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ABSTRACT
We report on an intervention in which informal programming 
labs were switched to a weekly machine-evaluated test for a 
second year Data Structures and Algorithms module. Using 
the online HackerRank system, we investigated whether 
greater constructive alignment between course content and 
the exam would result in lower failure rates. After controlling 
for known associates, a hierarchical regression model 
revealed that HackerRank performance was the best predictor 
of exam performance, accounting for 18% of the variance in 
scores. Extent of practice and confidence in programming 
ability emerged as additional significant predictors. Although 
students expressed negativity towards the automated system, 
the overall failure rate was halved, and the number of students 
gaining first class honours tripled. We infer that automatic 
machine assessment better prepares students for situations 
where they have to write code by themselves by eliminating 
reliance on external sources of help and motivating the 
development of self-sufficiency.

Introduction

Many students taking computer science (CS) find programming very challenging, 
with up to a quarter dropping out and many others performing poorly (Fowler & 
Yamada-F, 2009; Peters & Pears, 2012; Williams & Upchurch, 2001). The high variabil-
ity of students’ backgrounds typically found in introductory programming courses 
can undermine some students’ motivation, and make it more difficult to ensure 
the desired competency and retention rates (Barros, Estevens, Dias, Pais, & Soeiro, 
2003). As well as leading to significant attrition at university level, the perception 
of CS as a “difficult” subject may also discourage students from choosing to study 
it in the first place (Bennedsen & Caspersen, 2007).
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A number of studies have attempted to explain the cause of such high failure 
rates (e.g. Bergin, Mooney, Ghent, & Quille, 2015). One pertinent factor may be the 
way in which programming is taught. Like other disciplines that require proce-
dural knowledge, programming is best learned through practice and experience 
(Traynor & Gibson, 2004). Students’ lack of fundamental problem-solving skills have 
been identified as one of the main reasons for attrition and weak programming 
competency (Beaubouef, Lucas, & Howatt, 2001; Thweatt, 1994). Unfortunately, 
textbooks and lecture material in CS are often heavy on declarative knowledge, 
with particular emphasis on the features of programming languages and how to 
use them (Robins, Rountree, & Rountree, 2003). Changes to teaching methods, 
such as the use of clearer textbooks and the introduction of online resources, 
have done little to improve programming competence (Miliszewska & Tan, 2007).

Although programming is a practical skill, the opportunities provided for prac-
tice are often insufficient (Hawi, 2010). The best means of implementing the prac-
tical component of such modules remains a contentious issue (Linn & Dalbey, 
1989; Maguire & Maguire, 2013). Research has shown that students must be active 
participants in the learning process in order for deep learning to occur (Mayer et 
al., 2009). Knowledge must be put into practice in order for misunderstandings to 
rise to the surface where they can be challenged and corrected (McKeachie, 1999). 
According to Trees and Jackson (2007), the ideal learning environment should 
involve mastery-oriented feedback, choice-making opportunities, and the chance 
for students to evaluate their own learning. In the case of developing skills in 
programming, this implies tackling open-ended questions which require creative 
thinking, and getting prompt objective feedback on what works and what doesn’t 
work.

A particular problem with CS coursework, given the group-based setting in 
which labs are typically conducted, is that work may be shared and copied with 
very little effort (Fraser, 2014). Rather than have to solve a difficult problem inde-
pendently, it can sometimes be easier to paste in a solution that somebody else 
has developed. For instance, Roberts (2002) reviewed incidents of dishonesty at 
Stanford University over a decade, and found that 37% of all incidents were attrib-
uted to CS courses, despite the fact that these students represented less than 7% 
of the student population. In a programming lab environment, some students 
may realize that directing energy towards obtaining code from others leads to 
greater payoffs than actually attempting the problem themselves; they confess 
to cheating simply because they are “lazy” (Dick et al., 2003; Sheard, Carbone, & 
Dick, 2003; Wilkinson, 2009). According to Fraser (2014), unlimited collaboration 
increases the amount of copying that takes place, and thus damages the average 
student’s learning experience.

