
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: 0899-3408 (Print) 1744-5175 (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

Using automatic machine assessment to teach
computer programming

Phil Maguire, Rebecca Maguire & Robert Kelly

To cite this article: Phil Maguire, Rebecca Maguire & Robert Kelly (2017) Using automatic
machine assessment to teach computer programming, Computer Science Education, 27:3-4,
197-214, DOI: 10.1080/08993408.2018.1435113

To link to this article: https://doi.org/10.1080/08993408.2018.1435113

View supplementary material

Published online: 07 Feb 2018.

Submit your article to this journal

Article views: 311

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2018.1435113
https://doi.org/10.1080/08993408.2018.1435113
https://www.tandfonline.com/doi/suppl/10.1080/08993408.2018.1435113
https://www.tandfonline.com/doi/suppl/10.1080/08993408.2018.1435113
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2018.1435113
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2018.1435113
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2018.1435113&domain=pdf&date_stamp=2018-02-07
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2018.1435113&domain=pdf&date_stamp=2018-02-07

Computer Science Education, 2017
VOL. 27, NOS. 3–4, 197–214
https://doi.org/10.1080/08993408.2018.1435113

Using automatic machine assessment to teach computer
programming

Phil Maguirea, Rebecca Maguireb and Robert Kellya

aDepartment of Computer Science, National University of Ireland, Maynooth, Ireland; bDepartment of
Psychology, National University of Ireland, Maynooth, Ireland

ABSTRACT
We report on an intervention in which informal programming
labs were switched to a weekly machine-evaluated test for a
second year Data Structures and Algorithms module. Using
the online HackerRank system, we investigated whether
greater constructive alignment between course content and
the exam would result in lower failure rates. After controlling
for known associates, a hierarchical regression model
revealed that HackerRank performance was the best predictor
of exam performance, accounting for 18% of the variance in
scores. Extent of practice and confidence in programming
ability emerged as additional significant predictors. Although
students expressed negativity towards the automated system,
the overall failure rate was halved, and the number of students
gaining first class honours tripled. We infer that automatic
machine assessment better prepares students for situations
where they have to write code by themselves by eliminating
reliance on external sources of help and motivating the
development of self-sufficiency.

Introduction

Many students taking computer science (CS) find programming very challenging,
with up to a quarter dropping out and many others performing poorly (Fowler &
Yamada-F, 2009; Peters & Pears, 2012; Williams & Upchurch, 2001). The high variabil-
ity of students’ backgrounds typically found in introductory programming courses
can undermine some students’ motivation, and make it more difficult to ensure
the desired competency and retention rates (Barros, Estevens, Dias, Pais, & Soeiro,
2003). As well as leading to significant attrition at university level, the perception
of CS as a “difficult” subject may also discourage students from choosing to study
it in the first place (Bennedsen & Caspersen, 2007).

© 2018 Informa UK Limited, trading as Taylor & Francis Group

ARTICLE HISTORY
Received 13 October 2017
Accepted 29 January 2018

KEYWORDS
Programming instruction;
programming confidence;
automatic correction; skill
development; constructive
alignment; automatic
feedback

CONTACT  Phil Maguire  pmaguire@cs.nuim.ie
 T he supplemental data for this article is available online at https://doi.org/10.1080/08993408.2018.1435113.

mailto: pmaguire@cs.nuim.ie
https://doi.org/10.1080/08993408.2018.1435113
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2018.1435113&domain=pdf

198   ﻿ P. MAGUIRE ET AL.

A number of studies have attempted to explain the cause of such high failure
rates (e.g. Bergin, Mooney, Ghent, & Quille, 2015). One pertinent factor may be the
way in which programming is taught. Like other disciplines that require proce-
dural knowledge, programming is best learned through practice and experience
(Traynor & Gibson, 2004). Students’ lack of fundamental problem-solving skills have
been identified as one of the main reasons for attrition and weak programming
competency (Beaubouef, Lucas, & Howatt, 2001; Thweatt, 1994). Unfortunately,
textbooks and lecture material in CS are often heavy on declarative knowledge,
with particular emphasis on the features of programming languages and how to
use them (Robins, Rountree, & Rountree, 2003). Changes to teaching methods,
such as the use of clearer textbooks and the introduction of online resources,
have done little to improve programming competence (Miliszewska & Tan, 2007).

Although programming is a practical skill, the opportunities provided for prac-
tice are often insufficient (Hawi, 2010). The best means of implementing the prac-
tical component of such modules remains a contentious issue (Linn & Dalbey,
1989; Maguire & Maguire, 2013). Research has shown that students must be active
participants in the learning process in order for deep learning to occur (Mayer et
al., 2009). Knowledge must be put into practice in order for misunderstandings to
rise to the surface where they can be challenged and corrected (McKeachie, 1999).
According to Trees and Jackson (2007), the ideal learning environment should
involve mastery-oriented feedback, choice-making opportunities, and the chance
for students to evaluate their own learning. In the case of developing skills in
programming, this implies tackling open-ended questions which require creative
thinking, and getting prompt objective feedback on what works and what doesn’t
work.

A particular problem with CS coursework, given the group-based setting in
which labs are typically conducted, is that work may be shared and copied with
very little effort (Fraser, 2014). Rather than have to solve a difficult problem inde-
pendently, it can sometimes be easier to paste in a solution that somebody else
has developed. For instance, Roberts (2002) reviewed incidents of dishonesty at
Stanford University over a decade, and found that 37% of all incidents were attrib-
uted to CS courses, despite the fact that these students represented less than 7%
of the student population. In a programming lab environment, some students
may realize that directing energy towards obtaining code from others leads to
greater payoffs than actually attempting the problem themselves; they confess
to cheating simply because they are “lazy” (Dick et al., 2003; Sheard, Carbone, &
Dick, 2003; Wilkinson, 2009). According to Fraser (2014), unlimited collaboration
increases the amount of copying that takes place, and thus damages the average
student’s learning experience.

