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ABSTRACT

Background and Context: Reports suggest plagiarism is a common occurrence
in universities. While plagiarism detection mechanisms exist for textual artifacts,
this is less so for non-code related ones such as software design artifacts like models,
metamodels or model transformations.

Objective: To provide an efficient mechanism for the detection of plagiarism in
repositories of Model-Driven Engineering (MDE) assignments.

Method: Our approach is based on the adaptation of the Locality Sensitive Hashing,
an approximate nearest neighbor search mechanism, to the modeling technical space.
We evaluate our approach on a real use case consisting of two repositories containing
10 years of student answers to MDE course assignments.

Findings: We have found that: (i) effectively, plagiarism occurred on the aforemen-
tioned course assignments (i) our tool was able to efficiently detect them.
Implications: Plagiarism detection must be integrated into the toolset and activi-
ties of MDE instructors in order to correctly evaluate students.

KEYWORDS
Model-Driven Engineering; Robust Hashing; Locality Sensitive Hashing;
Clustering; Plagiarism Detection;

1. Introduction

Model-driven engineering (MDE) is a software engineering approach that considers
models as first-class citizens of the development process (Brambilla, Cabot, & Wim-
mer, 2017). As such, models can be used in all phases of the development process and
in a variety of scenarios including, for instance, early verification and testing or even
(semi)automatic code generation. The increased adoption of this paradigm (see Whittle,
Hutchinson, & Rouncefield, 2014) in both, academic and industrial scenarios comes to-
gether with a proliferation of new MDE courses and programs (Ciccozzi et al., 2018) in
computer science and engineering schools in order to respond to the needs and demands
of students and industry. Many of these courses are an evolution of the more “tradi-
tional” systems and software analysis and design courses. In those courses, plagiarism
of modeling assignments was also an issue but this challenge is more exacerbated in
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MDE courses where models are not just one more element in the development process
but the driving force of such process.

As reported by Ciccozzi et al. (2018), most of the existing MDE courses include
assignments where students are required to build modeling artefacts. In many cases (up
to 76% of the courses), these assignments are the only means to evaluate the students.
Therefore a fair assessment of these artefacts is key for a proper student evaluation.

However, reports suggest plagiarism is a common occurrence in universities (Blum,
2009; Starovoytova & Namango, 2016). Students usually recur to public repositories
or copies of previous year assignments in order to complete all or part of their tasks.
This is also the case for computer education assignments as evidenced by the plagiarism
detection efforts discussed in Joy and Luck (1999), Lancaster and Culwin (2004) and
Duracik, Krisk, and Hrkat (2017).

Even if modeling and, especially, full-fledged MDE, is a somehow recent field, there
are already a number of large courses, repositories and solved exercises online that
could be used for plagiarism. Indeed, in some cases, the number of editions of the same
course may be high (see Ciccozzi et al., 2018). Additionally, and although we focus
on a-posteriori measures (i.e., detection of already occurred plagiarism), Joy and Luck
(1999) and Rosales et al. (2008) show that plagiarism detecting tools act as a deterrent
making the students less prone to incur in plagiarism, and thus, may improve academic
integrity. Thus, in order to effectively asses the outcomes of MDE programs, plagiarism
detection must be integrated into the toolset and activities of instructors.

Unfortunately, while ready-to-use plagiarism detection mechanism exist for textual
documents, there is nothing really useful for plagiarism detection on MDE artefacts.
Approaches proposed for classical computer programming language assignments (see
Bejarano, Garcia, & Zurek, 2015; Inoue & Wada, 2012; Lancaster & Culwin, 2004;
Rosales et al., 2008) while specially designed to deal with academic assignments (e.g.,
they can deal with artefacts that are smaller than their real life counterpart and often
more similar among them), are not directly usable at the modeling level, where we need
specific comparison mechanisms. The few MDE-specific approaches available typically
require pairwise comparison of models, too computationally expensive.

To address these issues, we provide in this paper an efficient mechanism for the
detection of plagiarism in repositories of MDE assignments based on an adaptation
of the Locality Sensitive Hashing (LSH) (Indyk & Motwani, 1998) technique to the
modeling technical space. LSH is an approximate nearest neighbour search mechanism
successfully used for clustering. Effectively, using LSH over a (model) repository results
in its classification (without the use of pairwise comparisons) in a set of buckets which
basically constitute a set of similarity based (modeling) clusters.

We demonstrate the feasibility of our approach by providing a prototype tool im-
plementation (available online). We evaluate it on a real use case consisting of two
repositories containing 10 years of student answers to MDE course assignments corre-
sponding to lessons related to modeling (and metamodeling) and model transformation
taught between 2007 and 2017. As a result, we have found that: (i) effectively, pla-
giarism occurred on the aforementioned course assignments (ii) our tool was able to
efficiently detect them, and thus, may be used by instructors to asses the outcomes of
their courses.

The rest of the paper is organized as follows. Section 2 presents background on
the main elements of our approach, namely, model-driven engineering concepts and its
academic training, robust hashing and LSH. Section 3 describes how do we use robust
hashing and LSH in order to build our plagiarism detection tool. Evaluation’s use case
and results are presented in Section 4. Related work is discussed in Section 5. We finish



the paper in Section 6 by providing conclusions and an outlook on future work.

2. Background

This section presents some preliminary concepts on Robust Hashing and LSH needed
to understand how both techniques are extended and adapted to built our plagiarism
detection mechanism for MDE. Basic MDE terminology as well as a short overview on
teaching MDE courses is also provided at the end of this section.

2.1. Robust Hashing

Classical cryptographic hashes such as SHA1 or MD5 may be used for the authentication
and integrity assessment of digital assets. However, and due to the avalanche effect they
include in their design, small changes to the asset lead to the generation of very different
hashes, making them unsuitable for other tasks such as fast comparison and retrieval,
intellectual property protection or plagiarism detection. This is so because in these
scenarios we are interested not only in finding exact assets, but also variations of the
assets.

In order to solve this problem, the concept of robust (or perceptual) hashing has been
introduced, notably in the domain of digital images (Fridrich & Goljan, 2000) but also
in other domains such as those of 3D mesh models (Lee & Kwon, 2012) and textual
documents (Steinebach, Klockner, Reimers, Wienand, & Wolf, 2013). A robust hash is
a hash that can resist a certain type and/or number of data manipulations. This is, the
hash obtained from a digital asset and that from another asset similar to the original
one but that has been subjected to minor manipulations should be the same or at least
very similar. As an example, robust hash algorithms for images or 3D model mesh resist
manipulations such as rotation and compression, as they remain visually similar. Text
documents remain similar if they convey the same message, thus, they resist to attacks
introducing synonyms, etc.