Programming anxiety, which represents an important predictor of achievement 
in CS modules, may also play a role in discouraging students from attempting to 
program independently. Students can find learning programming intimidating, 
giving rise to lack of confidence and loss of self-esteem. Connolly, Murphy, and 
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Moore (2009) report that the best approach to breaking the cycle of anxiety is to 
change the way students think, focusing on the development of rational skills, 
which can be used to deal with all computer programming. Barros et al. (2003) 
identify two obstacles to the development of such skills, namely, an excessive 
dependency on group work, and insufficient assessment opportunities, leading 
to fraudulent behaviour. In light of these obstacles, Barros et al. radically modi-
fied the assessment and grading system of a CS module, with the objectives of 
increasing programming practice, decreasing fraud and dependency on others, 
and decreasing student drop out. Barros et al. found that switching to a regular 
lab-exam paradigm greatly enhanced competency, programming confidence, and 
lowered the drop-out rate. Students preferred the new system over the previous 
open lab group assignments, perceiving it as fairer and more relevant to the exam. 
Knorr and Thompson (2017) also investigated the use of regular lab programming 
tests, finding that it enhanced confidence in programming, albeit without impact 
on the final exam grade.

Teaching programming in Maynooth University

The current system employed in Maynooth University for teaching Data Structures 
and Algorithms (an intermediate level programming module) is that students 
attend two hours of lectures per week, followed by two hours of labs where they 
put into practice what they have learned. Thirty per cent of the module mark is 
awarded for work carried out in the labs, with the remaining 70% awarded for the 
end of semester paper-based written examination. In previous years students were 
given programming questions during the week, which they would complete in 
the lab in an open setting. Demonstrators would quiz students on their work at 
the end of the lab, and award marks appropriately.

Over the years a number of potential drawbacks of this system became appar-
ent from demonstrators’ reports on student behaviour. For example, not all of 
the weekly lab exercises were completed independently by students. Informal 
feedback from demonstrators suggested that, when asked to explain their code, 
students appeared to have learned off a script from which they were unable to 
deviate. Another problem was that students relied heavily on demonstrators’ input 
to complete their exercises. Despite only a small fraction of the class being capa-
ble of writing computer programs independently, most successfully completed 
the labs and earned the marks. As such the correlation between CA mark and 
programming exam mark was low.

Arguably, there is little point learning off facts about data structures and algo-
rithms if one does not have the ability to put that knowledge into practice through 
programming. Maynooth students coming out of first year CS have basic pro-
gramming experience of writing simple programs. However, because an essential 
aspect of programming involves the deployment of specialized data structures 
and algorithms, their abilities are still developing. Most of the learning outcomes 
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for the Data Structures and Algorithms module make direct reference to applied 
knowledge, such as (1) identifying data structuring strategies appropriate to a 
given context, (2) designing, developing and testing programs, and (3) applying 
data structuring techniques to the design of computer programs. In order to 
address the misalignment between learning outcomes and ultimate evaluation, 
the exam format in 2015 was changed so that the entire paper involved reading 
and writing computer code and nothing else. The new-style exam featured five 
fully programming-based open-ended questions (see supplementary material 
– exam questions). The marks were very poor, suggesting that, after two years 
studying computer science, many students were not able to program solutions 
to even relatively simple problems. These results motivated us to seek better 
alignment between the learning outcomes, lab activities and the final exam for 
future years.

Porter, Guzdial, McDowell, and Simon (2013) discuss several different enhance-
ments that can improve programming skills, such as peer instruction and pair 
programming. For example, peer instruction modifies a standard lecture to revolve 
around several questions, in which students can discuss the problem in groups and 
then answer using clickers. Porter et al. (2013) report that students taking computer 
science in peer instruction classes experience a 61% reduction in failure rates, and 
outperform students given traditional lectures by 5% on identical final exams. 

We previously found that the use of clicker questions in lectures within this mod-
ule greatly raised attendance, with students reporting increased attention during 
lectures. However, this did not lead to increased performance in final exam grades 
(Maguire & Maguire, 2013). This may have been because the questions asked in 
lectures were verbal and conceptual, and did not involve directly programming 
a machine. Again, the questions students were being asked in lectures were not 
well aligned with the learning outcomes.

Another form of intervention which may be helpful for developing program-
ming skills is “paired programming”. This involves two people working together 
at a workstation, one of them as the “driver” and the other as the “observer”. The 
assumption is that students should learn from the collaboration, with promis-
ing results reported in the literature (Porter et al., 2013). For example, McDowell, 
Werner, Bullock and Fernald (2002) found that more students passed in the pairing 
sections (72%) vs. the solo sections (63%), were more likely to continue on into the 
next programming course (85% vs. 67%), and were more likely to have declared 
a CS major one year later (57% vs. 34%).

