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Abstract

Hilberg (1990D) supposed that finite-order excess entropg @ndom human text is
proportional to the square root of the text length. Assuniirag Hilberg's hypothesis is
true, we derive Guiraud’s law, which states that the numbeood types in a text is greater
than proportional to the square root of the text length. Qarivdtion is based on some
mathematical conjecture in coding theory and on severaraxgnts suggesting that words
can be defined approximately as the nonterminals of theedtarbntext-free grammar for
the text. Such operational definition of words can be applieen to texts deprived of
spaces, which do not allow for Mandelbrot’s “intermitteiiesce” explanation of Zipf’s
and Guiraud’s laws. In contrast to Mandelbrot’s, our modsuanes some probabilistic
long-memory effects in human narration and might be capabéxplaining Menzerath's
law.
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1 Introduction

Over a decade ago, Hilbérg (1990) reinterpreted Shann@Bs()) well-known experimental
data and formulated a novel hypothesis concerning the gnwbhuman language. The hy-
pothesis states that block entroyn) of a text drawn from natural language production, ex-
cept for disputable constant and linear terms, is propoatito the square root of the text length
n measured in phonemes (or letters),

H(n) =~ ho+hyn*+hn, (1)

wherep = 1/2. For brevity, we call relatiori]{1) Hilberg’s law. Hilbesgpublication appeared in
a technical journal of telecommunications. It was popuaktiamong natural scientists by Ebel-
ing (Ebeling and Nicolls, 1991; Ebeling and Péschel, 199%) stimulated some discussions
(Bialek et al.; 2001; Crutchfield and Feldman, 2003; Sha®@D1; Debowski, 2001, 20C4a).

In this article, we shall discuss some interaction betweidrelry's law and the better known
Guiraud’s and Zipf’'s laws. Empirical Guiraud’s law (GuicguL954) states that the number of
orthographic word typeg in a text behaves like
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wherep < 1 is constant andll is the length of the text measured in orthographic word teken
On the other hand, Zipf’s-Mandelbrot’s law (Zipf, 1935, £9Mandelbrot| 1954) states that
any text obeys relation

3)

whereB > 1 is constant, frequenayw) is the count of wordv in the text, and rank(w) is the
position of wordw in the list of words sorted in descending orderdjw).

We do not know to what extent Hilberg’s law is valid. FormuIh presupposes some sta-
tionary probabilistic model of the entire natural langu@geduction, which is a highly hypo-
thetical entity itself. Nevertheless, we would like to a@ghat some form of Guiraud’s law can
be deduced from equatiofl (1). Strictly speaking, assuntiagHiilberg’s law is true for alh,
we shall only infer some lower bound for the growth of the \mdary size. Despite that restric-
tion, we think that our explanation of Guiraud’s law can berenlinguistically plausible than
the famous joint derivation of Guiraud’s and Zipf’'s laws yiaed by Mandelbrot (1953). The
latter derivation is known also as “intermittent silencapkanation(Miller 1957} Li| 1998).

Hilberg’s law concerns the probabilistic distribution abdrary phoneme or letter strings,
i.e. the law constrains the distribution of all human tex@ the other hand, both Guiraud’s
and Zipf's laws concern the distribution of individual weréh texts. Saying that Guiraud’s
law can be deduced from Hilberg’s law, we presuppose sommeduwe which transforms the
distribution of phoneme strings (i.e. texts) into the cep@nding distribution of words. In
some naive approach, we could assume that the text is a sfrpfgpnemes or spaces and the
words are the space-to-space strings of phonemes. In fatgrrittent silence” explanation
assumes that the text is a string of probabilistically iretefent random tokens taking the values
of spaces and phonemes. Given this assumption and the &papaece definition of word,
Mandelbrot deduced Zipf's law, and hence Guiraud's law cardbeduced as well (Kornai,
2002).

Unfortunately, “intermittent silence” explanation camnra® applied to natural language.
We know that the occurrences of phonemes in the languageugtiod exhibit some strong
probabilistic dependence and there are no definite spatesdrethe words in human speech
(Jelinek, 1997). If we want to derive Zipf’'s law from the dibution of mere phoneme strings,
we must use some definition of word tokens which could be agp the text deprived of
spaces and which would match empirically the definition ofdvwokens given by spelling con-
ventions or by semantic considerations.

