
Markov associativities
(The paper has appeared in the Journal of Quantitative Linguistics, 2005,

vol. 12, no. 2, pp. 123-137)

François Bavaud
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Abstract

Quantifying the concept of co-
occurrence and iterated co-occurrence
yields indices of similarity between
words or between documents. These
similarities are associated with a re-
versible Markov transition matrix,
whose formal properties enable us to
define euclidean distances, allowing
in turn to perform words-documents
correspondence analysis as well as
words (or documents) classifications at
various co-occurrences orders.

1 Introduction

Two objects are associated if they co-occur fre-
quently enough in the same contexts. In the sta-
tistical analysis of textual data, objects can be
words and contexts can be documents; associati-
vity between words can be defined as proportional
to the probability to draw the second word in a
document, given that this document contains the
first word. One might for instance expect that
théorème is little associated with amour (be-
cause few documents co-cite them), théorème
is strongly associated with logarithme (due to
the contribution of mathematical documents), and
that amour and logarithme are (almost) not
associated.

Associativities defined in this way are closely
related to the components of a Markov transi-
tion matrix W , giving the probability to reach a
word starting from another; we refer to them as

Markov associativities. By construction, Markov
associativities constitute similarity indices obey-
ing well-identified mathematical constraints (sym-
metry, non-negativity, non-negative definiteness,
normalization). They are in principle applicable
to any kind of corpus, the choice and organization
of which are nevertheless bound to strongly influ-
ence the conclusions which may be drawn from
this formalism.

Markov associativities can be computed from
any words-documents contingency table, giving
the number of times njk word j has occurred in
document k. By duality, i.e. by transposing the
matrix njk, the same formalism can be used to de-
fine Markov transitions between documents, that
is Markov documents associativities.

Also, Markov transition matrices can be it-
erated, yielding higher-order transition matri-
ces (possessing the same stationary distribution).
Thus higher-order Markov associativities can be
defined in a straightforward way, and capture the
idea of higher-order association between objects
through “cor-occurrences”, for r = 1, 2, 3, . . .

Markov associativities are non-negative defi-
nite, which makes the distances between words
euclidean. Words can thus be represented by a
configuration of coordinates, the low-dimensional
projection of which aims at maximizing the ex-
pressed inertia. The resulting procedure amounts
to a factorial correspondence analysis (FCA),
endowed with familiar words-documents duality
properties. Alternatively, hierarchical classifica-
tion can be performed, yielding classes of similar
words, the composition of which generally varies



with the order of the associativity under consider-
ation.

2 Notations and formalism

Consider a corpus made of p documents, contain-
ing n tokens in total:

• njk denotes the number of words of type
j = 1, . . . ,m occurring in the k-th document
(k = 1, . . . , p)

• nj• :=
∑p

k=1 njk is the absolute frequency
of word j

• n•k :=
∑m

j=1 njk is the size of document k

• n•• = n =
∑

j,k njk is the size of the corpus

• πj := nj•
n is the relative frequency of word j

• ρk := n•k
n is the relative size of document k

• qjk := njk n
nj• n•k

is the associated indepen-
dence quotient, namely the ratio of the ob-
served versus expected count under indepen-
dence; by construction,

∑
j πj qjk = 1 and∑

k ρk qjk = 1.

Words j and j′ co-occurring in the same do-
cuments k = 1, . . . , p are associated, and this ba-
sic relationship can be quantified by means of an
(m × m) Markov transition matrix W = (wjj′)
constructed as follows (see figure 1):

1. given a word j, choose a document k with
probability p(k|j) = njk

nj•

2. then choose a word j′ in document k with
probability p(j′|k) =

nj′k
n•k

The resulting transition matrix reads

wjj′ =
∑p

k=1 p(k|j) p(j′|k) =
∑p

k=1
njk

nj•

nj′k
n•k

=
∑p

k=1 ρk qjk qj′k πj′

(1)
and enjoys the following properties:

1. wjj′ ≥ 0 and wj• = 1, that is W is a Markov
transition matrix.
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Figure 1: The associativity s
(r)
jj′ of order r (here

r = 3) is the ratio of the probability to get the word
j′ starting from word j to the relative frequency of
word j′ : first, draw a document k containing word
j, pick another word l in k, find another document
k′ containing l, pick another word l′ in k′, find an-
other document k′′ containing l′, and finally pick
(or not) word j′ in k′′.