Nevertheless, when we introduced paired programming to our module, the 
initiative failed to enhance programming performance (Maguire, Maguire, Hyland, 
& Marshall, 2014). Upon investigation, weaker students appeared to rely on the 
knowledge of stronger classmates, and did not get the chance to experience the 
process of resolving difficulties themselves. Pairing students with others of similar 
ability may have mitigated this effect. For example, Braught, MacCormick, and 
Wahls (2010) compared random pairings vs. pairing by ability and found that the 
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lowest-quartile students who were paired by ability performed better than those 
who were paired randomly and those who worked alone.

Based on our previous experiences, we identified the following working 
assumptions regarding our teaching of computer programming, echoing closely 
those of Barros et al. (2003):

(1) � Raising lecture attendance or lab attendance per se is not sufficient to 
improve programming performance when activities are not aligned with 
learning outcomes

(2) � Allowing weaker students to rely on the work of stronger peers can be 
damaging for developing practical programming skills, because it pre-
vents the them from confronting their own lack of knowledge

(3) � Putting text-based questions on the exam can be damaging for devel-
oping practical programming skills, because it allows students to earn 
marks without programming, thus reducing their motivation to develop 
the skill during the module

In essence, the problem was that the content being examined in the final exam was 
not aligned with the way in which the lab practicals were being run. Constructive 
alignment (Biggs, 1996) is the idea of systematically aligning teaching methods 
and assessment through the medium of constructivist teaching, where learners 
are actively involved in the process of meaning and knowledge construction, as 
opposed to passively receiving information. According to this paradigm, students 
learn best when they are allowed to construct a personal understanding of the 
assessment targets based on experiencing things and reflecting on those experi-
ences. Shaffer and Resnick (1999) hypothesize that different forms of “authentic” 
learning can be blended together in learning environments that provide “thick 
authenticity”, enabling simultaneous creation of personal (aligned with what 
learners want to know), real-world (aligned with the expectations of industry), 
disciplinary (aligned with the academic discipline) and assessment authenticity. 
Inspired by this approach, we identified the following action points to actively 
encourage students to develop “thickly authentic” programming skills:

(1) � All assessment in the module should be programming-based so that 
the only way to pass is by successfully programming, thereby directly 
addressing the module learning outcomes, and the expectations of 
industry and academia

(2) � Students must take full personal responsibility for their own ability to 
program, coding independently using their own ideas, and obtaining 
immediate, objective feedback throughout the semester

Identifying similar action points, both Barros et al. (2003) and Knorr and 
Thompson (2017) switched to regular lab exams, which were corrected manually. 
For example, Barros et al. used a grading system for labs of 0 to 3, with partial marks 
awarded for following style rules and being “near to the correct solution”. This 
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grading scale, however, is subjective and therefore requires human intervention, 
drawing down significant labour from teachers, and also raising the spectre of 
students haggling for marks. Daly and Waldron (2004) argue that students should 
not be given any marks for programs that do not work, because it disincentivizes 
students from seeking successful problem-solving skills. Embracing the concept 
of constructive alignment, we sought to develop a paradigm whereby students 
could discover the importance of issues such as style rules by themselves, rather 
than having subjective rules imposed by fiat. We also sought to leave the approach 
to the problem completely open, awarding marks only for the correct output and 
nothing else, thus allowing students to engage their creativity, make mistakes and 
discover efficient solutions for themselves, rather than handing them the answer.

For example, presenting programming problems as game-type challenges 
encourages students to develop skills by engaging them more deeply in the 
material (Jiau, Chen, & Ssu, 2009). Lawrence (2004) reports that allowing students 
to evaluate and improve their programs to achieve competitive success is also a 
significant motivator for increased performance. Students work harder and are 
more interested in programming when they have creative control over solving a 
well-defined, though interesting problem.

Most of all, we wished to have the whole process automated. Systems which 
assess code automatically are gaining popularity within computer programming 
courses (Rubio-Sánchez, Kinnunen, Pareja-Flores, & Velázquez-Iturbide, 2014). A 
variety of different systems have been developed and deployed for teaching in 
the past (see Douce, Livingstone, & Orwell, 2005; Ihantola, Ahoniemi, Karavirta, & 
Seppälä, 2010; for a comprehensive review). For example, CodeWrite is a web-based 
tool that gives students responsibility for developing exercises which are then 
shared with their classmates, a pedagogical approached known as “constructive 
evaluation” (Luxton-Reilly & Denny, 2010). This means that students are exposed 
to a variety of solutions to a problem that they have also solved, showing them 
that there are multiple correct solutions, some of which may be more succinct and 
easier to understand than their own (Denny, Luxton-Reilly, Tempero, & Hendrickx, 
2011). Web-CAT, the Web-based Center for Automated Testing, is another widely 
used open-source automated grading system that provides rapid, directed com-
ments on students’ work. Supporting a wide variety of programming languages 
and assessment strategies, it encourages students to write software tests for their 
own work, giving them the responsibility of demonstrating the correctness and 
validity of their own programs (Edwards & Perez-Quinones, 2008).