Summarizing, robust hash algorithms transform information from a certain data type
to hashes that preserve the proximity between data type instances under a chosen
distance measure.

2.2. LSH algorithm for nearest neighbour search

The aforementioned robust hashing technique transforms complex data into smaller,
easier to manage hashes, which already helps in similarity based search and classification
tasks. However, when datasets are large the bottleneck is not only in the complexity
of the comparison of two data instances, but in the increasing number of pairwise
comparisons required to perform any search or classification task. This latter problem
may be solved by the use of locality sensitive hashing techniques.

Locality-sensitive hashing (LSH) was first introduced by Indyk and Motwani (1998)
as a method for finding approximate nearest neighbours for highly dimensional data.
The method first selects a family of hash functions for which the probability of a collision
is high if the hashed objects are similar (given a distance measure, d and a threshold
R). If objects are dissimilar, the hash functions are very likely to hash them to separate
buckets. Now, to find near-neighbours of a query point, one hashes that point with each
of the hash functions and returns the elements stored in the buckets the point gets



hashed to.
Informally, the requirements to apply the LSH technique to a given type of data are
as follows:

e The type of data to which we intend to apply LSH must form a metric space.
Basically, this means that there must be a metric function that defines a concept
of distance between any two members of the set containing the elements of the
data type (e.g., if our data type is sets, we need a metric function that allow us
to calculate the distance between any two sets).

e A family of locality-preserving hash functions which map elements from the metric
space to a bucket s € S must exist. Particularly we are interested in (dy, da, p1, p2)-
sensitive families. With d; < ds being two distances in a given metric space, a
family F is (d1,da, p1,pe)-sensitive if: (i) the probability of collision when the
distance between two elements is less that d; is at least pq; (éi) the probability of
a collision when the distance is higher than dy is smaller that po.

Summarizing, a LSH scheme for a given data type allows us to find (with high prob-
ability) similar elements in a given repository using computationally efficient hashing
functions instead of pairwise comparisons.

2.3. Model Driven Engineering

Model-driven engineering (MDE) is a software engineering approach that considers mod-
els as first-class citizens of the development process (Brambilla et al., 2017). In an ab-
stract way, models can be regarded as structured data (the structure is defined by the
metamodel the model conforms to) composed of model elements that contain a set of
attributes and/or reference slots (other models may be then built by using this basic
building blocks). Similarly, metamodels conform to metametamodels and, as such, they
can be regarded (and manipulated) as models as well; In fact, all MDE artefacts (e.g.,
model transformation and model queries) can be represented as models themselves and
thus, can be uniformly treated (Bézivin, 2005).

Metamodel
2 Package - Field
+name: String +name: String
——y  Class
«" J+name: String .
type(}
E constructor method :
:-:type() Method * Parameter
3 +name: String ~+name: String
13
type() Model
Class:Book | | Method:getTitle Field:title
name = Book name = getTitle name = title
' method |
field

Figure 1. Model and Metamodel Example



As an example we show in Figure 1 a simplified Java metamodel (upper part) and
a corresponding model (lower part). The Java metamodel establishes that Packages
contain classes that in turn contain fields and methods (including an special method
named constructor) with parameters. The Java model declares a class named Book
with a title field and a getT'itle operation. Note that we use the notation Type:id (for
simplicity id is equal to the element name) to distinguish metamodel classes from model
classes in the diagrams in this paper.

2.4. Teaching Model Driven Engineering

With the rise of MDE, more and more dedicated modeling courses have been established
at different universities worldwide, e.g., cf. the MDSE Book website! which lists over
100 MDE courses as well as Ciccozzi et al. (2018) for a recent survey on the state of
the art of teaching MDE. In this mentioned survey, the main contents of 47 courses
have been collected and reported. We shortly summarize the main results of this survey
which are also of importance for this paper.

The majority of MDE courses are offered in master programs. Of course, this allows to
build on already existing knowledge about software engineering and software modeling.
However, there are also courses already offered in the bachelor programs. Some courses
are offered for PhD students or for a mix of different types of students. Most courses
are lectures combined with laboratory activities—thus, a mix of theory and practice.
The surveyed courses have a quite extensive number of students, whereas over 20% of
the courses have more than 90 students.

There are mainly two types of MDE courses currently offered. The first type is about
courses teaching MDE for a particular domain by using already existing MDE tools,
e.g., MDE is applied for the development of distributed systems. The second type of
courses is focusing on teaching how to employ existing frameworks to develop MDE
tools for particular domains. In these lectures, the different concepts, techniques, tools,
and practical approaches from the field of MDE are examined. This includes in par-
ticular language engineering and transformation engineering (Brosch, Kappel, Seidl, &
Wimmer, 2009). For the first part, meta-modeling for developing the abstract syntax
and concrete syntax (textual and graphical) of modeling languages are taught. For the
second part, model transformation and code generation are used as the main techniques
to generate software applications from models.

In accompanying labs, the students are working on practical assignments chosen from
the topics of the lectures. This often includes the creation of self-designed metamodels,
model transformations, and code generation facilities. By this, students gain practical
experience with state-of-the-art MDE tools. It has to be mentioned that in Ciccozzi
et al. (2018) the Eclipse Modeling Framework (EMF) is reported as the most used
framework for modeling language design. ATL is reported to be the most used model
transformation language. Because both are so frequently used in teaching MDE, they
are also the subject of investigation for this paper as well.

3. Approach

Figure 2 summarizes our approach. We start by calculating the robust hashes of all
the models in a given repository. Subsequently, we use LSH to classify the models in
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buckets. Finally, plagiarism candidates are taken from the collisions in the buckets and
filtered by means of automatic assessments. The (few) remaining candidates are then
manually evaluated to confirm the plagiarism. Clearly, this is much more efficient than
having to cross-examine all models for plagiarism. We devote the rest of this section to
provide a detailed description and rationale for the aforementioned steps.