Programming anxiety, which represents an important predictor of achievement
in CS modules, may also play a role in discouraging students from attempting to
program independently. Students can find learning programming intimidating,
giving rise to lack of confidence and loss of self-esteem. Connolly, Murphy, and

COMPUTER SCIENCE EDUCATION﻿    199

Moore (2009) report that the best approach to breaking the cycle of anxiety is to
change the way students think, focusing on the development of rational skills,
which can be used to deal with all computer programming. Barros et al. (2003)
identify two obstacles to the development of such skills, namely, an excessive
dependency on group work, and insufficient assessment opportunities, leading
to fraudulent behaviour. In light of these obstacles, Barros et al. radically modi-
fied the assessment and grading system of a CS module, with the objectives of
increasing programming practice, decreasing fraud and dependency on others,
and decreasing student drop out. Barros et al. found that switching to a regular
lab-exam paradigm greatly enhanced competency, programming confidence, and
lowered the drop-out rate. Students preferred the new system over the previous
open lab group assignments, perceiving it as fairer and more relevant to the exam.
Knorr and Thompson (2017) also investigated the use of regular lab programming
tests, finding that it enhanced confidence in programming, albeit without impact
on the final exam grade.

Teaching programming in Maynooth University

The current system employed in Maynooth University for teaching Data Structures
and Algorithms (an intermediate level programming module) is that students
attend two hours of lectures per week, followed by two hours of labs where they
put into practice what they have learned. Thirty per cent of the module mark is
awarded for work carried out in the labs, with the remaining 70% awarded for the
end of semester paper-based written examination. In previous years students were
given programming questions during the week, which they would complete in
the lab in an open setting. Demonstrators would quiz students on their work at
the end of the lab, and award marks appropriately.

Over the years a number of potential drawbacks of this system became appar-
ent from demonstrators’ reports on student behaviour. For example, not all of
the weekly lab exercises were completed independently by students. Informal
feedback from demonstrators suggested that, when asked to explain their code,
students appeared to have learned off a script from which they were unable to
deviate. Another problem was that students relied heavily on demonstrators’ input
to complete their exercises. Despite only a small fraction of the class being capa-
ble of writing computer programs independently, most successfully completed
the labs and earned the marks. As such the correlation between CA mark and
programming exam mark was low.

Arguably, there is little point learning off facts about data structures and algo-
rithms if one does not have the ability to put that knowledge into practice through
programming. Maynooth students coming out of first year CS have basic pro-
gramming experience of writing simple programs. However, because an essential
aspect of programming involves the deployment of specialized data structures
and algorithms, their abilities are still developing. Most of the learning outcomes

200   ﻿ P. MAGUIRE ET AL.

for the Data Structures and Algorithms module make direct reference to applied
knowledge, such as (1) identifying data structuring strategies appropriate to a
given context, (2) designing, developing and testing programs, and (3) applying
data structuring techniques to the design of computer programs. In order to
address the misalignment between learning outcomes and ultimate evaluation,
the exam format in 2015 was changed so that the entire paper involved reading
and writing computer code and nothing else. The new-style exam featured five
fully programming-based open-ended questions (see supplementary material
– exam questions). The marks were very poor, suggesting that, after two years
studying computer science, many students were not able to program solutions
to even relatively simple problems. These results motivated us to seek better
alignment between the learning outcomes, lab activities and the final exam for
future years.

Porter, Guzdial, McDowell, and Simon (2013) discuss several different enhance-
ments that can improve programming skills, such as peer instruction and pair
programming. For example, peer instruction modifies a standard lecture to revolve
around several questions, in which students can discuss the problem in groups and
then answer using clickers. Porter et al. (2013) report that students taking computer
science in peer instruction classes experience a 61% reduction in failure rates, and
outperform students given traditional lectures by 5% on identical final exams.

We previously found that the use of clicker questions in lectures within this mod-
ule greatly raised attendance, with students reporting increased attention during
lectures. However, this did not lead to increased performance in final exam grades
(Maguire & Maguire, 2013). This may have been because the questions asked in
lectures were verbal and conceptual, and did not involve directly programming
a machine. Again, the questions students were being asked in lectures were not
well aligned with the learning outcomes.

Another form of intervention which may be helpful for developing program-
ming skills is “paired programming”. This involves two people working together
at a workstation, one of them as the “driver” and the other as the “observer”. The
assumption is that students should learn from the collaboration, with promis-
ing results reported in the literature (Porter et al., 2013). For example, McDowell,
Werner, Bullock and Fernald (2002) found that more students passed in the pairing
sections (72%) vs. the solo sections (63%), were more likely to continue on into the
next programming course (85% vs. 67%), and were more likely to have declared
a CS major one year later (57% vs. 34%).

Nevertheless, when we introduced paired programming to our module, the
initiative failed to enhance programming performance (Maguire, Maguire, Hyland,
& Marshall, 2014). Upon investigation, weaker students appeared to rely on the
knowledge of stronger classmates, and did not get the chance to experience the
process of resolving difficulties themselves. Pairing students with others of similar
ability may have mitigated this effect. For example, Braught, MacCormick, and
Wahls (2010) compared random pairings vs. pairing by ability and found that the

COMPUTER SCIENCE EDUCATION﻿    201

lowest-quartile students who were paired by ability performed better than those
who were paired randomly and those who worked alone.