In this study, we describe the use of a recently developed online system 
which met all of our desiderata with minimum overhead, namely HackerRank. 
HackerRank’s principal advantage over other automatic grading systems is that 
it is used in practice by industry to recruit programmers and run programming 
competitions, thus potentially providing the closest alignment with the learning 
outcomes of a programming course and the expectations of industry.
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Overview of HackerRank

HackerRank is a company that focuses on competitive programming challenges 
for consumers, educators and businesses, boasting an online community of over 
one million computer programmers (Kosner, 2014). Its programming challenges 
can be solved in a variety of programming languages (including Java, C++, PHP, 
Python, SQL), and span many areas of CS. When a programmer submits a solution 
to a programming challenge, the submission is scored on the accuracy of the 
output and the execution time of the solution.

HackerRank for Work is a subscription service offered by HackerRank that aims 
to help companies source, screen, and hire engineers and other technical roles. 
HackerRank also provide the same service to educators for free. The platform gives 
users the option to avail of a built-in library of programming challenges, or to 
write their own. Candidate’s solutions, once submitted, are automatically scored 
and the results are then provided to the technical recruiter or educator for review.

HackerRank provided Maynooth University with an unlimited allocation of free 
invitations, allowing instructors to email tests out to students in the class on a 
weekly basis. Given that the platform supports a wide range of programming lan-
guages, it immediately cut the tie of the module to a particular language (which 
had previously been Java based). The platform also has the advantage of being run 
through a webpage, meaning there was no need to install any software to allow 
students to avail of the different languages. Furthermore, the HackerRank website 
could easily be displayed in lecture theatres, with the solution programmed by 
the lecturer live. Given that there was no need to install specialized software on 
lecture theatre machines, this saved the lecturer from having to bring a laptop.

The way the programming challenges work is that the test designer specifies 
an input–output function (see supplementary material – topics covered). The 
designer provides a textual description of what the function should do, with 
sample cases given of input mapping to some output. The designer also inputs 
hidden test cases, which students do not see. In labs, students receive an email 
which they click on to bring them to the HackerRank website. A timer then starts 
ticking down, informing them how much time they have left. When students 
have written their program they hit RUN, and find out immediately how many 
of the hidden outputs their program has managed to produce. If they have 
identified all of them correctly, they can submit their code and get full marks. If 
not, they are free to go back and edit the program and try to produce more of 
the outputs. A “code stub” can also be provided in the question, which means 
that students need only add a few methods into an existing data structure to 
get it working.

In sum, HackerRank provides choice-making opportunities, because it allows 
students to approach a problem from any angle, the only requirement being to 
produce the appropriate output. It also provides students with the chance to 
evaluate their own learning by providing immediate objective information on 
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programming ability each week, which is constructively aligned with the final 
exam assessment.

Objectives of intervention

The goal of our intervention was to ascertain, first, whether HackerRank could be 
successfully used to run all the labs covering the various topics in the module, and 
more importantly, to find out whether this form of regular automated testing of 
students would lead to improved outcomes, as measured by performance on the 
final exam. To this end, we aimed to evaluate the validity of HackerRank perfor-
mance for predicting exam performance after controlling for a number of known 
associates of programming performance.

Method

Participants

This study was carried out with a second year undergraduate class in the Maynooth 
University taking the module in Data Structures and Algorithms. There were a 
total of 230 students enrolled in the module, studying for a range of degrees, 
such as the degree in Computer Science and Software Engineering, the degree in 
Computational Thinking, the HDip in Information Technology, as well as degrees 
in Science, Arts and Multimedia.

The Computational Thinking and HDip students had taken an intensive pre-se-
mester course in Java programming, while everybody else had completed two 
first year modules in Java programming. It was therefore assumed that on entry 
the students had introductory knowledge of programming, though without the 
experience of applying it to the development of data structures and algorithms.

