions and methods applied
in 72 studies over the latest 14 years. This view is important both to researchers
interested in the identified trends and gaps, and to instructors interested in trying
out their own experiences in their classes, using the repertoire of the different
approaches we identified.

This paper is organized as follows. Section 2 presents an overview of the mapping
study process. In Section 3, we present the results. Then, in Section 4, we discuss
the main findings and threats to validity. Finally, in Section 5 we draw conclusions
and suggest areas for further research.

2. The Systematic Mapping Study Process

In this work, we performed a systematic mapping study (Budgen, Turner, Brereton,
& Kitchenham, 2008; Petersen et al., 2008) to analyze the extent and range of
previous research that relate the use of OSP in software engineering education.
Figure 1, adapted from Petersen et al. (2008), describes the process we used in this
mapping study. This section describes how each step of the process was performed.
Definition of Research Questions.

The main research question of a systematic mapping study is typically broad.

March 19, 2015

Computer Science Education journal-CSE-2014-main

Table 1. Standard Search String
“open source” OR “ free software” OR “libre software” OR
“FLOSS” OR “FOSS” OR “OSS” OR “OSP”
AND
“course” OR “curriculum” OR “education” OR “educational” OR
“teaching” OR “learning” OR “mentoring” OR “training” OR
“apprentice” OR “tutoring” OR “coaching” OR “skills” OR “competencies”
AND
“software engineering” OR “software requirement” OR “software modeling” OR
“software analysis” OR “software design” OR “software architecture” OR
“design patterns” OR “software verification” OR “software validation” OR
“software evolution” OR “software maintenance” OR “software process” OR
“software quality” OR “software metrics” OR “software management” OR
“software testing” OR “software configuration management” OR
“computing” OR “computer science”

To give readers a broad view of previous research relating SE education and OSP,
we asked the following question.

RQ1. How are Open Source Projects used in Software Engineering Education?

There is a bulk of literature on the use of OSP for pedagogical purposes, and we
alm to uncover the experiences where such projects were used to foster learning
of software engineering. We also would like to find out which software engineer-
ing knowledge areas are usually addressed by such initiatives, and we used the
SWEBOK (2013) areas to classify them (e.g., software engineering in general, re-
quirements, design, quality, maintenance, among others).

We also added two secondary research questions related to pedagogical issues,
as follows.

RQ2. Which of the initiatives combine open source projects with active learning
in software engineering courses?

RQ3. How is student learning assessed in the reviewed initiatives?

Conducting Search. We built a search string using the following steps, defined
by Kitchenham, Mendes, and Travassos (2007): (a) derive major terms from the
main question, by identifying the population and intervention; (b) identify alter-
native spellings and synonyms; (c) check keywords from known studies; (d) use the
Boolean OR to incorporate alternative spellings and synonyms, and finally, (e) use
the Boolean AND to link the major terms. To obtain a broad coverage, special
attention was given to identify alternative spellings and synonyms. The resulting
search string is presented in Table 1.

The search strategy included the following scientific electronic databases: Engi-
neering Village!, IEEE Xplore?, ACM3, Scopus?, Springer® and Science Direct.
These libraries are important sources of SE and computer science studies, index-
ing relevant conferences and journals. Furthermore, their search engines support
automatic search based on different criteria and string formats — which may help
to ensure adequate coverage.

Lhttp://www.engineeringvillage.com
2http:/ /ieecexplore.ieee.org
Shttp://portal.acm.org
4http://www.info.sciverse.com/scopus
Shttp://www.springer.com
Shttp://www.elsevier.com

March 19, 2015

Computer Science Education journal-CSE-2014-main

We used the search string to query the libraries against paper title, abstract and
keywords. The standard search string had to be gauged for each database, to cope
with different word stemming and syntax requirements.

The search was performed from 1st to 15th October, 2012. Search results identi-
fied 2204 papers, from which 1099 were duplicates (many studies were indexed by
more than one digital library), leading to 1105 papers selected for screening.
Screening of papers and Snow-balling. The main goal of the screening process
is to select relevant studies that properly address the research questions. This means
that inclusion and exclusion criteria must be carefully chosen and applied to the
data retrieved. In our screening process, four inclusion criteria (IC) and 20 exclusion
criteria (EC) were used, among them:

IC 1. Studies that address the use of OSP to learn/teach Software Engineering
should be included, regardless of their application in either SE programs or
in other programs;

EC 1. Documents written in languages other than English should be excluded
(the universality of this language supports reproducibility);

EC 2. Documents whose full text is not available should be excluded;

EC 3. Studies whose main content is not related to learning or teaching Software
Engineering should be excluded.

The whole set of inclusion and exclusion criteria can be found in our mapping
study website”.

After we searched the papers and eliminated the duplicates, we applied two
filters. In the first, two of the authors screened the remaining papers. Each reviewer
examined title and abstract of each paper, and marked it as included or excluded,
using the previous criteria. Results were subsequently compared. A third reviewer
analyzed conflicts and took the final decision. In this first step, 156 papers were
included. In the second filter, two reviewers reexamined the remaining studies,
skimming through introduction and conclusion. A third reviewer compared their
results, and again, took the final decision, resulting in 53 studies. These were the
relevant papers considered for classification in our preliminary study (Nascimento
et al., 2013). However, given the limitations of our search string and of each
digital library, and aiming at a more comprehensive view of our area of interest,
we followed a “snow-balling” procedure (Budgen et al., 2008) to gather additional
references. To do so, we followed up references cited in the previously selected
studies and identified 11 more relevant papers. In addition, during our analysis,
we carefully re-read each selected paper, which led us to accept eight previously
rejected studies in order to be more consistent, and to gather a comprehensive
view of the area. Therefore, we also included papers that report cases of other
computing courses (not a software engineering course), since these papers report
cases of teaching software development skills that are foundations to SE practices.
Finally, we selected a total of 72 studies to be considered for classification.
Keywording Relevant Topics. We developed a classification scheme based on
the research questions RQ1, RQ2 and RQ3, and also on the relevant topics identified
during paper reading. This step was based on the keywording process described by
Petersen et al. (2008). Table 2 presents the facets defined for classification purposes.

Facets 1-5 were presented in a conference paper (Nascimento et al., 2013),
whereas facets 6-9 have not been previously published. Open source software has

Thttps:/ /sites.google.com /site/dmcnascimento/mapping

March 19, 2015

Computer Science Education

Table 2. Defined Facets

Facet

journal-CSE-2014-main

Description

1 | Software Engineering Area | The SE topic(s) addressed in the study (software engi-

2 | Research Type

3 | Learning Approach

4 | Assessment Perspective

5 | Assessment Type

6 | Approach Goal

7 | Curriculum Choice

8 | Control Level

9 | Project Choice

neering in general, requirements, models and methods, de-
sign and architecture, quality, testing, evolution and main-
tenance, development and construction, process, manage-
ment and configuration management), based on the SWE-
BOK (2013).

The research approach used in the paper; Table 3 provides
a description of each category, adapted from Petersen et al.
(2008).

The pedagogical approach that was applied together with
OSP in SE courses. Table 4 presents a description of each

category.

The perspective from which student learning is evaluated
— see Table 5.

The instrument used to assess student learning — see Ta-
ble 6.

Which goal in introducing OSP in SE courses was preva-
lent (either learning SE principles/concepts or learning to
develop OSS).

How the content was embodied in curriculum — see Table 7.
How much control faculty/staff had on the project — see
Table 8.

How the projects were chosen — see Table 9.

Table 3. Research Types (adapted from Petersen et al. (2008)) - Facet 2

Category

Description

Experience report

Case study

Action research

Experiment/Quasi-
experiment

Survey

Opinion paper

Solution proposal

Philosophical paper

Report
Literature review

Paper describes the authors’ personal experience using a particular ap-
proach, explaining what and how something has been done in practice.
It usually includes lessons learned.

An empirical inquiry that investigates a phenomenon within its real-
life context. Paper may deal with single or multiple cases, may include
quantitative evidence, relies on multiple sources of evidence, and benefits
from the prior development of theoretical propositions.

Interactive inquiry process that balances problem solving actions imple-
mented in a collaborative context with data-driven collaborative analysis
or research to understand underlying causes enabling future predictions
about personal and organizational change.

A collection of research designs that use manipulation and controlled
testing to understand causal processes. Generally, one or more variables
are manipulated to determine their effect on a dependent variable.
Encompasses any measurement procedures that involve asking questions
of respondents, generally by sampling them from a population. Most
common types of surveys use questionnaires or interviews.

These papers express the personal opinion of somebody whether a certain
approach is good or bad, or how things should been done. They do not
rely on related work and research methodologies.

A solution for a problem is proposed, the solution can be either novel or
a significant extension of an existing technique. The potential benefits
and the applicability of the solution are shown by an example or a good
line of argumentation.

These papers sketch a new way of looking at existing things by structur-
ing the field in form of a taxonomy or conceptual framework.
Document describes a project. Can be a technical or a progress report.
Critical and in-depth evaluation of previous research. It is a summary
and synopsis of a particular area of research.

gained importance in the software industry, not only for their high quality, but
also due to the use of new development processes and practices. As a consequence,
some universities decided to include OSP in computing courses. Since this topic
can be seen as a software engineering subarea per se, we included studies with this
goal in our mapping. To clarify matters, the Facet 6 - Approach Goal was included
in the classification scheme to characterize the course approach with respect to its
goals. Finally, the other three facets elaborate on some aspects related to fitting
OSP into students’ activities.

The item “does not apply” was added to some facets anywhere the proposed

March 19, 2015

Computer Science Education

Category

journal-CSE-2014-main

Table 4. Learning Approaches - Facet 3

Description

Active learning (general)
Case-based learning
Game-based learning

Peer/Group/Team learn-
ing

Project-/Problem-

/Inquiry-based learning

Studio-based learning

Project method

Other
Not specified
Does not apply

General term that refers to several models of education that focus the
responsibility of learning on learners. Usually students engage in higher-
order thinking tasks such as analysis, synthesis, and evaluation.
Approach where students develop skills in analytical thinking and reflec-
tive judgment by reading and discussing complex, real-life scenarios. A
case is already organized and synthesized for students.

Learning that involves students in some sort of competition or achieve-
ment in relationship to an educational goal. Attempts to increase student
motivation by providing a playful environment.

Educational practices in which students interact with other students to
attain educational goals. Such approaches enhance the value of interac-
tion and information sharing among peers.

A collection of approaches that use projects or problems to drive the
learning process. Students learn about a subject through the experience
of problem solving, by working in groups with the help of facilitators.
Assessment is performance-based and authentic.

Approach from professional education, where students undertake a
project under the supervision of a master designer. It uses a learning cy-
cle of construction, presentation, critique and response, that is repeated
until project completion.

The traditional method where students participate in a project develop-
ment.

Other approaches different from the previous categories.

Authors do not state the learning approach used.

Paper is not related to an experience where a learning approach is needed.

Table 5. Assessment Perspective - Facet 4

Category |

Description

Student perspective
Teacher perspective
Product perspective
Not specified

Does not apply

Students assess their learning by either self- or peer evaluation.
Students are assessed by faculty or teaching assistants.

Specific criteria are defined to assess students’ products.

No assessment is mentioned in the paper.

Work is not related to an experience where assessment is necessary.

Table 6. Assessment Type - Facet 5
Category Description
Exams Students are assessed by means of written exams.
Reports Students should write a report for assessment.
Software artifacts Students are assessed through developed software artifacts.
Interviews Interviews are conducted to assess learning.
Seminars Students are assessed by their performance in seminars.
Exercises Students are assessed by means of exercises.
Surveys A survey is conducted to assess learning.
Reflective essay A reflective essay is written.
Presentations Students are assessed by presenting their performed work.
Participation Student’s participation in class, in community, interaction with group or
team.
None No assessment instrument is mentioned in the paper.
Does not apply Work is not related to an experience where assessment is needed.

Table 7. Curriculum Choice - Facet 7

Category Description

Extra activity Students worked with OSP in extra activities, e.g., internships.

Capstone Students worked with OSP in a capstone project.

Project

Course Working with OSP was a student’s assignment in a regular course.

Not specified The paper does not mention where, in the curriculum, the approach is
used.

Does not apply | Related to an experience where curriculum issues are not declared.

categorization was not appropriate.
Data Extraction. The data extraction strategy was designed to gather the re-
quired information to address the objectives of this study. Each paper accepted

in the screening process

was fully read to collect the required data. We extracted

information on title, author(s), author’s affiliation details, venue and year of pub-

March 19, 2015

Computer Science Education journal-CSE-2014-main

Table 8. Control Level - Facet 8

Category Description

No control Faculty /staff only monitor student’s activities inside the project. Stu-
dents work with community requests and the community approves stu-
dents’ contribution.
Inside initiative / | A new feature is proposed and built inside college, but later, it is sub-
External approval mitted to community approval.

Inside control Faculty/staff branch the OSP code, prepare assignments, and evaluate
themselves the students’ contribution.

Full control Project core development has been sustained by faculty/staff.

Not specified No control level could be identified in the paper.

Does not apply ‘Work is not related to an experience where control level is needed.

Table 9. Project Choice - Facet 9

Category | Description

Predefined Faculty /staff decide the project students work.

Choice list Students can choose any project from the list provided by faculty/staff.

Free choice Students should seek and decide which OSP (from their interest) they will work
with.

Not specified Paper does not mention issues related to project choice.

Does not apply | Work is not related to an experience where choosing a project is needed.

lication for each selected paper, as well as the information required to classify it
according to each facet.

We classified some studies in more than one category for some facets (e.g., Facet
1 - Software Engineering Area, Facet 4 - Assessment Perspective, Facet 5 - Assess-
ment Type and Facet 7 - Curriculum Choice).

During data extraction, we also looked at how studies related to each other, to
identify the continuity of research projects.

To assist us in managing the data generated in the whole process, we used StArt
(State of the Art through Systematic Review)®, Mendeley reference manager?, and
spreadsheets.

3. Mapping

In this section, we present data extraction results. However, before presenting
the outcomes, structured by facets and research questions, firstly we provide an
overview of the studies, with a brief description of their objectives and contribu-
tions (Section 3.1). One of the main contributions of mapping studies is the map,
usually a bubble plot representation of different facets or perspectives. In this study,
we classified the articles for each facet and produced three maps to summarize the
results. These maps are illustrated in Sections 3.2, 3.3 and 3.4. Section 3.5 presents
the distribution of publications with respect to the main venues and the most ac-
tive research communities, and a temporal view of the topic. Finally, Section 3.6
reports some long-term projects.