2.
∑m

j=1 πj wjj′ = πj′ , which shows π to be the
stationary distribution for W 1.

3. πj wjj′ = πj′ wj′j , that is the Markov chain
is reversible2.

4. for r = 2, 3, . . ., the r-th iterate W r = (w(r)
jj′ )

is another transition matrix, defining the ite-
rated chain of order r. W r is also reversible
with stationary distribution π, with asymp-
totic behavior limr→∞ w

(r)
jj′ = πj′ , indepen-

dently of the initial word or query j.

3 Markov associativities

Definition: the Markov associativity s
(r)
jj′ of order

r between words j and j′ is (fig. 1):

s
(r)
jj′ :=

w
(r)
jj′

πj′
(2)

Definition (2) makes words associated at order
r = 1 (sjj′ large) if they occur often in the same
documents (association of order 1).

1this distribution is unique iff njk is irreducible, namely
not degenerate into two or more components - for instance
one component containing French words only in French doc-
uments and another containing German words only in Ger-
man documents, with no lexical intersection.

2reversibility characterizes here the word-word or
document-document association, and does not refer of course
to the sequential ordering of words inside documents.



Higher-order associativities s
(r)
jj′ result from an

iteration of the process: at order r, words j and
j′ are considered as more associated than average
(s(r)

jj′ > 1) if the probability to obtain a member of
the pair from the other is greater than the average
probability (w(r)

jj′ > πj′ , or equivalently w
(r)
j′j >

πj). Formally:

1. the (m × m) associativity matrix S(r) =
(s(r)

jj′) is non-negative, symmetric (due to
the reversibility of wjj′) and normalized to∑

j πj s
(r)
jj′ = 1

2. S(r) = SΠSΠ · · ·ΠS, where S = S(1) and
Π is the diagonal matrix containing the πj .
The matrix S, and also S(r), can be shown to
be positive semi-definite (p.s.d.), i.e. all the
associated eigenvalues are non-negative. In
particular, sjj′ ≤

√
sjj sj′j′ . Note that sjj′ >

sjj can occur when j′ is a rare word often co-
occurring with a frequent word j.

3. Particular cases:

a) s
(0)
jj′ =

δjj′
πj′

b) s
(1)
jj′ =

∑
k ρk qjk qj′k

c) s
(∞)
jj′ ≡ 1.

Associativities s
(r)
jj thus define similarity in-

dices; however, in contrast to a well-established,
although little justified tradition, the self-
associativity s

(r)
jj is not equal to smax = 1; one

finds instead s
(r)
jj ≥ 1 with s

(r)
jj 6= s

(r)
j′j′ in general

(this can be justified from the particular form
of the transition matrix (1)). By contrast, the
weighted average associativity between any word
j and all the other words j′, itself included, is
1: thus in the picture presented here, the more
self-associated is a word, the less associated it is
with other, distinct words3.

4 Illustrations

Illustrations 1 to 4 are kinds of Gedankenexperi-
ments, while illustration 5 constitutes a real exam-
ple of modest size.

Illustration 1: consider a pair of words (jj′)
occurring exclusively together, such as (jj′) =

3cf. the behavior of category DETDEMFS in illustration 5
below.

cahin - caha. Then njk = nj′k for all k,
and in particular qjk = qj′k for all k; more pre-
cisely, the latter identity holds iff the lexical pro-
files are proportional, namely njk = a nj′k for
all k. Then sjj′ = sj′j′ = sjj , that is j and j′

are maximally associated in view of the property
sjj′ ≤

√
sjj sj′j′ . Higher-order associativities in-

herit this property: s
(r)
jj′ = s

(r)
j′j′ = s

(r)
jj .

Illustration 2: two regional synonyms of the
standard French désordre are j = brol (Bel-
gium) and j′ = cheni (Switzerland). Although
chances that j and j′ co-occur in the same doc-
ument are low (for a “normal” corpus), j and j′

are likely to be strongly associated with the same
words, which results in s

(1)
jj′
∼= 0 and s

(2)
jj′ >> 1.