Based on our previous experiences, we identified the following working
assumptions regarding our teaching of computer programming, echoing closely
those of Barros et al. (2003):

(1) � Raising lecture attendance or lab attendance per se is not sufficient to
improve programming performance when activities are not aligned with
learning outcomes

(2) � Allowing weaker students to rely on the work of stronger peers can be
damaging for developing practical programming skills, because it pre-
vents the them from confronting their own lack of knowledge

(3) � Putting text-based questions on the exam can be damaging for devel-
oping practical programming skills, because it allows students to earn
marks without programming, thus reducing their motivation to develop
the skill during the module

In essence, the problem was that the content being examined in the final exam was
not aligned with the way in which the lab practicals were being run. Constructive
alignment (Biggs, 1996) is the idea of systematically aligning teaching methods
and assessment through the medium of constructivist teaching, where learners
are actively involved in the process of meaning and knowledge construction, as
opposed to passively receiving information. According to this paradigm, students
learn best when they are allowed to construct a personal understanding of the
assessment targets based on experiencing things and reflecting on those experi-
ences. Shaffer and Resnick (1999) hypothesize that different forms of “authentic”
learning can be blended together in learning environments that provide “thick
authenticity”, enabling simultaneous creation of personal (aligned with what
learners want to know), real-world (aligned with the expectations of industry),
disciplinary (aligned with the academic discipline) and assessment authenticity.
Inspired by this approach, we identified the following action points to actively
encourage students to develop “thickly authentic” programming skills:

(1) � All assessment in the module should be programming-based so that
the only way to pass is by successfully programming, thereby directly
addressing the module learning outcomes, and the expectations of
industry and academia

(2) � Students must take full personal responsibility for their own ability to
program, coding independently using their own ideas, and obtaining
immediate, objective feedback throughout the semester

Identifying similar action points, both Barros et al. (2003) and Knorr and
Thompson (2017) switched to regular lab exams, which were corrected manually.
For example, Barros et al. used a grading system for labs of 0 to 3, with partial marks
awarded for following style rules and being “near to the correct solution”. This

202   ﻿ P. MAGUIRE ET AL.

grading scale, however, is subjective and therefore requires human intervention,
drawing down significant labour from teachers, and also raising the spectre of
students haggling for marks. Daly and Waldron (2004) argue that students should
not be given any marks for programs that do not work, because it disincentivizes
students from seeking successful problem-solving skills. Embracing the concept
of constructive alignment, we sought to develop a paradigm whereby students
could discover the importance of issues such as style rules by themselves, rather
than having subjective rules imposed by fiat. We also sought to leave the approach
to the problem completely open, awarding marks only for the correct output and
nothing else, thus allowing students to engage their creativity, make mistakes and
discover efficient solutions for themselves, rather than handing them the answer.

For example, presenting programming problems as game-type challenges
encourages students to develop skills by engaging them more deeply in the
material (Jiau, Chen, & Ssu, 2009). Lawrence (2004) reports that allowing students
to evaluate and improve their programs to achieve competitive success is also a
significant motivator for increased performance. Students work harder and are
more interested in programming when they have creative control over solving a
well-defined, though interesting problem.

Most of all, we wished to have the whole process automated. Systems which
assess code automatically are gaining popularity within computer programming
courses (Rubio-Sánchez, Kinnunen, Pareja-Flores, & Velázquez-Iturbide, 2014). A
variety of different systems have been developed and deployed for teaching in
the past (see Douce, Livingstone, & Orwell, 2005; Ihantola, Ahoniemi, Karavirta, &
Seppälä, 2010; for a comprehensive review). For example, CodeWrite is a web-based
tool that gives students responsibility for developing exercises which are then
shared with their classmates, a pedagogical approached known as “constructive
evaluation” (Luxton-Reilly & Denny, 2010). This means that students are exposed
to a variety of solutions to a problem that they have also solved, showing them
that there are multiple correct solutions, some of which may be more succinct and
easier to understand than their own (Denny, Luxton-Reilly, Tempero, & Hendrickx,
2011). Web-CAT, the Web-based Center for Automated Testing, is another widely
used open-source automated grading system that provides rapid, directed com-
ments on students’ work. Supporting a wide variety of programming languages
and assessment strategies, it encourages students to write software tests for their
own work, giving them the responsibility of demonstrating the correctness and
validity of their own programs (Edwards & Perez-Quinones, 2008).

In this study, we describe the use of a recently developed online system
which met all of our desiderata with minimum overhead, namely HackerRank.
HackerRank’s principal advantage over other automatic grading systems is that
it is used in practice by industry to recruit programmers and run programming
competitions, thus potentially providing the closest alignment with the learning
outcomes of a programming course and the expectations of industry.

COMPUTER SCIENCE EDUCATION﻿    203

Overview of HackerRank

HackerRank is a company that focuses on competitive programming challenges
for consumers, educators and businesses, boasting an online community of over
one million computer programmers (Kosner, 2014). Its programming challenges
can be solved in a variety of programming languages (including Java, C++, PHP,
Python, SQL), and span many areas of CS. When a programmer submits a solution
to a programming challenge, the submission is scored on the accuracy of the
output and the execution time of the solution.

HackerRank for Work is a subscription service offered by HackerRank that aims
to help companies source, screen, and hire engineers and other technical roles.
HackerRank also provide the same service to educators for free. The platform gives
users the option to avail of a built-in library of programming challenges, or to
write their own. Candidate’s solutions, once submitted, are automatically scored
and the results are then provided to the technical recruiter or educator for review.

HackerRank provided Maynooth University with an unlimited allocation of free
invitations, allowing instructors to email tests out to students in the class on a
weekly basis. Given that the platform supports a wide range of programming lan-
guages, it immediately cut the tie of the module to a particular language (which
had previously been Java based). The platform also has the advantage of being run
through a webpage, meaning there was no need to install any software to allow
students to avail of the different languages. Furthermore, the HackerRank website
could easily be displayed in lecture theatres, with the solution programmed by
the lecturer live. Given that there was no need to install specialized software on
lecture theatre machines, this saved the lecturer from having to bring a laptop.