3.1. Owverview of Study Objectives and Contributions

The objectives of studies of OSP in SE education may vary. Some intend to enhance
student motivation (Auer, Juntunen, & Ojala, 2011; Costa-Soria & Pérez, 20009;
Ellis, Hislop, Rodriguez, & Morelli, 2012; Nandigam, Gudivada, & Hamou-Lhadj,

8http://lapes.dc.ufscar.br/tools/start_tool
9http://www.mendeley.com

March 19, 2015

Computer Science Education journal-CSE-2014-main

2008; Sowe, Stamelos, & Deligiannis, 2006), others aim at attracting more students
(Budd, 2009; Morelli et al., 2009; Raj & Kazemian, 2006; Xing, 2010), hence,
improving enrollments in computer science courses (Kussmaul, 2009; Seiter, 2009;
Tucker, Morelli, & de Lanerolle, 2011). In addition, there are papers whose aim is
supplying students with an experience with OSS, i.e., studying concepts, licensing,
communities, roles, and development process, motivated by the recent growth in
interest in this area (Beaufait, Chen, Dietrich Jr., Dietrich, & Vanhoy, 2011; Budd,
2009; Horstmann, 2009; Lundell, Persson, & Lings, 2007; Robles, Caballe, &
Gonzélez-Barahona, 2008). Recognizing the wide acceptance of OSS, Yamakami
(2012) discusses the impacts and implications of OSS advances from the viewpoint
of education, and concludes by proposing a paradigm transition. According to the
author, software engineering education needs to be reengineered due the changes
brought by OSS.

Some studies discuss how OSS can be embedded in computer science courses (Li,
Zhang, & Li, 2009; O’Hara & Kay, 2003; Smrithi Rekha, Adinarayanan, Ma-
herchandani, & Aswani, 2009). O’Hara and Kay (2003) not only advocate the use
of OSS in lab infrastructure, due its low-cost, but also assert that students should
develop OSS so that they participate in large distributed software communities
and interact with large software code bases. Li et al. (2009) highlight topics such
as open source code, open course resource and open discussion, and then provide
some advices on curriculum setup, teaching strategies, and resource construction.
Finally, Smrithi Rekha et al. (2009) explore the use of OSS to bridge the gap
noticed by software industry between what ACM Computer Science curriculum
proposes and the actual skills students presently acquire.

We also found articles that encourage the use of OSS on computing education
by listing a set of potential benefits (Whitehurst, 2009), or even highlighting the
importance of participating in OSP for improving developers’ background (Spinel-
lis, 2006). Specifically in the software engineering area, Kamthan (2007) examines
fundamental SE practices from an OSS perspective, discusses ways to use OSS,
and provides some guidelines to embody OSS in SE education.

Various studies describe one particular approach. Some specify a set of criteria to
help students select one project to work with, others propose specific assignments
or activities that students should perform, while a few even describe the assessment
method used in the course. We describe some illustrating examples. Nandigam et
al. (2008) teach basic software engineering principles by focusing on practical is-
sues. For instance, students explore a code base of an OSP, reverse engineer the
source code to get an abstract view of the project, assess design quality based on
software metrics, perform some refactoring, and analyze the impact of some pro-
posed changes. Kussmaul (2009), based on instructional design, proposes a five-step
USABL (Use-Study-Add-Build-Leverage) model. First, students use the features
of one chosen OSS; second, they study the code of the project; then, students add
simple enhancements; later, they build something more complex, and, lastly, they
leverage OSS for other intentions. Papadopoulos, Stamelos, and Meiszner (2012)
propose that students assume a particular role of their preference (e.g., tester, de-
veloper, requirements engineer) and perform a set of assigned tasks, according to
the chosen role. Petrenko, Poshyvanyk, Rajlich, and Buchta (2007) teach software
evolution by requesting teams to implement new features in OSS using a software
change process model. The authors divide the course into three phases, gradually
increasing change complexity and communication needs between students. Carring-
ton (2003) also suggests a gradual increase in difficulty, structuring the practical

March 19, 2015

Computer Science Education journal-CSE-2014-main

work as a sequence of four assignments that require an increasing depth of knowl-
edge and understanding of the selected open source project. Finally, Liu (2005)
proposes the use of GROw (Gradually Ripen Open-source Software), an educa-
tional OSS team development process comprising: i) a sequence of milestones with
established artifacts for each deliverable, ii) test adequacy and evaluation crite-
ria, and iii) documentation and coding style guidelines. However, this study does
not describe the process in enough detail. The following subsection describes more
examples of approaches.

Some studies focus on the challenges of adopting OSP. Ellis, Morelli, and Hislop
(2008) identify challenges such as: student inexperience, limited course duration,
informal and uncontrolled development practices, sustaining a development effort,
and product complexity. Horstmann (2009) discusses challenges of student inexpe-
rience mainly related to technology (version control tools, build automation tools
and operating systems other than Windows). In an overview, Meiszner, Moustaka,
and Stamelos (2009) discuss the issues of traditional “closed” and “semester based”
structures of educational systems.

One of the main challenges of using OSS in SE education is the difficulty to
identify ideal or appropriate projects to work with (Toth, 2006). This happens
not only because of the large number of existing projects (in a wide range of
size, complexity, domains and communities (Ellis, Purcell, & Hislop, 2012)), but
also due to the students’ diverse background and interest. Selected OSS should be
neither too large and complex to overwhelm students, nor too small and simple to
be so trivial and not favor the applicability of SE principles (Gokhale, Smith, &
McCartney, 2012; Kon et al., 2011).

Several studies address how to identify or choose adequate projects by provid-
ing comments, directions, or even a list of established criteria (Buchta, Petrenko,
Poshyvanyk, & Rajlich, 2006; Ellis, Hislop, Chua, & Dziallas, 2011; Ellis, Morelli,
de Lanerolle, Damon, & Raye, 2007; Gehringer, 2011; German, 2005; Hepting,
Peng, Maciag, Gerhard, & Maguire, 2008; Jaccheri & Osterlie, 2007; Kamthan,
2007; Meneely, Williams, & Gehringer, 2008; Papadopoulos et al., 2012; Sowe &
Stamelos, 2007; Sowe et al., 2006; Stroulia, Bauer, Craig, Reid, & Wilson, 2011;
Toth, 2006). However, two studies are devoted only to the process of selecting OS
projects. The study reported by Gokhale et al. (2012) is a work-in-progress that
intends to develop a systematic methodology based on metrics to facilitate the se-
lection. They train a predictive regression model and a classification model by using
metrics collected from manually selected, previously used projects. Ellis, Purcell,
and Hislop (2012) provide a framework that guides instructors to select OSP for
student involvement. The framework sets criteria related to viability, suitability
and approachability of the project, using two levels: “Mission Critical”, i.e., essen-
tial features that must be present, and “Secondary Criteria” or non-mandatory,
i.e., the project can fail to meet one or two features.

On the other hand, Meneely et al. (2008), although presenting a list of criteria
to select projects, conclude that it is not viable to find a single project that meets
all their needs. Therefore, they created a repository named ROSE (Repository for
Open Software Education) to share OSP built for educational purposes. Projects
should be manageable in size and scope, and adhere to defined pedagogical criteria.

Another example of environment created to facilitate the use of OSP in education
is the PicoLibre platform. Cousin, Ouvradou, Pucci, and Tardieu (2002) describe
this free pedagogical collaborative platform that allows students to create their
own OSP and promotes reusability of previous projects. The platform hosts other

10

March 19, 2015

Computer Science Education journal-CSE-2014-main

projects that provide services such as code and documentation repository, mailing
lists and bug tracker.

Nachbar (1998), in 1998, had already raised the need to generate a new organi-
zation to facilitate student contributions to a freely available and useful software,
providing not only available code but also continuous maintenance and technical
support. Students could have relevant experiences with very large software projects,
demanding not so much effort from instructors. Instructors could share their own
created exercises based on available software. The author named the collection of
available software that this entity should maintain as “Public Software”.

Following the idea of “learning by example”, Zhang and Su (2007) propose
BRIDGE, a web-based collaborative education system. Their goal is to enable
a connection between theory and real-world examples by using a collaborative ed-
ucational resource creation system and open source code as examples. In a similar
thread, Kume, Nitta, and Takemura (2006) propose a method for editing teaching
materials from OSP. Through this method, teachers find real examples of software
design decisions and extract them to use on their practical training scheme.

In a different direction, Shockey and Cabrera (2005) report the outcomes of the
SNAP Development Center, an OSS development project within an university,
resulting from the collaboration between academia, industry and government. Ac-
cording to the authors, the project represents a feasible combination that promotes
students’ expertise in topics such as process, tools and code reuse.

Finally, Megias, Tebbens, Bijlsma, and Santanach (2009) describe the Free Tech-
nology Academy (FTA), a distance learning program created by an European con-
sortium. This project aims to provide knowledge, skills and competences on free
technologies (free software and open standards) to students, including the possi-
bility of their getting a master’s degree in this subject at one of the participating
universities.

3.2. Open Source Projects in Software Engineering Education

The main purpose of our mapping study was to find out how open source projects
have been used in software engineering courses (RQ1). In addition, we were also
interested in the learning approaches used (RQ2). Hence, we decided to arrange
the first map as a combination of the Facet 1 - Software Engineering Area with
the Facet 3 - Learning Approach and Facet 2 - Research Type (see Figure 2).

Figure 2 shows some trends: works that deal with software engineering in general
combined either with the traditional project method (16 studies) or with a solution
proposal (26 studies).

Let us now move to an analysis of each facet. Beginning with the Facet 1 -
Software Engineering Area, we noticed that 69.4% of the papers address Software
Engineering in general. Less than half of the studies (22 papers) focus on specific
software engineering areas. Design/Architecture leads the count with eight papers,
followed by Ewvolution/Maintenance and Development/Construction, both with six
papers (Table 10). Some studies address more than one area; therefore they were
categorized twice in this facet, resulting in different totals in the map (Boldyreff,
Capiluppi, Knowles, & Munro, 2009; Carrington, 2003; Costa-Soria & Pérez,
2009; Qian & Fu, 2008; Williams & Shin, 2006). No papers were found that relate
OSP with specific knowledge areas such as Requirements, Models and Methods or
Configuration Management. The only instance of Management we found is the
paper by Conlon and Hulick (2005), which discusses the feasibility of either building

11

journal-CSE-2014-main

Computer Science Education

March 19, 2015

odA T, yoreassy sns.a0 eIy SULILLUISUN aIem)Jog sns.aa yoeorddy SururesT -g 2in3rg

Aidde eJouab
|lesodoud Jaded Jaded MaIABI 1lodal Apnis yoseasal Bujuiea poyjew payoads Bujules “0c Buiuiea m:_Emm.w seoidd
adAL Aening uonnjog poday |eoiydosojiyd uoluidQ einjessy] eousuedxg esed uonoy paseq-}josfoid josloid 18410 JON Pposeqg-awes S90(Q PISEq-ase) dAIRY Fw mm<
: ; : : " . ; , ; ’ 7 h ; . ; ! + ululea
yoleesay
_ " k " " ! " an1OY
! 2InogHyoIY ! !

....... 4--.---@.----@-.--

Jubisaq

uonoNJISU0D
puswdojereq

soueupjule\
Juonniony

- 77 Juswabeuepy

R ssa9old

L

(lesaupb ur)
~ “Buuesuibug alemyos -

- Burysal ..-.@

ealy
Buileaulbug
9IEM}JOS

12

March 19, 2015

Computer Science Education journal-CSE-2014-main

Table 10. Studies classified by Facet 1 - Software Engineering Area

Area Studies #
Software Engineer- | (Auer et al., 2011; Budd, 2009; Chen et al., 2008; Cousin et | 50
ing (in general) al., 2002; de Lanerolle, Morelli, Danner, & Krizanc, 2008; Ellis &

Hislop, 2011; Ellis, Hislop, Chua, & Dziallas, 2011; Ellis, Hislop,
& Morelli, 2011; Ellis, Hislop, et al., 2012; Ellis & Morelli, 2008;
Ellis, Morelli, de Lanerolle, Damon, & Raye, 2007; Ellis, Morelli,
de Lanerolle, & Hislop, 2007; Ellis et al., 2008; Ellis, Purcell,
& Hislop, 2012; Gehringer, 2011; German, 2005; Hislop, Ellis,
& Morelli, 2009; Horstmann, 2009; Jaccheri & Osterlie, 2007;
Kamthan, 2007; Kilamo, 2010; Kon et al., 2011; Krogstie, 2008;
Kussmaul, 2009; Li et al., 2009; Liu, 2005; Lundell et al., 2007,
Marmorstein, 2011; Martinez, 2009; Megias et al., 2009; Meiszner
et al.; 2009; Meneely et al., 2008; Morelli & de Lanerolle, 2009;
Morelli, Ellis, de Lanerolle, Damon, & Walti, 2007; Morelli et al.,
2009; Nachbar, 1998; Nandigam et al., 2008; O’Hara & Kay,
2003; Papadopoulos et al., 2012; Robles et al., 2008; Santore,
Lorenzen, Creed, Murphy, & Orcutt, 2010; Shockey & Cabrera,
2005; Spinellis, 2006; Stroulia et al., 2011; Toth, 2006; Tucker
et al., 2011; Whitehurst, 2009; Xing, 2010; Yamakami, 2012;
Zhang & Su, 2007)

Management (Conlon & Hulick, 2005) 1
Design/ Architec- | (Boldyreff et al., 2009; Carrington, 2003; Costa-Soria & Pérez, 8
ture 2009; Hepting et al., 2008; Kume et al., 2006; Qian & Fu, 2008;
Seiter, 2009; Tao & Nandigam, 2006)
Quality/ V & V (Williams & Shin, 2006) 1
Testing (Carrington, 2003; Sowe & Stamelos, 2007; Sowe et al., 2006; 4
Williams & Shin, 2006)
Evolution/ Mainte- | (Buchta et al., 2006; Costa-Soria & Pérez, 2009; Gokhale et al., 6
nance 2012; Lutfiyya & Andrews, 2000; McCartney, Gokhale, & Smith,
2012; Petrenko et al., 2007)
Process (Qian & Fu, 2008) 1
Development/ (Allen, Cartwright, & Reis, 2003; Beaufait et al., 2011; Boldyreff 6
Construction et al., 2009; Raj & Kazemian, 2006; Sabin, 2011; Smrithi Rekha
et al., 2009)

or buying software, contrasting it with the possibility of “downloading” software,
encouraging students to analyze such questions.