Illustration 3: words {j} such as liberté,
libertés, libérer, libre, etc... can be
grouped into the same supra-category J , of rela-
tive frequency πJ =

∑
j∈J πj and associated quo-

tient qJk =
∑

j∈J
πj

πJ
qjk. Also, other words {j′}

may be grouped into supra-categories J ′. The re-
sulting J = 1, . . . ,M < m supra-categories and
the associated (M×M) associativity matrix trans-
form as sJJ ′ =

∑
j∈J

∑
j′∈J ′

πj

πJ

πj′
πJ′

sjj′ , and
inherits the properties of non-negativity, symme-
try, normalization and p.s.d. However, s

(r)
JJ ′ 6=∑

j∈J

∑
j′∈J ′

πj

πJ

πj′
πJ′

s
(r)
jj′ in general for r ≥ 2:

words aggregation and Markov iteration do not
commute.

Illustration 4: documents {k} can also be con-
catenated into supra-documents K = 1, . . . , P <
p, of frequencies ρK =

∑
k∈K ρj and quotients

qjK =
∑

k∈K
ρk
ρK

qjk. The resulting associativ-
ity ŝjj′ =

∑
K ρK qjK qj′K is still non-negative,

symmetric, normalized and p.s.d. By Jensen’s in-
equality, the diagonal associativities decrease un-
der aggregation :

sjj =
∑
k

ρk q2
jk =

∑
K

ρK

∑
k∈K

ρk

ρK
q2
jk

≥
∑
K

ρK(
∑
k∈K

ρk

ρK
qjk)2 =

∑
K

ρK q2
jK = ŝjj

which shows that, on average, off-diagonal asso-
ciativities increase under aggregation. One gets
ŝjj′ ≡ 1 in the limit of one single document
(p = 1), and sjj′ = δjj′/πj in the limit of min-
imal “one-token documents” (p = n).
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Figure 2: r-th order associativity between unre-
lated categories.

Illustration 5: in the framework of structural
linguistics, it is common to discriminate between
syntagmatic and paradigmatic relationships be-
tween linguistic units. The first term refers to units
co-occurring within a relevant context, while the
second corresponds to units which can be substi-
tuted to each other in a given context but can-
not occur together4. The following illustration
shows that, in the domain of syntax, these differ-
ent relationships yield specific patterns of r-th or-
der associativity. Using the software CORDIAL
Analyseur developped by the society Synapse
Développement, we systematically extracted nom-
inal phrases out of a French journalistic corpus5,
replacing the actual words by their syntactic cate-
gory. After sampling, we obtained a corpus of size
n = 2′914, containing p = 1′239 phrases (docu-
ments) and m = 26 categories (word types)6.

After computing the corresponding transition
and associativity matrices W r and Sr at various
orders, it turned out that pairs of categories seemed
to follow mainly three specific patterns:

a) some pairs appear to be only lightly associ-
4A significant exception to this is the case of coordination.
5La Liberté, edited in Fribourg, Switzerland.
6Key to the abbreviations: PREP = preposition, ADV = ad-

verb, NC(M|F)(S|P) = masculine/feminine singular/plural
common noun, ADJ(M|F)(S|P) = masculine/feminine
singular/plural adjective, ADJ(S|P)IG = idem, gender-
invariant, DET(I|D|DEM|POSS)(M|F)S = indefi-
nite/definite/demonstrative/possessive masculine/feminine
singular article, DET(I|D|DEM|POSS)(S|P)IG = idem,
singular/plural gender-invariant.
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Figure 3: r-th order associativity between syntag-
matically related categories.
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Figure 4: r-th order associativity between paradig-
matically related categories.

ated at order 1, and tend to exhibit the ave-
rage associativity of 1 as r grows (possibly
crossing that limit, but never in a significant
way). For instance, this is the behavior of
pairs (PREP, ADJNUM) or (ADV, NCFS) (see
fig. 2). Elements in such pairs have no parti-
cular syntactic relationship together.

b) some other pairs of categories show a high
or low first-order associativity, tending to the
average associativity as r grows. This beha-
vior characterizes elements with a strong ten-
dency to co-occur (or not) in phrases, like the
pairs (ADJFS, NCFS) or (ADJFS, NCMS),
the second of which violates the rule that
noun-adjective groups should possess an uni-



fied gender in French (see fig. 3).

c) the last case is that of mutually exclusive el-
ements but liable to “co-co-occur” within the
same contexts. Their associativity is minimal
for r = 1, as they never occur in the same
phrase, but it goes significantly beyond the
average for r ≥ 2 before regressing to it for
higher orders. Pairs (DETDMS, DETIMS) and
(DETDFS, DETIFS) are prototypical exam-
ples of this (see fig. 4).

