
Title Effective compiler error message enhancement for novice programming students

Authors(s) Becker, Brett A., Glanville, Graham, Iwashima, Ricardo, Mooney, Catherine, et al.

Publication date 2016-09-19

Publication information Becker, Brett A., Graham Glanville, Ricardo Iwashima, Catherine Mooney, and et al. “Effective

Compiler Error Message Enhancement for Novice Programming Students” 26, no. 2–3 (September

19, 2016).

Publisher Taylor and Francis

Item record/more

information

http://hdl.handle.net/10197/8101

Publisher's statement This is an electronic version of an article published in Computer Science Education, 26 (2-3):

148-175 (2016). Computer Science Education is available online at:

www.tandfonline.com/doi/abs/10.1080/08993408.2016.1225464.

Publisher's version (DOI) 10.1080/08993408.2016.1225464

Downloaded 2024-04-16 10:33:10

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Effective+compiler+error+message+enha...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F8101

May 18, 2016 Computer Science Education Becker˙2016

To appear in Computer Science Education
Vol. 00, No. 00, Month 20XX, 1–26

RESEARCH ARTICLE

Effective Compiler Error Message Enhancement for CS1 Students

Brett A. Beckera∗†, Ricardo Iwashimaa, Graham Glanvillea, Kyle Goslina, Claire

McDonnellb and Catherine Mooneyc

aCollege of Computing Technology, 30-34 Westmoreland St, Dublin 2, Ireland; bDublin

Institute of Technology, Aungier St, Dublin 2, Ireland; cRoyal College of Surgeons in

Ireland, 123 Stephen’s Green, Dublin 2, Ireland

(May 18, 2016)

Programming is an essential skill that all computing students must master. However
programming can be difficult to learn. Compiler error messages are crucial for cor-
recting errors, but are often difficult to understand and pose a barrier to progress
for many novices. High frequencies of errors, particularly repeated errors, have been
shown to be indicators of students who are struggling with learning to program. This
study involves a custom IDE that enhances Java compiler error messages, intended
to be more useful to novices than those supplied by the compiler. The effectiveness of
this approach was tested in an empirical control/intervention study of approximately
200 students generating almost 50,000 errors. The design allows for direct comparisons
between enhanced and non-enhanced error messages. Results show that the interven-
tion group experienced reductions in the number of overall errors, errors per student,
and several repeated error metrics. This work is important for two reasons. First, the
effects of error message enhancement have been recently debated in the literature.
This study provides substantial evidence that it can be effective. Second, these results
should be generalizable at least in part, to other programming languages, students
and institutions, as we show that the control group of this study is comparable to
several others using Java and other languages.

Keywords:
compiler errors; compiler error enhancement; syntax errors; novice programmers; Java;
CS1

1. Introduction

An expected outcome of a computer science student’s education is programming
skill (McCracken et al., 2001) which is also a core competency for employment in
several IT industries (Orsini, 2013). However learning to program is difficult for
many. CS1, the first-year programming course in a degree program, often has high
failure rates (Porter, Guzdial, McDowell, and Simon, 2013). Further, difficulty with
computer programming has been shown to contribute to well-documented dropout
rates in computer science programs (Caspersen and Bennedsen, 2007).

Compiler error messages (CEMs) are one of the most important tools that a
language offers its programmers, and for novices their feedback is especially critical

∗Corresponding author. Email: brett.becker@ucd.ie
†Now at University College Dublin, Belfield, Dublin 4, Ireland

1

This is the Authors' Original Manuscript of an article published by Taylor & Francis in Computer Science Education
on Sept 19, 2016, available online: www.tandfonline.com/doi/full/10.1080/08993408.2016.1225464. Please see
www.brettbecker.com/publications/becker2016ffective for the Accepted Manuscript, citation, and other
information

http://www.tandfonline.com/doi/full/10.1080/08993408.2016.1225464
http://www.brettbecker.com/publications/becker2016ffective

May 18, 2016 Computer Science Education Becker˙2016

(Marceau, Fisler, and Krishnamurthi, 2011a). However CEMs are often cryptic and
pose a barrier to success for novice programmers who have been shown in several
studies to have trouble interpreting them (Hartmann, MacDougall, Brandt, and
Klemmer, 2010; Hristova, Misra, Rutter, and Mercuri, 2003; Kummerfeld and Kay,
2003; Traver, 2010).

This study investigates enhanced compiler error messages (ECEMs). Although
some systems which aim to help novice programmers provide ECEMs as a feature,
ECEMs have not often been studied rigorously or in isolation. This is important
as links can be drawn between CEMs and performance in programming (Tabanao,
Rodrigo, and Jadud, 2011).

To the authors’ knowledge the only recent study that looked at ECEMs in an
empirical control/intervention manner was by Denny, Luxton-Reilly, and Carpenter
(2014), who presented evidence that error message enhancement is ineffectual. In
contrast our study finds that ECEMs have many positive effects.

In our own practice we have made several observations which motivate this re-
search:

(1) Some students are confounded by compiler error messages and do not directly
correlate them with errors in their code.

(2) Some students ask for help on particular CEMs multiple times. It seems that
they are not learning from CEMs – instead they see them as hindrances,
blocking them from completing the task at hand.

(3) CEMs vary in usefulness, clarity and arguably correctness – to a novice they
can sometimes seem wrong.

This study focusses on Java, one of the most popular programming languages for
teaching novices to program (Davies, Polack-Wahl, and Anewalt, 2011; Guo, 2014;
Siegfried, Greco, Miceli, and Siegfried, 2012), and one of the most popular languages
used in industry (Cass, 2015; TIOBE, 2016). It should be noted that the choice
of Java as an introductory programming language is not without critics (Siegfried,
Chays, and Herbert, 2008), and that Python has recently grown in popularity as
an introductory language (Guzdial, 2011), on some counts overtaking Java (Guo,
2014).

This study utilizes a Java editor called Decaf, specifically written for this re-
search. The principal consideration that influenced the design of Decaf was that
Java CEMs could, and should, be improved upon. This was inspired by pio-
neers such as Michael Kölling, the developer of BlueJ, who said of error messages
(Kölling, 1999, pp. 145-146):

Good error messages make a big difference in the usability of a system
for beginners. Often the wording of a message alone can make all the
difference between a student being unable to solve a problem without
help from someone else and a student being able to quickly understand
and remove a small error. The first student might be delayed for hours
or days if help is not immediately available (and even in a class with
a tutor it may take several minutes for the tutor to be able to provide
the needed help).

Decaf uses available information (the erroneous line of code and the CEM gen-
erated) to construct more specific and helpful ECEMs which are presented to the
user, alongside the original CEMs. The aim is to help students rectify their er-
rors more effectively, while providing a side-by-side opportunity to learn the actual
meanings of the original, often cryptic CEMs.

2

May 18, 2016 Computer Science Education Becker˙2016

We compared the following metrics between a control group who used Decaf in
pass-through mode (with no ECEMs) and an intervention group who used Decaf
in enhanced mode (with ECEMs):

• Total number of errors in each group
• Number of errors per student, including those generating specific CEMs
• Number of repeated errors, Jadud’s error quotient (Jadud, 2005, 2006), and

the repeated error density (Becker, 2016b)

The aim of this research is to discover if enhancing compiler error messages is
effective in helping students learn to program. We seek to answer the following
questions:

(1) Do enhanced compiler error messages reduce the overall number of errors?
(2) Do enhanced compiler error messages reduce the number of errors per stu-

dent?
(3) Do enhanced compiler error messages reduce the incidence of repeated errors?
(4) Do students find enhanced compiler error messages beneficial?

This paper is laid out as follows: Section 2 presents a background to, and related
work on, CEMs and their enhancement. Section 3 presents our methods and Section
4 presents our results, first from a high-level ‘group view’, before answering the
questions proposed above. We also provide a basis for generalization of our results.
We then discuss threats to validity. Section 5 presents our conclusions and future
work.

2. Background and related work

2.1. Compiler error messages

As far back as the 1970s it became evident that many CEMs were not adequate.
Litecky and Davis (1976) investigated CEMs in COBOL, determining that their
feedback was not optimal for users, particularly for students. As computer science
education became more widespread, Pascal secured its position as the first dom-
inant programming language for teaching. Brown (1983) investigated issues with
CEMs in Pascal, finding them to be inadequate, and Chamillard and Hobart Jr
(1997) addressed concerns over syntax errors in their transition from Pascal to
Ada97. Kummerfeld and Kay (2003) investigated CEMs in C, and gave important
insight into the growing importance of poor error messages. Bergin, Agarwal, and
Agarwal (2003) pointed out numerous issues with C++ in its use as a teaching
language, including CEM issues. C++ was a dominant teaching language of its
time (taking the lead from Pascal) and eventually replaced by Java.