To assess the scientific contribution of the selected studies, it is important to
identify which research methods each paper uses (Table 11). The Facet 2 - Re-
search Type clarifies this issue, as we can see in Figure 2. Thirty nine papers fit
into the solution proposal category, standing for 54.2% of the selected papers. Ezpe-
rience reports account for the second most popular category, with 14 studies. Very
few studies pay explicit attention to research methodology. Jaccheri and @sterlie
(2007) apply the action research method , while Krogstie (2008) and McCartney
et al. (2012) use the case study method. In the first paper, each student assumes
both the roles of developer and researcher in a chosen OSP (Jaccheri & Osterlie,
2007). In this report, the student tries to answer his or her own research questions
by participating in the project. In the second paper, the author collected, coded
and analyzed data from documents, field notes, interviews, across all teams in the
course, reporting results in a chronological structure (Krogstie, 2008). In the last
work, besides the results, the author describes the qualitative method applied to
analyze students’ learning of code maintenance and evolution, based on pre- and
post-course surveys (McCartney et al., 2012). We did not find studies designed as
or evaluated with an Ezperiment or Quasi-experiment. Kon et al. (2011) present
a careful literature review of the opportunities brought by OSS to software engi-
neering research and education in Brazil. Their scope was papers published in the
Brazilian Symposium on Software Engineering (SBES), the main Brazilian venue
for software engineering researchers.

Some studies were hard to classify within the Facet 2 - Research Type, because

13

March 19, 2015

Computer Science Education journal-CSE-2014-main

Table 11. Studies classified by Facet 2 - Research Type
Category Studies #
Experience report (Beaufait et al., 2011; Boldyreff et al., 2009; Ellis, Morelli, de | 14

Lanerolle, Damon, & Raye, 2007; German, 2005; Lutfiyya &

Andrews, 2000; Martinez, 2009; Morelli et al., 2009; Petrenko

et al.; 2007; Robles et al., 2008; Sabin, 2011; Smrithi Rekha et

al.; 2009; Sowe & Stamelos, 2007; Stroulia et al., 2011; Toth,

2006)
Case study (Krogstie, 2008; McCartney et al., 2012) 2
Action research (Jaccheri & Osterlie, 2007) 1
Survey (Ellis, Hislop, & Morelli, 2011; Ellis, Hislop, et al., 2012; 4
Gehringer, 2011; Hislop et al., 2009)
Opinion paper (Conlon & Hulick, 2005; Ellis et al., 2008; Liet al., 2009; O’Hara 6

& Kay, 2003; Spinellis, 2006; Whitehurst, 2009)
Solution proposal (Allen et al., 2003; Awuer et al.,, 2011; Buchta et al., 2006; | 39
Budd, 2009; Carrington, 2003; Chen et al., 2008; Costa-Soria
& Pérez, 2009; Cousin et al., 2002; Ellis & Hislop, 2011; Ellis,
Hislop, Chua, & Dziallas, 2011; Ellis, Morelli, de Lanerolle, &
Hislop, 2007; Ellis, Purcell, & Hislop, 2012; Gokhale et al.,
2012; Hepting et al., 2008; Horstmann, 2009; Kilamo, 2010;
Kume et al., 2006; Kussmaul, 2009; Liu, 2005; Lundell et
al., 2007; Marmorstein, 2011; Megias et al., 2009; Meiszner et
al.; 2009; Meneely et al., 2008; Morelli & de Lanerolle, 2009;
Morelli et al., 2007; Nachbar, 1998; Nandigam et al., 2008;
Papadopoulos et al., 2012; Qian & Fu, 2008; Raj & Kazemian,
2006; Santore et al., 2010; Seiter, 2009; Shockey & Cabrera,
2005; Sowe et al., 2006; Tao & Nandigam, 2006; Williams &
Shin, 2006; Xing, 2010; Zhang & Su, 2007)

Philosophical paper | (Kamthan, 2007; Yamakami, 2012) 2

Report (de Lanerolle et al., 2008; Ellis & Morelli, 2008; Tucker et al., 3
2011)

Literature review (Kon et al., 2011) 1

their goals were multiple. For instance, Toth (2006) presents a solution proposal but
also discusses learned lessons and approach changes along four iterations. Likewise,
Gehringer (2011) states he presents results of a Survey, but the paper is more
likely to be categorized as an Opinion Paper. Even though the author surveyed
managers of OSS projects that had previously interacted with classes and students,
the paper shows very few details about the survey. Most of the paper is devoted to
recommendations for instructors wishing to embed OSS into a computing course.

Concerning the Facet 3 - Learning Approach, Figure 2 shows that most selected
studies (37.5%) applied the traditional Project Method. Some papers explicitly men-
tion other approaches, such Active Learning or Project-Based Learning, but none
of them give detailed explanations on how these approaches are applied. Table 12
shows the studies classified in each category. No instances of Peer/Group/Team
learning or Studio-based learning were found.

In studies classified as active learning (Beaufait et al., 2011; Boldyreff et al.,
2009; Chen et al., 2008; Jaccheri & Osterlie, 2007), students drive their learn-
ing in some way by getting involved in research activities. We found only one
initiative where students learn by playing a game (Kilamo, 2010). This paper re-
ports students learning how the open source community works via exercises in the
game, which mimic actual development practices in an open source project. Service
learning is the basis of Liu’s pedagogical method, which promotes student learning
by engaging students in activities that address human or community needs (Liu,
2005).

Figure 2 presents the six examples of case-based learning found in our study.
Three of them address the apprenticeship of software design/architecture (Costa-
Soria & Pérez, 2009; Kume et al., 2006; Tao & Nandigam, 2006), while the
other three focus on general principles of software engineering (Nandigam et al.,

14

March 19, 2015 Computer Science Education journal-CSE-2014-main

Table 12. Studies classified by Facet 3 - Learning Approach

Category Studies #
Active learning (general) (Beaufait et al., 2011; Boldyreff et al., 2009; Chen et al., 2008; 7
Jaccheri & @sterlie, 2007; Li et al., 2009; Meiszner et al., 2009;
Raj & Kazemian, 2006)
Case-based learning (Costa-Soria & Pérez, 2009; Kume et al., 2006; Nandigam et al., 6
2008; Tao & Nandigam, 2006; Toth, 2006; Zhang & Su, 2007)
Game-based learning (Kilamo, 2010) 1
Project-/Problem- (Auer et al., 2011; Kussmaul, 2009; Papadopoulos et al., 2012; 7
/Inquiry-based learning Sabin, 2011; Sowe & Stamelos, 2007; Sowe et al., 2006; Stroulia
et al., 2011)
Project method (Allen et al., 2003; Buchta et al., 2006; Budd, 2009; Carrington, | 27
2003; Ellis, Hislop, & Morelli, 2011; Ellis, Hislop, et al., 2012;
Ellis, Morelli, de Lanerolle, Damon, & Raye, 2007; Ellis, Morelli, de
Lanerolle, & Hislop, 2007; German, 2005; Hepting et al., 2008;
Hislop et al., 2009; Horstmann, 2009; Krogstie, 2008; Lundell
et al., 2007; Lutfiyya & Andrews, 2000; Marmorstein, 2011;
Martinez, 2009; McCartney et al., 2012; Morelli & de Lanerolle,
2009; Petrenko et al., 2007; Qian & Fu, 2008; Robles et al., 2008;
Santore et al., 2010; Seiter, 2009; Smrithi Rekha et al., 2009;
Williams & Shin, 2006; Xing, 2010)
Other (Liu, 2005) 1
Not specified (Shockey & Cabrera, 2005) 1
Does not apply (Conlon & Hulick, 2005; Cousin et al., 2002; de Lanerolle et al., | 22
2008; Ellis & Hislop, 2011; Ellis, Hislop, Chua, & Dziallas, 2011;
Ellis & Morelli, 2008; Ellis et al., 2008; Ellis, Purcell, & Hislop,
2012; Gehringer, 2011; Gokhale et al., 2012; Kamthan, 2007; Kon
et al., 2011; Megias et al., 2009; Meneely et al., 2008; Morelli et
al.; 2007, 2009; Nachbar, 1998; O’Hara & Kay, 2003; Spinellis,
2006; Tucker et al., 2011; Whitehurst, 2009; Yamakami, 2012)

2008; Toth, 2006; Zhang & Su, 2007). It is worth noting that Costa-Soria and
Pérez (2009) also address the specific area of software maintenance.

We also distinguished studies whose goal is to learn SE concepts and principles by
using OSP from studies that aim to learn about open source software. We identified
40 studies that addressed only the former goal, 18 that addressed only the latter,
while 14 addressed both goals (Facet 6 - Approach Goal). Table 13 shows the
articles in each category. This shows that regardless the relevance of learning the
OSS process, most authors have sought to improve learning in software engineering
using OSP.

3.3. Fitting OSP into Students’ Activities

The map in Figure 3 shows how open source projects have been integrated into
students’ activities. The goal was to summarize the methods reported by the stud-
ies. Thus, we produced the second map as a combination of the Facet 8 - Control
Level with the Facet 7 - Curriculum Choice and Facet 9 - Project Choice.

Table 14 shows the results for the Facet 7 - Curriculum Choice. Most stud-
ies embodied OSP into the course syllabus (38 articles). In a different approach,
10 studies used OSP in extra activities, while five studies used OSP in capstone
projects. It is worth noting that six papers described the use of more than one ap-
proach: Smrithi Rekha et al. (2009) incorporated OSP in extra activities, capstone
project and a regular course; Toth (2006) and Stroulia et al. (2011) used OSP
in extra activities and capstone projects; Ellis, Hislop, et al. (2012) and Hislop
et al. (2009) included OSP in extra activities and courses; and, Kussmaul (2009)
embedded OSP in capstone projects and courses.

The information available in the papers led us to conclude that most courses with
embedded open source projects were compulsory. We detected only three papers

15

March 19, 2015

Computer Science Education journal-CSE-2014-main

Table 13. Studies classified by Facet 6 - Approach Goal

Category

Studies

Learning SE

Learning

0SS

Both

(Allen et al., 2003; Boldyreff et al., 2009; Buchta et al., 2006; Costa-
Soria & Pérez, 2009; Ellis, Hislop, Chua, & Dziallas, 2011; Ellis, Hislop,
& Morelli, 2011; Ellis, Hislop, et al., 2012; Ellis & Morelli, 2008; Ellis,
Purcell, & Hislop, 2012; Gokhale et al., 2012; Hepting et al., 2008; Hislop
et al., 2009; Kon et al., 2011; Kume et al., 2006; Kussmaul, 2009;
Li et al., 2009; Liu, 2005; Lutfiyya & Andrews, 2000; Marmorstein,
2011; McCartney et al., 2012; Meiszner et al., 2009; Nachbar, 1998;
Nandigam et al., 2008; O’Hara & Kay, 2003; Papadopoulos et al., 2012;
Petrenko et al., 2007; Qian & Fu, 2008; Raj & Kazemian, 2006; Santore
et al.; 2010; Shockey & Cabrera, 2005; Smrithi Rekha et al., 2009; Sowe
& Stamelos, 2007; Sowe et al., 2006; Spinellis, 2006; Stroulia et al.,
2011; Tao & Nandigam, 2006; Toth, 2006; Williams & Shin, 2006;
Xing, 2010; Zhang & Su, 2007)

(Beaufait et al., 2011; Budd, 2009; Conlon & Hulick, 2005; de Lanerolle
et al., 2008; Ellis & Hislop, 2011; German, 2005; Horstmann, 2009;
Jaccheri & Osterlie, 2007; Kilamo, 2010; Krogstie, 2008; Lundell et
al., 2007; Martinez, 2009; Megias et al., 2009; Morelli & de Lanerolle,
2009; Morelli et al., 2007; Robles et al., 2008; Seiter, 2009; Tucker et
al., 2011)

(Auer et al., 2011; Carrington, 2003; Chen et al., 2008; Cousin et al.,
2002; Ellis, Morelli, de Lanerolle, Damon, & Raye, 2007; Ellis, Morelli, de
Lanerolle, & Hislop, 2007; Ellis et al., 2008; Gehringer, 2011; Kamthan,
2007; Meneely et al., 2008; Morelli et al., 2009; Sabin, 2011; Whitehurst,
2009; Yamakami, 2012)

Control
Level

@@@ @@

--- No control ——@————

- - - Inside fontrol - —@ ---

1
1
1
1
———@———@—— Ful gpntrol === === {(D----r----
1
1
1
1
1

1 1

1 1

1 1

1 1

1 1

1. [

1 1

1 1 1
1 1 1
1 1 1
1 1 1
! Inside ipitiative/ ! !