5 Markov dissimilarities: FCA and
classification

Associativities s
(r)
jj′ are positive semi-definite, and

play the role of the “scalar product matrix” in the
classical multidimensional scaling problem (see
e.g. Schoenberg (1935) or Gower (1982)). Fol-
lowing the latter, we construct euclidean repre-
sentable dissimilarities D

(r)
jj′ of order r as

D
(r)
jj′ := s

(r)
jj +s

(r)
j′j′−2s

(r)
jj′ =

w
(r)
jj

πj
+

w
(r)
j′j′

πj′
−2

w
(r)
jj′

πj′

(3)
The weighted average dissimilarity between all

pairs of words is the inertia of order r defined as

I(r) :=
1
2

∑
jj′

πj πj′ D
(r)
jj′

=
∑
j

πj s
(r)
jj −

∑
jj′

πj πj′ s
(r)
jj′ =

∑
j

w
(r)
jj − 1

Hence, the higher the probability of getting the
same word (that is the higher the average self-
associativity), the higher the corresponding iner-
tia. Particular cases are I(0) = m − 1, I(1) =∑

j πj sjj − 1, I(2) =
∑

jj′ πj πj′ sjj′ − 1 and
I(∞) = 0. The inertia of order r = 1 is noth-
ing but the chi-square (per count) associated to
the words-documents contingency table (njk) (see
also Bavaud (2002)):

I(1) =
∑
j

πj sjj − 1 =
∑
jk

πj ρk q2
jk − 1

=
1
n

∑
jk

(njk − n πj ρk)2

n πj ρk
=

χ2

n

Factorial correspondence analysis (FCA) aims at
representing words j = 1, . . . ,m as points xjα

-2.5 -2.0 -1.5 -1.0 -.5 0.0 .5 1.0 1.5

-1.0

-.5

0.0

.5

1.0

1.5

-1.5

F

1

2

3

4

ADV

PREP

alpha=2

alpha=3

Figure 5: FCA scores for words. Singular-plural fac-

tor α = 2 opposes cluster 1 (ADJMS, DETDEMMS, DETDMS,
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Figure 6: classification on D
(1)
jj′ as defined in

(3); as shown in figure 8, Ward classification on
D

(3)
jj′ matches more closely the FCA than does the

present classification.



such that a maximum part of inertia I(1) is ex-
pressed by the first dimensions α = 1, 2, . . . (see
e.g. Greenacre (1984) or Lebart et al. (1995)).
The resulting coordinates {xjα} constitutes a low-
dimensional, factorial representation of words, in
contrast to the high-dimensional, direct represen-
tation {xjl} introduced above.

Higher-order FCA, generalizing the ordinary
FCA of order one, can be constructed as fol-
lows: consider the spectral decomposition C(r) =
U (r) Λ(r) (U (r))′ (with U (r) orthogonal and Λ(r)

diagonal with decreasingly ordered values) of the
symmetric (m×m) matrix C(r) = (c(r)

jj′) defined

as c
(r)
jj′ := √

πj w
(r)
jj′/

√
πj′ ; identity C(r) = Cr

entails U (r) = U = (ujα) (independently of r)
and Λ(r) = Λr with diagonal components λr

α.
The searched for words coordinates are x

(r)
jα :=√

λr
α√

πj
ujα, obeying

∑
α(x(r)

jα − x
(r)
j′α)2 = D

(r)
jj′ as

requested7.
Also, I(r) =

∑
α≥2 λr

α, which shows the first
non-trivial dimensions α = 2, 3 . . . to express a
maximum part of the projected inertia I(r) (λ1 = 1
corresponds to the trivial eigenvalue) (see fig. 5).
As in ordinary FCA, duality enables the same
eigen-structure to generate the higher-order facto-
rial representation of documents coordinates y

(r)
kα .