3.1. Robust Hashing for Models

The first step of our approach (see an overview in Figure 2) is to transform complex
models into an easier to manage representation that enables the use of LSH techniques.
The key requirement of this new representation is to ensure that it preserves the sim-
ilarity of the models. The more similar the original models are, the more similar this
derived representation must be. Robust hashing functions, as described in Section 2,
meet this requirement (among others such as being resistant to certain manipulations).
Thus, we adopt here the robust hashing approach for models (Martinez, Gérard, &
Cabot, 2018) were the authors adapted the minhash technique (Broder, 1997) in order
to transform models into vectors of n symbols.

In short, obtaining a robust hash for a model is achieved in 3 steps:

Model Fragmentation. Model elements include individual data (attributes, oper-
ations) but are also related to a number of other model elements via their references.
Both aspects need to be considered for a robust hashing. If we consider only the content,
two models with the same elements would generate the same hash even if those elements
were organized according to a very different structure. And, similarly, if we just take
the structure into account, models of two very different domains that, by chance, share
a similar structure, could be regarded as equivalent.Thus, as a first step, we create a
number of (possibly overlapping) fragments from the model. This allows to generate the
hashes using as unit not the single model element (which, as we have discussed before,
would not be good enough) but the element together with some contextual information.

Model Fragment’s Signatures Generation. Previously to the hashing of the
extracted model fragments, we need to transform them to summary sets, this is, sets
containing words representing the contents of the fragment. This enables us to subse-
quently use the minhash technique to obtain the fragment signatures. We use content-
based identities of model elements (see Reddy, France, Ghosh, Fleurey, & Baudry, 2005)
as the base for the translation from model fragments to summary sets. We call this
content-based identities model summaries and model fragment summaries.

Classification of Model Fragments and Hash Sequencing. The two previous
steps transform a model into a long set of minhash signatures. Indeed, a large number
of signatures is created in order to avoid model mutations to influence the hash creation
process (e.g., modifying the order of selected elements). For the generation of the final
hash, a number of different signatures is chosen. We do so by first performing a classi-
fication step that groups together similar signatures. Then, we can just choose one of
the elements of a given group as its representative. This process guarantees that: 1) we
take different signatures to build the hash; and 2) mutations have a limited impact in
the selection step.

The vectors produced by the robust hashing function explained above can be used
alone as a means to estimate the similarity between models, and thus, can be used
on behalf of the corresponding models in tasks related with similarity analysis. In the
following, we see how they can be used as part of LSH-based classification process.



Model Model's Robust LSH Classification Plagiarism
Repository Hashes Buckets Candidates

Band 1l Band 2 ....Band b

[2,09.1,1,3,0,0.2,1] bucket 0 bucket 0 bucket 0
[2,3,1,5,6,7,0,5,2,1] i e Sg_ﬁ > gﬁﬂ
[1,3,1,0,6,0,0,0,2,7] ‘ mo ‘ ‘ ‘ ‘ ‘ Plagiaris —
band based agiarism i
robust [9111410132] bucket1  bucket 1 bucket1  candidates - Pairwise
[0,82,0,0,1,0,1,1,1] LSH i Comparison
hash [5933171100] _Classification ‘ ‘ = “ . ‘ _selection M p |
— - Manua
[0,0,1,0,3,8,0,0,7,5] bucket 2 bucket 2 bucket 2 :
[7,0,7,1,1,2,2,0,0,0] . . . Inspection
H : : : - Student
: bucket m-1  bucket m-1 bucket m-1 i
[4,1,2,1,9,6,0,1,5,5] ‘ - ‘ — Interview
[2,1,2,7,6,7,1,1,2,6] ‘ ‘ ‘ ‘

Figure 2. Our plagiarism detection approach, comprising a Robust Hashing and Band Classification Process

3.2. Locality Sensitive Hashing with Robust Model Hashes.

In classical partition clustering algorithms, pairwise comparisons between the feature
vectors would be required. Instead, we intend to use Locality Sensitive Hashing to
classify the model (represented by their vectors) without having to go through the very
computationally expensive pairwise model comparison process.

As stated in Section 2, in order to apply LSH on a given type of data we need it to
constitute a metric space (i.e., we need to define a distance metric that can be used to
calculate the distance between two any elements of the same type) and to have a family
of locality preserving hash functions for the same distance metric.

This is hard to achieve in models, as they are complex data structures and addi-
tionally: (i) no standard distance measure exists; (i) no locality preserving function is
defined for the domain. Arguably, we could use some of the techniques applied inter-
nally for the definition of the robust hash function for models described in the previous
section in order to define a metric space and a family of hashing function for models.
However, that would come with an important performance drawback, as hash functions
must be defined and calculated on model fragments, which would require expensive
model traversal and manipulation operations.

Thus, instead of the direct use of models, we propose here to deal only with their
robust hashes. This way, we go from the modeling technical space to the vector space
that forms a metric space under the hamming distance. An introduction to LSH for
different metric spaces is given in Leskovec, Rajaraman, and Ullman (2014) from where
we borrow notation and definitions. This transformation towards the vector metric space
works because, as shown by Martinez et al. (2018), robust hashing vectors estimate well
the similarity between models.

3.2.1. Band Based Classification

In general, it is easy to obtain a family of locality preserving hash functions for the vector
metric space. As a example, any hash function taking one element of the vector would be
such a hash function (and we can have as many as the size of the vectors) and we know
from Leskovec et al. (2014) that they form a (dy,d2,1 — dy/d,1 — d3/d) — sensitive
family. These simple functions are not such good similarity estimators as they only
take one point of the vector into account. However, the situation can be improved by
building a new family of hash functions by using a technique called amplification (the
amplification technique builds new families of hash functions by combining existing
ones). The same effect can be obtained in a simpler way as described by Leskovec et



al. (2014): having vectors as data types, an effective way to perform the augmentation
is to divide the vectors into b bands consisting of r rows each. For each band, there is
a hash function (any standard hash function will work) that takes vectors of r integers
and hashes them to some large number of buckets. Intuitively, this banding strategy
makes similar robust hash vectors pairs much more likely to be hashed to the same
bucket than dissimilar pairs. Basically, the banding process is mirroring the building
of a (di,ds, 1 — (1 = p})*,1 — (1 — p5)°) — sensitive family. It can be seen that the
probability of one band to have all rows equal to another is not very high. However,
when this process is repeated for each of the bands, the probabilities get much higher
As a example, with vectors of 200 elements and having two vectors with a similarity
of 0.8, we pass from a probability of collision of 0.8 with the single point function to a
probability of 0.989859579 when we use the banding strategy with (1 — ((1 — 0.8%)%)),
and this without facilitating false positives.
In practice, the way we implement this band based classification is as follows:

(1) Dividing the robust hash vectors in bands (e.g., we could divide vectors of 200
elements into 8 bands of 25 elements each). Note that this process is critical. Bands
should be sufficiently large so that false positives are unlikely but not so large that
we are unable to get equal bands out of very similar vectors. This tuning depends
on the typical similarity of the elements to be classified with the LSH technique.