@ . Externallapproval @ :_ r . @

1 1 1
1 1 1
1 1 1
1 1 1
1 L

1 1

1 1

1 1

1 1

1 1

18

14

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
r r I
1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
Bt ------ \--- Doesnptapply ---L- - ----- - -
Approach : : : : : : : :
Inside t t t t + t + + + +
Curriculum Capstone Course Does Extra Not Choice Does Free Not Predefined
project not activity specified list not choice specified
apply apply

Figure 3. Curriculum Choice versus Control Level versus Project Choice

Project
Choice

to present experiences in elective courses (Horstmann, 2009; Qian & Fu, 2008;
Seiter, 2009). Qian and Fu (2008) cover component-based software development
using a large number of open source components, Horstmann (2009) and Seiter
(2009) address the open source software development process. However, Horstmann
describes experiences with both undergraduate and graduate students. We also
identified four papers that report experiences only in Masters’ courses: one case
in the University of Victoria, Canada (German, 2005), another in the University
of Skévde, Sweden (Lundell et al., 2007), and the other two in the Universitat

16

March 19, 2015

Computer Science Education journal-CSE-2014-main

Table 14. Studies classified by Facet 7 - Curriculum Choice
Category Studies #
Extra activity (Beaufait et al., 2011; Boldyreff et al., 2009; Chen et al., 2008; Ellis, | 10

Hislop, et al., 2012; Ellis, Morelli, de Lanerolle, Damon, & Raye, 2007;

Hislop et al., 2009; Jaccheri & Osterlie, 2007; Smrithi Rekha et al.,

2009; Stroulia et al., 2011; Toth, 2006)

Capstone Project | (Kussmaul, 2009; Martinez, 2009; Smrithi Rekha et al., 2009; 5

Stroulia et al., 2011; Toth, 2006)

Course (Allen et al., 2003; Buchta et al., 2006; Budd, 2009; Carrington, | 38

2003; Costa-Soria & Pérez, 2009; Ellis, Hislop, et al., 2012; Ellis,

Morelli, de Lanerolle, & Hislop, 2007; German, 2005; Hepting et

al., 2008; Hislop et al., 2009; Horstmann, 2009; Kilamo, 2010;

Krogstie, 2008; Kume et al., 2006; Kussmaul, 2009; Liu, 2005;

Lundell et al., 2007; Lutfiyya & Andrews, 2000; Marmorstein, 2011;

McCartney et al., 2012; Meiszner et al., 2009; Morelli & de Lanerolle,

2009; Nachbar, 1998; Nandigam et al., 2008; Papadopoulos et al.,

2012; Petrenko et al., 2007; Qian & Fu, 2008; Raj & Kazemian,

2006; Robles et al., 2008; Sabin, 2011; Santore et al., 2010; Seiter,

2009; Smrithi Rekha et al., 2009; Sowe & Stamelos, 2007; Sowe et

al., 2006; Tao & Nandigam, 2006; Williams & Shin, 2006; Xing,

2010)

Not specified (Auer et al., 2011; Ellis, Hislop, & Morelli, 2011; Shockey & Cabrera, 3

2005)

Does not apply (Conlon & Hulick, 2005; Cousin et al., 2002; de Lanerolle et al., | 23

2008; Ellis & Hislop, 2011; Ellis, Hislop, Chua, & Dziallas, 2011;

Ellis & Morelli, 2008; Ellis et al., 2008; Ellis, Purcell, & Hislop, 2012;

Gehringer, 2011; Gokhale et al., 2012; Kamthan, 2007; Kon et al.,

2011; Li et al., 2009; Megias et al., 2009; Meneely et al., 2008;

Morelli et al., 2007, 2009; O’Hara & Kay, 2003; Spinellis, 2006;

Tucker et al., 2011; Whitehurst, 2009; Yamakami, 2012; Zhang &

Su, 2007)

Oberta de Catalunya, Spain (Martinez, 2009; Robles et al., 2008). All of them
cover content about OSS development process and communities. Finally, we found
approaches based on extra activities, where OSP were applied with a research
perspective, blending research, learning and development (Beaufait et al., 2011;
Boldyreff et al., 2009; Chen et al., 2008; Jaccheri & Osterlie, 2007).

With the Facet 8 - Control Level, we classified studies in an increasing level of
control, according to how much faculty/staff controlled students’ activities (see
Table 15). Results showed 15 studies with no control. In these studies, assignments
should contribute to the OSP based on community requests, and contributions
should be approved by these communities. In this case, instructors only moni-
tor students’ activities. As an example, Marmorstein (2011) proposes a SE course
where students learn about software development processes and project manage-
ment practices by participating in one open source community. In this study, after
deciding which community to contribute with, students submit a short proposal for
instructor’s approval. This document describes the chosen community and contri-
butions they intend to make. This document is used to ensure variety and exposure
to tasks with the appropriate level of difficulty. To encourage students to manipu-
late source code as early as possible, and to initiate communication with develop-
ers, students have to submit a resource report summarizing needed development
resources and available project documentation. Afterwards, students implement
their contributions. Students are assessed not only by the contributions they make
(e.g., new feature, bug fixing, bug report, documentation), but also if those are
accepted by project developers and become part of the software.

We uncovered four papers (Ellis, Morelli, de Lanerolle, Damon, & Raye, 2007;
Ellis, Morelli, de Lanerolle, & Hislop, 2007; Morelli & de Lanerolle, 2009; Raj &
Kazemian, 2006) where faculty work together with students to propose features
to be built, which, once ready, are submitted to community approval (inside ini-

17

March 19, 2015

Computer Science Education journal-CSE-2014-main

Table 15. Studies classified by Facet 8 - Control Level
Category Studies #
No control (Beaufait et al., 2011; Boldyreff et al., 2009; Budd, 2009; German, | 15

2005; Horstmann, 2009; Jaccheri & Osterlie, 2007; Krogstie, 2008;

Lundell et al., 2007; Lutfiyya & Andrews, 2000; Marmorstein, 2011;

Martinez, 2009; Meiszner et al., 2009; Papadopoulos et al., 2012;

Sowe & Stamelos, 2007; Sowe et al., 2006)

Inside initiative / | (Ellis, Morelli, de Lanerolle, Damon, & Raye, 2007; Ellis, Morelli, 4

External approval de Lanerolle, & Hislop, 2007; Morelli & de Lanerolle, 2009; Raj &

Kazemian, 2006)

Inside control (Buchta et al., 2006; Carrington, 2003; Costa-Soria & Pérez, 2009; | 15

Hepting et al., 2008; Kume et al., 2006; Kussmaul, 2009; McCartney

et al., 2012; Nandigam et al., 2008; Petrenko et al., 2007; Qian

& Fu, 2008; Santore et al., 2010; Seiter, 2009; Tao & Nandigam,

2006; Toth, 2006; Xing, 2010)

Full control (Allen et al., 2003; Auer et al., 2011; Chen et al., 2008; Kilamo, 9

2010; Liu, 2005; Robles et al., 2008; Sabin, 2011; Shockey &

Cabrera, 2005; Williams & Shin, 2006)

Not specified (Ellis, Hislop, & Morelli, 2011; Ellis, Hislop, et al., 2012; Hislop et 6
al., 2009; Nachbar, 1998; Smrithi Rekha et al., 2009; Stroulia et
al., 2011)

Does not apply (Conlon & Hulick, 2005; Cousin et al., 2002; de Lanerolle et al., | 23

2008; Ellis & Hislop, 2011; Ellis, Hislop, Chua, & Dziallas, 2011;
Ellis & Morelli, 2008; Ellis et al., 2008; Ellis, Purcell, & Hislop, 2012;
Gehringer, 2011; Gokhale et al., 2012; Kamthan, 2007; Kon et al.,
2011; Li et al., 2009; Megias et al., 2009; Meneely et al., 2008;
Morelli et al., 2007, 2009; O’Hara & Kay, 2003; Spinellis, 2006;
Tucker et al., 2011; Whitehurst, 2009; Yamakami, 2012; Zhang &
Su, 2007)

tiative/external approval category). The first three cited papers describe the same
project, HFOSS, which we discuss in the Long-Term Projects subsection. The other
paper discusses the role that OSP can play in computer science courses to enhance
student learning (Raj & Kazemian, 2006). In the case reported, students have
to i) choose one project from one list, ii) further examine the chosen project and
propose improvements based on areas identified by the teacher, iii) work on their
proposals, and iv) discuss their contributions with the OSS community.

We located 15 papers with inside control. In this case, there is no needed inter-
action with the community. In general, the instructor uses a project as an inde-
pendent, internal branch. We illustrate this approach with two examples. In the
method proposed by Costa-Soria and Pérez (2009), each student has to reverse en-
gineer a selected open source project, outline the software architecture, identify the
concerns of a particular subsystem, isolate one of these concerns, and ultimately,
perform changes related to the concern in this subsystem. Santore et al. (2010)
report an experience where students work with requirements, design, implementa-
tion and tests to produce a graphical user interface to Subversion, an open source
version control system. In both examples, no interaction with the OSP community
is required.

Lastly, we detected nine studies where the OSP community core are the fac-
ulty/staff themselves. Projects were created inside the university and have been
supported by it (full control). Allen et al. (2003) present an example of this ap-
proach. They use Dr.Java, an open source software created in Rice University, to
teach extreme programming in a software engineering course. Dr.Java is an inte-
grated development environment (IDE) that aims to facilitate beginners starting
to code in Java. During the course reported on this article, students had to answer
to bug reports, feature or support requests from users. Besides the project team, all
people that use DrJava (e.g., instructors of other institutions, other instructors and
students from Rice) participate in the project. The project uses the infrastructure

18

March 19, 2015

Computer Science Education journal-CSE-2014-main

Table 16. Studies classified by Facet 9 - Project Choice
Category Studies #
Predefined (Allen et al., 2003; Auer et al., 2011; Beaufait et al., 2011; Boldyreff | 21

et al., 2009; Buchta et al., 2006; Chen et al., 2008; Ellis, Morelli, de

Lanerolle, Damon, & Raye, 2007; Ellis, Morelli, de Lanerolle, & Hislop,

2007; Hepting et al., 2008; Kilamo, 2010; Krogstie, 2008; Liu, 2005;

Morelli & de Lanerolle, 2009; Nandigam et al., 2008; Petrenko et al.,

2007; Sabin, 2011; Santore et al., 2010; Shockey & Cabrera, 2005;

Stroulia et al., 2011; Tao & Nandigam, 2006; Williams & Shin, 2006)

Choice list (Carrington, 2003; Jaccheri & @sterlie, 2007; Kussmaul, 2009; Lutfiyya 7

& Andrews, 2000; Raj & Kazemian, 2006; Seiter, 2009; Xing, 2010)

Free choice (Budd, 2009; German, 2005; Horstmann, 2009; Lundell et al., 2007; | 12

Marmorstein, 2011; Martinez, 2009; McCartney et al., 2012; Pa-

padopoulos et al., 2012; Qian & Fu, 2008; Sowe & Stamelos, 2007;

Sowe et al., 2006; Toth, 2006)

Not specified (Costa-Soria & Pérez, 2009; Ellis, Hislop, & Morelli, 2011; Ellis, Hislop, 8

et al., 2012; Hislop et al., 2009; Kume et al., 2006; Meiszner et al.,

2009; Nachbar, 1998; Smrithi Rekha et al., 2009)

Does not apply | (Conlon & Hulick, 2005; Cousin et al., 2002; de Lanerolle et al., 2008; | 24

Ellis & Hislop, 2011; Ellis, Hislop, Chua, & Dziallas, 2011; Ellis & Morelli,

2008; Ellis et al., 2008; Ellis, Purcell, & Hislop, 2012; Gehringer, 2011;

Gokhale et al., 2012; Kamthan, 2007; Kon et al., 2011; Li et al., 2009;

Megias et al., 2009; Meneely et al., 2008; Morelli et al., 2007, 2009;

O’Hara & Kay, 2003; Robles et al., 2008; Spinellis, 2006; Tucker et al.,

2011; Whitehurst, 2009; Yamakami, 2012; Zhang & Su, 2007)

provided by SourceForge. Three experienced students work as project managers,
assisting teachers to determine project priorities, and supervising teams of two to
six students. Experienced students are students that had already passed the course
and later worked as developers in the project. These students are important to
sustain the project and they work on it either as paid research assistants or for
credit.

As previously discussed (Section 3.1), finding a suitable project is a great chal-
lenge when adopting OSP in computing courses. Regardless of being a difficult task,
it must be done by either instructors or students. The Facet 9 - Project choice gives
us a view of how the selected studies deal with this issue. We identified 21 studies
where instructors define the project students will work with, seven studies where
instructors provide a list of projects students can choose from, and 12 studies where
students can choose any open source project of their interest. Table 16 shows the
studies classified in each category.

Elaborating on this facet, we uncovered that Hepting et al. (2008) use a pre-
defined project for their students, although, in the end, authors decided to allow
students to select a project that better matches their interests in future editions
of the course. In another example, although students could freely choose their
projects, they appreciated the instructor’s help on this task (Sowe et al., 2006). In
the Choice list category, Carrington (2003) provides a list of OSP, but encourages
students to seek and suggest other projects. In two additional papers, the list is
restricted to a specific domain area. In their example, Raj and Kazemian (2006)
focus on OSS database systems, while in Seiter’s (Seiter, 2009), it is on content
management systems.

A careful look at Figure 3 shows that studies with full control level are also pre-
defined for students. A single paper escapes this rule, an experience where students
create an OSS from scratch (Robles et al., 2008). No control and inside control
levels had 15 studies each. It is worth noting that while in most no control level
studies, students have free choice over their projects, in the inside control level,
students have no choice since projects are predefined, or, in some cases, students
can choose from a list.

19

March 19, 2015

Computer Science Education journal-CSE-2014-main

Y B P S Wy A
perspective] @ @@ """ @@ @

Software Interviews g " SurQeys Reﬂ‘ectve ‘ Partiéipation
Exams Reports artifacts Seminars Exercises cssay Presentations

Figure 4. Assessment Perspective versus Assessment Type

Still in Figure 3, looking at the Facet 7 - Curriculum Choice and Facet 8 - Control
Level, we realize that inside control is slightly more common in regular courses,
while no control is slightly more common in extra activities. On the other hand,
full control is mainly used in regular courses.

3.4. Assessment of Student Learning

The map in Figure 4 helps to answer the research question on the assessment
of student learning (RQ3). The aim was getting an overview of how assessment
happens in the selected studies. Thus, we built this map combining the Facet 4 -
Assessment Perspective with the Facet 5 - Assessment Type. Studies are described
in Tables 17 and 18, noting that studies could be classified in more than one
category in both tables.

We tried to identify from which perspective studies evaluate students’ learning
(Table 17). We noticed that although assessment is important to evaluate the
effectiveness of any learning approach, 14 studies just do not mention it, and only
three studies specify criteria to assess students’ products. Buchta et al. (2006)
present detailed criteria to evaluate students’ outcomes, while testing results (e.g.,
found bugs, reported bugs, fixed bugs) are used in the other two articles (Sowe &
Stamelos, 2007; Sowe et al., 2006).

Regarding the Facet 4 - Assessment Perspective, Table 17 shows that student per-
spective (28 studies) was more frequently used than faculty perspective (24 studies).
From the studies that mention assessment, 57.6% applied both perspectives (26.4%
from all selected papers). Reading the 72 studies, we detected six studies that ap-
ply Peer Review for grading (Budd, 2009; Ellis, Morelli, de Lanerolle, & Hislop,
2007; Hepting et al., 2008; Papadopoulos et al., 2012; Raj & Kazemian, 2006;
Sabin, 2011), although this instrument is not mandatory in last paper. The study
described by Sabin (2011) was the only selected study to report self-assessment,
which was part of students’ final grade. In this work, besides the teacher’s assess-
ment, students review their own exercises as well as their peers’, and have their
work assessed by students of other teams.