CEMs play at least two important roles: as a programming tool they should help
the user progress towards a working program, and as a pedagogic tool they should
help the user understand the problem that led to the error (Marceau et al., 2011a;
Marceau, Fisler, and Krishnamurthi, 2011b). However, dealing with CEMs is still
a frustrating experience for students (Flowers, Carver, and Jackson, 2004; Hsia,
Simpson, Smith, and Cartwright, 2005). Jadud goes as far as stating that com-
pilers are “veritable gold mines for cryptic and confusing error messages” (Jadud,
2006, p. 1), while Traver (2010, p. 4) describes Java errors in particular as “undeci-
pherable”. Ben-Ari (2007) noted that educators resorted to writing supplementary
material to help explain CEMs, while McCall and Kolling (2014, p. 2589) stated:

3

May 18, 2016 Computer Science Education Becker˙2016

“Compiler error messages ... are still very obviously less helpful than they could
be”. Disturbingly, these statements are very similar to those made in the 1970s.

CEMs also pose problems for educators, particularly in the context of instructor-
led or supported laboratory sessions. Coull (2008) identified that tutors spend large
amounts of time solving trivial syntactic problems and that time spent with any
individual student may be substantial, and the time other students must wait for
help is therefore extended. In addition students tend to make mistakes similar to
those of their peers at similar stages, and tutors find themselves solving the same
problems for several individuals independently. Denny et al. (2014, p. 278) noted:
“As educators, we have a limited amount of time to spend with each student so
providing students with automated and useful feedback about why they are getting
syntax errors is very important”.

The frequency of errors, and particularly repeated errors, has been linked to tra-
ditional measures of academic success. Jadud (2006) investigated the link between
student performance and the error quotient (EQ), a metric influenced heavily by
repeated errors. Although some correlations were found to exist they were weak,
and the overall conclusion was that EQ and academic performance are related,
but exactly how remained to be seen. However, Rodrigo, Baker, Jadud, Amarra,
Dy, Espejo-Lahoz, Lim, Pascua, Sugay, and Tabanao (2009), found that test scores
could be predicted with simple measures such as the student’s average number
of errors, number of pairs of compilations in error, number pairs of compilations
with the same error, pairs of compilations with the same edit location, and pairs
of compilations with the same error location. This study clearly linked compilation
behaviour to performance, but the mechanisms at work, and whether this was just
a special case, warrant further research.

It should be noted that efforts to draw these and similar links are becoming more
sophisticated as the amount of data available increases. Ahadi, Lister, Haapala,
and Vihavainen (2015) explored machine learning techniques to analyse naturally
accumulating programming process data (NAPD) to identify students in need of
assistance. Similar data is analysed using principal component analysis in (Becker
and Mooney, 2016) and here in section 4. To the authors’ knowledge, these studies
are the first to utilize these respective data analysis techniques in the context
of NAPD. As the amount of data becoming available continues to grow due to
larger studies such as Blackbox (Brown, Kölling, McCall, and Utting, 2014), such
techniques will be increasingly important.

2.2. Compiler error enhancement

Although reports on the difficulties posed by compiler error messages have a history
of over 40 years, there is not an abundance of research on enhancing them. Schorsch
(1995) introduced CAP (Code Analyzer for Pascal), an automated tool to check
Pascal programs for syntax, logic and style errors. CAP provided ECEMs designed
to inform the student what was wrong, why, and how to fix errors. These often
included sample/example code, and did not shy away from personal touches such as
humour, similar to Gauntlet (Flowers et al., 2004) described later. It was reported
that the quality of student programs was increased through using CAP.

Hristova et al. (2003) introduced Expresso, a pre-compiler which scans programs
for 20 common errors and provides users with ECEMs where possible. A drawback
of Expresso is that error messages may not appear in line-number sequence due to
a multiple-pass design. Being presented with errors which are not in line-number

4

May 18, 2016 Computer Science Education Becker˙2016

sequence is not desirable for at least two reasons. First, novice students often think
sequentially – that is line-by-line. Second, students are often taught to tackle the
first error message, due to the possibility of cascading errors (Burgess, 1999). These
are not true errors in as much as they are immediately resolved when the original
error is. To avoid being confused by cascading errors, Ben-Ari (2007, p. 6) advises:
“Do not invest any effort in trying to fix multiple error messages! Concentrate
on fixing the first error and then recompile”. Following this line of thought, the
inclusion of the second and subsequent errors is a likely source of confusion and
frustration, particularly for novices. This consideration has influenced the design
of Decaf, discussed later.

Thompson (2004) focused on an Eclipse plug-in called Gild, specifically for novice
Java programmers. Gild was updated to include a feature with “extra error sup-
port” which consisted of ECEMs for 51 of 347 possible errors. This work and the
Gild editor had many objectives, with the effects of compiler error enhancement
making up three of six research questions. In addition, it was an exploratory work
with a small number of students – less than ten for quantitative results, depending
on the sub-study in question. The results were not conclusive as to whether or not
students became faster at fixing their errors over the course of the study. It was
concluded that Gild needed more specific error messages and better coverage of
errors most encountered by students.

Flowers et al. (2004) introduced a tool called Gauntlet which provided ECEMs.
After targeting the top 50 beginner errors, they focused on nine which they believed
to be most common. The authors used Gauntlet for 18 months in a first-year module
which included programming. The authors believed that the quality of student
work increased, time was saved, and instructor workload was reduced. However no
empirical results were presented.

Coull (2008) introduced a framework for support tools that addresses both pro-
gram and problem formulation for novices. One of the requirements of such tools is
to present both standard compiler and enhanced support concurrently. This influ-
enced the design of Decaf discussed in Section 3.2. Only three systems categorised
by Coull met this requirement, CAP being one. Coull also developed SNOOPIE
using the framework, for learning Java. Although the scope of SNOOPIE was well
beyond ECEMs, they were one of the primary facets. It was shown that this support
was beneficial to a small group of students, particularly for non-trivial syntactic
errors.

Other systems which provided some form of ECEMs, but for which no quantita-
tive evaluations were carried out are Argen (Toomey and Gjengset, 2011), HelpMe-
Out (Hartmann et al., 2010), a system by Lang (2002), and JJ (Motil and Epstein,
nd), discussed by Kelleher and Pausch (2005) and Farragher and Dobson (2000).

All of the studies discussed so far put most focus on addressing the problem
(providing ECEMs), but lack empiricism in determining if they make any difference
to novices. Denny et al. (2014) implemented an enhanced feedback system to users
of CodeWrite (Denny, Luxton-Reilly, Tempero, and Hendrickx, 2011), a web-based
tool designed to help students complete Java exercises. This study was the first
recent control/intervention work on the effects of Java ECEMs. The system was
used with students attempting exercises which required them to complete the body
of a method for which the header was provided. Thus students were not writing
code from scratch, and may not have been experiencing the full gamut of CEMs
that novices may encounter. Students participated by completing lab exercises for
a period of two weeks as part of an accelerated summer course. To evaluate their

5

May 18, 2016 Computer Science Education Becker˙2016

system, the authors investigated:

(1) the number of consecutive non-compiling submissions made while attempting
a given exercise;

(2) the total number of non-compiling submissions across all exercises; and
(3) the number of attempts needed to resolve the most common kinds of errors.

Their analysis concluded that, with reference to the points identified above,

(1) There were no significant differences between groups.
(2) Although students viewing the enhanced error messages made fewer non-

compiling submissions overall, the variance of both groups was high, and the
difference between the means was not significant.

(3) There was no evidence that the enhanced feedback affected the average num-
ber of compiles needed to resolve three common syntax errors.

The authors identify several possible reasons for their null results as well as
threats to validity including that the raw compiler feedback shows up to two CEMs,
while the enhanced feedback module displays only one in an attempt to reduce the
complexity for students. This may allow some students to correct two errors at
once while using the raw compiler messages, or may confuse other students by
presenting more than one error to correct.

In previous work (Becker, 2016a) we showed that there was a significant reduction
in the number of errors encountered by an intervention group that received ECEMs
compared to a control group that did not. We also reported preliminary evidence
that the number of repeated errors was significantly reduced. In Becker (2016b) we
provided further evidence that the number of repeated errors was reduced in an
intervention group receiving ECEMs.

Our previous work simply compared groups of students (control and intervention)
without separating out raw CEMs and ECEMs. The control group experienced
raw CEMs for all errors, and the intervention group received 30 enhanced CEMs
while the remainder were raw (as not all CEMs are enhanced by the software).
The present study directly measures how control and intervention groups interact
with raw CEMs and ECEMs by investigating how each group interacts with these
separately.

3. Methodology

3.1. Decaf and the enhanced error messages

This research utilizes a Java editor called Decaf, specifically written for this research
by the authors. Decaf uses available information (the erroneous line of code and
the raw CEM generated) to construct more specific and helpful ECEMs which
are presented to the user, along with the original CEMs. Decaf has two modes,
pass-through and enhanced. In pass-through mode there is no enhancement of the
raw javac CEMs. In enhanced mode, enhanced CEMs are presented alongside the
original raw CEMs, for 30 selected CEMs. Figure 1 shows a schematic of how
Decaf interacts with the system and users. Figure 2 and Figure 3 show screenshots
of Decaf in pass-through and enhanced modes respectively.