(2) Rehashing the selected band by using any available hash function. This could be
achieved with Java hashcode functions for vectors and modulo operations on the
result. We need to have a different set of buckets for each band so that we avoid
having inter-band collisions, that are meaningless.

(3) Tracking and aggregate collisions as the the bands are being hashed. The idea is
to obtain at the end of the process a list of colliding robust hash pairs together
with details on the colliding bands.

3.3. Copy Detection Validation

The main purpose of the LSH process is to determine if plagiarism occurred in student
assignments. In order to validate that the collisions are indeed instances of plagiarism we
need to perform the following steps: (i) selection of candidates; (ii) automatic validation
of candidates; (iii) manual validation of candidates.

For the selection of candidates, we may just take every colliding pair. However, we
believe that counting the number of collision may help to rule out false positives.

As explained in Section 3, robust hashes for models are built as a concatenation of
smaller hashes calculated from different (although possibly overlapping) model frag-
ments extracted from the original model. Therefore, when collisions occur in different
bands we can suspect that there are several parts of the involved MDE artefacts that
are copied. This way, by counting the number of collisions we can provide as feedback a
severity grade. From 0, meaning no plagiarism detected, to b collisions, meaning exact
copies. We can then decide to focus only on pairs with more than n collisions to continue
with the verification process. Note however that for this interpretation to be valid, we
need to take into account the ratio between robust hash fragment size and the band
size. When bands are larger than fragments sizes, we may miss some collisions (but on
the other hand, the objective of larger bands is precisely to reduce the probability of
collisions). Conversely, when bands are smaller than the fragment size we would need
to discard (i.e., not count) intra-fragment collisions.

Once we have reduced our list of candidates of potential plagiarism we still need to



verify that the candidates are indeed suspected copies. For the automatic validation
of candidates, we perform the actual pairwise comparison between the artefacts. This
can be done at the robust hash level and at the original model level, depending of the
available resources. In any of the two cases we need:

e a similarity (or distance) measure so that we can compare the copies.

e to determine threshold values w.r.t. this similarity measure for the internal ho-
mogeneity (i.e., how similar elements need to be for us to consider them copies)
or conversely, the ezternal separation (i.e., how different elements need to be so
that we consider that they are not copies).

Finally, once we have obtained a list of models that are validated to be very similar,
the final assessment implies the manual validation of candidates. This process should
be probably followed by interviews with the involved students. Note that a final con-
clusion of plagiarism cannot be done fully automatically since there are many factors
that may play a role in the automatic comparison (e.g., the degree of freedom in the
original assignment) but our approach reduces the problem to a manageable process
that provides, in our opinion, a good trade-off between precision and automation.

An extended version of the aforementioned process was followed for the validation of
the results of this paper (see Section 4 for further details) which is summarized in the
following;:

(1) We passed the tool on all the available data (10 years of solutions);

(2) Automatic validation was used in order to eliminate lower similarity positives
(which may be partial copies which we have decided to not classify as plagiarism);

(3) Author 1 manually checked that no high similarity pairs were discarded, pruned
outliers (too small or empty files), selected a sample of suspicious pairs and gave
them to Author 2 for further evaluation. The selection of pairs was done randomly
on a by-assignment basis (i.e., we selected between 20% and 30% of pairs from
each assignment so that all assignments were represented in the final sample);

(4) Author 2 (re)classified all sample pairs as suspicious and worth for further analysis.
This validates the detection performed by the tool;

(5) Author 2 performed an in-deep analysis of the suspicious pairs considering not
only the similarity values but also domain-specific hints (e.g., order of attributes
in unnamed classes, comments, etc.) to finally classify (very conservatively, i.e.,
only clear plagiarism was taken into account) a number of suspicious pairs as
plagiarism instances.

4. Evaluation

The authors of this paper have been responsible for preparing, teaching and evaluating
MDE programs since many years. As such, we have collected a large number of models
developed by our students over the years. At the time, we had to manually analyze
all those models for plagiarism detection. From that experience we learned that telling
the difference between very similar and arguably too similar models is very tedious and
difficult to do manually by simple inspection.

To show the usefulness and applicability of the work presented in this paper, we now
repeat the detection process in an automatic fashion thanks to our plagiarism tool for
models.

Before proceeding to the actual evaluation, we present here a real use case consisting



in the analysis of two repositories of answers to MDE assignments in a MDE program
organized since 2007.

4.1. Use Case: Model Transformation and Metamodels

The first repository of our use case contains answers to (meta)modeling exercises and
the second repository answers to model transformation exercises. Students are required
to use the Eclipse Modeling Framework (EMF) (Steinberg, Budinsky, Paternostro, &
Merks, 2008) for the modeling exercises and the Atlanmod Transformation Language
(ATL) (Jouault, Allilaire, Bézivin, & Kurtev, 2008) for the model transformation exer-
cises. Note that according to Ciccozzi et al. (2018), EMF and ATL are the most popular
technologies used in academia in order to teach modeling and model transformations
respectively.

4.1.1. Modeling Assignments

EMF is a very popular modeling framework within academia and industry. It provides
the means to create models and then automatically generate code and tooling (e.g., tree
or form editors) for them. At the core of EMF is the Ecore metamodel, a metamodeling
language that provides the basic concepts needed to describe domain models. Figure
3 shows the main concepts of Ecore. EPackages represent the root of the models, and
contain all of its EClasses, this is, the entities of the domain being modeled. EClasses
may contain a number of operations (for defining the behaviour of EClass) and EStruc-
turalfeatures, that are either EAttributtes (basic value slots) or EReferences (links to
instances of other EClasses).