Initial questionnaire

In a meta-review, Watson and Li (2014) found a global pass rate of 68% for introduc-
tory programming classes, without any substantial variation over time or according 
to country, grade level, class size or programming language used. Building on this, 
Bergin et al. (2015) carried out investigations as to the factors that predict pro-
gramming performance at the level of the individual (see also Watson & Li, 2014, 
for a review of global introductory programming pass rates). After developing 
numerous models, they found that three significant factors emerged, namely final 
mathematics examination result prior to university entry, the number of hours 
spent playing computer games and programming self-esteem. In light of these 
findings, we invited students to complete a background questionnaire which pro-
vided sociodemographic and prior academic information including gender, total 
CAO points achieved in their Leaving Certificate (which is taken around the age of 
18 and is typically used to determine entry to university courses), and Math points 
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achieved in the Leaving Certificate. Both of these variables were taken as measures 
of prior academic ability. Total CAO points can range from 0 to 625, while Maths 
points can range from 0 to 125, with higher scores indicating higher achievement 
prior to university entry. In addition, students indicated whether they had any prior 
programming experience. Since most of these students had already undertaken 
programming modules, it was expected that the majority would have at least one 
year’s experience. Therefore, for the purpose of analysis, this variable was recoded 
into those who had low (0–1 year) and high (2 years and above) experience with 
programming.

Students were also asked to rate their level of confidence in their programming 
ability. This was assessed using a single item, where students rated their agree-
ment on a scale of 0–10, with higher scores indicating higher levels of confidence 
or self-efficacy.

Finally, given Bergin et al.’s (2015) findings, students indicated how many 
hours per week they engaged in social media usage and gaming per week. Due 
to non-normal distribution of these variables, the data was classified into tertiles. 
In the case of gaming, participants were reclassified as either spending no time 
gaming per week (i.e. 0 h) and then a median split was employed to categorize 
the remaining participants into those engaging in low and high levels of gaming. 
Since only a handful of participants indicated that they did not engage in social 
media usage, this variable was split into equal thirds whereby participants were 
classified as having either a low, mid or high level of usage.

Module engagement

Two measures provided information on students’ level of engagement with the 
module. First, levels of attendance at weekly labs were recorded (totaling 11 weeks). 
Second, students were sent out a set of practice questions before the exam and the 
number of questions they attempted was recorded. Based on these data, students 
were classified as to whether they had engaged in no practice or some practice.

Lab procedure

The module entailed weekly practical lab-based sessions. Students were informed 
that each week there would be a question relevant to the material covered in lec-
tures, but they were not told what the question would be. Each lab lasted for two 
hours. In the first hour, students were given time to practice and to ask the demon-
strators questions about the code they had written. Sometimes the demonstrators 
would give brief tutorials at the white-boards, giving the students information they 
might need in the lab. In the second hour, the students did the HackerRank test 
in silence. Each student was sent out an email, with a link which they clicked to 
bring them to the test on the HackerRank website. The HackerRank test was open 
book, meaning that students were allowed to bring in any material they wanted. 
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They were also free to access programming language websites, (e.g. https://docs.
oracle.com/ for Java; https://www.haskell.org/hoogle/ for Haskell), and all of the 
lecture notes and past solutions on the module website. Five minutes into the test, 
web access to any other sources than these was taken down, thus minimizing the 
potential for students to email solutions to each other.

The students had one hour to complete the test. If they did not hit the submit 
button before one hour, then the code on their screen was automatically submit-
ted after the hour had elapsed. Each question involved ten input-output pairs, for 
which students had to code up an appropriate function. Each test case matched 
earned 10% of the marks for that lab. Usually, only 8 of the test case outputs 
were hidden, meaning that two could be hard-coded to earn 20% of the marks 
for the lab (e.g. if input = “15 18 3”, then output “3”; see supplementary materials 
– topics covered). For this reason, everybody attending the lab would, in theory, 
get at least 20%. Although students could resubmit their work as many times as 
possible, they were not able to run the 8 hidden test cases until passing both of 
the two visible ones, thus reducing the motivation to “hack” their way to a correct 
solution through trial and error (see Ihantola et al., 2010). Buffardi and Edwards 
(2015) report that, while automated graded systems provide students with prompt 
feedback, they may inadvertently discourage students from thinking and testing 
thoroughly, instead encouraging dependence on the instructor’s tests. In light 
of this, we sought to deliberately include a selection of “curveball” test cases that 
would thoroughly test the robustness of any submitted program (e.g. zero inputs, 
defective inputs, negative inputs, large inputs).