Table 1 shows all CEMs enhanced by Decaf. In cases where a particular CEM
can be generated by one of several errors, program logic attempts to determine
the specific error by analysing the offending line of user code. One such example is

6

May 18, 2016 Computer Science Education Becker˙2016

Figure 1. Schematic of Decaf and interactions with user, JDK/javac and database. 1In pass-through mode,

the enhanced error is omitted. 2Through the runtime environment.

the CEM cannot find symbol. Ben-Ari (2007) notes that this error can be caused
by inconsistencies between the declaration of an identifier and its use. A non-
exhaustive list of syntax errors resulting in this CEM is:

(1) misspelled identifier (including capital letters used incorrectly)
(2) calling a constructor with an incorrect parameter signature
(3) using an identifier outside its scope

Figure 4 shows a small Java program containing one syntax error of type (1)
above, followed by the resulting CEM and ECEM.

This work is primarily concerned with compile-time errors (syntactic and those
semantic errors which are caught by javac). However, inspired by Murphy, Kim,
Kaiser, and Cannon (2008) who developed a tool which enhanced runtime errors in
Java, Decaf also provides enhanced error messages for the following runtime errors,
in a manner very similar to the compile-time ECEMs it provides.

• java.lang.ArrayIndexOutOfBoundsException
• java.lang.NullPointerException
• java.lang.ArithmeticException: / by zero
• java.lang.StringIndexOutOfBoundsException
• java.util.InputMismatchException
• FileNotFoundException
• NumberFormatException

3.2. Study design

Two cohorts of approximately 100 students, separated by one academic year, were
included in the study. The students were enrolled in the CS1 module as part of
a BSc in Information Technology. There was no statistically significant difference

7

May 18, 2016 Computer Science Education Becker˙2016

Decaf’s ECEMs were designed by gathering recommendations from several sources
including many previous works in Section 2.2. We also utilized the work of Traver
(2010) who provided eight principles of good error message design using examples of
C++ CEMs to illustrate them. As the syntax of beginner-level Java is C-like, these
were translated into practical advice for writing Decaf’s ECEMs. Other sources
used include (Lang, 2002; Marceau et al., 2011a; Nielsen, 1994; Pane and Myers,
1996). The CEMs to be enhanced were compiled from lists of frequent Java errors
from 11 studies detailed in Table S1. Details of some individual CEMs including
likely causes from Ben-Ari (2007) were also used. Finally, we included several errors
which we have seen occur frequently with beginners in our own practice that were
not mentioned in the above:

• class <class name> is public, should be declared in a file named <class
name>.java

• ‘.’ expected
• illegal character <character>
• reached end of file while parsing
• unclosed character literal
• unreachable statement
• array required, but <type> found

Figure 2. Decaf seen in ‘pass-through’ mode, where CEMs are not enhanced, but passed straight on to

the user. Here two CEMs have occurred, cannot find symbol and package system does not exist.

between the groups in terms of age or sex. Students in this study used Java SE 7.
The module was delivered by the same lecturer in year 1 and year 2 and the

lecture schedule, content and assessment strategy was as similar as possible for
both years. In year 1, control group students used Decaf in pass-through mode,
where there is no enhancement of CEMs. In year 2, intervention group students
used Decaf in enhanced mode, with the ECEMs presented alongside CEMs (for
CEMs where ECEMs are available). We logged data for six weeks but only used

8

May 18, 2016 Computer Science Education Becker˙2016

Figure 3. Decaf in enhanced mode. Two raw CEMs are presented at the top, while the first is enhanced

and presented below.

Table 1. CEMs enhanced by Decaf.

CEM number CEM description

1 ‘(’ expected
2 ‘(’ or ‘[’ expected
3 ‘)’ expected
4 ‘.’ expected
7 ‘;’ expected
8 ‘[’ expected
9 ‘]’ expected
10 ‘{’ expected
11 ‘}’ expected
12 <identifier> expected
16 array required, but *type* found
19 bad operand type *type name* for unary operator ‘*operator*’
20 bad operand types for binary operator ‘*operator*’
24 cannot find symbol
29 class *class name* is public, should be declared in a file named *class name*.java
32 class, interface, or enum expected
47 illegal character: ‘*character*’
51 illegal start of expression
57 incompatible types: *type* cannot be converted to *type*
61 invalid method declaration; return type required
67 missing return statement
73 non-static variable *variable name* cannot be referenced from a static context
74 not a statement
77 package *package name* does not exist
78 possible loss of precision
83 ‘try’ without ‘catch’, ‘finally’ or resource declarations
86 unclosed comment
89 unexpected type
91 unreported exception *exception type*; must be caught or declared to be thrown
92 variable *variable name* is already defined in method *method name*

9

May 18, 2016 Computer Science Education Becker˙2016

Figure 4. Java program with one syntax error (a), the resulting javac (unenhanced) CEM (b), and Decaf’s

(enhanced) ECEM (c).

weeks 2-5 for analysis so that we were only analysing data while each group was
working at steady-state since during week 1 Decaf was being installed and during
week 6 students were transitioning to another editor. Each group had the following
data logged, for each CEM generated:

• Compiler ID (anonymous)
• Line of code and class generating CEM
• CEM
• ECEM (for intervention group)
• Date / time

Denny et al. (2014) provided the only other recent empirical study investigating
ECEMs, providing evidence that enhancing compiler error messages is not effective.
The present study differs from their study in the following ways:

(1) We analyse the number of errors generating all CEMs, not just three.
(2) We do not measure the number of non-compiling submissions to an assign-

ment, but the number of errors (and values of repeated error metrics) gen-
erated while completing laboratory exercises as well as when practicing pro-
gramming.

(3) Our ECEMs do not provide examples of code, only enhanced versions of the
raw CEMs.

(4) We do not provide any code to students.
(5) Decaf only presents one ECEM at a time compared to two.
(6) Our study is over four weeks compared to two.
(7) Our study involves over 200 students compared to 83.

In this study we directly distinguish between two sets of CEMs, the 30 that are
enhanced by Decaf and those that are not. We then explore if the control and inter-
vention groups respond differently when they are presented with these. For CEMs
enhanced by Decaf the control and intervention groups experience different output.
The intervention group, using Decaf in enhanced mode, see the enhanced and raw
javac CEMs. The control group, using Decaf in pass-through mode, only see the
raw javac CEMs. For CEMs not enhanced by Decaf the control and intervention
groups both only see the raw javac CEMs.

This provides us with an important internal control group – the intervention

10

May 18, 2016 Computer Science Education Becker˙2016

Table 2. Profiles of control and intervention

groups.

Group Number of Number of
errors compiler IDs

Control 29,015 122
Intervention 19,785 120
Total 48,800 242

Table 3. Group profiles filtered for inactive
students.

Group Number of Number of
errors compiler IDs

Control 28,861 108
Intervention 19,628 104
Total 48,489 212

group, when they experience errors that are not enhanced by Decaf. We hypothe-
sized that there would be no significant difference between the control and inter-
vention groups when looking at errors generating the unenhanced CEMs. On the
other hand, if enhancing CEMs has an effect on student learning, we would see a
significant difference between the two groups when looking at errors generating the
30 enhanced CEMs.

4. Results and analysis

We recorded 48,800 errors, generating 74 distinct CEMs, including all 30 for which
Decaf provides ECEMs. The full list of CEMs generated is shown in Table S2.
Table 2 shows the total number of errors recorded and the number of compiler IDs
for both groups. The intervention group logged 32% fewer errors overall. We noted
that a number of compiler IDs generated very few errors, most of these occurring in
the first week of the study period. This is consistent with the lecturer noting that
some students reinstalled Decaf early on and the fact that when Decaf is reinstalled
a new compiler ID is issued. This is discussed later as a threat to validity.

We filtered the data removing Compiler IDs recording less than an average of ten
errors per week (Table 3). This strikes a good balance between removing compiler
IDs with very low activity and retaining those which are the result of a Decaf
reinstall, but which generated a representative and useful amount of data. Other
studies such as Jadud (2006), have filtered their data in similar ways.

For data that can be paired we test for significance with Wilcoxon signed-rank
tests. For unpaired data we employ Mann-Whitney U tests. In all cases we use
two-tail tests and results are considered significant if p < 0.05.

Figure 5 shows the 15 most frequently encountered CEMs for both the control
and intervention groups. There is a minor shift in rank for some CEMs: CEM 7
moves from 12% in control to 16% in intervention, CEM 39 from 5% to 8%, and
CEM 74 from 9% to 6%, however the overall the pattern is similar. This is to be
expected – we do not expect Decaf to fundamentally the nature of the errors that
students make, other than possibly reducing their frequencies.