EPackage
*
EOperation I @|EClass@——{ EStructuralFeature
N\
I I
eType | EReference EAttribute

Figure 3. Ecore Language Excerpt

Once students have been introduced to modeling and to the EMF framework, they
are asked to create a domain model using Ecore. They are provided with a general
description of the task and with a set of examples to help them identify the main
components of the domain model they have to built. In the following, we show a example
of some of the instructions provided for an assignment consisting in creating a domain
model (representing the RoverML modeling language metamodel) for Rovers:

1. “RoverML is a modeling language for modeling rovers and the programs they exe-
cute. A rover model defines the roveraAZs topology, i.e., the individual components of a
rover as well as the roveraAZs program, i.e., the commands which define its behaviour.
Rovers are used in education (e.g., teaching kids programming), research (e.g., Mars
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rovers) and industrial applications (e.g., automated rovers in a warehouse transporting
goods).”

2. “A rover and its program are contained in a system. In such a system, multiple
rovers and rover programs can ezxist. FExample: The model in Figure 4 defines a rover
and a assigned program.”

3. “Rovers have a name and consist of various components. Example: The Rover in
Figure 4 is named Curiosity and has five components: motor, light, compass, position
sensor and distance sensor.”

4. “Components of a rover have a unique name. There are two types of components:
sensors and actuators. Sensors may be a GPS, a compass or a distance sensor. Possible
actuators are motors and lights.

Program Mars for Rover Curiosity

Rover Curiosity
Repeat 5 times

y Y
- n @fj ) ILight1]

mainMotor digiComp

FrontSensor DigiPos

Figure 4. A Rover: Components and Program example given to the students as part of the assignment
instructions

From the example above, it can be seen that both, vocabulary and structure, are given
to the student limiting their freedom in choosing the concept names. Thus, students will
produce very similar domain models.

4.1.2. Model Transformation Assignments

Model manipulation is a central activity in many model-based software engineering ac-
tivities (Sendall & Kozaczynski, 2003). Model manipulations are usually implemented by
means of model-to-model (M2M) transformations, and thus, the latter are often taught
as part of MDE programs. A M2M transformation transforms a model M, conforming
to a metamodel M M, into a model M, conforming to a metamodel M M,.

ATL is, due to its tooling and maturity, one of the most popular transformation
languages among academic and industrial practitioners. It is, as mentioned above, the
model transformation language most present in MDE programs. We show in top of
Figure 5 an excerpt of the ATL abstract syntax (metamodel). An ATL transformation
(module) is composed of a set of transformation rules and helpers. Each rule describes
how (part of) the target model should be generated from (part of) the source model.

A helper can be seen as auxiliary function that enables the possibility of factorizing
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Rule Module Helper
& +inModels: Model +expr: OCLExpr
+outModels: Model
% B
zinstanceOf 3 instanceOf
Vi Vi :Einstanceof
=y InPattern| | OutPattern :
instanceof A
E ] j Module:Class2Relational '1 Module Class2Relational
{ instanceof | Rule:Class2Table [€— ; # 2 create OUT : Relational
E i | in:Class £ 3 from IN : Class;
3 out: Relational :4
3 5 Helper context Class
:.‘ ) 6 def:nameStartsWith (s: String): boolean =
v & 7 self.name.startsWith(s);
8
InPattern:c OutPattern:t Helper:nameStartsWith 9 rule Class2Table {

10 from c: ClassDiagram!Class

11 (c.nameStartsWith('M'))
12 to t: Relational!Table

13}

expr: self.name...

Figure 5. ATL Transformation Language Excerpt

ATL code used in different points of the transformation. In the transformation example
depicted at the bottom of Figure 5, a transformation from Class Diagram to Relational
models is defined (lines 1 to 3 specify name, input and output models). This trans-
formations contains a rule called Class2Table (lines 9 to 13) that matches every Class
which name starts with "M’ in the class diagram model to produce a Table in the output
model. It does so by using a helper function that returns true if the name of a given
model element starts by "M’ (lines 5 to 7). Rules are mainly composed of an input
pattern (line 10 and 11) and an output pattern (line 12). The input pattern filters the
subset of source model elements that are concerned by the rule. The output pattern
details how the target model elements are created from the input ones. Each output
pattern element can have several bindings that can be used to initialize the values of the
elements in the target model. It is important to remark that while ATL transformations
are specified by using a textual syntax, they are internally represented as models, and
thus, can be manipulated as such.

In the following we show some of the instructions provided to the students in an
exercise consisting in transforming RoverML models to UML models:

1. “The goal of this assignment is to develop model-to-model transformations for the
Rover Modeling Language (RoverML) using ATL [...]. In Part A of the assignment,
you will develop an ATL transformation that translates RoverML models into Unified
Modeling Language (UML) models. In addition, you will also use UML profiles to extend
some elements of UML to allow transferring of some information from the RoverML
models.”

2. “Rover systems and rovers will be transformed into package diagrams and rover
programs will be transformed into activity diagrams. UML 2 is used to specify, visualize,
and document models of software systems, including their structure and design. It can
be used for business modeling and modeling of other non-software systems too.”

3. “Your transformation has to implement the following strategies for mapping
RoverML model elements (source models) to UML model elements (target models):(see
Table 1 for the list of mappings)”
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Table 1. RoverML to UML

RoverML

UML

RoverSystem

Package. The packaged elements are the system’s rovers and programs.

Rowver

Package. The name of the package should be the name of the rover.
The packaged elements are the components of the rover.

RoverProgram

Activity. The name of the activity should be the name of the pro-
gram. The activity owns the node created from the program’s block
and belongs to the package of the rover the program has referenced in
RoverML. The group of the activity is the block of the original program.

Component

Component. The name of the components should be the name of the
original components. Apply the Actuator and Sensor stereotypes to the
components accordingly. The last sensed value of sensors does not need
to be transformed.

Block

Structured Activity Node. Its nodes are the commands of the block and
its edges are the transitions of the block. If the block was a repeat block,
apply the Repeat stereotype and set its count value.

Transition

Control flow. The control flow’s name, source and target are taken from
the original transition. Apply the Transition and Triggered Transition
stereotypes accordingly.

Command

The name is taken from the original command. Each command is
mapped as an Opaque Action Node but o different stereotype for each
command is available and should be applied accordingly./...]

Terminate

Activity Final Node. Terminate is transformed differently than the
other commands. Set the name of the node to the name of the original
command and apply the Terminate stereotype.