Following completion of the lab, all the marks could be easily downloaded into 
an excel spreadsheet from the HackerRank website, saving great effort. This con-
trasted with previous years, when all the data had to be entered manually. The marks 
were posted up within minutes, so students could see what mark they got. Students 
were uniquely identified by their email addresses, and by the student numbers 
they were asked to enter into the HackerRank system when accepting an invita-
tion. Demonstrators verified who was in the lab in the first hour, so marks were only 
given to those who attended, and not those who might have completed the test at 
home. All labs were weighted equally in determining final CA (see supplementary 
materials – topics covered). In the spirit of constructive evaluation (see Luxton-Reilly 
& Denny, 2010), a range of the top solutions submitted by students were uploaded 
online and discussed in lectures.

Statistical analysis

A hierarchical regression analysis with four blocks of factors was conducted to 
establish the relationship between students’ HackerRank score and their final exam 
mark, after controlling for nine additional predictor variables. The first block of 
factors measured sociodemographic and academic characteristics prior to course 
commencement (gender, CAO points, maths score, programming experience). 

https://docs.oracle.com/
https://docs.oracle.com/
https://www.haskell.org/hoogle/
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The second block of factors measured self-efficacy and engagement in gaming 
and social media (confidence in programming, hours gaming per week and social 
media usage per week), while the third block of factors identified behavioural 
engagement with the module (attendance and practice) and, finally, the fourth 
block examined the role of the HackerRank score. Prior to analysis, descriptive sta-
tistics were calculated and preliminary analysis was conducted in order to ensure 
that no violations in the assumptions of normality, linearity and homoscedasticity 
were observed. Correlations between the predictor variables were also examined 
to ensure no problems with multicollinearity.

Results

Descriptive statistics

Descriptive statistics for both the categorical and continuous variables in our study 
are presented in Table 1. As can be seen here, the vast majority (84%) of students 
were male. Most students reported between 6 and 10 h of social media usage per 
week and between 1 and 9 h of gaming per week. Only 19% of students had two 
years or more programming experience, with most only having experience based 

Table 1. Descriptive statistics for continuous variables in study.

Categorical variables No. % Valid %

Gender

 M ale 177 83.5 83.5
  Female 35 16.5 16.5
  Missing 0 0  

Programming experience

 O ne year or less 172 81.1 81.1
 T wo years or more 40 18.9 18.9
  Missing 0 0  

Amount of gaming per week

  0 h 47 22.2 23.2
  1–9 h 80 37.7 39.6
  10 h+ 75 35.4 37.1
  Missing 10 4.7  

Social media usage per week

  0–5 h 68 32.1 33.0
  6–10 h 70 33.0 34.0
  11 h+ 68 32.1 33.0
  Missing 10 2.8  

Engaged in any practice

 N o practice 181 85.4 85.4
 A t least some practice 31 14.6 14.6
  Missing 0 0  
Continuous variables Mean SD Range
Total points 424.67 67.13 95–595
Maths points 58.27 19.24 0–100
Confidence in programming 

ability
5.88 1.91 0–10

Attendance 9.30 2.21 1–11
Hackerrank score (CA) 19.98 6.50 1.5–30
Exam score 58.42 28.41 2.50–100
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on their first year in CS. Only 15% of students engaged in HackerRank practice 
prior to the exam. Examination of the continuous variables revealed that, while 
generally reporting a high attendance, students exhibited variability in their levels 
of confidence, their HackerRank score and their exam grades. The mean exam score 
of 58% was an improvement on previous years (see Table 2).

Regression analysis

Table 3 displays the results of the regression analysis. All blocks of factors contrib-
uted significantly to the model, with block 1 (sociodemographic and academic 
factors) contributing 17% of the variance in exam scores (p <  .01), block 2 (con-
fidence, social media and gaming) contributing a further 13% of the variance 
(p < .01), and block 3 (behavioural engagement) contributing 14% of the variance 
(p <  .01). Block 4 (HackerRank performance) contributed the greatest amount of 
variance at 18% (p < .01). As a whole, the model was significant (F(10, 168) = 28.05; 
p <  .001) and successfully explained 59% of variance in final exam scores. Three 

Table 2. Comparison of performance between 2015 (demonstrator correction) and 2016 (machine 
correction) cohorts.

  2015 2016
N Sitting Exam 221 230
Average Mark 36.6% 56.9%
Failure Rate 60.6% 31.7%
First Class Honours Rate 13.1% 39.1%
Correlation between exam and CA (r) 0.35 0.64

Table 3. Hierarchical Regression Analyses for Variables Predicting Exam Score.