The way the programming challenges work is that the test designer specifies
an input–output function (see supplementary material – topics covered). The
designer provides a textual description of what the function should do, with
sample cases given of input mapping to some output. The designer also inputs
hidden test cases, which students do not see. In labs, students receive an email
which they click on to bring them to the HackerRank website. A timer then starts
ticking down, informing them how much time they have left. When students
have written their program they hit RUN, and find out immediately how many
of the hidden outputs their program has managed to produce. If they have
identified all of them correctly, they can submit their code and get full marks. If
not, they are free to go back and edit the program and try to produce more of
the outputs. A “code stub” can also be provided in the question, which means
that students need only add a few methods into an existing data structure to
get it working.

In sum, HackerRank provides choice-making opportunities, because it allows
students to approach a problem from any angle, the only requirement being to
produce the appropriate output. It also provides students with the chance to
evaluate their own learning by providing immediate objective information on

204   ﻿ P. MAGUIRE ET AL.

programming ability each week, which is constructively aligned with the final
exam assessment.

Objectives of intervention

The goal of our intervention was to ascertain, first, whether HackerRank could be
successfully used to run all the labs covering the various topics in the module, and
more importantly, to find out whether this form of regular automated testing of
students would lead to improved outcomes, as measured by performance on the
final exam. To this end, we aimed to evaluate the validity of HackerRank perfor-
mance for predicting exam performance after controlling for a number of known
associates of programming performance.

Method

Participants

This study was carried out with a second year undergraduate class in the Maynooth
University taking the module in Data Structures and Algorithms. There were a
total of 230 students enrolled in the module, studying for a range of degrees,
such as the degree in Computer Science and Software Engineering, the degree in
Computational Thinking, the HDip in Information Technology, as well as degrees
in Science, Arts and Multimedia.

The Computational Thinking and HDip students had taken an intensive pre-se-
mester course in Java programming, while everybody else had completed two
first year modules in Java programming. It was therefore assumed that on entry
the students had introductory knowledge of programming, though without the
experience of applying it to the development of data structures and algorithms.

Initial questionnaire

In a meta-review, Watson and Li (2014) found a global pass rate of 68% for introduc-
tory programming classes, without any substantial variation over time or according
to country, grade level, class size or programming language used. Building on this,
Bergin et al. (2015) carried out investigations as to the factors that predict pro-
gramming performance at the level of the individual (see also Watson & Li, 2014,
for a review of global introductory programming pass rates). After developing
numerous models, they found that three significant factors emerged, namely final
mathematics examination result prior to university entry, the number of hours
spent playing computer games and programming self-esteem. In light of these
findings, we invited students to complete a background questionnaire which pro-
vided sociodemographic and prior academic information including gender, total
CAO points achieved in their Leaving Certificate (which is taken around the age of
18 and is typically used to determine entry to university courses), and Math points

COMPUTER SCIENCE EDUCATION﻿    205

achieved in the Leaving Certificate. Both of these variables were taken as measures
of prior academic ability. Total CAO points can range from 0 to 625, while Maths
points can range from 0 to 125, with higher scores indicating higher achievement
prior to university entry. In addition, students indicated whether they had any prior
programming experience. Since most of these students had already undertaken
programming modules, it was expected that the majority would have at least one
year’s experience. Therefore, for the purpose of analysis, this variable was recoded
into those who had low (0–1 year) and high (2 years and above) experience with
programming.

Students were also asked to rate their level of confidence in their programming
ability. This was assessed using a single item, where students rated their agree-
ment on a scale of 0–10, with higher scores indicating higher levels of confidence
or self-efficacy.

Finally, given Bergin et al.’s (2015) findings, students indicated how many
hours per week they engaged in social media usage and gaming per week. Due
to non-normal distribution of these variables, the data was classified into tertiles.
In the case of gaming, participants were reclassified as either spending no time
gaming per week (i.e. 0 h) and then a median split was employed to categorize
the remaining participants into those engaging in low and high levels of gaming.
Since only a handful of participants indicated that they did not engage in social
media usage, this variable was split into equal thirds whereby participants were
classified as having either a low, mid or high level of usage.

Module engagement

Two measures provided information on students’ level of engagement with the
module. First, levels of attendance at weekly labs were recorded (totaling 11 weeks).
Second, students were sent out a set of practice questions before the exam and the
number of questions they attempted was recorded. Based on these data, students
were classified as to whether they had engaged in no practice or some practice.

Lab procedure

The module entailed weekly practical lab-based sessions. Students were informed
that each week there would be a question relevant to the material covered in lec-
tures, but they were not told what the question would be. Each lab lasted for two
hours. In the first hour, students were given time to practice and to ask the demon-
strators questions about the code they had written. Sometimes the demonstrators
would give brief tutorials at the white-boards, giving the students information they
might need in the lab. In the second hour, the students did the HackerRank test
in silence. Each student was sent out an email, with a link which they clicked to
bring them to the test on the HackerRank website. The HackerRank test was open
book, meaning that students were allowed to bring in any material they wanted.

206   ﻿ P. MAGUIRE ET AL.

They were also free to access programming language websites, (e.g. https://docs.
oracle.com/ for Java; https://www.haskell.org/hoogle/ for Haskell), and all of the
lecture notes and past solutions on the module website. Five minutes into the test,
web access to any other sources than these was taken down, thus minimizing the
potential for students to email solutions to each other.

The students had one hour to complete the test. If they did not hit the submit
button before one hour, then the code on their screen was automatically submit-
ted after the hour had elapsed. Each question involved ten input-output pairs, for
which students had to code up an appropriate function. Each test case matched
earned 10% of the marks for that lab. Usually, only 8 of the test case outputs
were hidden, meaning that two could be hard-coded to earn 20% of the marks
for the lab (e.g. if input = “15 18 3”, then output “3”; see supplementary materials
– topics covered). For this reason, everybody attending the lab would, in theory,
get at least 20%. Although students could resubmit their work as many times as
possible, they were not able to run the 8 hidden test cases until passing both of
the two visible ones, thus reducing the motivation to “hack” their way to a correct
solution through trial and error (see Ihantola et al., 2010). Buffardi and Edwards
(2015) report that, while automated graded systems provide students with prompt
feedback, they may inadvertently discourage students from thinking and testing
thoroughly, instead encouraging dependence on the instructor’s tests. In light
of this, we sought to deliberately include a selection of “curveball” test cases that
would thoroughly test the robustness of any submitted program (e.g. zero inputs,
defective inputs, negative inputs, large inputs).