In Becker and Mooney (2016) we analysed the control group data using principal
component analysis (PCA). We sought to categorize CEMs by relating them to each
other on the basis of how users encounter them. We were interested in seeing if a

11

May 18, 2016 Computer Science Education Becker˙2016

Figure 5. Frequency of the top 15 CEMs enhanced by Decaf, for control and intervention groups.

student who makes errors generating a certain CEM often would also have a high
likelihood of making other identifiable errors with high frequency.

PCA is a non-parametric method of reducing a complex data set to reveal hidden,
simplified dynamics within it (Shlens, 2003). PCA takes as input a set of variables
(which may be correlated) and converts them into a set of linearly uncorrelated
principal components (PCs). The number of PCs is less than or equal to the number
of original variables. PCA is useful for retaining data that accounts for a high degree
of variance, and removing data which does not. The PCA was performed with the
ggbiplot1 function for the R statistical/graphical programming language.

Figure 6(a) shows the results of a PCA taking all errors into account. Each data
point represents a student and groups are represented by different colours. The
ellipses are 68% probability confidence ellipses. It can be seen that the intervention
group exhibits less variance in principal components 1 and 2 (those with the great-
est variance) as it has smaller confidence ellipses. In addition, the control group is
more widely distributed with more outliers. These outliers may represent students
that are struggling more with CEMs.

However, outliers in the data can influence the results of PCA, which is another
reason that inactive students have been filtered from the data, and here the further
step of investigating only errors generating the top 15 CEMs is taken. Again, it is
believed that the data remaining is representative and useful, and that any outliers
that remain are outlying for valid reasons. A PCA of the reduced (15 CEM) data
is shown in Figure 6(b) . There are three immediate observations to be made:

(1) The group profiles remain very similar.
(2) Individual students do not vary much (labels have been removed from the

figures for clarity, but they are identifiable with the labels turned on).
(3) The variance of the PCs increase substantially (PC1 from 12.4 to 41.1% and

PC2 from 4.8 to 13.8%). Thus for the reduced (15 CEM) data, PCs 1 and 2
account for 53.5% of the variance in each group.

It is important to note when comparing Figure 6(a) and Figure 6(b) that the
direction (positive/negative) of the PCs and the resulting correlation with variables

1http://github.com/vqv/ggbiplot

12

http://github.com/vqv/ggbiplot

May 18, 2016 Computer Science Education Becker˙2016

(a) All CEMs. (b) Top 15 CEMs.

Figure 6. Principal component analysis showing clustering of the control and intervention groups based

on their error profiles.

(CEMs) is arbitrary, so for instance the fact that the outlying student beyond (-10,
-20) in Figure 6(a), is located beyond y = 15 in Figure 6(b), does not represent
anything of interest in and of itself, as all students have been shifted accordingly
between the figures. It is the relative position of students (and the distinction
between groups) within each figure that is of interest.

Along with having fewer, less distant outliers, it can be inferred that the inter-
vention students are behaving as a more cohesive, homogeneous group. Since the
CEMs are linked to the PCs, we can take the fact that both groups show up dis-
tinctly as evidence that on a group level the control and intervention groups are
interacting with CEMs differently, and that difference is due to the intervention
group experiencing ECEMs.

Having presented the data from an overall perspective demonstrating the dif-
fering profiles of the control and intervention groups, we now seek to answer the
questions forming the aim of this research presented in Section 1.

4.1. Do ECEMs reduce the overall number of errors?

Again, the present study directly distinguishes between raw CEMs and ECEMs,
providing a direct measure of the effects of CEM enhancement. This is achieved by
comparing control and intervention groups for two sets of CEMs – those that are
enhanced by Decaf and those that are not.

Figure 7(a) shows a strong linear correlation in the number of errors per CEM

13

May 18, 2016 Computer Science Education Becker˙2016

Figure 7. Correlation of errors between the control and intervention groups for errors which (a) do not
have CEMs enhanced by Decaf and (b) errors which have CEMs that are enhanced by Decaf.

between the control and intervention groups both in cases where errors do and
do not have CEMs enhanced. However, a relatively lower number of errors is seen
for the intervention group in the case of enhanced CEMs 7(b). It is important to
remember that the control group does not experience enhanced CEMs for these
errors. This is evidence that enhancing CEMs reduced the number of errors that
students make.

The 30 CEMs enhanced by Decaf represent 78.7% of all errors. A Wilcoxon
signed-rank test (two-tail) showed that the number of errors was greater for the
control group (Mdn = 229) than for the intervention group (Mdn = 189), Z =
-3.19, p < 0.001. This is evidence that ECEMs reduced the number of errors made
by the intervention group.

Figure 8 shows the number of errors generating the ten most frequent CEMs
enhanced by Decaf for both groups. It can be seen that the number of errors is
lower for the intervention group for all CEMs.

The CEMs not enhanced by Decaf represent 21.3% of all errors, and many of these
are infrequent (< 100 errors in either group, accounting for < 10% of non-enhanced
errors). Therefore we selected the 10 most frequent of these CEMs representing over
90% of all errors generating CEMs not enhanced by Decaf. A Wilcoxon signed-
rank test (two-tail) did now show a significant difference between the control and
intervention groups. These results are in line with our hypothesis in Section 3.2. In
the next section we explore the number of errors per student and if the differences
presented here are significant in that context.

4.2. Do ECEMs reduce the number of errors per student?

Table 4 shows the average number of errors and average number of CEMs per stu-
dent for each group. For CEMs enhanced by Decaf the intervention group showed
a significantly lower number of errors per student for the intervention group (Mdn
= 109) compared to control (Mdn = 132), U = 4,691, p = 0.048. This is evidence
that ECEMs reduced the number of errors per student in the intervention group.

Similar to in Section 4.1, A Mann-Whitney U test (two-tail) showed no significant
difference between control and intervention for CEMs not enhanced by Decaf. This
is evidence that students in both groups were behaving similarly in the absence of
ECEMs.

14

May 18, 2016 Computer Science Education Becker˙2016

Figure 8. Number of errors per CEM (top 10 CEMs enhanced by Decaf).

Table 4. Average number of errors and CEMs per
student.

Average errors Average CEMs
per student per student

Control 265 20
Intervention 188 16
Overall 228 18

In (Becker, 2016a) we investigated the 15 most frequent CEMs and found that of
these, nine had a statistically significant reduction in the number of errors per stu-
dent. These are presented in Table 5. Of these nine CEMs, all but one are enhanced
by Decaf. This is an extremely important finding. Only one recent study (Denny
et al., 2014) investigated individual errors and reported no significant results for
the three investigated: cannot resolve identifier (CEM 12), type mismatch (CEM
57), and ; expected (CEM 7). Although we did not find a significant difference for
CEM 7, we did for CEMs 12 and 57.

CEM 5, which has a statistically significant difference, but is not enhanced by
Decaf, is ‘.class’ expected. There are several possible explanations for this. First, it
could be a false positive. Second, there could be a genuine reason that intervention
students committed this error with a lower frequency – perhaps a pedagogical
difference between the semesters, although significant efforts were made to avoid
any. Third, it is not known if helping students by enhancing some CEMs has
a knock-on effect of helping with errors generating other CEMs (which are not
enhanced).

Figure 9 shows a Java program that defines an empty method (lines 6-7), which
is called by the main method (line 4). If line 4 is changed to go(int a, b), CEM 5

15

May 18, 2016 Computer Science Education Becker˙2016

Table 5. Details of eight CEMs for which enhancement leads to a statistically significant reduction of errors per student.

CEM CEM Enhanced Average, Average, Mann-Whitney
number description by Decaf? Median (Control) Median (Intervention) U test (two-tail)

32 class, interface, or enum expected Yes 9.9, 6.0 5.2, 3.0 U = 3740, p = 0.001
74 not a statement Yes 21.0, 10.0 10.7, 6.0 U = 3968, p = 0.003
57 incompatible types OR incompatible types: Yes 9.5, 5.0 5.3, 2.5 U = 4012, p = 0.005

type cannot be converted to *type*
5 ‘.class’ expected No 5.1, 2.0 4.2, 0.0 U = 4034, p = 0.006
24 cannot find symbol Yes 44.9, 35.0 33.0, 25.5 U = 4148, p = 0.012
1 ‘(’ expected Yes 5.0, 2.0 2.9, 1.0 U = 4245, p = 0.023
12 <identifier> expected Yes 10.5, 4.0 4.5, 2.0 U = 4330, p = 0.038
51 illegal start of expression Yes 17.9, 9.5 13.4, 7.0 U = 4347, p = 0.042
92 variable *variable name* is already Yes 7.3, 4.0 5.0, 3.0 U = 4351, p = 0.043

defined in method *method name*

Figure 9. Java program exemplifying <identifier> expected and ‘.class’ expected CEMs.

Table 6. Comparison of <identifier> expected and ‘.class’ expected CEMs.

Code Comment CEM Enhanced by Decaf?

go(a, b) Correct (line 4) - -
go(int a, b) Error (line 4) 5 ‘.class’ expected No
go(int x, int y) Correct (line 6) - -
go(int x, y) Error (line 6) 12 <identifier> expected Yes

‘.class’ expected is generated. This is because the type of the method parameter is
already known. If go(int x, int y) on line 6 is changed to go(int x, y), CEM
12 <identifier> expected is generated because no type is given for y. This CEM
is enhanced by Decaf and does have a significant reduction for the intervention
group. Table 6 summarizes this example.