Analyzing Figure 4, we see that software artifacts (17 papers), reports (16 pa-
pers), and presentations (16 papers) were the main instruments used to grade
students (teacher perspective), even though other instruments were used as well.
On the other hand, surveys (19 papers) were the main instrument used to gather
student feedback on their perception of their own learning (student perspective).
For the same purpose, two studies applied reflective essays, and one study used
interviews. Where peer review was applied, other instruments were also used to

20

March 19, 2015

Computer Science Education journal-CSE-2014-main

Table 17. Studies classified by Facet 4 - Assessment Perspective
Category Studies #
Student perspective (Allen et al., 2003; Buchta et al., 2006; Budd, 2009; Carrington, | 28

2003; Chen et al., 2008; Ellis, Hislop, & Morelli, 2011; Ellis,

Hislop, et al., 2012; Ellis, Morelli, de Lanerolle, Damon, & Raye,

2007; Ellis, Morelli, de Lanerolle, & Hislop, 2007; Hepting et al.,

2008; Hislop et al., 2009; Kilamo, 2010; Krogstie, 2008; Kuss-

maul, 2009; Lundell et al., 2007; Marmorstein, 2011; Martinez,

2009; McCartney et al., 2012; Morelli & de Lanerolle, 2009;

Papadopoulos et al., 2012; Petrenko et al., 2007; Qian & Fu,

2008; Raj & Kazemian, 2006; Sabin, 2011; Smrithi Rekha et al.,

2009; Sowe & Stamelos, 2007; Sowe et al., 2006; Xing, 2010)

Teacher perspective (Allen et al., 2003; Buchta et al., 2006; Budd, 2009; Carrington, | 24

2003; Ellis, Morelli, de Lanerolle, Damon, & Raye, 2007; Ellis,

Morelli, de Lanerolle, & Hislop, 2007; German, 2005; Hislop et

al., 2009; Krogstie, 2008; Kussmaul, 2009; Lundell et al., 2007;

Lutfiyya & Andrews, 2000; McCartney et al., 2012; Morelli &

de Lanerolle, 2009; Nandigam et al., 2008; Papadopoulos et al.,

2012; Petrenko et al., 2007; Raj & Kazemian, 2006; Sabin,

2011; Santore et al., 2010; Sowe & Stamelos, 2007; Sowe et al.,

2006; Stroulia et al., 2011; Xing, 2010)

Product perspective (Buchta et al., 2006; Sowe & Stamelos, 2007; Sowe et al., 2006) 3

Not specified (Auer et al., 2011; Beaufait et al., 2011; Boldyreff et al., 2009; | 14

Costa-Soria & Pérez, 2009; Horstmann, 2009; Jaccheri & Osterlie,

2007; Liu, 2005; Meiszner et al., 2009; Robles et al., 2008; Seiter,

2009; Shockey & Cabrera, 2005; Tao & Nandigam, 2006; Toth,

2006; Williams & Shin, 2006)

Does not apply (Conlon & Hulick, 2005; Cousin et al., 2002; de Lanerolle et al., | 25

2008; Ellis & Hislop, 2011; Ellis, Hislop, Chua, & Dziallas, 2011,

Ellis & Morelli, 2008; Ellis et al., 2008; Ellis, Purcell, & Hislop,

2012; Gehringer, 2011; Gokhale et al., 2012; Kamthan, 2007;

Kon et al., 2011; Kume et al., 2006; Li et al., 2009; Megias

et al., 2009; Meneely et al.,, 2008; Morelli et al., 2007, 2009;

Nachbar, 1998; O’Hara & Kay, 2003; Spinellis, 2006; Tucker

et al., 2011; Whitehurst, 2009; Yamakami, 2012; Zhang & Su,

2007)

assess the student (student perspective).

For studies that used some type of assessment, 70% applied more than one instru-
ment. From these, 66.7% simultaneously applied between four and six instruments.
All studies that used both student and faculty perspectives applied at least three
instruments, except for two studies (Allen et al., 2003; Ellis, Morelli, de Lanerolle,
Damon, & Raye, 2007) that did not mention which instruments they applied.

3.5. Distribution of Publications

This section reports on how the research community interest on using OSP in
software engineering education has evolved in the last years. We present a temporal
view of publications, main venues for publication, and the institutions that studied
this subject more thoroughly.

Temporal View. Figure 5 shows the distribution of publications over the years.
Discussions addressing open source software and software engineering education
first show up in 1998, with a few sparse publications over the first years. This rate
rises since 2005, showing a peak in 2009 with 15 studies, a slight fall in 2010, and
a recovery in 2011 (11 articles). It is worth noticing that we performed the search
in October 2012.

Publication Sources. Table 19 presents the distribution of articles by venue, con-
sidering venues that published two or more of the selected articles. The complete
set of publication venues (each with only article from the 72 selected articles) can

21

March 19, 2015

Computer Science Education

Category

journal-CSE-2014-main

Table 18. Studies classified by Facet 5 - Assessment Type

Studies

Exams

Reports

Software arti-
facts

Interviews

Seminars
Exercises
Surveys

Reflective essay
Presentations

Participation

None

Does not apply

(Carrington, 2003; Morelli & de Lanerolle, 2009; Raj & Kazemian, 2006;
Sabin, 2011; Sowe & Stamelos, 2007; Xing, 2010)

(Buchta et al., 2006; Budd, 2009; Carrington, 2003; German, 2005;
Krogstie, 2008; Kussmaul, 2009; Lundell et al., 2007; Lutfiyya & Andrews,
2000; Morelli & de Lanerolle, 2009; Nandigam et al., 2008; Papadopoulos
et al., 2012; Petrenko et al., 2007; Sabin, 2011; Sowe et al., 2006; Stroulia
et al., 2011; Xing, 2010)

(Buchta et al., 2006; Budd, 2009; Carrington, 2003; Ellis, Morelli, de
Lanerolle, & Hislop, 2007; Hepting et al., 2008; Hislop et al., 2009; Krogstie,
2008; Kussmaul, 2009; McCartney et al., 2012; Papadopoulos et al., 2012;
Petrenko et al., 2007; Raj & Kazemian, 2006; Sabin, 2011; Santore et al.,
2010; Sowe & Stamelos, 2007; Sowe et al., 2006; Stroulia et al., 2011; Xing,
2010)

(Buchta et al., 2006; Hislop et al., 2009; Krogstie, 2008; Petrenko et al.,
2007)

(Budd, 2009; German, 2005; Kussmaul, 2009)

(Carrington, 2003; Morelli & de Lanerolle, 2009; Sabin, 2011)

(Buchta et al., 2006; Carrington, 2003; Chen et al., 2008; Ellis, Hislop, &
Morelli, 2011; Ellis, Hislop, et al., 2012; Ellis, Morelli, de Lanerolle, & Hislop,
2007; Hislop et al., 2009; Kilamo, 2010; Marmorstein, 2011; McCartney et
al., 2012; Morelli & de Lanerolle, 2009; Papadopoulos et al., 2012; Petrenko
et al., 2007; Qian & Fu, 2008; Raj & Kazemian, 2006; Smrithi Rekha et
al., 2009; Sowe & Stamelos, 2007; Sowe et al., 2006; Xing, 2010)
(Kussmaul, 2009; Lundell et al., 2007)

(Budd, 2009; Carrington, 2003; Ellis, Morelli, de Lanerolle, & Hislop, 2007;
German, 2005; Krogstie, 2008; Kussmaul, 2009; Lundell et al., 2007;
Lutfiyya & Andrews, 2000; McCartney et al., 2012; Morelli & de Lanerolle,
2009; Nandigam et al., 2008; Papadopoulos et al., 2012; Sabin, 2011; Sowe
& Stamelos, 2007; Sowe et al., 2006; Xing, 2010)

(Buchta et al., 2006; Budd, 2009; German, 2005; Papadopoulos et al.,
2012; Petrenko et al., 2007; Raj & Kazemian, 2006; Sabin, 2011; Sowe &
Stamelos, 2007; Sowe et al., 2006; Stroulia et al., 2011; Xing, 2010)
(Allen et al., 2003; Auer et al., 2011; Beaufait et al., 2011; Boldyreff et
al., 2009; Costa-Soria & Pérez, 2009; Ellis, Morelli, de Lanerolle, Damon,
& Raye, 2007; Horstmann, 2009; Jaccheri & Osterlie, 2007; Liu, 2005;
Martinez, 2009; Meiszner et al., 2009; Robles et al., 2008; Seiter, 2009;
Shockey & Cabrera, 2005; Tao & Nandigam, 2006; Toth, 2006; Williams
& Shin, 2006)

(Conlon & Hulick, 2005; Cousin et al., 2002; de Lanerolle et al., 2008; Ellis
& Hislop, 2011; Ellis, Hislop, Chua, & Dziallas, 2011; Ellis & Morelli, 2008;
Ellis et al., 2008; Ellis, Purcell, & Hislop, 2012; Gehringer, 2011; Gokhale
et al.,, 2012; Kamthan, 2007; Kon et al., 2011; Kume et al., 2006; Li et
al., 2009; Megias et al., 2009; Meneely et al., 2008; Morelli et al., 2007,
2009; Nachbar, 1998; O’Hara & Kay, 2003; Spinellis, 2006; Tucker et al.,
2011; Whitehurst, 2009; Yamakami, 2012; Zhang & Su, 2007)

Number of studies

16

14

12

10

Figure 5. Publications versus Year

22

o[¥

16

18

11

17

25

March 19, 2015 Computer Science Education journal-CSE-2014-main

Table 19. Main Publication Venues
Venue

Frontiers in Education Conference, FIE

Annual Conference on Innovation and Technology in Computer Science Education, ITICSE
ACM Technical Symposium on Computer Science Education, SIGCSE

ASEE Annual Conference and Exposition

Free and Open Source Software (FOSS) Symposium

ACM SIGCSE Bulletin

Conference on Software Engineering Education and Training Workshop, CSEETW
IEEE Software

International Academic MindTrek Conference, MindTrek

International Conference on Computer Supported Education, CSEDU
International Conference on Software Engineering, ICSE

NN NN W W ot T 003k

Table 20. Active Research Communities
Institutions

Trinity College, US

Drexel University, US

Western New England University, US
Aristotle University of Thessaloniki, Greece
North Carolina State University, US
Universitat Oberta de Catalunya, Spain
Bowdoin College, US

Community Leadership Team, Red Hat
Concordia University, Canada

Connecticut College, US

Grand Valley State University, US
Norwegian University of Science and Technology, Norway
University of Connecticut, US

Wayne State University, US

Wesleyan University, US

—
RDNNNRDNDNNNDW®WA SO Gk

be found in our mapping study website!’. Some important journals and confer-
ences from the area of computing education have published the articles: Frontiers
in Education (FIE) Conference, Annual Conference on Innovation and Technology
in Computer Science Education (ITiCSE), ACM Technical Symposium on Com-
puter Science Education (SIGCSE), among others. Nonetheless, we also uncovered
articles published in more general venues, whose focus is not education (IEEE Com-
puter Journal, Communications of the ACM) or venues focused on specific areas,
such as software engineering (IEEE Software, International Conference on Soft-
ware Engineering - ICSE, Brazilian Symposium on Software Engineering - SBES)
or open source software (International Conference on Open Source Systems, Free
and Open Source Software Symposium).

One important remark is that studies presented in the ITiCSE and SIGCSE

conferences were also published in the ACM SIGCSE Bulletin. To not duplicate
results, we decided to count only the conferences. However, the database engines
reported two studies only in the SIGCSE Bulletin (Hepting et al., 2008; Santore
et al., 2010). The authors of one such study (Santore et al., 2010) reported that
it was submitted directly to the Bulletin.
Active Research Communities. To learn which institutions have studied stu-
dent participation in OSP as an approach to learn SE, we looked at affiliation
details in our selected studies. Table 20 summarizes the communities that had at
least two selected publications in this mapping study. Overall, we found 68 insti-
tutions working on this theme.

According to Table 20, Trinity College, Drexel University and Western New Eng-
land University produced the largest number of studies. Since all of these studies,

10https://sites.google.com/site/dmcnascimento/mapping

23

March 19, 2015

Computer Science Education journal-CSE-2014-main

including contributions of Bowdoin College, Connecticut College, and Wesleyan
University, are related to the Humanitarian FOSS — Free and Open Source Soft-
ware — Project (see Section 3.6), we identified an important research community,
not only for the number of published studies, but also due to the number of involved
institutions.

We can highlight another active research community, based on Aristotle Uni-
versity of Thessaloniki (Greece). This institution has studies in collaboration with
The Open University (UK) (Meiszner et al., 2009), United Nations University
(The Netherlands) (Papadopoulos et al., 2012) and the Technological Education
Institute (Greece) (Sowe et al., 2006) (see Section 3.6).

The article of Stroulia et al. (2011) has contributions from University of Alberta
and University of Toronto, both in Canada. However, the authors reported that
25 universities participated in the Undergraduate Capstone Open-Source Project
(UCOSP), object of their study.

The Free Technology Academy!! is a virtual campus, supported by the collabo-
ration of Universitat Oberta de Catalunya, in Spain, Instituto Superior de Ciencias
do Trabalho e da Empresa, in Portugal, the Open University Netherlands, and the
Free Knowledge Institute, in Netherlands (Megias et al., 2009).

Ellis, Hislop, Chua, and Dziallas (2011) and Whitehurst (2009) cite Oregon State
University (US) and Seneca College (Canada) as academic institutions that had
already recognized the benefits of OSS involvement for student learning. They
included open source development in their formal program and created specific
labs or centers for this subject. While Whitehurst (2009) add North Carolina State
University (US) to this list, Ellis, Hislop, Chua, and Dziallas (2011) cite Rochester
Institute of Technology (US) and Rensselaer Polytechnic Institute (US). In our
research, we found three articles with contributions from North Carolina State
University (Gehringer, 2011; Meneely et al., 2008; Williams & Shin, 2006),
one article with contributions from Oregon State University (Budd, 2009) and one
from Rochester Institute of Technology (Raj & Kazemian, 2006). We did not find
papers related to Seneca College or to Rensselaer Polytechnic Institute. This shows
that there can be other initiatives unreported by the scientific community.

On the other hand, there are also initiatives from OSS communities and com-
panies. Whitehurst (2009) cites Google’s Summer of Code (GSoC) program, that,
along the years, has involved more than 1,500 students in several OSP. Red Hat in-
vited interested teachers to take part in POSSE (Professors’ Open Source Summer
Experience), a workshop to introduce tools and practices of open source commu-
nities, and also to provide support and mentoring during the school year (Ellis,
Hislop, Chua, & Dziallas, 2011). Red Hat Community leadership team contributes
in two articles as well (Ellis, Hislop, Chua, & Dziallas, 2011; Whitehurst, 2009).