It can be seen that, as in the case of modeling assignment, precise instructions are
given to the students. However, ATL and its embedded model navigation and query
language, the Object Constraint Language (OCL) (Object Management Group, 2003),
are somehow redundant languages. That is, the same result can be achieved in many
different ways. In order to illustrate this, we show in Listing 1 and Listing 2 the excerpts
of two answers produced by students. While they produce the same outputs for the
same inputs, the two transformations use different language constructs, strategies, and
internal organization. The first student uses one rule with several nested if statements
in order to create the right outputs from a given RoverML command. Conversely, the
second student uses a different rule for each RoverML command. As a consequence of
this higher variability, and contrary to the modeling assignments, we should expect
lower levels of similarity among student answers.
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Listing 1 RoverML2UML from student X.

rule command2opaqueAction extends
—rabstract_command2opaqueAction {
from
command: RML!Command (
not command.oclIsTypeOf (RML!Repeat)
<~ and not

Listing 2 RoverML2UML from student Y.

rule Move2Action extends Command2Action {
from
command: RML!Move
to

action: UML!OpaqueAction

command.oclIsTypeOf (RML!Terminate)) do[{
to L
node: UML!OpaqueAction ( 1 }
name <- command.name rule Rotate2Action extends Command2Action
) — {
do { from
if (command.oclIsTypeOf (RML!Move)){ command: RML!'Rotate
[...] to
}else if (command.oclIsTypeOf (RML! action: UML!OpaqueAction
—Rotate)) { do {
o] [
}else if (command.oclIsTypeOf (RML! }
—Wait)){
[...] rule Wait2Action extends Command2Action {
}else if (command.oclIsTypeOf (RML! from
—SetLightColor)){ command: RML!Wait
[... to
Yelse { action: UML!OpaqueAction
-- do nothing do {
b [--]
} }
} }

4.2. FEvaluation setup € analysis

We devote this section to the analysis and experimental evaluation of our plagiarism
detection approach for models. In order to do so we have developed a prototype imple-
mentation written in Java and based on the EMF API2. Using our prototype, and for
each of the two types of assignments, i.e., modeling and model transformation assign-
ments, we first determine the right parameters for the banding strategy by evaluating
a number of samples and then we apply our approach with the previous configuration
to all the repositories.

For each repository we: (i) show how many plagiarism candidates are detected; (i7)
analyze each candidate pair to determine whether they constitute an actual instance of
plagiarism.

We finish this section by providing performance and scalability evaluations.

4.2.1. Configuration of the number of bands

In order to tune our approach, this is, to determine the right number of bands for the
LSH strategy, we need first to establish a desired similarity threshold. Then, we will
aim to use a number of bands that make pairs of elements with similarity higher than
the threshold to be positive (this is, collide in at least one band) and elements with
similarity lower than the threshold to be negative. The calculation of the similarity for
robust hashes is done using the hamming similarity measure for vectors, as shown in
Equation 1. Basically, it counts the numbers of equal elements (/dSim() returns 1 when
elements are equal, 0 otherwise) in the same position of the vectors and divides the
result by the total number of elements.

Yoy IdSim(si], t[d])

HammingSimmilarity(s,t) =

2https://gitlab.com/smartine/RobustModelHashing /tree/master /LSHForModels
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Table 2. Similarity thresholds per number of bands
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Figure 6. Model repository collisions and similarity per bands

Then, the Table 2 shows the theoretical approximative thresholds ( as given by the
formula (1/b)Y/" (see Leskovec et al., 2014) for the different possible number of bands in
a 200 element vector. From those values we can directly conclude that we are interested
in numbers of bands lower than 25 and possibly bigger than 4. Users can directly work
with these values and obtain good results. However, and in order to minimize the work
left to be done by instructors, for both, model and transformation assignments, we
analyze a sample obtained from our repositories to further reduce the choice for the
number of bands. The obtained values may be used to analyse any similar repository,
without further analysis.

4.2.2. Model Assignments

As discussed previously, we expect the models produced by the students in the modeling
assignments to be very similar. In order to verify this assumption we calculate the
average pairwise similarity of a number of model assignments repositories. Concretely
we use repositories M2018, M2015, and M2011 (see /Appendix/ModelAssignments.ods
in the web of the project for a detailed description of the repositories) for the calculation
of the pairwise similarity. We obtain the following results: M2018=62, M2015=56, and
M2011=62.

Then, we can proceed to verify if the theoretical values in Table 2 hold for our data
and select the best number of bands for the plagiarism evaluation.

Band Configuration Analysis

Figure 6 summarizes the results of performing LSH to our three test repositories and
calculating the number of collisions obtained with every band size.

In Figure 6(a) we see how the number of collisions obtained per number of bands is s-
shaped. This is, very few pairs are obtained with small number of bands while almost all
pairs collide with bigger number of bands, being the transition between both situations
sharp. In Figure 6(b) we see what is the average similarity of the pairs that collided. It
can be seen how it decreases as the number of bands grow until the general similarity
average of the repository is reached. M2015 and M2018 do not have any colliding pairs
for the lowest number of bands so the average similarity there is 0. M2011 shows a
similarity of (near) 100% is reached when doing LSH with 1 and 2 bands, meaning
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an exact copy is detected. Interestingly, M2015 grows before decreasing, meaning that
collision(s) happened with very low similarity. This may constitute a false positive or a
partial copy.

Summarizing, from the aforementioned tests we can conclude that the ideal number
of bands for classifying modeling assignments is to be chosen between 4 and 8.

Repository Evaluation

Being that there is a clear decrease of the similarity among the collision when using
8 bands and that we are interested in highly similar pairs, we choose 4 as our number
b. Thus, we applied LSH to all the available repositories by using b = 4 and r = 40.
The results are summarized in Table 3, where we show for each of the repositories the
number of plagiarism candidate pairs (i.e., collisions), the average similarity among these
candidates and finally, the number of candidates that are considered final candidates
after the automatic verification step that removes pairs with similarity values below a
threshold (we set this threshold at 85, that is above the average similarity obtained
when using the extreme of the useful range for the number b, this is 8). We show the
results of this evaluation in Table 3.

In most cases a few candidates of plagiarism are found. From them, very few are ruled
out as false positives after automatic verification. The case of M2012 is interesting, as we
obtain a number of candidate pairs much higher than average. After manual verification
we saw two things: 1) students were asked to build two different models; and 2) these
domain models are very small (i.e., they less than 10 elements). This perfectly explains
the obtained results, as this assignment does not offer enough variability for a plagiarism
evaluation. This finding is in line with the conclusions of Rosales et al. (2008), stating
that programming assignments composed of small subroutines can not be effectively
evaluated for plagiarism detection.