Given the similarities between how these two errors are generated, it would not
be entirely unreasonable to find that helping students with CEM 12 has a knock-on
effect of helping them with CEM 5. Both errors can occur due to incorrectly stating
(or not stating) the types of method arguments/parameters, in calling (line 4) or
defining (line 6) a method. However these CEMs can arise in different situations
and a full investigation of this potential knock-on effect is beyond the scope of the
present work.

4.3. Do ECEMs reduce the incidence of repeated errors?

It is important to note that the number of errors a student commits is not a
guaranteed measure the student is struggling, although a high number of errors is
certainly an indication that something may be wrong. For repeated errors it is a
different situation. Jadud (2006) found that how often errors are repeated is one
of the best indicators of how well (or poorly) a student was progressing.

16

May 18, 2016 Computer Science Education Becker˙2016

Figure 10. Number of repeated error strings per student (top 15 CEMs).

In this study, a student is said to have committed a repeated error when two
consecutive compilations result in the same CEM and originate from an error on
the same line of code. A repeated error string is an occurrence of at least one
repeated error – it could be more than one repeated error, provided the repeated
errors themselves are consecutive with no other events between them. Such a string
ends when a different CEM is encountered or a different line of code causes the
same CEM (each indicating that the original error was solved). Figure 10 shows
the number of repeated error strings per student (by group) for the top 15 CEMs.
A Mann-Whitney U test (two-tail) showed that the number of strings per student
was greater for the control group (Mdn = 37) than for the intervention group (Mdn
= 27, U = 6437, p = 0.012). Note that this data is not paired – each line in Figure
10 represents a succession of all students in each group, ordered in decreasing
number of repeated error strings. This shows that more control students made
more consecutive repeated errors and were therefore more likely to be struggling.

This reduction in the number of repeated error strings led to the development
of a new metric for quantifying repeated errors called the Repeated Error Density
(RED) (Becker, 2016b). It was found using the data from this study that enhancing
CEMs results in a statistically significant reduction in RED and Jadud’s error
quotient, providing further evidence that enhancing CEMs reduces the number of
repeated errors.

Figure 11 shows the number of repeated errors per CEM for the top 15 CEMs
representing 86.3% of all errors. A Wilcoxon signed-rank test (two-tail) showed
that the number of errors was greater for the control group (Mdn = 742) than for
the intervention group (Mdn = 416); Z = -2.90, p = 0.004. The only CEM with
a higher number of repeated errors for the intervention group was CEM 39 else
without if. This was also the only CEM in the top 15 with a higher number of
(overall) errors for the intervention group, and one of the three top-15 CEMs that
are not enhanced by Decaf. However in the case of this CEM, this difference was
not found to be significant.

17

May 18, 2016 Computer Science Education Becker˙2016

Figure 11. Number of repeated errors per CEM (top 15 CEMs).

4.4. Do students find ECEMs beneficial?

At the end of each semester students were presented with a short optional and
anonymous survey relating to their experience using Decaf. The survey was com-
prised of a number of Likert questions, each with an optional open-ended field
asking “Please explain (optional)”. An independent-samples t-test (two-tail) was
conducted for each Likert question. The response rate was approximately 32% for
the intervention group and 20% for the control group. It is interesting to note
that for the intervention group, an average of 28% of the optional comments were
completed compared to 7% for the control group. This is one indication that the
intervention group was more engaged with their learning.

When asked “How much of a barrier to progress do you feel compiler errors
are?” students in the intervention group were significantly more likely to report that
compiler errors presented less of a barrier to progress than the control group (Figure
S1). When asked “How frustrating do you find compiler errors?” the intervention
group found compiler errors significantly less frustrating than the control group
(Figure S2). This is encouraging, particularly as the intervention students were
being presented with both the javac CEMs as well as the Decaf ECEMs, and we
had a concern that students might find being presented with two error messages
confusing or frustrating. However this does not appear to have been the case. The
full survey results can be found in (Becker, 2015).

4.5. Basis for generalization

In this section we analyse the control group and compare it to groups from several
other studies on Java and other languages. This is with a view to providing a case
for generalizing these results to other groups of students, languages, etc.

18

May 18, 2016 Computer Science Education Becker˙2016

Table 7. Top 10 CEMs from this study (control group) and five other Java studies: A (Brown et al., 2014); B

(Jackson et al., 2005); C (Tabanao et al., 2011); D (Dy and Rodrigo, 2010); and E (Jadud, 2006).

Error % of all errors A B C D E

cannot find symbol* 16 17.7** 14.6 ∼18** 18.9** 16.7**
‘)’ expected 11.5 6.5† 3.8 ∼10† 9.6† 10.3†
‘;’ expected 10.7 9.5 8.5 ∼12 11.7 10

not a statement 7.4 3 2.5
illegal start of expression 6.3 4.4 5.7 ∼5 5.2 5

reached end of file while parsing 4.9
illegal start of type 4.6
‘else’ without ‘if’ 4

bad operand types for binary operator 3.9
<identifier expected> 3.8 3.6 4.5 ∼9 3.7

% Total 73 65.8 51.8 ∼69 79.9 71.9
Total errors 28,860 > 5× 106 559,419 24,151 ∼14,500 ∼70,000

∗Some studies broke this CEM down into: unknown variable, unknown method, unknown class, and unknown
symbol. As the students in this study had not yet studied methods or classes, it is reasonable to assume that most
cannot find symbol errors were actually cannot find symbol - variable errors. Manually looking at many of these
errors in the data supports this.

∗∗unknown variable or cannot find symbol - variable (See ∗ above).

†bracket expected.

Figure 12. Frequency of the ten most frequent Java CEMs from this study (control group) and five other
studies.

The ten most frequent CEMs recorded in the control group represented 73% of
all control errors. These CEMs are similar to those in five other previous studies of
CEMs in Java (Table 7). The top ten CEMs from this study share six CEMs with
the top ten of Brown et al. (2014) and Jackson, Cobb, and Carver (2005), five with
Tabanao et al. (2011) and Dy and Rodrigo (2010), and four with (Jadud, 2006).
Despite spanning ten years and most likely four Java versions, this indicates that
the students in the control group in this study are generating very similar errors
to students in the other studies. Figure 12 shows the distributions of the top ten
CEMs in all six studies.

Having established that our control group is similar to other studies featuring
Java with the motivation of demonstrating that generalization to other Java studies
is a potential, we sought evidence for which generalization to other languages is
a possibility. Jadud noticed that the top Java errors he collected had a similar
distribution to five studies using other languages (Jadud, 2006). Inspired by his

19

May 18, 2016 Computer Science Education Becker˙2016

Figure 13. Frequency of nine errors from four different languages.

analysis, Figure 13 shows the frequency of the nine most frequent errors from this
study’s control group and those from three languages Jadud reported on: Haskell
(Heeren, Leijen, and van IJzendoorn, 2003); FORTRAN (Moulton and Muller,
1967); and COBOL (Litecky and Davis, 1976), as well as the most recent study on
Java (Brown et al., 2014).

The errors at each rank are different as the languages are different (with the
exception of some of the Java errors – see Table 7), and there is no way of easily
evaluating why this distribution is common2 across so many languages. However
Jadud posits two possible reasons: the programmer and the grammar. If indeed
the reason is programmer behaviour, it would support the idea that the students
in this study are not only similar to those in other studies involving Java, but
involving many other languages as well. This would be important in generalizing
the methods and results of this study. Similarly, if this commonality is due to
the grammar of the languages, it could be taken as evidence that results for one
language could potentially be generalized to others, with obvious complications
involving systematically and reliably generalizing errors in one language to another.

4.6. Threats to validity

Attempts were made to make all environmental and pedagogical factors as similar
as possible across the two years of the study. Students learned the same topics in
as similar a way as possible, experiencing the same lecturer, material, labs and
environment. Nonetheless some factors could not be controlled such as schedul-
ing differences, room availability and external pressures on students from other
modules.

A more technical threat to validity is the fact that a new anonymous compiler
ID is issued when Decaf is reinstalled, perhaps by the same student on the same
computer, or by one student on multiple computers. This creates an issue in not
having a perfect one-to-one mapping of compiler IDs to students. It is believed that

2The most common error in Haskell is the most extreme outlier in this data. See Jadud (2006), p. 69 for

a possible explanation.

20

May 18, 2016 Computer Science Education Becker˙2016

this did not impact the results to a high degree for two reasons. First, the number
of compiler IDs was not much above the average attendance and the average num-
ber of students submitting lab exercises. Second, filtering data to remove inactive
compiler IDs brought the number of compiler IDs closer to the expected numbers,
and the students in the control group had a similar error profile to students in
other studies. Related to the threat just mentioned, students were encouraged to
only use Decaf. However, a student could choose to use another environment, or
use Decaf and another environment concurrently, although the lecturer noted very
little evidence of this.