Following completion of the lab, all the marks could be easily downloaded into
an excel spreadsheet from the HackerRank website, saving great effort. This con-
trasted with previous years, when all the data had to be entered manually. The marks
were posted up within minutes, so students could see what mark they got. Students
were uniquely identified by their email addresses, and by the student numbers
they were asked to enter into the HackerRank system when accepting an invita-
tion. Demonstrators verified who was in the lab in the first hour, so marks were only
given to those who attended, and not those who might have completed the test at
home. All labs were weighted equally in determining final CA (see supplementary
materials – topics covered). In the spirit of constructive evaluation (see Luxton-Reilly
& Denny, 2010), a range of the top solutions submitted by students were uploaded
online and discussed in lectures.

Statistical analysis

A hierarchical regression analysis with four blocks of factors was conducted to
establish the relationship between students’ HackerRank score and their final exam
mark, after controlling for nine additional predictor variables. The first block of
factors measured sociodemographic and academic characteristics prior to course
commencement (gender, CAO points, maths score, programming experience).

https://docs.oracle.com/
https://docs.oracle.com/
https://www.haskell.org/hoogle/

COMPUTER SCIENCE EDUCATION﻿    207

The second block of factors measured self-efficacy and engagement in gaming
and social media (confidence in programming, hours gaming per week and social
media usage per week), while the third block of factors identified behavioural
engagement with the module (attendance and practice) and, finally, the fourth
block examined the role of the HackerRank score. Prior to analysis, descriptive sta-
tistics were calculated and preliminary analysis was conducted in order to ensure
that no violations in the assumptions of normality, linearity and homoscedasticity
were observed. Correlations between the predictor variables were also examined
to ensure no problems with multicollinearity.

Results

Descriptive statistics

Descriptive statistics for both the categorical and continuous variables in our study
are presented in Table 1. As can be seen here, the vast majority (84%) of students
were male. Most students reported between 6 and 10 h of social media usage per
week and between 1 and 9 h of gaming per week. Only 19% of students had two
years or more programming experience, with most only having experience based

Table 1. Descriptive statistics for continuous variables in study.

Categorical variables No. % Valid %

Gender

 M ale 177 83.5 83.5
  Female 35 16.5 16.5
  Missing 0 0

Programming experience

 O ne year or less 172 81.1 81.1
 T wo years or more 40 18.9 18.9
  Missing 0 0

Amount of gaming per week

  0 h 47 22.2 23.2
  1–9 h 80 37.7 39.6
  10 h+ 75 35.4 37.1
  Missing 10 4.7

Social media usage per week

  0–5 h 68 32.1 33.0
  6–10 h 70 33.0 34.0
  11 h+ 68 32.1 33.0
  Missing 10 2.8

Engaged in any practice

 N o practice 181 85.4 85.4
 A t least some practice 31 14.6 14.6
  Missing 0 0
Continuous variables Mean SD Range
Total points 424.67 67.13 95–595
Maths points 58.27 19.24 0–100
Confidence in programming

ability
5.88 1.91 0–10

Attendance 9.30 2.21 1–11
Hackerrank score (CA) 19.98 6.50 1.5–30
Exam score 58.42 28.41 2.50–100

208   ﻿ P. MAGUIRE ET AL.

on their first year in CS. Only 15% of students engaged in HackerRank practice
prior to the exam. Examination of the continuous variables revealed that, while
generally reporting a high attendance, students exhibited variability in their levels
of confidence, their HackerRank score and their exam grades. The mean exam score
of 58% was an improvement on previous years (see Table 2).

Regression analysis

Table 3 displays the results of the regression analysis. All blocks of factors contrib-
uted significantly to the model, with block 1 (sociodemographic and academic
factors) contributing 17% of the variance in exam scores (p < .01), block 2 (con-
fidence, social media and gaming) contributing a further 13% of the variance
(p < .01), and block 3 (behavioural engagement) contributing 14% of the variance
(p < .01). Block 4 (HackerRank performance) contributed the greatest amount of
variance at 18% (p < .01). As a whole, the model was significant (F(10, 168) = 28.05;
p < .001) and successfully explained 59% of variance in final exam scores. Three

Table 2. Comparison of performance between 2015 (demonstrator correction) and 2016 (machine
correction) cohorts.

 2015 2016
N Sitting Exam 221 230
Average Mark 36.6% 56.9%
Failure Rate 60.6% 31.7%
First Class Honours Rate 13.1% 39.1%
Correlation between exam and CA (r) 0.35 0.64

Table 3. Hierarchical Regression Analyses for Variables Predicting Exam Score.

Statistical significance:*p < .05;**p < .01;***p < .001.