Finally, a classification of words can be per-
formed: figures 6, 7 and 8 show the results of
hierarchical Ward classifications applied on (3)
with r = 1, 2, 3 respectively. Cutting the dendro-
grams at some height h (here represented horizon-
tally in arbitrary units) aggregates the m words j
into M ≤ m groups J , with group coordinates
x

(r)
Jl :=

∑
j∈J

πj

πJ
x

(r)
jl ; inertia of order r decom-

poses into a between- and a within-group contri-
bution:

I(r) =
1
2

∑
jj′

πj πj′ D
(r)
jj′ =

1
2

∑
JJ ′

πJ πJ ′ D
(r)
JJ ′ +

+
∑
J

πJ

∑
j∈J

πj

πJ
D

(r)
jJ =: I

(r)
B + I

(r)
W

7Proof:
∑

α
(x

(r)
jα − x

(r)

j′α)2 =
∑

α
λr

α (
ujα√

πj
− uj′α√

πj′
)2

=
c
(r)
jj

πj
+

c
(r)
j′j′
πj′

− 2
c
(r)
jj′

√
πj
√

πj′
=

w
(r)
jj

πj
+

w
(r)
j′j′
πj′

− 2
w

(r)
jj′

πj′

= s
(r)
jj + s

(r)

j′j′ − 2s
(r)

jj′ = D
(r)

jj′ .

Figure 7: Ward classification on D
(2)
jj′ .

Figure 8: Ward classification on D
(3)
jj′ .



where D
(r)
jJ :=

∑
l(x

(r)
jl − x

(r)
Jl )2 is the word-

group dissimilarity D
(r)
jJ :=

∑
l(x

(r)
jl − x

(r)
Jl )2 and

D
(r)
JJ ′ :=

∑
l(x

(r)
Jl − x

(r)
J ′l)

2 the group-group dis-
similarity. Under aggregation J, J ′ → [J ∪ J ′],
the intra-group inertia I

(r)
W increases of ∆I

(r)
W =

πJ πJ′
πJ+πJ′

D
(r)
JJ ′ . Aggregating groups in a way which

minimizes this increase (as in figures 6, 7 and
8) amounts to Ward clustering algorithm (see e.g.
Lebart et al. (1995)).

Interestingly enough, changing the order r → r′

transforms the FCA representation into another
FCA representation which is pretty close to the
former since the eigenvalues solely are altered as
λr

α → λr′
α ; by contrast, the associated classifica-

tion can be altered fairly more substantially, as at-
tested by figures 6, 7 and 8.

6 Conclusion and further developments

The present work has explored a few formal prop-
erties of the concept of associativity of order r,
demonstrating how it can be statistically founded
and used in a classical data-analytical framework.

In the vector space representation of informa-
tion retrieval (IR) (see e.g. Slaton and Buck-
ley (1988); Besançon et al. (1999)), document-
document similarities are typically defined as
σ̃kk′ = (ak,ak′ )√

(ak,ak)(ak′ ,ak′ )
where (ak, ak′) :=∑

j akj ak′j and akj is the vector of terms weigths
associated with document k, with

akj =

{
(1 + log njk) log p

]{k|njk>0} if njk > 0
0 otherwise

By contrast, first-order Markov document-
document similarities (1) express as
s̃kk′ = (bk, bk′) where bkj =

√
n

nj•

njk

n•k
.

Contrarily to σ̃kk′ , the associativity s̃kk′ is invari-
ant under the aggregation of words possessing
identical profiles, as does the generalized family
bkj =

√
nj•
n f( njk n

nj•n•k
) (Bavaud 2002). In that

respect, Markov associativities could play the role
of reference similarities, endowed with appealing
formal properties, to which the various tf-idf
weighting schemes proposed and evaluated in the
literature might be compared.

Also, the present formalism could be further de-
velopped by considering fuzzy memberships and

associativities (Bavaud 2004), or by incorporat-
ing work on probabilistic latent semantic analy-
sis (Hofmann 1999), postulating conditional pro-
bability of the form p(j|k) =

∑
z p(j|z) p(z|k)

where z indexes latent classes. Others extensions
implying non-linear distortions of the distances
conserving the euclidean property, trade-off be-
tween orders by using chain mixtures, and special
documents definitions enabling links with the n-
grams formalism are currently under investigation.

Although we are confident about the formal
strength of our formalism, which we judge as
sound and statistically founded (and obviously
not restricted to textual data), results on large-
scale and systematic empirical performance of IR
systems based upon the present formalism are
presently yet missing. This state of things should
be remedied in priority: at the time being, the
question of whether our formalism will perform
better in practice that another system based upon
somewhat ad hoc assumptions remains open.
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