A minor issue is that Decaf does not enhance three of the top 15 CEMs: 39
‘else’ without ‘if ’, 53 illegal start of type, and 5 ‘.class’ expected. This however did
provide another interesting self-contained control case which spanned both groups.
As both groups experienced the same raw Java CEMs in these cases, it would be
expected that there would be little variation in their frequencies. Indeed for one
of these (CEM 39) Decaf had a slightly higher frequency, and for CEMs 53 and
5, the frequencies were almost equivalent. For all of the other top 15 CEMs, the
number of errors was lower for the control group. Additionally, CEM 5 provided
an opportunity to briefly explore the possibility of a ‘knock-on’ effect of ECEMs
(Section 4.2).

The Decaf software was designed before the publication of Denny et al. (2014),
and shares with their research a threat to validity in that the control students were
presented with more than one CEM which may confuse some students potentially
allows others to correct more than one error simultaneously. This is a direct effect
of the design decision of not to interfere with the standard Java CEM presentation
in any way for the control group.

In enhanced mode, the original Java CEM is presented unaltered, alongside an
ECEM (if one is generated) to the intervention group (however, unlike some other
studies, no other information that could lead to validity issues is presented). Be-
ing presented with both messages side by side could potentially lead to student
confusion because they are being presented with two versions of a single compiler
error message. However, the results of survey questions (particularly open-ended
responses) did not show any evidence of this.

5. Conclusion

There are many difficulties faced by students learning to program, and few (if any)
are as persistent and universally experienced as cryptic compiler error messages
(CEMs). Difficulties students have with CEMs have been present for at least four
decades and occur with almost all programming languages. CEMs are extremely
important as the student’s primary source of information on their work, providing
instant feedback intended to help students locate, diagnose and correct their own
errors, often made just seconds before. Unfortunately they are often less than help-
ful. Terse, confusing, too numerous, misleading, and sometimes seemingly wrong,
they become sources of frustration and discouragement.

This paper presented the results of an in-depth empirical investigation on the
effects of a Java editor called Decaf, specifically written for this research. Decaf
features enhanced CEMs (ECEMs) intended to be more understandable and helpful
than those provided by the compiler. Only a few systems providing ECEMs exist,
and there are even fewer in-depth empirical studies on ECEM effectiveness (Denny

21

May 18, 2016 Computer Science Education Becker˙2016

et al., 2014).
The aim of this research was to investigate the questions:

(1) Do enhanced compiler error messages reduce the overall number of errors?
(2) Do enhanced compiler error messages reduce the number of errors per stu-

dent?
(3) Do enhanced compiler error messages reduce the incidence of repeated errors?
(4) Do students find enhanced compiler error messages beneficial?

Two groups were investigated during their semester 1 CS1 module, a control
group experiencing standard Java CEMs and an intervention group experiencing
ECEMs. Each group consisted of approximately 100 students and together they
generated nearly 50,000 errors. The control group was shown to have an error
distribution very similar to several other studies on Java and other languages,
providing a baseline and grounds for generalization. It was found through several
angles of analysis, that the overall number of errors was significantly reduced for the
intervention group. Perhaps more importantly, the number of errors per student
was reduced, particularly for high frequency errors. Eight CEMs were identified
accounting for 43.2% of all errors, and all enhanced by Decaf, which had a signif-
icantly reduced number of errors per student. These eight errors are amongst the
most commonly encountered by students in several other studies.

The number of repeated errors, a key metric in identifying struggling students,
was also reduced in addition to the number of repeated error strings. This supports
previous work showing a reduction in the EQ and RED metrics. The data was also
analysed from a group perspective using principal component analysis, finding that
both groups had distinct profiles. The intervention group exhibited less variance
with a more homogenous error profile than the control group.

Feedback from students involved in this study showed a positive learning ex-
perience with ECEMs. Students that experienced ECEMs reported that compiler
errors were not as significant a barrier to progress as those that only experienced
the raw CEMs, and students that experienced ECEMs felt that compiler errors
were less frustrating than those that only experienced the raw CEMs.

5.1. Future research directions

In the future Java will most likely be replaced as the novice language of instruction,
with Python as a top contender. Although this will bring change, the fact remains
that several popular novice teaching languages have come and gone over more
than four decades, and difficulties presented by CEMs have persisted. This makes
it seem unlikely that the problems students encounter with CEMs will be alleviated
in the short-term by a language change alone. In addition, the manner in which
data about the problem is gathered will continue to change. Error detection and
aggregation is getting increasingly sophisticated. The Blackbox dataset introduced
by Brown et al. (2014) contains millions of errors, and has already been used to
analyse 37 million of them, from hundreds of thousands of students over at least
several hundred institutions (Altadmri and Brown, 2015). However studies like
this, closer to the students involved than global studies like Blackbox are and will
remain extremely important in determining how to improve student success in
programming.

A solution, if there ever is one, will come first from one of three likely sources. The
first is language designers themselves, through languages which by nature are less

22

May 18, 2016 Computer Science Education Becker˙2016

prone to errors rooted in complex syntax and semantics. The second is compiler
designers, who have the possibility of discovering and deciphering error causes
differently and presenting more useful CEMs to programmers so they can rectify
them more effectively. An example is Eclipse which has its own Java compiler with
its own CEMs which in some cases are arguably better than those of javac (Ben-Ari,
2007). The third are designers of editors and environments such as Decaf – tools
which interpret and address the problems presented by CEMs, most likely through
enhancement. Ultimately the solution will probably be a combination of efforts from
language, compiler and editor designers in concert. Nonetheless, existing languages
already exist and already have their flaws. These languages are immensely popular,
running the software that the modern world depends on. In addition, there will
always be languages with CEMs more notorious than others, and therefore a likely
need for enhanced CEMs.

Directions for future work follow two avenues. The first is further into the data al-
ready gathered by applying the rubric of Marceau et al. (2011a) designed to identify
specific error messages that are problematic for students. Although this research
identified specific error messages, these were based on frequency, not analysing the
actual issues students encountered when they committed particular errors. The sec-
ond direction is a new improved editor that will take into account lessons learned
here. A web-based editor is envisioned, requiring no download or installation of
software. This will provide scope for future study by including more institutions,
greater student diversity, and a greater overall number of participants.

It is unreasonable to think that enhancing compiler error messages will com-
pletely alleviate the problems students have with them. However it has been shown
that Decaf reduced student errors, reduced indications of struggling students, and
provided a positive learning experience. It is hoped that this experience can be
shared and help more students, providing assistance in one of the many hurdles
computer programming students face in learning an extremely important skill.

Supplemental material

Table S1 Most frequent CEMs (*) or the errors generating them (**) from eleven
studies. Some studies are ambiguous, or present both.

Table S2 All compiler error messages logged during the study period.

Figure S1 How much of a barrier to progress do you feel compiler errors are?

Figure S2 How frustrating do you find compiler errors?

References

Ahadi, A., Lister, R., Haapala, H., and Vihavainen, A. (2015). Exploring machine learning
methods to automatically identify students in need of assistance. In Proceedings of
the Eleventh Annual International Conference on International Computing Education
Research, pages 121–130. ACM.

Altadmri, A. and Brown, N. C. (2015). 37 million compilations: Investigating novice pro-

23

May 18, 2016 Computer Science Education Becker˙2016

gramming mistakes in large-scale student data. In Proceedings of the 46th ACM Tech-
nical Symposium on Computer Science Education, pages 522–527. ACM.

Becker, B. A. (2015). An Exploration of the Effects of Enhanced Compiler Error Messages
for Computer Programming Novices. Master’s thesis, Dublin Institute of Technology.

Becker, B. A. (2016a). An effective approach to enhancing compiler error messages. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education,
pages 126–131. ACM.

Becker, B. A. (2016b). A new metric to quantify repeated compiler errors for novice
programmers. In Proceedings of the 21st annual conference on Innovation and technology
in computer science education, page to appear. ACM.

Becker, B. A. and Mooney, C. (2016). Categorizing compiler error messages with principal
component analysis. In Proceedings of the 12th China - Europe international symposium
on software engineering education, page to appear.

Ben-Ari, M. M. (2007). Compile and runtime errors in java. http://introcs.cs.

princeton.edu/11cheatsheet/errors.pdf.
Bergin, J., Agarwal, A., and Agarwal, K. (2003). Some deficiencies of c++ in teaching cs1

and cs2. ACM SIGPlan Notices, 38(6), 9–13.
Brown, N. C. C., Kölling, M., McCall, D., and Utting, I. (2014). Blackbox: A large scale

repository of novice programmers’ activity. In Proceedings of the 45th ACM technical
symposium on Computer science education, pages 223–228. ACM.

Brown, P. J. (1983). Error messages: the neglected area of the man/machine interface.
Communications of the ACM , 26(4), 246–249.