Statistical significance:*p < .05;**p < .01;***p < .001.

Variables β p t B SE CI95%

Block 1: Sociodemographic and academic factors

Gender [0 = female; 1 = male] 0.04 0.51 0.66 2.84 4.27 −5.59 11.26
CAO points 0.08 0.26 1.13 0.03 0.03 −0.03 0.10
Maths points 0.06 0.44 0.77 0.09 0.11 −0.14 0.31
Programming experience [0 = 0–1 years; 1 

= 2+ years]
−0.05 0.28 −1.09 −3.98 3.64 −11.16 3.20

  R2 Change = 0.17              

Block 2: Confidence, social media and gaming usage

Gaming usage per week −0.03 0.63 −0.48 −0.99 2.08 −5.11 3.12
Social media usage per week −0.07 0.16 −1.40 −2.49 1.78 −6.01 1.03
Confidence 0.13* 0.03 2.26 2.00 0.89 0.25 3.75
  R2 Change = 0.12              

Block 3: Behavioural engagement

Attendance −0.12 0.10 −1.64 −1.49 0.91 −3.29 0.30
Practice 0.11* 0.03 2.21 8.75 3.97 0.93 16.58
  R2 Change = 0.14              

Block 4: Hackerrank

Hackerrank score (CA) 0.72*** 0.00 8.85 3.15 0.36 2.45 3.86
  R2 Change = 0.18              
  R2 = 0.59              
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predictors independently contributed to the model which, in order of strength, were 
HackerRank score (β = .72, p < .001), confidence in programming ability (β = 0.13; 
p < .05), and HackerRank practice (β = .11; p < .05). These results suggest that those 
scoring higher in HackerRank, who had a greater confidence in their programming 
ability, and who opted for a greater amount of practice, did better in their exams 
scores.

In sum, HackerRank lab performance was demonstrated to be a highly accu-
rate predictor of performance in a programming-only exam, thus supporting the 
hypothesis that automatic machine evaluation is an appropriate, constructively 
aligned, tool to use for teaching programming.

Comparison of machine corrected labs vs. demonstrator corrected labs

At the conclusion of the module, before the exam, all students were invited to 
provide feedback on how the module might be improved for future years. Students 
did not report high levels of satisfaction with the HackerRank intervention. Most 
recommended that the system be abolished or scaled back (see supplementary 
material – student feedback – for examples).

Students viewed the introduction of automatic assessment negatively, fearing it 
would lead to a drop in grades. Early in the semester, the class requested a means 
of earning marks outside of labs. In response, it was decided to send out a “practice” 
exercise at the beginning of the week, which was to be completed by the end of 
the week, and which would introduce them to the topic being tested on the Friday. 
The practice question was worth 30% of the weekly CA mark, with performance 
in the lab session itself earning the remaining 70%. This process of sending out a 
practice question was implemented from week 3 onwards. HackerRank’s plagiarism 
detector suggested that the majority of answers to the practice questions were 
copied or shared. Nevertheless, the boundary between collaboration and collu-
sion is ill defined and highly variable, and students have a poor understanding of 
it (Joy, Cosma, Yau, & Sinclair, 2011). Any students challenged about the issue said 
that, although they had worked out the general idea in a group, they had imple-
mented their own solution independently. Because of the difficulty of establish-
ing plagiarism for short problems where standard solutions are often discovered 
independently, no actions were taken. Nevertheless, the possibility of widespread 
copying suggests that automatic assessment can only be effective in a controlled 
lab environment where students are unable to pass code between themselves.

Based on student feedback, it was agreed to pick the best 8 out of the 11 labs, 
thereby boosting CA marks by an average of 24.2% per student. This meant that 
by the end of the semester, the best students already had maximum CA, so did 
not need to attend the final labs.
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Discussion

In line with the findings of Barros et al. (2003), the use of HackerRank was pos-
itively associated with improved exam results, with the failure rate dropping by 
two thirds in comparison to the previous year. There were no changes as to the 
content of the module over the two years, other than the manner in which the 
labs were structured. These results provide convincing evidence that automatic 
machine assessment supports an enhanced learning experience for developing 
programming skills. Furthermore, HackerRank proved easy to use, saving consider-
able amounts of labour on the part of the demonstrators and the lecturer. Students 
received consistent, objective feedback on their coding ability during the semester, 
and this valuable source of information led to a significant boost in programming 
ability and higher progression rates. The stress of having to perform each week, and 
of being caught out dramatically by their own coding errors, challenged students 
to improve their skills in programming.