Variables β p t B SE CI95%

Block 1: Sociodemographic and academic factors

Gender [0 = female; 1 = male] 0.04 0.51 0.66 2.84 4.27 −5.59 11.26
CAO points 0.08 0.26 1.13 0.03 0.03 −0.03 0.10
Maths points 0.06 0.44 0.77 0.09 0.11 −0.14 0.31
Programming experience [0 = 0–1 years; 1

= 2+ years]
−0.05 0.28 −1.09 −3.98 3.64 −11.16 3.20

  R2 Change = 0.17

Block 2: Confidence, social media and gaming usage

Gaming usage per week −0.03 0.63 −0.48 −0.99 2.08 −5.11 3.12
Social media usage per week −0.07 0.16 −1.40 −2.49 1.78 −6.01 1.03
Confidence 0.13* 0.03 2.26 2.00 0.89 0.25 3.75
  R2 Change = 0.12

Block 3: Behavioural engagement

Attendance −0.12 0.10 −1.64 −1.49 0.91 −3.29 0.30
Practice 0.11* 0.03 2.21 8.75 3.97 0.93 16.58
  R2 Change = 0.14

Block 4: Hackerrank

Hackerrank score (CA) 0.72*** 0.00 8.85 3.15 0.36 2.45 3.86
  R2 Change = 0.18
  R2 = 0.59

COMPUTER SCIENCE EDUCATION﻿    209

predictors independently contributed to the model which, in order of strength, were
HackerRank score (β = .72, p < .001), confidence in programming ability (β = 0.13;
p < .05), and HackerRank practice (β = .11; p < .05). These results suggest that those
scoring higher in HackerRank, who had a greater confidence in their programming
ability, and who opted for a greater amount of practice, did better in their exams
scores.

In sum, HackerRank lab performance was demonstrated to be a highly accu-
rate predictor of performance in a programming-only exam, thus supporting the
hypothesis that automatic machine evaluation is an appropriate, constructively
aligned, tool to use for teaching programming.

Comparison of machine corrected labs vs. demonstrator corrected labs

At the conclusion of the module, before the exam, all students were invited to
provide feedback on how the module might be improved for future years. Students
did not report high levels of satisfaction with the HackerRank intervention. Most
recommended that the system be abolished or scaled back (see supplementary
material – student feedback – for examples).

Students viewed the introduction of automatic assessment negatively, fearing it
would lead to a drop in grades. Early in the semester, the class requested a means
of earning marks outside of labs. In response, it was decided to send out a “practice”
exercise at the beginning of the week, which was to be completed by the end of
the week, and which would introduce them to the topic being tested on the Friday.
The practice question was worth 30% of the weekly CA mark, with performance
in the lab session itself earning the remaining 70%. This process of sending out a
practice question was implemented from week 3 onwards. HackerRank’s plagiarism
detector suggested that the majority of answers to the practice questions were
copied or shared. Nevertheless, the boundary between collaboration and collu-
sion is ill defined and highly variable, and students have a poor understanding of
it (Joy, Cosma, Yau, & Sinclair, 2011). Any students challenged about the issue said
that, although they had worked out the general idea in a group, they had imple-
mented their own solution independently. Because of the difficulty of establish-
ing plagiarism for short problems where standard solutions are often discovered
independently, no actions were taken. Nevertheless, the possibility of widespread
copying suggests that automatic assessment can only be effective in a controlled
lab environment where students are unable to pass code between themselves.

Based on student feedback, it was agreed to pick the best 8 out of the 11 labs,
thereby boosting CA marks by an average of 24.2% per student. This meant that
by the end of the semester, the best students already had maximum CA, so did
not need to attend the final labs.

210   ﻿ P. MAGUIRE ET AL.

Discussion

In line with the findings of Barros et al. (2003), the use of HackerRank was pos-
itively associated with improved exam results, with the failure rate dropping by
two thirds in comparison to the previous year. There were no changes as to the
content of the module over the two years, other than the manner in which the
labs were structured. These results provide convincing evidence that automatic
machine assessment supports an enhanced learning experience for developing
programming skills. Furthermore, HackerRank proved easy to use, saving consider-
able amounts of labour on the part of the demonstrators and the lecturer. Students
received consistent, objective feedback on their coding ability during the semester,
and this valuable source of information led to a significant boost in programming
ability and higher progression rates. The stress of having to perform each week, and
of being caught out dramatically by their own coding errors, challenged students
to improve their skills in programming.

In line with previous studies examining predictors of programming success (e.g.
Ahadi, Lister, Haapala, & Vihavainen, 2015), lab scores turned out to be the strong-
est predictor of exam results, as opposed to age, gender or prior programming
experience. This means that students obtaining low scores in initial HackerRank
labs could in future be targeted with supplementary interventions to help improve
their confidence and conceptual understanding, thus helping to close the gap in
achievement.

There were, however, drawbacks to the use of the HackerRank system, most
notably the low levels of student satisfaction reported. In spite of the improve-
ment in performance in comparison to previous years, most students reported
that HackerRank had a negative impact on their learning, and recommended that
it should be dropped, or at least scaled back. Similar responses have been noted
in computer programming classes following the introduction of automatic assess-
ment systems. Rubio-Sánchez et al. (2014), for example, suggested that feedback
needs to be richer in order to lead to acceptance among the student cohort.
Falkner, Vivian, Piper, and Falkner (2014) found that increasing the amount and
granularity of automated feedback led to improved results. HackerRank, however,
can only provide the most granular feedback of passing and failing test cases.

It also became apparent in our intervention that not every kind of topic was as
well suited to automatic assessment. For example, the labs on linked lists, on merg-
esort, on recursion and on bit-shifting were somewhat contrived, involving code
stubs to force students to program in a particular way. Accordingly, in future we
might be more selective, combining some element of automatic assessment with
more informal labs in weeks where the topic is not as amenable to such evaluation.

There are a number of changes that could be made to improve student expe-
rience. For example, the feedback from students revealed that they wanted to
see the test cases that were causing their programs to fail. In future we will email
students another HackerRank invitation after the lab, with the test cases visible,

COMPUTER SCIENCE EDUCATION﻿    211

so they can see where they went wrong and continue to develop their programs.
Based on our experiences, we will also restructure the two hour lab as follows:
the HackerRank test will be extended to two hours, and will begin immediately.
For the first hour, nobody will be allowed to communicate, and demonstrators
will not be allowed to help. Any student completing in the first hour will receive
100% of the marks they are awarded by HackerRank. In the second hour, the marks
awarded will fall linearly over time, from 100% at the hour mark, to 40% at the two
hour mark. After the hour mark, demonstrators can advise students on bugs and
provide a general approach to solving the problem on the whiteboard. As more
time passes they can provide more extensive help, with the goal that by the end
of the two-hour lab everybody should have a working program.