Burgess, M. (1999). C programming tutorial 4th edition (k&r version).
http://markburgess.org/CTutorial/C-Tut-4.02.pdf.

Caspersen, M. E. and Bennedsen, J. (2007). Instructional design of a programming course:
a learning theoretic approach. In Proceedings of the third international workshop on
Computing education research, pages 111–122. ACM.

Cass, S. (2015). The 2015 top ten programming languages. http://spectrum.ieee.org/
computing/software/the-2015-top-ten-programming-languages.

Chamillard, A. and Hobart Jr, W. C. (1997). Transitioning to ada in an introductory
course for non-majors. In Proceedings of the conference on TRI-Ada’97 , pages 37–40.
ACM.

Coull, N. J. (2008). SNOOPIE: development of a learning support tool for novice program-
mers within a conceptual framework . Ph.D. thesis, University of St Andrews.

Davies, S., Polack-Wahl, J. A., and Anewalt, K. (2011). A snapshot of current practices
in teaching the introductory programming sequence. In Proceedings of the 42nd ACM
technical symposium on Computer science education, pages 625–630. ACM.

Denny, P., Luxton-Reilly, A., Tempero, E., and Hendrickx, J. (2011). Codewrite: supporting
student-driven practice of java. In Proceedings of the 42nd ACM technical symposium
on Computer science education, pages 471–476. ACM.

Denny, P., Luxton-Reilly, A., and Carpenter, D. (2014). Enhancing syntax error messages
appears ineffectual. In Proceedings of the 2014 conference on Innovation & technology
in computer science education, pages 273–278. ACM.

Dy, T. and Rodrigo, M. M. (2010). A detector for non-literal java errors. In Proceedings
of the 10th Koli Calling International Conference on Computing Education Research,
pages 118–122. ACM.

Farragher, L. and Dobson, S. (2000). Java decaffeinated: experiences building a program-
ming language from components. Technical report, Trinity College Dublin, Department
of Computer Science.

Flowers, T., Carver, C. A., and Jackson, J. (2004). Empowering students and building
confidence in novice programmers through gauntlet. In Frontiers in Education, 2004.
FIE 2004. 34th Annual , pages T3H–10. IEEE.

Guo, P. (2014). Python is now the most popular introductory teaching language at top us
universities. http://cacm.acm.org/blogs/blog-cacm/.

24

http://introcs.cs.princeton.edu/11cheatsheet/errors.pdf
http://introcs.cs.princeton.edu/11cheatsheet/errors.pdf
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://cacm.acm.org/blogs/blog-cacm/

May 18, 2016 Computer Science Education Becker˙2016

Guzdial, M. (2011). Predictions on future CS1 languages. https://computinged.

wordpress.com/2011/01/24/predictions-on-future-cs1-languages/.
Hartmann, B., MacDougall, D., Brandt, J., and Klemmer, S. R. (2010). What would other

programmers do: suggesting solutions to error messages. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1019–1028. ACM.

Heeren, B., Leijen, D., and van IJzendoorn, A. (2003). Helium, for learning haskell. In
Proceedings of the 2003 ACM SIGPLAN workshop on Haskell , pages 62–71. ACM.

Hristova, M., Misra, A., Rutter, M., and Mercuri, R. (2003). Identifying and correcting
java programming errors for introductory computer science students. In ACM SIGCSE
Bulletin, volume 35, pages 153–156. ACM.

Hsia, J. I., Simpson, E., Smith, D., and Cartwright, R. (2005). Taming java for the class-
room. In ACM SIGCSE Bulletin, volume 37, pages 327–331. ACM.

Jackson, J., Cobb, M., and Carver, C. (2005). Identifying top java errors for novice pro-
grammers. In Frontiers in Education Conference, volume 35, page T4C. STIPES.

Jadud, M. C. (2005). A first look at novice compilation behaviour using bluej. Computer
Science Education, 15(1), 25–40.

Jadud, M. C. (2006). An exploration of novice compilation behaviour in BlueJ . Ph.D.
thesis, University of Kent.

Kelleher, C. and Pausch, R. (2005). Lowering the barriers to programming: A taxonomy
of programming environments and languages for novice programmers. ACM Computing
Surveys (CSUR), 37(2), 83–137.

Kölling, M. (1999). The design of an object-oriented environment and language for teach-
ing . Ph.D. thesis, Department of Computer Science, University of Sydney.

Kummerfeld, S. K. and Kay, J. (2003). The neglected battle fields of syntax errors. In
Proceedings of the fifth Australasian conference on Computing education-Volume 20 ,
pages 105–111. Australian Computer Society, Inc.

Lang, B. (2002). Teaching new programmers: a java tool set as a student teaching aid. In
Proceedings of the inaugural conference on the Principles and Practice of programming,
2002 and Proceedings of the second workshop on Intermediate representation engineering
for virtual machines, 2002 , pages 95–100. National University of Ireland.

Litecky, C. R. and Davis, G. B. (1976). A study of errors, error-proneness, and error
diagnosis in cobol. Communications of the ACM , 19(1), 33–38.

Marceau, G., Fisler, K., and Krishnamurthi, S. (2011a). Measuring the effectiveness of error
messages designed for novice programmers. In Proceedings of the 42nd ACM technical
symposium on Computer science education, pages 499–504. ACM.

Marceau, G., Fisler, K., and Krishnamurthi, S. (2011b). Mind your language: on novices’
interactions with error messages. In Proceedings of the 10th SIGPLAN symposium on
New ideas, new paradigms, and reflections on programming and software, pages 3–18.
ACM.

McCall, D. and Kolling, M. (2014). Meaningful categorisation of novice programmer errors.
In Frontiers in Education Conference (FIE), 2014 IEEE , pages 1–8. IEEE.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, I., and Wilusz, T. (2001). A multi-national, multi-
institutional study of assessment of programming skills of first-year cs students. ACM
SIGCSE Bulletin, 33(4), 125–180.

Motil, J. and Epstein, D. (n.d.). Jj: a language designed for beginners. http://www.ecs.
csun.edu/~jmotil/TeachingWithJJ.pdf.

Moulton, P. and Muller, M. (1967). Ditran - a compiler emphasizing diagnostics. Com-
munications of the ACM , 10(1), 45–52.

Murphy, C., Kim, E., Kaiser, G., and Cannon, A. (2008). Backstop: a tool for debugging
runtime errors. ACM SIGCSE Bulletin, 40(1), 173–177.

Nielsen, J. (1994). Heuristic evaluation. In Usability inspection methods, volume 17, pages
25–62.

Orsini, L. (2013). Why programming is the core skill of the 21st century. http:

25

https://computinged.wordpress.com/2011/01/24/predictions-on-future-cs1-languages/
https://computinged.wordpress.com/2011/01/24/predictions-on-future-cs1-languages/
http://www.ecs.csun.edu/~jmotil/TeachingWithJJ.pdf
http://www.ecs.csun.edu/~jmotil/TeachingWithJJ.pdf
http://readwrite.com/2013/05/31/programming-core-skill-21st-century
http://readwrite.com/2013/05/31/programming-core-skill-21st-century

May 18, 2016 Computer Science Education Becker˙2016

//readwrite.com/2013/05/31/programming-core-skill-21st-century.
Pane, J. and Myers, B. (1996). Usability issues in the design of novice programming

systems. Technical report, Carnegie Mellon University.
Porter, L., Guzdial, M., McDowell, C., and Simon, B. (2013). Success in introductory

programming: What works? Communications of the ACM , 56(8), 34–36.
Rodrigo, M. M. T., Baker, R. S., Jadud, M. C., Amarra, A. C. M., Dy, T., Espejo-Lahoz, M.

B. V., Lim, S. A. L., Pascua, S. A., Sugay, J. O., and Tabanao, E. S. (2009). Affective and
behavioral predictors of novice programmer achievement. In ACM SIGCSE Bulletin,
volume 41, pages 156–160. ACM.

Schorsch, T. (1995). Cap: an automated self-assessment tool to check pascal programs for
syntax, logic and style errors. In ACM SIGCSE Bulletin, volume 27, pages 168–172.
ACM.

Shlens, J. (2003). A tutorial on principal component analysis: derivation, discussion,
and singular value decomposition. https://www.cs.princeton.edu/picasso/mats/

PCA-Tutorial-Intuition_jp.pdf.
Siegfried, R. M., Chays, D., and Herbert, K. (2008). Will there ever be consensus on cs1?

In FECS , pages 18–23.
Siegfried, R. M., Greco, D., Miceli, N., and Siegfried, J. (2012). Whatever happened

to richard reids list of first programming languages? Information Systems Education
Journal , 10(4), 24.

Tabanao, E. S., Rodrigo, M. M. T., and Jadud, M. C. (2011). Predicting at-risk novice
java programmers through the analysis of online protocols. In Proceedings of the seventh
international workshop on Computing education research, pages 85–92. ACM.

Thompson, S. M. (2004). An exploratory study of novice programming experiences and
errors. Ph.D. thesis, University of Victoria.