Some well-defined tokenization of the space-deprived teit word-like strings can be
given by grammar-based text compression (Kieffer and Y2600). In grammar-based com-
pression, the text is represented as a special contextgffememar, called an admissible gram-
mar. That class of context-free grammars should not be sedfwith phrase structure gram-
mars: The nonterminals of admissible grammars correspofixetd strings of phonemes rather
than to part-of-speech classes. Each admissible gramwes gome tokenization of the text
into hierarchically structured word-like strings being tionterminal tokens. It was empirically
confirmed that for the grammars which approximate the shba@missible grammar for a hu-
man text, the nonterminals usually correspond to the ortpdgc wordsi(de Marcken, 1996;
Nevill-Manning, 1996).

We will show that the expected number of nonterminal typestie shortest admissible
grammar cannot be less than proportional to so called forifer excess entropy of the random
text. It is some mathematical result based on a line of thmsr@nd one unproved conjecture.
On the other hand, if Hilberg’s hypothesis is true then thigefinorder excess entropy of the text



is roughly proportional to the square root of the text lengihe close empirical correspondence
between the nonterminals and the orthographic words allesvio claim that Hilberg’s law
implies some lower bound for the vocabulary growth, i.e. edanm of Guiraud’s law.

The rest of this article fills in the details of the deductiamsl empirical observations men-
tioned in the previous paragraphs:

¢ In section[®2, we introduce the definitions of stationaryrdistion, block entropy, ex-
cess entropy, and infinitary distributions. We sketch trstdny of Hilberg’s law and the
general research of block entropy for natural languageuariiah.

¢ In sectiorB, we introduce the concepts of admissible aedircible grammars. We also
discuss some empirical evidence that the shortest adhasgiammar matches largely
the linguistic tokenization for the human text.

¢ In sectior#, we relate block entropy to the expected lenfjitieducible grammar-based
codes. Assuming some mathematical conjecture, we showhba&ixpected total length
of the non-initial productions of the shortest grammar cdriye less than finite-order
excess entropy.

e In sectiorlb, we discuss Guiraud’s law in detail and we arpaeHlilberg’s law explains
it better than the assumption of “intermittent silence”. n&arguments for Hilberg's
law explanation are: (i) non-randomness of texts, (ii) emopl detectability of word
boundaries and internal structures, (iii) possibility @pkining Menzerath’s law, and
(iv) significant variation of word frequencies across didfiet texts.

2 Excess entropy and Hilberg’s law

Let us imagine some infinite sequence of characters, e.g.
the rose is a hose is a rose is a hose is a rose is a hose..., (4)

where subsequence_rose_is_a hose_is is repeated infinitely to fix our imagination. For
such an (infinite) sequence we can compute the relative drexyuof any (finite) string which
appears in that sequence.

For example, let us define probabiliB(rose) as the relative frequency of stringse in
the infinite sequencdl(4). We shall do it in two steps. &estand for theith character of
@), i.e. ay=t,ap=h,ag=e, sy = _, ag = r etc. We will write the finite substrings as
amn := (&m,am+1,---,a@n). The relative frequencl(rose; n) of stringrose in stringa; , is the
number of all positiong;, 1 < i < n, where stringrose starts divided byn. For any equality
relation@ let us defing] @] = 1 if @is true and[@] = 0 if @is false. ThusP(rose;k) can be
expressed as

k
P(rose;k) := %Z\[[ai;prg =rose], (5)

where = means definition. We hav@(rose;1) =0, P(rose;5) = 1/5, P(rose;10) = 1/10,
P(rose;30) =2/30 and so on.

Let us define probability?(rose) as the limit of relative frequencies of stringse in the
initial substrings ofl(#). So we will write

P(rose) := r|£>noo P(rose;n). (6)



Every 20th character in sequenCE (4) is a position whemgsttise starts, sd’(rose) = 1/20.
Analogically, we can define probabili§(v) for any stringv,

k
P(v) := lim %i;[[ai:iﬂenv—l =v], (7)

k—00

where lerv is the number of charactersn Hence, for[(#) we obtain not onR(t) = 0 (there
are not’s), P(s) = 1/5 (two in ten characters arg, andP(e) = 1/10 but alsdP(e_is_a) =
1/10,P(a_rose_is_a hose) =1/20, andP(a_rose_is_a_rose) =0.