In line with previous studies examining predictors of programming success (e.g. 
Ahadi, Lister, Haapala, & Vihavainen, 2015), lab scores turned out to be the strong-
est predictor of exam results, as opposed to age, gender or prior programming 
experience. This means that students obtaining low scores in initial HackerRank 
labs could in future be targeted with supplementary interventions to help improve 
their confidence and conceptual understanding, thus helping to close the gap in 
achievement.

There were, however, drawbacks to the use of the HackerRank system, most 
notably the low levels of student satisfaction reported. In spite of the improve-
ment in performance in comparison to previous years, most students reported 
that HackerRank had a negative impact on their learning, and recommended that 
it should be dropped, or at least scaled back. Similar responses have been noted 
in computer programming classes following the introduction of automatic assess-
ment systems. Rubio-Sánchez et al. (2014), for example, suggested that feedback 
needs to be richer in order to lead to acceptance among the student cohort. 
Falkner, Vivian, Piper, and Falkner (2014) found that increasing the amount and 
granularity of automated feedback led to improved results. HackerRank, however, 
can only provide the most granular feedback of passing and failing test cases.

It also became apparent in our intervention that not every kind of topic was as 
well suited to automatic assessment. For example, the labs on linked lists, on merg-
esort, on recursion and on bit-shifting were somewhat contrived, involving code 
stubs to force students to program in a particular way. Accordingly, in future we 
might be more selective, combining some element of automatic assessment with 
more informal labs in weeks where the topic is not as amenable to such evaluation.

There are a number of changes that could be made to improve student expe-
rience. For example, the feedback from students revealed that they wanted to 
see the test cases that were causing their programs to fail. In future we will email 
students another HackerRank invitation after the lab, with the test cases visible, 
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so they can see where they went wrong and continue to develop their programs. 
Based on our experiences, we will also restructure the two hour lab as follows: 
the HackerRank test will be extended to two hours, and will begin immediately. 
For the first hour, nobody will be allowed to communicate, and demonstrators 
will not be allowed to help. Any student completing in the first hour will receive 
100% of the marks they are awarded by HackerRank. In the second hour, the marks 
awarded will fall linearly over time, from 100% at the hour mark, to 40% at the two 
hour mark. After the hour mark, demonstrators can advise students on bugs and 
provide a general approach to solving the problem on the whiteboard. As more 
time passes they can provide more extensive help, with the goal that by the end 
of the two-hour lab everybody should have a working program.

We hope that this system of increasing the availability of help over the two hours 
will relieve student anxiety. According to Falkner et al. (2014), even when initial 
marks are low, the prospect of making progress gives students more resilience and 
leads them to strive for longer. Providing feedback should also take away the pres-
sure to cheat: rather than take the risk of plagiarising (which HackerRank detects), 
students who are really struggling will wait until the hour mark and then get help. 
Over time, this system should have the effect of improving programming confi-
dence, which has been shown to have significant influence on students’ achieve-
ments in computer science (Connolly et al., 2009). Programming confidence also 
emerged as an independent predictor of exam performance in our study, further 
highlighting the important role that psychological variables can have in predicting 
later success (Maguire, Egan, Hyland, & Maguire, 2017).

Palazzo, Lee, Warnakulasooriya, and Pritchard (2010) suggested that a course 
design which involves greater teacher interaction encourages students to believe 
that the instructor is concerned with their learning (rather than simply assigning 
a grade based on their performance). They found that modifying physics courses 
at MIT to enhance teacher interaction led to a 75% reduction in cheating (Fraser, 
2014). Accordingly, we believe that allowing greater interactions between stu-
dents and demonstrators in the second hour may improve morale. Students will 
be able to learn about the bugs in their code, and hopefully get coached all the 
way through to developing a fully functioning program, allowing them to study 
their own solutions for the exam.

In conclusion, HackerRank is easy to use, reduces much administrative burden, 
corrects everything instantly without requiring demonstrator input, gives instant 
feedback, and is more objective than the previous system employed in this mod-
ule. Our study has shown that the system is effective in helping students develop 
programming skills, providing them with high quality objective feedback as to 
their programming ability. Nevertheless, it should also be noted that students 
did not report a positive experience. Accordingly, we suggest that the blending 
of automatic assessment with some element of teacher intervention and peer 
interaction could lead to a more satisfactory learning experience for struggling 
students.
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