Finally, we had two of the authors of this paper (with experience as instructors
in MDE courses) inspect a sample of the modeling assignments plagiarism candidates.
While instructors used a very conservative criteria (e.g., they only accepted as plagiarism
pairs with very high similarity and suspiciously equal choices in diverse parts of the
model), they both found a number of previously undetected plagiarism instances, what
evidences the usefulness of our approach.

Additionally, we verified (for a selected number of repositories) that no false negatives,
this is, pairs with high similarity (similarity equal or higher than the average for the
band number) that did not collide, were obtained.

Table 3. Modeling Assignments Plagiarism Tests

Repository Raw Candidates | Similarity | Candidates above 85% threshold
M2007 2 94.50 2
M2008 0 0.00 0
M2009 10 97.80 10
M2010 10 92.45 9
M2011 9 95.72 9
M2012 81 95.64 81
M2013 4 100.00 4
M2014 7 90.20 6
M2015 1 56.99 0
M2016 0 0.00 0
M2017 22 91.95 20
M2018 2 95.25 2
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Figure 7. Transformation repository collisions and similarity per bands

4.2.8. Model Transformation Assignments

As already mentioned, model transformation assignments differ from modeling ones.
They are completed by using a transformation language that gives students more free-
dom to obtain the correct result. Moreover, models representing transformations are
much bigger (note that robust hashes are calculated with different parameters w.r.t.
the modeling assignments, as these parameters are determined as a factor of the aver-
age model size). Therefore, we repeat the analysis and evaluation process we performed
for the modeling assignments in order to determine the right number of bands.

Band Configuration Analysis

In this case, we use repositories T2017, T2011, and T2008 (see /Appendix/Trans-
formationAssignments.ods in the web of the project for a detailed description of these
repositories)) for the configuration evaluation. We start by calculating their pairwise
similarity, obtaining the following results: T2017=57, T2011=54, and T2008=52. As
expected, the average similarity is lower than the similarity of repositories containing
model assignments.

Then, we perform the calculation of the number of collisions obtained for each of
our test repositories (T2017, T2011, and T2008) with all the possible number of bands.
Figure 7 summarizes the results obtained by performing the LSH to our three test
repositories. From these results we can conclude that the ideal number of bands for
classifying transformation assignments is to be chosen between 8 and 10.

Repository Evaluation

We apply LSH to all the available transformation repositories by using b = 8 and
r = 25. The results are summarized in Table 4, where we show for each of the reposi-
tories the number of plagiarism candidate pairs (i.e., collisions), the average similarity
among these candidates and finally, the number of candidates that are considered final
candidates after the automatic verification step that removes pairs with similarity val-
ues below a threshold (we set this threshold at 80, that is above the average similarity
obtained when using the extreme of the useful range for the number b, this is 20). In
most of the cases a few candidates of plagiarism are found. Contrary to the case of
model assignments, a significant number of candidate pairs are eliminated after auto-
matic verification. Even when model transformation languages offer a lot of variability,
some of the rules in a MDE assignment may easily end up being exactly equal among
different student answers, by partial copy (due to available tooling partially copying
transformation assignments is much easier than partially copying models) or induced
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by the simplicity of the assignment, even when the average similarity of the full model
is low. Arguably, a partial copy would not be considered an instance of plagiarism from
an instructor, and thus, we believe that setting a high threshold for the automatic
verification is the best choice.

As with the modeling assignments, we verified (for a selected number of repositories)
that no false negatives were obtained. Then, we have two instructors inspect a sample of
the plagiarism candidate pairs. Previously undetected plagiarism instanced were found
as well.

Table 4. Transformation Assignments Plagiarism Tests

Repository Raw Candidates | Similarity | Candidates above 80% threshold
T2007 13 72.00 4
T2008 9 90.55 7
T2009 3 90.80 2
T2010 3 71.30 1
T2011 5 68.20 1
T2012 4 59.75 0
T2013 4 92.37 4
T2014 6 64.60 0
T2015 9 81.83 5
T2016 5 62.30 0
T2017 1 80.50 1
T2018 18 76.25 4

4.2.4. Performance Fvaluation

Performance and scalability are two very important aspects of any plagiarism detection
tool as a slow tool that only works with very small repositories will not be adopted
by instructors. Moreover, the re-utilization of previous year assignments by instructors
together with the proliferation of public repositories and social coding platforms, hints
to an steady increase in the size of the repositories that will need to be analysed in
order to deal with plagiarism.

Therefore, we need to evaluate the performance and scalability of our approach w.r.t.
the existing alternatives. These alternatives are: 1) the direct pairwise comparison of the
models with a model comparison tool; 2) the direct pairwise comparison of the robust
hashes obtained from the models.

Figure 8 shows the times (we used an IntelAd CoreaDé i5-6200U CPU @ 2.30GHz
4 cores, running Ubuntu 16.04) taken for the analysis of repositories of increasing size
(from 10 to 400 models) by using model comparison, robust hash comparison and LSH.
The repositories are composed of model assignment answers, this is, medium to small
size models (40 to 100 classes). It can be seen that the direct comparison of models (We
use EMFCompare (Toulmé, 2006) for the model comparison, a widespread tool for the
the differencing and matching of EMF models) performs poorly as the repository grows,
taking roughly 40 minutes for the analysis of a repository of 200 models. Conversely,
the pairwise comparison of robust hash and LSH are orders of magnitude faster.

We, thus, focus our attention on comparing the two more promising approaches:
pairwise comparison of robust hashes versus LSH.

Figure 9 shows the results of this experiment. It can be seen that the LSH performs
much better than the pairwise comparison of robust hashes. More importantly, LSH
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Figure 9. Pairwise Robust Hash Comparison vs LSH
scales very well as the model repository grows, showing an almost linear behaviour.

4.2.5. Threats to Validity

The two main types of validity threats to the evaluation and conclusions of our approach
are external and internal validity.

Internal Validity

The validity of the conclusions obtained by our experiments may be affected mostly
by the ambiguous character of the term “plagiarism”. In effect, the classification of a
piece of work as an instance of plagiarism depend often on domain specific thresholds for
automatic verification and the subjective opinion of the experts in a manual verification.
We mitigate the effects of these threats by (i) evaluating the average similarity of the
MDE assignments, so that we can better approximate a good similarity threshold for the
automatic verification; (ii) having different authors independently perform the manual
verification as we explain in Section 4, so that we rule out individual biases.