We hope that this system of increasing the availability of help over the two hours
will relieve student anxiety. According to Falkner et al. (2014), even when initial
marks are low, the prospect of making progress gives students more resilience and
leads them to strive for longer. Providing feedback should also take away the pres-
sure to cheat: rather than take the risk of plagiarising (which HackerRank detects),
students who are really struggling will wait until the hour mark and then get help.
Over time, this system should have the effect of improving programming confi-
dence, which has been shown to have significant influence on students’ achieve-
ments in computer science (Connolly et al., 2009). Programming confidence also
emerged as an independent predictor of exam performance in our study, further
highlighting the important role that psychological variables can have in predicting
later success (Maguire, Egan, Hyland, & Maguire, 2017).

Palazzo, Lee, Warnakulasooriya, and Pritchard (2010) suggested that a course
design which involves greater teacher interaction encourages students to believe
that the instructor is concerned with their learning (rather than simply assigning
a grade based on their performance). They found that modifying physics courses
at MIT to enhance teacher interaction led to a 75% reduction in cheating (Fraser,
2014). Accordingly, we believe that allowing greater interactions between stu-
dents and demonstrators in the second hour may improve morale. Students will
be able to learn about the bugs in their code, and hopefully get coached all the
way through to developing a fully functioning program, allowing them to study
their own solutions for the exam.

In conclusion, HackerRank is easy to use, reduces much administrative burden,
corrects everything instantly without requiring demonstrator input, gives instant
feedback, and is more objective than the previous system employed in this mod-
ule. Our study has shown that the system is effective in helping students develop
programming skills, providing them with high quality objective feedback as to
their programming ability. Nevertheless, it should also be noted that students
did not report a positive experience. Accordingly, we suggest that the blending
of automatic assessment with some element of teacher intervention and peer
interaction could lead to a more satisfactory learning experience for struggling
students.

212   ﻿ P. MAGUIRE ET AL.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Phil Maguire is a lecturer in the Department of Computer Science at Maynooth University and
was the module coordinator for the Data Structure and Algorithms module described in the
paper. His research interests are computer science education, philosophy of measurement,
and psychology of power and fintech.

Rebecca Maguire is a lecturer in the Department of Psychology at Maynooth University. She
has a particular interest in student engagement and learning in Higher Education and the role
that cognitive representations play in health and well-being.

Robert Kelly is a PhD student in the Department of Computer Science at Maynooth University
and was a Data Structure and Algorithms module demonstrator. His research interests include
concurrent data-structure design and implementation, with particular focus on non-blocking
data-structures, garbage collection, memory reclamation, and concurrent language design.

References

Ahadi, A., Lister, R., Haapala, H., & Vihavainen, A. (2015, July). Exploring machine learning methods
to automatically identify students in need of assistance. In Proceedings of the Eleventh Annual
International Conference on International Computing Education Research (pp. 121–130). ACM.

Barros, J. P., Estevens, L., Dias, R., Pais, R., & Soeiro, E. (2003). Using lab exams to ensure programming
practice in an introductory programming course. ACM SIGCSE Bulletin, 35(3), 16–20.

Beaubouef, T., Lucas, R., & Howatt, J. (2001). The UNLOCK system: Enhancing problem solving
skills in CS-1 students. ACM SIGCSE Bulletin, 33(2), 43–46.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM SIGCSE
Bulletin, 39(2), 32–36.

Bergin, S., Mooney, A., Ghent, J., & Quille, K. (2015). Using machine learning techniques to
predict introductory programming performance. International Journal of Computer Science
and Software Engineering, 4(12), 323–328.

Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher Education, 32(3),
347–364.

Braught, G., MacCormick, J., & Wahls, T. (2010). The benefits of pairing by ability. In Proceedings
of the 41st ACM technical symposium on Computer science education (pp. 249–253). ACM.

Buffardi, K., & Edwards, S. H. (2015). Reconsidering automated feedback: A test-driven approach.
In Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp. 416–
420). ACM.

Connolly, C., Murphy, E., & Moore, S. (2009). Programming anxiety amongst computing students
– A key in the retention debate? IEEE Transactions on Education, 52(1), 52–56.

Daly, C., & Waldron, J. (2004). Assessing the assessment of programming ability. ACM SIGCSE
Bulletin, 36(1), 210–213.

Denny, P., Luxton-Reilly, A., Tempero, E., & Hendrickx, J. (2011). CodeWrite: Supporting student-
driven practice of java. In Proceedings of the 42nd ACM technical symposium on Computer
science education (pp. 471–476). ACM.

Dick, M., Sheard, J., Bareiss, C., Carter, J., Joyce, D., Harding, T., & Laxer, C. (2003). Addressing
student cheating: Definitions and solutions. ACM SIGCSE Bulletin, 35(2), 172–184.

COMPUTER SCIENCE EDUCATION﻿    213

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of programming:
A review. Journal on Educational Resources in Computing (JERIC), 5(3), article 4.

Falkner, N., Vivian, R., Piper, D., & Falkner, K. (2014). Increasing the effectiveness of automated
assessment by increasing marking granularity and feedback units. In Proceedings of the 45th
ACM technical symposium on Computer science education (pp. 9–14). ACM.

Edwards, S. H., & Perez-Quinones, M. A. (2008). Web-CAT: Automatically grading programming
assignments. In ACM SIGCSE Bulletin (Vol. 40, No. 3, pp. 328–328). ACM.

Fowler, S., & Yamada-F, N. (2009). A brief survey on the computer science programs in the UK
higher education systems. Journal of Scientific and Practical Computing, 3(1), 11–17.

Fraser, R. (2014). Collaboration, collusion and plagiarism in computer science coursework.
Informatics in Education, 13(2), 179–195.