Ellis, Hislop, Chua, and Dziallas (2011) also highlight the existence of commu-
nities interested in aiding instructors in teaching and involving students in OSP:
TeachingOpenSource.org'?, the SoftHum'® and HumIT '# projects.

Finally, we also found the openSE!, a virtual environment whose goal is to
gather academy, open source projects and companies to combine formal and in-
formal learning, and stimulate practical experiences, among other goals. Several

Uhttp://ftacademy.org

12http:/ /teachingopensource.org
Bhttp:/ /www.xcitegroup.org/softhum
Mhttp:/ /www.xcitegroup.org/humit
http://www.opense.net

24

March 19, 2015

Computer Science Education

journal-CSE-2014-main

Table 21. Studies with solutions applied in the long term

Study

Objective

Period

(Qian & Fu, 2008)

(Toth, 2006)
(Jaccheri & Osterlie,
2007)

(Chen et al., 2008)
(Sabin, 2011)

(Stroulia et al., 2011)

(Budd, 2009)

Describes a course model for teaching
Component-Based Software Develop-
ment (CBSD) using open source com-
ponents.

Presents author’s experiences with stu-
dents using and extending open source
software engineering tools.

Reports authors’ experience using prin-
ciples from action research, blended re-
search, development and OSP.
Describes GamesCrafters, a research
and development group that works with
an open-source Al architecture.
Discusses the challenges to engage stu-
dents in OSP proposed by clients.

Reports authors’ experience with the
Undergraduate Capstone Open-Source
Project.

Describes a course in open source de-

For four years before publication in
2008).

4 times: 2000-2001, 2003-2004,
2004-2005 and 2005-2006.

For five years since 2002.

Since 2001 (study was published in
2007).

One experience during Fall 2010
and two experiences during Spring
2011.

Fall 2008, Winter 2009, Fall 2009,
Winter 2010, Fall 2010, and Winter
2011.

2 years.

velopment.

institutions, such as Sociedade Portuguesa de Inovagao, Aristotle University of
Thessaloniki, Tampere University of Technology, UNU-MERIT, The Open Univer-
sity, among others, take part in this initiative.

3.6. Long-Term Projects

As we read the articles included in the mapping, we tried to capture the maturity
of the solution proposal in each study, through how long or how many times it had
been applied. Moreover, we also recognized that some studies are strongly related
to others. To clarify this relationship between articles, we analyzed institutions,
authors and content of the studies.

Table 21 presents studies whose solution proposal was applied twice or more.
One can observe that very few cases did so. Hence, most studies identified in this
mapping likely applied the proposed solution only once.

In a different thread, Figure 6 shows the cases where more than one published
study is related to the same project.

In Figure 6, each linked set of nodes represents one identified project. The largest
project, with 15 articles, is the Humanitarian FOSS Project (HFOSS project). As
discussed in Section 3.5, the HFOSS project involves various universities and aims
to revitalize undergraduate computing courses in the United States by building
open source software that benefits non-profit organizations (de Lanerolle et al.,
2008). The project began in 2006 (first publication in 2007). Since this year, many
students and faculty have engaged in developing various OSS systems to benefit
humanity (Tucker et al., 2011). In our search, we found some papers that describe
the project and its status (de Lanerolle et al., 2008; Ellis & Morelli, 2008; Ellis,
Morelli, de Lanerolle, Damon, & Raye, 2007; Ellis, Morelli, de Lanerolle, & Hislop,
2007; Ellis et al., 2008; Morelli et al., 2007, 2009; Tucker et al., 2011), three
studies over the years that reported results from students’ perspective on what
they learned when they took part in an HFOSS project (Ellis, Hislop, & Morelli,
2011; Ellis, Hislop, et al., 2012; Hislop et al., 2009), and four articles with general
proposals, not specifically related to humanitarian open source but for any open
source project (Ellis & Hislop, 2011; Ellis, Hislop, Chua, & Dziallas, 2011; Ellis,

25

March 19, 2015 Computer Science Education journal-CSE-2014-main

2006 2007 . 2008 . 2009 . 2010 2011 . 2012

Ellis,
Morelli,
de
Lanerolle
, Damon,
& Raye

de

Ellis,
Purcell,
& Hislop

Lanerolle
etal.

. Ellis &
P Morelli

Morelli &
de
Lanerolle

HFOSS

General
Proposal

Ellis,
Hislop,
Chua, &
Dziallas

Ellis,
Morelli,
de
Lanerolle,
& Hislop

& Morelli
& etal

Experiences using OSP in a software gngineering introductory course

Sowe). Sowe & . \@ » 0 N Papadopoulos
etal. 4 Stamelos » :'\et_ay . . w etal.
Teaching software evolution

Buchta Petrenko
etal. A etal.

Ellis,
Hislop, &
Morelli

Results

Morelli
etal.

Status

Figure 6. Long Term Projects

Purcell, & Hislop, 2012; Morelli & de Lanerolle, 2009).

As described in Section 3.5, Aristotle University of Thessaloniki, in collabora-
tion with other universities, has developed another long-term project. The first
published study was in 2006, where Sowe et al. (2006) propose a framework for
teaching software testing using OSS in a SE introductory course. However, in this
case, only volunteering students participated. In the second paper, Sowe and Stame-
los (2007) extended the first paper with more details, including the results of two
applied surveys. In 2009, Meiszner et al. (2009) report not only the pilot project of
2005/2006, but also other experiences of 2006/2007, where students could test or
develop an OSS, and of 2007/2008, where students should use only OSS to either
test, develop or write a requirement specification document for an OSS system.
Nevertheless, the focus of this latter study, as part of the FLOSSCom project, is
to propose a hybrid learning environment, with the same tools usually found in
OSS communities. Thus, in the 2008/2009 experiment, students not only practiced
with OSP, but also participated in the process of knowledge construction. In the
last selected study, Papadopoulos et al. (2012) show details of the instructional
method applied since 2008/2009, and report results of students’ opinion about the
method, over the previous three years.

Petrenko et al. (2007) extend the work of Buchta et al. (2006). Both used OSP to
teach software evolution, following a specific software change process model. While
Buchta et al. (2006) mentioned that the project began in Fall 2004, Petrenko et
al. (2007) compared results between offered courses in Fall 2004 and Fall 2005.
Building from the experience in this long-term project, Rajlich, one of the authors
of these papers, published a book intended to aid teaching software engineering
from a software change perspective (Rajlich, 2012).

26

March 19, 2015

Computer Science Education journal-CSE-2014-main

4. Discussion and Limitations

The results previously reported are discussed below, together with the limitations
of our research.

4.1. Discussion

Subject of interest. Open source software has played an important role in soft-
ware industry, with competitive solutions in various domains comparing to pro-
prietary software. This caused a growth of interest in this subject not only in
academia, but also in government and industry. In industry, some companies may
sometimes see OSS as a rival. For example, Microsoft has once argued against
adopting GNU /Linux (Lessig, 2010). Other companies have become OSP partici-
pants (Carrington, 2003). Others have even changed their business models (Megias
et al., 2009). IBM Corporation, once an important advocate of intellectual property
rights for computer programs, presently contributes to the development of Linux
and other OSP. Furthermore, it has also released the Eclipse IDE as an open source
software, supporting and extending it (Samuelson, 2006). Governments have en-
couraged their agencies to use OSS (Auer et al., 2011; Lessig, 2010), because
of their quality, low cost and the independence they provide. Finally, academia
sees OSS both as a new software development process'6, as a source of examples
of large software that solves real world needs, and as accessible real development
environments that students can take part in.

Various universities have published articles on either teaching open source or us-
ing OSP to learn SE concepts and principles, mostly in the latest seven years. We
found several studies from the United States, Canada and Europe (mainly from
Greece, Spain, Norway and the Netherlands, and some from the United King-
dom, Sweden, Finland and France). We also uncovered papers from Latin America
(Brazil and Puerto Rico), Asia (Japan and China) and Oceania (Australia).

Studies are very diverse in aim. Some use OSP to attract and motivate stu-
dents in computing courses, while others provide guidance on introducing OSP
in the curriculum. Yet others propose platforms, web applications and learning
approaches.

In summary, the results presented in this mapping study provide evidence that
the research community is interested in the topic, for its relevance and broad range.
Need for more rigorous research methods. One of our main findings is that
most studies are not deeply concerned with research methods: among the relevant
selected papers, we may cite two case studies, one action research, but no experi-
ments, which seems to be in sharp contrast with the recent growth of evidence-based
software engineering. Software engineering research is slowly adopting increasing
scientific rigor in the latest years. Moreover, software engineering education is an
interdisciplinary area. As such, it can strongly benefit not only from SE research
methods, but also from research methods from areas such as sociology, anthro-
pology, pedagogy and communication. Thus, it seems relevant to identify which
research methods are more appropriate in this intersection, in order to achieve
better results in this interdisciplinary area.

16Robles et al. (2008) mention “software engineering in libre software environments”, while German (2005)
uses the term “open source software engineering”.

27

March 19, 2015

Computer Science Education journal-CSE-2014-main

Learning approach. Given the large variety of OSS systems, with different sizes,
domains and complexity, we believe they are an important source of examples to
teach software design, architecture and quality (Brown & Wilson, 2012). Nonethe-
less, we found very few studies to describe these issues in, say, a case-based learning
approach. Only three reported this type of experience: two of them related to soft-
ware design and architecture, and one of them, to software evolution.

No selected study focuses on learning the areas of requirements or configuration
management, despite the large use of configuration management and issue tracking
tools in OSP. We believe that these specific areas may benefit from an active
engagement with OSP and their associated tools.

Meiszner et al. (2009) point out some learning features of the OSP experience:
self-learning, project-/problem-/inquiry-based learning, collaborative learning, and
reflective practice. However, very few studies cite these learning approaches, and
none of them provides details on how to design and implement pedagogical practices
that result in effective learning of SE skills.

Fitting OSP into the Academic System. We developed three facets to describe
how OSP fit into the existing academic framework in the selected studies. We
identified some trends after analyzing the results.

First, Facet 7 - Curriculum Choice showed that most studies either use OSP
in regular SE courses or in graduate courses on open source software. Capstone
projects and non-curricular activities account for less than half of the studies.
Then, we noticed a balance between inside control and no control course designs
in the Facet 8 - Control Level. Finally, Facet 9 - Project Choice showed that most
experiences use predefined open source projects to teach software engineering.

Combining Facet 8 - Control Level and Facet 9 - Project Choice, we detected
three particular trends: (i) full control and a predefined project, (ii) no control and
free choice projects, and (iii) inside control and either a predefined project or a
choice list of some OSP.

For each category in each facet, we discuss below the benefits and drawbacks
regarding issues such as: formal structure of educational systems, student motiva-
tion, student overload, instructor effort, sustainability of the initiative, and learning
objectives.

In (Facet 7 - Curriculum Choice), we suggest that instructors should consider
some issues before choosing a project: (i) a regular course has time constraints
(“term-based”) and should cover specific content for its duration; (ii) less time
constraints are present in capstone projects, where advisors and students decide
together on the content; and (iii) non-curricular activities provide free choice of
goals and generally impose no time constraints.

In Section 3.1, we assert that project choice is a challenge. Some criteria have been
proposed to help cope with this task, as in the framework provided by Ellis, Purcell,
and Hislop (2012). Besides these criteria, one also has to decide who chooses the
projects, whether students or faculty. Whoever does, the following issues should be
considered: (i) even with appropriate criteria, choosing a project demands effort; (ii)
project choice influences on how much support teachers should provide students;
(iii) project choice by students may positively influence their motivation.

Some studies assert that teachers should help students whenever they need. In-
structors should manage students’ expectations, and provide guidance as well as
hands-on assistance (Raj & Kazemian, 2006). The level of support the instructor
can provide depends on his or her knowledge of the project. Xing (2010) highlights
that teachers should be familiar with the projects, while Gehringer (2011) claims

28

March 19, 2015

Computer Science Education journal-CSE-2014-main

that they should be personally involved in the project development. Moreover,
Budd (2009) mentions barriers to the existence of more courses on open source
development: few instructors have previous experience with OSS, and there is a
lack of background resources. According to this author, there are trade books, but
no textbooks. As a result, both using OSP and teaching OSS demand additional
effort from instructors (Xing, 2010). Various studies mention the need for teach-
ing assistants (Buchta et al., 2006; Petrenko et al., 2007; Sowe & Stamelos,
2007) or mentors in the university or in the community (Budd, 2009; Chen et al.,
2008; Ellis, Hislop, Chua, & Dziallas, 2011; Ellis, Morelli, de Lanerolle, Damon,
& Raye, 2007; Gehringer, 2011; Morelli et al., 2009; Sabin, 2011; Stroulia et
al., 2011). Petrenko et al. (2007) acknowledge that the effort decreases on second
course offerings, when projects are reused and technology does not change.

Student motivation is very important for learning. Motivation can come either
from the student’s interest in participating in a particular OSP, or from contribut-
ing to a non-profit organization in a project that benefits humanity. However, mo-
tivation also decreases when students feel overwhelmed or when no one recognizes
their work.

Each OSP imposes a learning curve on students (Meneely et al., 2008; Xing,
2010; Zhang & Su, 2007). The learning curve may be related to software domain,
size, design, technologies, quality, and (the scarcity of) documentation. The chal-
lenge is admitting students with different backgrounds, but not letting them feel
overwhelmed. To ease this problem, it is important to create an environment that
promotes collaborative learning.

Jaccheri and Osterlie (2007) remind that motivation and interest are important
issues for anyone participating in open source communities. Letting students choose
one project from their own interest increases motivation, hence, the potential for
learning in the free choice category. However, as we have already seen, no project
is appropriate to every learning objective, thus, in this category, the effort required
to find an adequate project is transferred to students. Depending on student ex-
perience, some students may feel overwhelmed with this task and may appreciate
support on project selection (Papadopoulos et al., 2012). On the other hand,
when students freely choose their projects, the ability of an instructor to support
students’ activities decreases substantially, since it is hard to maintain a working
knowledge of each chosen project.

According to Gokhale et al. (2012), it is very difficult for students to find ap-
propriate projects, or even unlikely that they select projects with similar level of
complexity across teams. Therefore, teachers should provide a pool of projects,
from which students select a project of interest (Choice list category). The task
of preparing the list requires effort in advance from instructors, before the course
starts.