TIOBE (2016). Tiobe index for may 2016. http://www.tiobe.com/tiobe_index.
Toomey, W. and Gjengset, J. (July, 2011). Arjen: A tool to identify common programming

errors. http://minnie.tuhs.org/Programs/Arjen/.
Traver, V. J. (2010). On compiler error messages: what they say and what they mean.

Advances in Human-Computer Interaction.

26

http://readwrite.com/2013/05/31/programming-core-skill-21st-century
http://readwrite.com/2013/05/31/programming-core-skill-21st-century
http://readwrite.com/2013/05/31/programming-core-skill-21st-century
https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
http://www.tiobe.com/tiobe_index
http://minnie.tuhs.org/Programs/Arjen/

Table S1 Most frequent CEMs (*) or the errors generating them (**) from eleven studies. Some studies are
ambiguous, or present both.

Hristova, Misra, Rutter, & Mercuri, 2003**

1. Using = instead of == or vice-versa
2. Mismatching, miscounting and/or misuse of {
}, [], (), “ ”, and ‘ ’
3. Wrong separators in for loops
4. An if followed by a bracket instead of by a
parenthesis
5. Using keywords as method names or variable
names
6. Invoking methods with wrong arguments
7. Forgetting parentheses after method call
8. Incorrect semicolon at the end of a method
header

9. Leaving a space after a period when calling a
specific method
10. >= and =<
11.

† Invoking class method on object
12. Improper casting
13.

† Flow reaches end of non-void method
14. Methods with parameters: confusion
between declaring parameters of a method and
passing parameters in a method invocation
15. Incompatibility between the declared
return type of a method and in its invocation
16.

† Class declared abstract because of missing
function

†Have a one-to-one mapping with CEMs. The others do not have a one-to-one mapping with
student errors (Altadmri & Brown, 2015).

Flowers, Carver, & Jackson, 2004**

1. Mismatching curly braces
2. Mismatching quotations
3. Misplaces semicolon
4. Improper file name
5. Not initializing a variable before attempting to
use it

6. Mismatching parenthesis
7. Missing semicolon
8. Misspelling printLine method
9. Package does not exist

Toomey, n.d.

1. Assignment in if statement
2. Use of comparison after Boolean operator
3. Use of bitwise operators
4. Cannot find a certain identifier
5. Please use braces not parentheses
6. cannot treat char Like a String
7. Else without a Matching if
8. Empty statement
9. Empty statement after if
10. System.exit() needs a value
11. Missing identifier
12. Probable code in wrong place or missing
braces /
parentheses
13. Probable imbalance with braces
14. Incomparable types

16. Missing left brace
17 Possible loss of precision
18. Malformed for loop
19. Possible misspelt word or command
20: Not a statement
21. Package does not exist
22. Not enough closing braces
23. Right parenthesis expected
24. Missing ;
25. Checking for String (in)equality
26. Missing “ or “ in String literal
27. Unrequired extra type keyword used
28. Duplicate variable
29. Cannot use something which gives ‘void’ in
an expression

Thompson, 2004

1. Undefined name
2. Type mismatch
3. Undefined method
4. parsing error insert to complete
5. Should return value

6. Undefined type
7. Parsing error delete token
8. Package is not expected package
9. Undefined constructor
10. Parameter mismatch

Jackson, Cobb, & Carver, 2005

1. Cannot resolve symbol
2. ; expected
3. Illegal start of expression
4. class or interface expected
5. <identifier> expected
6.) expected
7. Incompatible types
8. Not a statement
9. } expected
10. class FinalProject

11. Illegal start of type
12. java.lang.string
13. Invalid method declaration; return type
required
14. boolean
15. else without if
16. { expected
17. double
18. (expected
19. possible loss of precision

Jadud, 2006*

1. Unknown variable
2. Bracket expected
3. Unknown method
4. Semicolon expected
5. Illegal start of expression

6. Unknown class
7. Incompatible types
8. Method application error
9. Private access violation
10. Missing return

Dy & Rodrigo, 2010*

1. Unknown variable
2. ‘;’ expected
3. ‘[‘, ‘]’, ‘(‘, ‘)’, “, ” expected
4. unknown method
5. incompatible types

6. missing return statement
7. illegal start of expression
8. unknown class
9. identifier expected
10. class or interface expected

Tabano, Rodrigo, & Jadud, 2011*

1. cannot find symbol – variable
2. ‘;’ expected
3. ‘(’ or ‘)’ or ‘[‘ or ‘]’ or ‘{‘ or ‘}’ expected
4. missing return statement
5. cannot find symbol – method

6. illegal start of expression
7. incompatible types
8. <identifier> expected
9. class, interface or enum expected
10. cannot find symbol – class

Chan-Mow, 2012*

1. Variable not found
2. Identifier expected
3. Class not found
4. Mismatched brackets/parenthesis

5. Invalid method declaration
6. Illegal start of type
7. Method not found
8. Expected

Denny, Luxton-Reilly, & Tempero, 2011*

1. Cannot resolve identifier
2. Type mismatch
3. Missing ;
4. Token should be deleted
5. Method not returning correct type

6. Missing }
7. Missing)
8. Missing {
9. Using .length as a field
10. Insert “Assignment Operator”

Brown, Kölling, McCall, & Utting, 2014*

1. Unknown variable
2. Semicolon expected
3. Unknown method
4. Bracket expected
5. Unknown class

6. Incompatible types
7. Illegal start of expression
8. Method application error
9. Identifier expected
10. Not a statement

Table S2 All compiler error messages logged during the study period.

CEM
number

Enhanced
by Decaf? CEM description

1 yes '(' expected
2 yes '(' or '[' expected
3 yes ')' expected
4 yes '.' expected
5 - '.class' expected
6 - : expected
7 yes ';' expected
8 yes '[' expected
9 yes ']' expected

10 yes '{' expected
11 yes '}' expected
12 yes <identifier> expected
13 - > expected
14 - -> expected
15 - array dimension missing
16 yes array required, but *type* found
19 yes bad operand type *type_name* for unary operator '*operator*'
20 yes bad operand types for binary operator '*operator*'
22 - break outside switch or loop
23 - cannot assign a variable to final variable *variable_name*
24 yes cannot find symbol
25 - cannot return a value from method whose result type is void
27 - 'catch' without 'try'

29 yes class *class_name* is public, should be declared in a file named
class_name.java

31 - class expected
32 yes class, interface, or enum expected

34 - constructor *constructor_name* in class *class_name* cannot be applied to
given types;

36 - double cannot be dereferenced
38 - duplicate class: *class_name*
39 - 'else' without 'if'
40 - empty character literal

43 - exception *exception_name* is never thrown in body of corresponding try
statement

46 - illegal '.'
47 yes illegal character: '*character*'
48 - illegal escape character
49 - illegal initializer for *type*
50 - illegal line end in character literal
51 yes illegal start of expression
52 - illegal start of statement
53 - illegal start of type
54 - illegal static declaration in inner class *class_name*
55 - illegal underscore
56 - incomparable types: *type* and *type*
57 yes incompatible types: *type* cannot be converted to *type*
58 - inconvertible types
59 - *type* cannot be dereferenced
60 - integer number too large: *value*
61 yes invalid method declaration; return type required

63 - malformed floating point literal

64 - method *method_name* in class *class_name* cannot be applied to given
types;

65 - method *method_name* is already defined in class *class_name*
66 - missing method body, or declare abstract
67 yes missing return statement
69 - modifier static not allowed here
70 - no suitable constructor found for *method_name*
71 - no suitable method found for *method_name*

72 - non-static method *method_name* cannot be referenced from a static
context

73 yes non-static variable *variable_name* cannot be referenced from a static
context

74 yes not a statement
77 yes package *package_name* does not exist
78 yes possible loss of precision
79 - reached end of file while parsing
81 - repeated modifier
83 yes 'try' without 'catch', 'finally' or resource declarations
85 - unclosed character literal
86 yes unclosed comment
87 - unclosed string literal
89 yes unexpected type
90 - unreachable statement

91 yes unreported exception *exception type*; must be caught or declared to be
thrown

92 yes variable *variable_name* is already defined in method *method_name*
93 - variable *variable_name* might not have been initialized
94 - 'void' type not allowed here
95 - while expected

Figure S1 Students in the intervention group were significantly more likely to report that compiler errors did not
present a barrier to progress [control (M = 1.67, SD = 0.64) and intervention (M = 2.09, SD = 0.72); t(51) = 2.21, p =

0.032].

Figure S2 Students in the intervention group were significantly more likely to report less frustration with compiler
errors [control (M = 1.76, SD = 0.61), intervention (M = 2.16, SD = 0.72); t(51) = 2.11, p = 0.040].

1

1.5

2

2.5

3

Control Intervention

no barrier

small barrier

major barrier

How much of a barrier to progress do you feel compiler
errors are?

1

1.5

2

2.5

3

Control Intervention

not frustrating
at all

somewhat
frustrating

very frustrating

How frustrating do you find compiler errors?