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate students in an
introductory-level computer programming course. Computers & Education, 54(4), 1127–1136.

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent systems for automatic
assessment of programming assignments. In Proceedings of the 10th Koli Calling International
Conference on Computing Education Research (pp. 86–93). ACM.

Jiau, H. C., Chen, J. C., & Ssu, K. F. (2009). Enhancing self-motivation in learning programming
using game-based simulation and metrics. IEEE Transactions on Education, 52(4), 555–562.

Joy, M., Cosma, G., Yau, J., & Sinclair, J. (2011). Source code plagiarism – A student perspective.
IEEE Transactions on Education, 54(1), 125–132.

Knorr, E. M., & Thompson, C. (2017). In-Lab programming tests in a data structures course in C
for non-specialists. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education (pp. 339–344). ACM.

Kosner, A.W. (2014, June 12). Hackerrank solves tech hiring crisis by finding programmers where
they live. Forbes.

Lawrence, R. (2004). Teaching data structures using competitive games. IEEE Transactions on
Education, 47(4), 459–466.

Linn, M. C., & Dalbey, J. (1989). Cognitive consequences of programming instruction. In E.
Soloway & J. C. Sphorer (Eds.), Studying the novice programmer (pp. 57–81). Hillsdale, NJ:
Lawrence Erlbaum.

Luxton-Reilly, A., & Denny, P. (2010). Constructive evaluation: A pedagogy of student-contributed
assessment. Computer Science Education, 20(2), 145–167.

Maguire, R., Egan, A., Hyland, P., & Maguire, P. (2017). Engaging students emotionally: The role of
emotional intelligence in predicting cognitive and affective engagement in higher education.
Higher Education Research & Development, 36(2), 343–357.

Maguire, P., & Maguire, R. (2013). Can clickers enhance team based learning? Findings from
a computer science module. AISHE-J: The All Ireland Journal of Teaching & Learning Higher
Education, 5(3), 1421–14217.

Maguire, P., Maguire, R., Hyland, P., & Marshall, P. (2014). Enhancing collaborative learning using
paired-programming: Who benefits?. AISHE-J: The All Ireland Journal of Teaching and Learning
Higher Education, 6(2), 1411–14125.

Mayer, R., Stull, A., DeLeeuw, K., Almeroth, K., Bimber, B., Chun, D., ... & Zhang, H. (2009). Clickers
in college classrooms: Fostering learning with questioning methods in large lecture classes.
Contemporary Educational Psychology, 34, 51–57.

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002). The effects of pair-programming on
performance in an introductory programming course. ACM SIGCSE Bulletin, 34(1), 38–42.

McKeachie, W. J. (1999). Teaching tips: Strategies, research, and theory for college and university
teachers (10th ed.). New York, NY: Houghton Mifflin.

214   ﻿ P. MAGUIRE ET AL.

Miliszewska, I., & Tan, G. (2007). Befriending computer programming: A proposed approach to
teaching introductory programming. Informing Science: International Journal of an Emerging
Transdiscipline, 4, 277–289.

Palazzo, D. J., Lee, Y.-J., Warnakulasooriya, R., & Pritchard, D. E. (2010). Patterns, correlates, and
reduction of homework copying. Physical Review Special Topics: Physical Education Research,
6(1), 010104-1–010104-11.

Peters, A. K., & Pears, A. (2012). Students’ experiences and attitudes towards learning Computer
Science. In Proceedings of the 42nd ASEE/IEEE Frontiers in Education Conference (pp. 88–93). IEEE.

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in introductory programming:
What works? Communications of the ACM, 56(8), 34–36.

Roberts, E. (2002). Strategies for promoting academic integrity in CS courses. Frontiers in
Education, 3, F3G14–F3G19.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review
and discussion. Computer Science Education, 13(2), 137–172.

Rubio-Sánchez, M., Kinnunen, P., Pareja-Flores, C., & Velázquez-Iturbide, Á. (2014). Student
perception and usage of an automated programming assessment tool. Computers in Human
Behavior, 31, 453–460.

Sheard, J., Carbone, A., & Dick, M. (2003). Determination of factors which impact on IT students’
propensity to cheat. In ACE ‘03: Proceedings of the fifth Australasian Conference on Computing
Education (pp. 119–126). Australian Computer Society, Inc.

Shaffer, D. W., & Resnick, M. (1999). “Thick” Authenticity: New Media and Authentic Learning.
Journal of Interactive Learning Research, 10(2), 195–215.

Thweatt, M. (1994). CSI closed lab vs. open lab experiment. ACM SIGCSE Bulletin, 26(1), 80–82.
Traynor, D., & Gibson, P. (2004). Towards the development of a cognitive model of programming:

A software engineering approach. In Proceedings of the 16th Workshop of Psychology of
Programming Interest Group.

Trees, A. R., & Jackson, M. H. (2007). The learning environment in clicker classrooms: Student
processes of learning and involvement in large university course using student response
systems. Learning, Media, and Technology, 32(1), 21–40.

Watson, C., & Li, F. W. (2014). Failure rates in introductory programming revisited. In Proceedings of
the 2014 conference on Innovation & technology in computer science education (pp. 39–44). ACM.

Wilkinson, J. (2009). Staff and student perceptions of plagiarism and cheating. International
Journal of Teaching and Learning in Higher Education, 20(2), 98–105.

Williams, L., & Upchurch, R. (2001). In support of student pair programming. SIGCSE Conference
on Computer Science Education, 327–331.

	Abstract
	Introduction
	Teaching programming in Maynooth University
	Overview of HackerRank
	Objectives of intervention

	Method
	Participants
	Initial questionnaire
	Module engagement
	Lab procedure
	Statistical analysis

	Results
	Descriptive statistics
	Regression analysis
	Comparison of machine corrected labs vs. demonstrator corrected labs

	Discussion
	Disclosure statement
	Notes on contributors
	References