In the other extreme of the project choice range (Facet 9), lies the prede-
fined project category, the most frequent choice in the selected studies. Predefined
projects avoid the possibility of project choice by students. However, they allow
the instructor to fully support students, since he or she has a deeper understanding
of the chosen OSP. The instructor can also align students’ assignments to content
and duration of the course. Raj and Kazemian (2006) state two benefits when in-
structors use only one or two OSP. First, the teacher can hold class discussions
on OSP design and code, both before and after changes are performed. Second, a
sustainable development effort may derive, when instructors use the code resulting
from previous offerings of the course as a starting point. These authors point out

29

March 19, 2015

Computer Science Education journal-CSE-2014-main

that previous students can also be invited to present their experience to current
students.

Categories of the Facet 8 - Control Level represent how much control of students’
activities instructors have. Hence, they are directly related to aligning students’
assignments with course content and duration, and to the creation of a sustainable
development effort.

Auer et al. (2011) state that when faculty lead an OSP (full control category),
the project can be steered in a way that educational goals are considered. Instruc-
tors can provide adequate support, documentation, high quality design and code,
comprehensive unit tests, and a development model, all aligned to learning goals
and student assignments. Full control also allows a sustainable development effort.
Student work is not discarded. Newbies reuse and extend code from previous stu-
dents. Students with more experience in the project can work as the community
core team, project managers or teaching assistants. The main challenge of this
choice is to create and sustain a “real” community. One needs to attract experi-
enced developers to the team and users to report bugs and request new features.
Auer et al. (2011) assert that if teachers and students alone participate in the
OSP, there is no improvement to the typical way of teaching and learning SE. The
key to attract other members to the community is software domain. Robles et al.
(2008) state the importance of low barriers for new users, i.e., the system should be
easy to install and use, there should be a minimum level of activity in the project.
Some studies suggest that other teachers and students from the same institution
can work as users (Allen et al., 2003; Auer et al., 2011).

With inside control, the instructor creates an internal branch of the OSP, align-
ing all assignments to the course goals. It requires a deeper understanding of the
project by the instructor. Thus, this category is usually associated with a prede-
fined project, and the instructor is able to provide support for students. Frequently,
students have to understand design and code, develop enhancements and perform
tests. If the instructor decides to continue the branch in a future course offering,
his/her previous effort is reduced, and student work may not be discarded. These
features of inside control make it adequate to case-based learning. All examples
we found of case-based learning (Costa-Soria & Pérez, 2009; Kume et al., 2006;
Nandigam et al., 2008; Tao & Nandigam, 2006; Toth, 2006) but one are also
examples of the inside control. The exception was a single study that proposed a
web application to facilitate case creation (Zhang & Su, 2007).

Inside initiative / external approval is appropriate when there is full integration
between faculty and community. Otherwise the risk of wasting students’ efforts
is large. HFOSS is an example where this integration occurs (Ellis, Morelli, de
Lanerolle, Damon, & Raye, 2007; Ellis, Morelli, de Lanerolle, & Hislop, 2007;
Morelli & de Lanerolle, 2009).

The main issue with the no control choice is that instructors may fail to enforce
good development practices. Students should contribute to open source projects,
attending to requests from their users. This choice allows for a fully “real” envi-
ronment, where students answer to real demands, participate in the community
development process, and interact with users and external developers. This envi-
ronment may foster the development of professional skills related to communica-
tion, problem solving, and confidence, among others. As their contributions will be
evaluated by a third-party, students usually try to do their best.

When this approach is associated with the free choice category, the instructor
only monitors students’ activities. When it exists, mentoring comes from the com-

30

March 19, 2015

Computer Science Education journal-CSE-2014-main

munity. While some OSP are interested in getting student involvement (Lundell
et al., 2007), others are not friendly to coach novices frequently (Ellis, Purcell, &
Hislop, 2012). One challenge of this approach is the time constraints imposed by
academic calendars. It is difficult for students with little or no support to make
significant contributions within a time limit and with simultaneous work in other
courses. Furthermore, lack of experience to code may lead students to contribute
only with documentation and bug reports (German, 2005; Lundell et al., 2007),
even though coding is a relevant skill required in most SE courses. Therefore, teach-
ers should reflect on how to deal with this problem. Papadopoulos et al. (2012)
decided to extend the official lecturing period, allowing students to submit their
assignment results at a later time.

When students submit their work to a OSS community, in general, one of three
situations may happen: (i) the contribution is accepted and added to the project;
(ii) the community asks for some changes or requires additional work; and (iii)
the contribution is not accepted, for different reasons. Each situation may have a
differnt impact on student motivation and learning, sometimes requiring teacher
intervention to better deal with the situation.

Combining no control and free choice seems to be an interesting approach to learn

OSS. Students have a real feeling of the OSS ecosystem, how the community works,
how the development process is organized, what challenges there are. Learning
begins with project selection, when students analyzing features of each candidate
project. It usually includes students experiencing the whole open source process,
making contributions, and using tools such as version control systems and bug
trackers.
Assessment. Despite the scarce references to learning assessment in the selected
papers, some studies assessed the experiences from both the teacher and the student
perspective. They also used various different instruments. The main issues with
the teacher perspective to assessment is the absence of clear definitions of criteria
to assess students’ products, performed tasks, and expected skills and attitudes.
Therefore, it is important to state that student assessment deserves more thorough
work.

Ellis, Morelli, de Lanerolle, and Hislop (2007) point out that students can perform
various types of contributions. Since they have different backgrounds and previous
experiences, they fulfill different roles and perform different contributions. There-
fore, the authors recognize that grading is not an easy task. They suggest the need
to establish a set of metrics for each role a student plays.

Learning how to solve complex problems, and knowing how to work in teams are
relevant skills that are typical requirements in SE education. Thus, students should
develop some skills such as communication and leadership. Peer assessment is one
important instrument to approach this need. Morelli and de Lanerolle (2009) sus-
tain that students should assess their peers in conjunction with teacher assessment
in courses on OSP, even though, the adoption of this practice is still a challenge.

In any active learning approach, students are responsible to conduct their own
learning. A formative evaluation that includes self, peer and faculty assessment
can play an important role in this process. According to Ellis, Purcell, and Hislop
(2012), the iterative development process present in OSP, where any artifact can
be reviewed by different people, and in multiple times, provides an intrinsic and
valuable environment of formative evaluation.

All those issues represent research opportunities to be more thoroughly explored
in the future.

31

March 19, 2015

Computer Science Education journal-CSE-2014-main

4.2. Limitations

Results of this study must be interpreted within the following limitations: (a) pub-
lications that were available after October 2 and 15, 2012 were not accounted for;
(b) first list of studies obtained may be subject to the limitations of the auto-
mated search engines of each digital library used (IEEE, ACM, Scopus, Springer,
Science Direct and Engineering Village); (¢) only studies written in English were
selected; (d) only studies whose full text were available were considered; (e) “snow-
balling” was performed only for the references of relevant selected papers; (f) the
classification of each study was performed by only one reviewer.

5. Conclusion

This work presents a mapping study that summarizes and categorizes information
on how open source projects have been used in the context of software engineering
education. The goal was not to verify the use of open source software as a tool or
computer environment, but to identify initiatives where students participate in the
development effort of open source software, because this allows students to deal
with real projects, often large and complex, such as the ones they will find when
working in industry.

Results show that there are important research communities interested in this
topic, especially in the United States, Canada and Europe. These communities
have produced diverse and interesting initiatives over the years with two general
goals: learning SE concepts and principles by using OSP, followed by learning to
produce open source software.

Some trends and issues emerged from a detailed analysis of the studies: i) solution
proposals are the main research approach; ii) very few papers focus on specific
software engineering areas; iii) the traditional project method is the main learning
approach; iv) most studies use previously chosen OSP in regular courses; v) there
is a balance between inside and no control approaches; and iv) very few papers
use criteria to evaluate students’ learning based on either outcomes or developed
skills. We also found three main combinations of OSP use: a) full control and
predefined projects, b) no control and free choice projects, and c) inside control
with no or almost no project choice for students. These trends and issues provide
future directions for research.

We plan to perform an exploratory mixed-methods research using OSP in an
undergraduate course in software engineering, in order to obtain new insights with
an experience with this approach. We will experiment with a combination of inside
control and a predefined project in a software evolution course, using a combination
of different learning approaches. We also plan to investigate better methods to
assess students’ learning in this context.

Acknowledgment
The authors would like to thank Rodrigo Souza for composing the bubble plot

diagrams, and Kenia Cox, Thiago Almeida and Wendell Sampaio for their partic-
ipation as reviewers in the step of paper screening.

32

March 19, 2015

Computer Science Education journal-CSE-2014-main

References

Allen, E., Cartwright, R., & Reis, C. (2003, January). Production Programming in the
Classroom. ACM SIGCSE Bulletin, 35(1), 89-93.

Aver, L., Juntunen, J., & Ojala, P. (2011, September). Open Source Project as a Peda-
gogical Tool in Higher Education. In Proceedings of the 15th International Academic
MindTrek Conference on Envisioning Future Media Environments (MindTrek ’11)
(pp. 207-213). New York, New York, USA: ACM Press.

Barg, M., Fekete, A., Greening, T., Hollands, O., Kay, J., Kingston, J. H., & Crawford,
K. (2000). Problem-Based Learning for Foundation Computer Science Courses.
Computer Science Education, 10(2), 109-128.

Beaufait, M. P., Chen, D., Dietrich Jr., C. B., Dietrich, C., & Vanhoy, G. M. (2011).
Transition from Undergraduate Research Program Participants to Researchers and
Open Source Community Contributors. In ASEE Annual Conference and Exposition.
Vancouver: ASEE.

Boldyreff, C., Capiluppi, A., Knowles, T., & Munro, J. (2009). Undergraduate Research
Opportunities in OSS. Open Source Ecosystems: Diverse Communities Interacting,
340-350.

Brown, A., & Wilson, G. (Eds.). (2012). The Architecture of Open Source Applications.
lulu.com.

Buchta, J., Petrenko, M., Poshyvanyk, D., & Rajlich, V. (2006, September). Teaching
Evolution of Open-Source Projects in Software Engineering Courses. In 22nd IEEE
International Conference on Software Maintenance (pp. 136-144). IEEE.

Budd, T. A. (2009). A Course in Open Source Development. In Integrating FOSS into
the Undergraduate Computing Curriculum, Free and Open Source Software (FOSS)
Symposium. Chattanooga. Retrieved from http://www.cs.trincoll.edu/~ram/
hfoss/Budd-FO0SS-Course.pdf

Budgen, D., Turner, M., Brereton, P., & Kitchenham, B. (2008). Using Mapping Studies in
Software Engineering. In Proceedings of PPIG 2008 (Vol. 2, pp. 195-204). Lancaster
University.

Carrington, D. (2003). Teaching Software Design with Open Source Software. In 38rd An-
nual Frontiers in Education Conference (FIE) (Vol. 3, pp. S1C-9-S1C-14). IEEE.

Chen, Y., Roytman, A., Fong, P. C., Hong, J., Garcia, D. D., & Poll, D. E. (2008). 200
Students Can’t Be Wrong! GamesCrafters, a Computational Game Theory Under-
graduate Research and Development Group. In AAAT Spring Symposium - Technical
Report.

Conlon, M. P.; & Hulick, F. W. (2005). Is There a Role for Open Source Software in
Systems Analysis ? In Proceedings of ISECON (Vol. 22, pp. 1-7).

Costa-Soria, C., & Pérez, J. (2009, August). Teaching Software Architectures and Aspect-
Oriented Software Development Using Open-Source Projects. ACM SIGCSE Bul-
letin, 41(3), 385.

Cousin, E., Ouvradou, G., Pucci, P., & Tardieu, S. (2002). Picolibre: a Free Collaborative
Platform to Improve Students’ Skills in Software Engineering. In IEEFE International
Conference on Systems, Man and Cybernetics (Vol. vol.4, pp. 564-568). IEEE.

de Lanerolle, T. R., Morelli, R. A., Danner, N., & Krizanc, D. (2008). Creating an
Academic Community to build Humanitarian FOSS: A Progress Report. In the
5th International ISCRAM Conference (pp. 337-341). Washington. Retrieved from
http://www.hfoss.org/uploads/images/ISCRAM2008_deLanerolle_etal.pdf

Ellis, H. J. C., & Hislop, G. W. (2011, June). Courseware: Student Learning via FOSS
Field Trips. In Proceedings of the 16th Annual joint Conference on Innovation and
Technology in Computer Science Education (ITiCSE’11) (p. 329). New York, New
York, USA: ACM Press.

Ellis, H. J. C., Hislop, G. W., Chua, M., & Dziallas, S. (2011, October). How to Involve
Students in FOSS Projects. In 4 1st Annual Frontiers in Education Conference (FIE)

33

March 19, 2015

Computer Science Education journal-CSE-2014-main

(pp. TIH-1-T1H-6). IEEE.

Ellis, H. J. C., Hislop, G. W., & Morelli, R. A. (2011, June). A Comparison of Software
Engineering Knowledge Gained from Student Participation in Humanitarian FOSS
Projects. In Proceedings of the 16th Annual joint Conference on Innovation and
Technology in Computer Science Education (ITiCSE’11) (p. 360). New York, New
York, USA: ACM Press.

Ellis, H. J. C., Hislop, G. W., Rodriguez, J. S., & Morelli, R. A. (2012). Student Software
Engineering Learning via Participation in Humanitarian FOSS Projects. In ASEE
Annual Conference and Ezxposition.

Ellis, H. J. C., & Morelli, R. A. (2008, April). Support for Educating Software Engineers
Through Humanitarian Open Source Projects. In 21st IEEE-CS Conference on
Software Engineering Education and Training Workshop (pp. 1-4). IEEE.

Ellis, H. J. C., Morelli, R. A., de Lanerolle, T. R., Damon, J., & Raye, J. (2007, March).
Can Humanitarian Open-Source Software Development Draw New Students to CS?
ACM SIGCSE Bulletin, 39(1), 551-555.

Ellis, H. J. C., Morelli, R. A., de Lanerolle, T. R., & Hislop, G. W. (2007, July). Holistic
Software Engineering Education Based on a Humanitarian Open Source Project. In
20th Conference on Software Engineering Education € Training (CSEET07) (pp.
327-335). IEEE.

Ellis, H. J. C., Morelli, R. A., & Hislop, G. W. (2008, October). Work in Progress:
Challenges to Educating Students within the Community of Open Source Software
for Humanity. In 38th Annual Frontiers in Education Conference (FIE) (pp. S3H-
7-S3H-8). IEEE.