External Validity

We use for our evaluation a set of repositories composed of more than 10 years of
answers to MDE assignments. Regarding these repositories, two threats must be taken
into account. First, the technologies used for the assignments; and secondly, the origin
of the repositories.
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W.r.t. the first threat, the repositories were composed of modeling assignment answers
created by using the EMF modeling framework and model transformations assignment
answers created by using the ATL transformation language. Although Ciccozzi et al.
(2018) show that these technologies are the most popular among MDE programs, our
approach and evaluation should be extended to other technologies in order to rule out
effects of technology in the rates of plagiarism. As for the second threat, all repositories
come from an MDE program taught in the same institution. In this sense, MDE assign-
ments from other institutions may be required in order to generalize the conclusion of
this work.

5. Related Work

Computing assignments plagiarism is an ongoing concern for academic institutions and
thus, it remains an open subject in the computer education research community.

Plagiarism of software artifacts has been studied at the programming level in both
general (see Duracik et al., 2017; Liu, Chen, Han, & Yu, 2006; Narayanan & Simi, 2012)
and education scenarios (Bejarano et al., 2015; Inoue & Wada, 2012; Joy & Luck, 1999;
Lancaster & Culwin, 2004; Rosales et al., 2008). The aforementioned approaches are not
directly re-usable for MDE artifacts (i.e., structured data graphs) as they are tailored
to work with source code (i.e., text). To the best of our knowledge, our work is the first
specially tailored to the detection of plagiarism in modeling (analysis, design,...) courses
and MDE-related education assignments.

At a technical level, the work that most resembles our approach is the one contributed
by Cochez (2014), where the author uses minhash and LSH in order to match equivalent
terms in different ontologies. Nevertheless, that approach works at the individual class
/ term level and therefore cannot be used for plagiarism detection at the global model
level (e.g., structure is not taken into account).

On a broader perspective, model clone, model comparison and model matching ap-
proaches may be regarded as related to the problem of plagiarism detection. However,
they are generally designed with a different purpose: finding similar intra-model (and to
a lesser extent inter-model) fragments generated by a legitimate copy and paste reuse.
Approaches for model clone detection have been proposed on UML models (Storrle,
2015), graphs (Pham, Nguyen, Nguyen, Al-Kofahi, & Nguyen, 2009), Simulink mod-
els (Deissenboeck, Hummel, Juergens, Pfaehler, & Schaetz, 2010) or rule-based model
transformations (Striber, Acretoaie, & Pléger, 2017) while other proposals target gen-
eral model comparison (Brun & Pierantonio, 2008), model alignment (Falleri, Huchard,
Lafourcade, & Nebut, 2008; Kolovos, 2009) or model versioning (Constant, 2012). In
theory, all these works could be systematically executed on all combinations of models in
a repository to find suspicious pairs of models but in practice this is not really feasible.
They rely in the execution of a large number of matching and comparison operations
(they are basically refinements of the graph theoretic problem of locating isomorphic
connected sub-graphs of certain size, which is know to be NP-complete) that will not
scale to the analysis of large model repositories.

Model clustering approaches may be considered similar to the problem of plagiarism
detection as well. In this area, Kinneer and Herzig (2018) provide and test different
similarity measures for the clustering of domain specific models (space mission archi-
tecture models). Similarly, the work presented by Dumas, Garcia-Banuelos, La Rosa,
and Uba (2013); La Rosa et al. (2015) focus on the clustering of Business Process
Models. Claris6 and Cabot (2018) rely on Graph Kernels for the clustering phase. Nev-
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ertheless, and contrary to our approach, clustering approaches work out-of-the-box only
for very specific and predefined types of models or, otherwise, require to define a specific
distance function for the problem at hand and proceed with a pairwise comparison.

Finally, Babur, Cleophas, and van den Brand (2019) follow a different strategy, based
on the use of n-grams and natural language processing (NLP) techniques (in the NLP
field, an n-gram is a contiguous sequence of n items from a given sample of text or
speech (Cavnar, Trenkle, et al., 1994)). Basically it builds a weighted term incidence
matrix (terms are more or less complex n-grams to be extracted and matched in the
models under comparison) and then calculates the similarity between vectors in this
matrix or feed it to clustering algorithms. We argue that our approach scales better as,
again, avoids matching and pairwise comparisons. However, we believe their approach
may be an interesting complementary technique in our final phase (when we do proceed
with individual comparisons for the final filtering) as it is able to point to the parts of
the artefact that it is presumably copied.

6. Conclusions and Future Work

We have presented a new plagiarism detection mechanism for MDE course assignments.
Our approach is based on the adaptation to the MDE domain of the Locality Sensitive
Hashing technique.

We evaluated the feasibility, usefulness and efficiency of our approach on two real
use cases featuring 10 years of assignments about modeling and model transformations
pertaining to a MDE course taught between 2007 and 2018. We showed that: (i) our
approach succeeds in massively reducing the time it takes to assess potential plagiarisms
by preselecting the suspicious candidates; (i) our approach scales much better than
existing alternatives, such as using model comparison tools; (ii7) it was able to detect
(previously undetected) instances of plagiarism that did exist in the use case repository.
We can conclude that plagiarism detection must be integrated into the toolset and
activities of instructors in order to correctly evaluate students and the outputs of MDE
programs and that our approach succeeds in doing so.

As future work we intend to extend the present work by exploring a number of
different research lines. To begin with, we are interested in replicating our empirical
evaluation on MDE programs taught in different institutions, so that we can verify
how different kinds of assignments, related tools and instructions affect the plagiarism
detection rates and update the tool accordingly. This will also help us to come up
with good default values and heuristics for the tool configuration based on the types
of models to evaluate (UML models, business process models, database diagrams,...),
which would also simplify the adoption of our tool by other educators. Finally, we are
interested in evaluating the long-term impact of our approach in the MDE teaching
domain by looking at how both instructors and students adapt to the existence of the
tool. For instance, we consider the following questions worth to be investigated: Does the
tool facilitate instructors to reuse previous assignments with less concerns on students
copying them? Do students attempt to defeat the tool by being more creative with
the plagiarisms or is the tool a barrier that forces them to actually do the work by
themselves?
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