Now let us take some general sequef®gay,as,...). LetV be the finite set of characters
that appear in that sequence. [&t be the set of all finite strings formed by concatenating
the characters iV. For any sequenc@,ap,as,...) such that limit [¥) exists for each string
v e VT, probability functionP satisfies relations

0<P(v) <1, Z P(a) =1, z P(av) =P(v) = Z P(va). (8)

acV acV acV

We will call any functionP satisfying conditiond{8) for all € V+ a stationary distributiof.It
is an open question whether for any stationary distribuBl@xists suchas, ap, as, ...) that we
have [7) for allv € V.

Let V" be the set of alh-character long strings. We define block entrdipyn) of any
stationary distributior® as the entropy of strings of lengii)

H(n):=— z P(v)log, P(v). 9
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We also put (0) := O for algebraic convenience.
For any stationary distributio® block entropyH (n) is a nonnegative, growing, and concave
function ofn (Crutchfield and Feldmah, 2003), i.e.,

H(n) >0, H'(n)>0, H"(n) <0, (10)
where
H'(n):=H(N)—-H(n-1), H"’(n):=H(N)-2H("n—-1)+H(n-2). (11)
Because of inequalitieE{IL0), we can define entropy rate as

NN T T /
h:= r!lan(n)/n_Alan (n) > 0. (12)
If entropy rate satisfiels > 0 thenH (n) grows almost linearly against the string lengtfor
very long stringsH (n) ~ hn. We can ask how fast (n) approachehn. The departure dfi (n)
from the linear growth is known as excess entropy.
Finite-order excess entropi&sgn) are some functions dfl (n) andH (2n),

n 2n
E(n):=2H(n)—H(2n) = — k—1)H" (k) — 2n—k+1)H"(K). 13
(n) (n) —H(2n) kZZ( JH™(K) k:%l( n—k+1)H"(k) (13)

LStationary distributions are the distributions of stasignstochastic processes (Upper, 1997). For simplicity,
we avoid the mathematical terms of stochastic processedona variables and probabilistic spaces (Billingsley,
1979; Kallenbelg, 1997). Since we do not need these notmpsasent the core reasonings, we ignore them to
make the article as elementary as possible.



So defined functions are nonnegative and growing B@) > E(n—1) > 0.|Crutchfield and Feldman
(2003) proved that (total) excess entrdpgan be defined equivalently as

E:= rI}i_r}nmE(n) = rI]i_r>rc1>o[H (n) —hn. (14)

We also have inequality
E:—mk—lH”k>—mH”k:H1—h. 15
k;( JH(k) > kZZ (k) =H(1) (15)

Let vu be the concatenation of stringsandu. We will say that stationary distributioR is
an IID distribution if

P(vu) = P(v)P(u) (16)

for all stringsv,u € V*. (11D stands for independent identically distributed randvariables.)
DistributionsP can be IID even for some quite ordered underlying sequef@ges,, as, ...). For
instanceP given throughl({I7) is IID for the sequence of digits of congeeunatural numbers
(a1,ap,a3,...) = (1,2,3,4,5,6,7,8,9,1,0,1,1, ...), which is called Champernowne sequence
(Liand Vitanyi,11993). Anyway, we do not expect that we coalatain IID distributionP if

we substituted some collection of human texts for sequéacey, as, ...).

For any 11D distributionP we haveH (n) = nH(1) soh = H(1) andE = 0. Conversely, if
H(1) —h> 0 orE > 0, then distributior® cannot be IID. For the extreme departures from the
IID case, we havén = 0 or E = . Stationary distributions exhibiting= 0 are called deter-
ministic while the distributions obeying = o are called infinitaryl(Crutchfield and Feldman,
2003). In appendikdB, we present some properties of infyitastributions which could be
important for their possible applications in quantitatvel computational linguistics but which
are not so relevant for the main reasoning of this article.