Ellis, H. J. C., Purcell, M., & Hislop, G. W. (2012, February). An Approach for Evaluating
FOSS Projects for Student Participation. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education - SIGCSE ’12 (pp. 415-420). New
York, New York, USA: ACM Press.

Gehringer, E. F. (2011, October). From the Manager’s Perspective: Classroom Contribu-
tions to Open-source Projects. In /1st Annual Frontiers in Education Conference
(FIE) (pp. F1IE-1-F1E-5). IEEE.

German, D. M. (2005). Experiences Teaching a Graduate Course in Open Source Software
Engineering. In the First International Conference on Open Source Systems (pp.
326-328).

Gokhale, S. S., Smith, T., & McCartney, R. (2012, June). Integrating Open Source
Software into Software Engineering Curriculum: Challenges in Selecting Projects.
In First International Workshop on Software Engineering Education Based on Real-
World Ezperiences (EduRez) (pp. 9-12). IEEE.

Hepting, D. H., Peng, L., Maciag, T. J., Gerhard, D., & Maguire, B. (2008, June). Creat-
ing Synergy Between Usability Courses and Open Source Software Projects. ACM
SIGCSE Bulletin, 40(2), 120-123.

Hislop, G. W., Ellis, H. J. C.; & Morelli, R. A. (2009, August). Evaluating Student
Experiences in Developing Software for Humanity. ACM SIGCSE Bulletin, 41(3),
263-267.

Horstmann, C. S. (2009). Challenges and Opportunities in an Open Source Software
Development Course. In Integrating FOSS into the Undergraduate Computing Cur-
riculum, Free and Open Source Software (FOSS) Symposium. Chattanooga. Re-
trieved from http://www.hfoss.org/symposium09/documentdl/papers/HFOSS\
_Symp-paper24.pdf

Jaccheri, L., & Osterlie, T. (2007, May). Open Source Software: A Source of Possibilities
for Software Engineering Education and Empirical Software Engineering. In First
International Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007) (pp. 1-5). IEEE.

Kamthan, P. (2007). On the Prospects and Concerns of Integrating Open Source Software
Environment in Software Engineering Education. Journal of Information Technology

34

March 19, 2015 Computer Science Education journal-CSE-2014-main

Education, 6, 45-64.

Kilamo, T. (2010, October). The Community Game: Learning Open Source Development
through Participatory Exercise. In Proceedings of the 14th International Academic
MindTrek Conference on Envisioning Future Media Environments (MindTrek ’10)
(pp. 55-60). New York, New York, USA: ACM Press.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature
Reviews in Software Engineering. (EBSE 2007-001). Retrieved from http://www
.citeulike.org/user/akom/article/3955888

Kitchenham, B., Mendes, E., & Travassos, G. H. (2007, May). Cross versus Within-
Company Cost Estimation Studies: A Systematic Review. IFEE Transactions on
Software Engineering, 33(5), 316-329.

Kon, F., Meirelles, P., Lago, N., Terceiro, A., Chavez, C., & Mendonca, M. (2011, Septem-
ber). Free and Open Source Software Development and Research: Opportunities for
Software Engineering. In 25th Brazilian Symposium on Software Engineering (pp.
82-91). IEEE.

Krogstie, B. R. (2008). Power Through Brokering: Open Source Community Participation
in Software Engineering Student Projects. In Proceedings of the 13th International
Conference on Software Engineering (ICSE’08) (pp. 791-800). ACM Press.

Kume, I., Nitta, N., & Takemura, Y. (2006). A Method for Creating Teaching Materials
of Practical Object-Oriented Methods Education. In Learning by Effective Utiliza-
tion of Technologies: Facilitating Intercultural Understanding, Proceeding of the 14th
International Conference on Computers in Education, ICCE 2006.

Kussmaul, C. (2009). Software Projects Using Free and Open Source Software: Opportuni-
ties, Challenges, & Lessons Learned. In ASEE Annual Conference and Exposition.

Lessig, L. (2010). Open Source Baselines: Compare to What? In R. W. Hahn (Ed.),
Government policy toward open source software (p. 114).

Li, W., Zhang, S., & Li, Z. (2009, December). Open Source Movement and Computer Sci-
ence Education Innovation. In International Conference on Information Engineering
and Computer Science (pp. 1-4). IEEE.

Liu, C. (2005). Enriching Software Engineering Courses with Service-Learning Projects
and the Open-Source Approach. In Proceedings of the 27th International Conference
on Software Engineering (ICSE) (pp. 613-614). IEEe.

Lundell, B., Persson, A., & Lings, B. (2007). Learning Through Practical Involvement in
the OSS Ecosystem: Experiences from a Masters Assignment. In J. Feller, B. Fitzger-
ald, W. Sacchi, & A. Sillitti (Eds.), Open Source Development, Adoption and Inno-
vation (pp. 289-294). Springer.

Lutfiyya, H. L., & Andrews, J. H. (2000). Experiences with a Software Maintenance
Project Course. IEEE Transactions on Education, 43(4), 383-388.

Marmorstein, R. (2011, June). Open Source Contribution as an Effective Software Engi-
neering Class Project. In Proceedings of the 16th Annual joint Conference on Inno-
vation and Technology in Computer Science Education (ITiCSE’11) (pp. 268-272).
New York, New York, USA: ACM Press.

Martinez, J. J. M. (2009, November). Learning Free Software Development from Real-
World Experience. In International Conference on Intelligent Networking and Col-
laborative Systems (pp. 417-420). IEEE.

McCartney, R., Gokhale, S. S.; & Smith, T. M. (2012, September). Evaluating an Early
Software Engineering Course with Projects and Tools from Open Source Software. In
Proceedings of the 9th Annual International Conference on International Computing
Education Research (ICER ’12) (pp. 5-10). New York, New York, USA: ACM Press.

Megias, D., Tebbens, W., Bijlsma, L., & Santanach, F. (2009, August). Free Technology
Academy: A Furopean Initiative for Distance Education about Free Software and
Open Standards. ACM SIGCSE Bulletin, 41(3), 70-74.

Meiszner, A., Moustaka, K., & Stamelos, I. (2009). A Hybrid Approach to Computer
Science Education a Case Study: Software Engineering at Aristotle University. In

35

March 19, 2015 Computer Science Education journal-CSE-2014-main

Proceedings of the 1st International Conference on Computer Supported Education
(CSEDU) (pp. 39-46). Retrieved from http://pt.scribd.com/doc/10933440/A
-HYBRID-APPROACH-TO-COMPUTER-SCIENCE-EDUCATION

Meneely, A., Williams, L., & Gehringer, E. F. (2008, August). ROSE: A Repository of
Education-Friendly Open-Source Projects. ACM SIGCSE Bulletin, 40(3), 7-11.

Morelli, R. A., & de Lanerolle, T. R. (2009, March). Foss 101: Engaging Introductory
Students in the Open Source Movement. In Proceedings of the 40th ACM Technical
Symposium on Computer Science Education (SIGCSE ’09) (Vol. 41, pp. 311-315).
New York, New York, USA: ACM Press.

Morelli, R. A., Ellis, H. J. C., de Lanerolle, T. R., Damon, J., & Walti, C. (2007).
Can Student-Written Software Help Sustain Humanitarian FOSS? In jth Inter-
national Conference on Information Systems for Crisis Response and Management
(ISCRAM) (pp. 41-44). Delft.

Morelli, R. A., Tucker, A., Danner, N., de Lanerolle, T. R., Ellis, H. J. C., Izmirli, O., ...
Parker, G. (2009, August). Revitalizing Computing Education through Free and
Open Source Software for Humanity. Communications of the ACM, 52(8), 67-75.

Nachbar, D. (1998, March). Bringing Real-World Software Development into The Class-
room. In Proceedings of The 29th Technical Symposium on Computer Science Ed-
ucation (SIGCSE ’98) (Vol. 30, pp. 171-175). New York, New York, USA: ACM
Press.

Nandigam, J., Gudivada, V. N.; & Hamou-Lhadj, A. (2008, October). Learning Software
Engineering Principles Using Open Source Software. In 38th Annual Frontiers in
Education Conference (FIE) (pp. S3H-18-S3H-23). IEEE.

Nascimento, D. M. C., Chavez, C., Bittencourt, R. A., Cox, K., Almeida, T., Sampaio, W.,
& Souza, R. (2013). Using Open Source Projects in Software Engineering Education:
A Systematic Mapping Study. In 43rd Annual Frontiers In Education Conference
(FIE). Oklahoma City.

O’Hara, K. J., & Kay, J. S. (2003, February). Open Source Software and Computer Science
Education. Journal of Computing Sciences in Colleges, 18(3), 1-7.

Papadopoulos, P. M., Stamelos, I. G., & Meiszner, A. (2012). Students’ Perspectives on
Learning Software Engineering with Open Source Projects: Lessons Learnt After
Three Years of Program Operation. In 4th International Conference on Computer
Supported Education CSEDU (pp. 313-322).

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008, June). Systematic Mapping
Studies in Software Engineering. In Proceedings of the 12th International Conference
on Evaluation and Assessment in Software Engineering (EASE’08) (pp. 68-77).

Petrenko, M., Poshyvanyk, D., Rajlich, V., & Buchta, J. (2007, November). Teaching
Software Evolution in Open Source. Computer, 40(11), 25-31.

Prince, M. (2004). Does Active Learning Work? A Review of the Research. Journal of
Engineering Education, 93(3), 223-231.

Qian, K., & Fu, X. (2008, April). Teaching Component-Based Software Development. In
21st IEFEE-CS Conference on Software Engineering Education and Training Work-
shop (pp. 13-15). IEEE.

Raj, R., & Kazemian, F. (2006). Using Open Source Software in Computer Science Courses.
In 36th Annual Frontiers in Education Conference (FIE) (pp. 21-26). IEEE.

Rajlich, V. (2012). Software Engineering: The Current Practice. CRC Press.

Reichlmayr, T. J. (2006). Collaborating with Industry: Strategies for an Undergraduate
Software Engineering Program. In International Workshop on Summit on Software
Engineering Education (SSEE’06) (pp. 13-16). New York, NY, USA: ACM.

Robles, G., Caballe, S., & Gonzélez-Barahona, J. M. (2008). Teaching Software Devel-
opment in Community-Driven Software Projects- A Practical Experience. In Free
Knowledge Free Technology. The SELF Conference. Barcelona.

Sabin, M. (2011, October). Free and Open Source Software Development of IT Systems. In
Proceedings of the Conference on Information Technology Education (SIGITE ’11)

36

March 19, 2015

Computer Science Education journal-CSE-2014-main

(pp. 27-31). New York, New York, USA: ACM Press.

Samuelson, P. (2006). IBMs Pragmatic Embrace of Open Source. Communications of the
ACM, 21-25.

Santore, J., Lorenzen, T., Creed, R., Murphy, D.,; & Orcutt, R. (2010, January). The
Software Engineering Class Builds a GUI for Subversion. ACM SIGCSE Bulletin,
41(4), 82-84.

Seiter, L. M. (2009). Computer Science and Service Learning: Empowering Nonprofit
Organizations through Open Source Content Management Systems. In Integrating
FOSS into the Undergraduate Computing Curriculum, Free and Open Source Soft-
ware (FOSS) Symposium. Chattanooga.

Shockey, K., & Cabrera, P. J. (2005). Using Open Source to Enhance Learning. In 6th
International Conference on Information Technology Based Higher Education and
Training (pp. F2A-7-F2A-12). IEEE.

Smrithi Rekha, V., Adinarayanan, V., Maherchandani, A., & Aswani, S. (2009). Bridging
the Computer Science Skill Gap with Free and Open Source Software. In Interna-
tional Conference on Engineering Education (ICEED) (pp. 77-82).

Software Engineering Body of Knowledge (SWEBOK). (2013). Retrieved 04/02/2013, from
Wwww.swebok.org/

Sowe, S. K., & Stamelos, I. (2007). Involving Software Engineering Students in Open
Source Software Projects: Experiences from a Pilot Study. Journal of Information
Systems Education (JISE), 18(4), 425-435.

Sowe, S. K., Stamelos, 1., & Deligiannis, I. (2006). A Framework for Teaching Software
Testing using F/OSS Methodology. In Open Source Systems (Vol. 203, pp. 261-266).

Spinellis, D. (2006, September). Open Source and Professional Advancement. IEEE
Software, 23(5), 70-71.

Stroulia, E., Bauer, K., Craig, M., Reid, K., & Wilson, G. (2011, May). Teaching Dis-
tributed Software Engineering with UCOSP: the Undergraduate Capstone Open-
Source Project. In Proceeding of The Community Building Workshop on Collabo-
rative Teaching of Globally Distributed Software Development (CTGDSD ’11) (pp.
20-25). New York, New York, USA: ACM Press.

Tao, Y., & Nandigam, J. (2006). Work in Progress: Open Source Software as the Basis
of Developing Software Design Case Studies. In 36th Annual Frontiers in Education
Conference (FIE) (pp. 27-28). IEEE.

Toth, K. (2006, November). Experiences with Open Source Software Engineering Tools.
IEEFE Software, 23(6), 44-52.

Tucker, A., Morelli, R. A., & de Lanerolle, T. R. (2011, October). The Humanitarian FOSS
Project: Goals, Activities, and Outcomes. In IEEE Global Humanitarian Technology
Conference (pp. 98-101). IEEE.

Whitehurst, J. (2009). Open Source: Narrowing the Divide between Education Business
and Community. EDUCAUSE Review, 44 (1), 70-71.

Williams, L., & Shin, Y. (2006). Work in Progress: Exploring Security and Privacy Con-
cepts through the Development and Testing of the iTrust Medical Records System.
In 36th Annual Frontiers in Education Conference (FIE) (pp. 30-31). IEEE.

Xing, G. (2010, April). Teaching Software Engineering Using Open Source Software. In
Proceedings of the 48th Annual Southeast Regional Conference on (ACM SE ’10).
New York, New York, USA: ACM Press.

Yamakami, T. (2012). Re-engineering Software Education: OSS-aware Software Education
in the Era of Utilizing External Resources. International Conference on Advanced
Communication Technology, ICACT.

Zhang, H., & Su, H. (2007, July). A Collaborative System for Software Engineering Educa-
tion. In 81st Annual International Computer Software and Applications Conference
(COMPSAC 2007) (Vol. 2, pp. 313-318). IEEE.

37