Let us assume that we could obtain some definite stationatgtaitionP through formula
(@) if we substituted the infinite concatenation of some hurexts for(as,ap, as,...). We
will call such an infinite sequendey, ay, as, ...) natural language production. Research in the
hypothetical stationary distribution of natural languageduction has attracted many scientists.
The first one to work in this area was _Shannon (1950). He taedstimate block entropy
using the guessing method and assuming some corresponuemaen particular instances of
English texts and the hypothetical random English langyagéduction. Shannon published
some estimates ¢ (n) for strings ofn consecutive letters, where< 100.

Shannon was not convinced of any particular asymptoticdaifkbentropyH (n) for the
natural language production_(Hilberg, 1990) but the lagsearchers in quantitative linguistics
tried to modeH (n) by some simple formulae. For example, Hoffmann and Piokipys979)
proposed a model of exponential convergence,

H(n)/n= (ho—h)exp[—n/no] +h. 17)

Petroval(1973) fitted modd[{L7) to French language data btadned ¥ng € (0.24,0.33).

On the other hand, Hilberg (1990) replotted the original @ibH (n) vs. n by IShannan
(1950) into a log-log scale and observed that a simple seguatedependence fits all the data
points,

H(n)On", p=~1/2, n<100 (18)



For our convenience, we will call Hilberg’'s law an algebregtation which is slightly more
general than Hilberg’s original hypothedis{18). We wilyshat Hilberg’s law holds for any
stationary distributio if only relation (1) holds withu~ 1/2 andh, > 0 for anyn. For such
definition, Hilberg’s law is independent of any hypothesigloe particular value of entropy rate
h and the constant terim,.

While Shannon estimated block entropy using the guessinigodeEbeling and his collab-
orators tried to estimate the asymptoticdHgh) by countingn-tuples in the samples of various
symbolic sequences. Using improved entropy estimatoesgbearchers fitted the general for-
mula [A) withp ~ 1/2 for natural language texts ampdk 1/4 for classical music transcripts.
For English and German texts(n) could be safely estimated far< 30 characters withg ~ 0,
hu ~ 3.1 bits andh =~ 0.4 bits (Ebeling and Nicolis, 1992; Ebeling and Ptschel, )98%con-
trast, Shannon’s guessing data, reinterpreted by HillE98(), suggest that equatidd (1) can
be extrapolated at least far< 100.

It is important to note that the estimation of block entrépgn) based on the naive estima-
tion of probabilitiesP(v) for all stringsv of lengthn is expensive in the input data. In order to
estimate the value df (n), we need a sample of length abotit® (Herzel et al., 1994). If we
try to make shortcuts, we assume some particular propetitee unknown stationary distri-
butionP. Even Shannon’s (1950) guessing method need not give thblekstimates dfl (n)
for the language production if the probabilistic languagelei internalized by the experimental
subjects differs from the model estimated from the corpuxi(& al., 2003; Hug, 1997).

Let us note that for the block entropy of formulla (1), finiteler excess entropies are

E(n) ~ ho+ (2— 2*)hynt. (19)

If relations [I9) hold with O< p < 1 for anyn then the total excess entropyks= «. Hence,
every stationary distribution exhibiting Hilberg’s lawiidinitary.

At the moment, we have no clear idea how one could verify ibeliy’s law holds for the
hypothetical stationary distribution of the language picicbn. Nevertheless, we can provide
some mixed inductive and deductive arguments that Hilsdeyv implies some phenomena
that can be observed in human language.

3 Words and the shortest grammars

In the following sections, we shall argue that Hilberg’s lean explain some quantitative laws
concerning the distribution of word types in the languagedpction. Nevertheless, before we
can speak of any distribution of words in a finite string of pemes or letters, we need to
delimit the word tokens themselves. If the words are someabig entities of the language,

there should be some method for identifying the boundartsden the words in a sufficiently

long string of phoneme or letter tokens even if we delete faess between words and ignore
the lexicon.

Let us take some text deprived of spaces, e.g.

V = shouldawoodchuckchuckifawoodchuckcouldchuckwood. (20)

We can express our knowledge of word tokens describinggstriny means of a two-level
context-free grammar

bo — b5b1 b7 b6b2 b1b7 b4b6b3, b1 — a,
G = by — if, b3 — wood, bg — could, ) (21)
bs — should, bg+> chuck, b7+ woodchuck



Symbolsb; are called nonterminals. For eabhthere is some production ruld; — gi) €
G. On the other hand, the typewriter-typed symbols, whichehaw productions rules in the
grammar, will be called terminals. Nontermirmlis called the initial symbol of the grammar.
If we recursively substitute productiogsfor all nonterminald; where(b; — gi) € G, thenbg
expands into string with the requested tokenization into the words. Namely,

V= should a woodchuck chuck if a woodchuck could chuck wood,

where notatiory means thaG contains ruley; — g for somei # 0 (de Marcken, 1996).
Of course, if we were not given any previous knowledge of E&hgkexicon, we could pro-
pose other tokenizations for tekf {20). For instance,

bo — shbibgbyifbschibobs, by — ould,

G = { by — chuck, bz~ wood, bs+— abszby } (22)

yields

V= should awood chuck chuckif awood chuck could chuck wood.

In the extreme, we could defirtog as the entire stringor eachb;, i # 0, as a single letter. Since
we ignore English lexicon, we need some purely formal datefor deciding what grammars
G are good for arbitrary stringsand what are not.

Let us state some formal definitions. Context-free gram@avill be called a grammar
(more precisely, admissible grammar) for stnn@f. [Kieffer and Yang, 2000) if:

1. For each nontermindl there is exactly one productiapsuch thatb; — gj) € G.

2. Nonterminabg expands intw if we recursively substitute productiogsfor all b;.

The set of all admissible grammars fowill be denoted by~ (v). Each grammaG < F(v) is
allowed to produce only one derivation, which is the finite teitself. In contrast, context-free
grammars producing a single infinite derivation are knowh-agstems.

Some a priori criterion for deciding which admissible graammapproximate the correct
tokenizations of texts makes use of the principle of minimdescription lengthl(Rissaren,
1978;| Lehman and Shelat, 2002). Define the lengtlyleh productiong; as the total number
of its terminal and nonterminal symbols, e.g. #&1bsbsifbscbibobs = 12 and lerabsby, = 3.
According to the principle of minimum description lengthgtbest grammar for string is
grammarGMPL (v) having the minimal length,

GMPL (v) := argminlenG, (23)
GeF(v)

where the length of a grammar is the total length of all itdpiaiions,

lenG = Z leng;. (24)
(bigi)€G

Strictly speaking, there can be more than one grammar hdkimgninimal length, so object
GMPL (v) is slightly indeterminate.

GrammarGMPL (v) usually cannot be computed in a reasonable amount of timénbug
is a multitude of heuristic algorithms which compute gramsnahose lengths approximate
lenGMPL (v) (Lehman| 2002; L ehman and Shelat, 2002). Various algosttomcomputing the
approximations o&MPL (v) usually perform some kind of local search onBét) and output So
called irreducible grammars. Grammtais called irreducible (Kieffer and Yanhg, 2000, section
3.2)if:



1. Each nonterminal expands recursively into a differeimgtof terminals.
2. Each nonterminal except fog appears at least twice in productiaps
3. There is no string of leny > 2 which appears more than once in productigns

It can be shown that there is an irreducible grammavfeohose length equals mipg ) lenG.
Hence, we can assume ti@l'P" (v) is irreducible.

Various algorithms for computing the irreducible approations of GMP-(v) have been
tested empirically on natural language data. Wolff (198@Vill-Manning (1995), and de Marcken
(1996) reported that those algorithms return quite souptesentations of English texts. The
nonterminals of some irreducible approximationsGPL (v) can be interpreted as syllables,
morphemes, words, and fixed phrases. Some of the heurigticithims identify the correct
boundaries of about 90% of orthographic words in the Browrpas, in a text deprived of
spaces, capitalization, and punctuation (de Maicken,/J198&re is an example of the com-
puted tokenization given hy de Marcken:

for the pur pose of main tain ing inte

nation al

H

peace and pro mot ing the advance ment of all

people the united states of américa join ed

infound ing the tnited nation s .

The results of the automatic tokenization are especiallyr@ssive for strongly isolating
languages, such as English and Chinese (de Marcken, 199@) sdme algorithms need not
be so effective for highly inflective languages, where nwusrorthographic alternations occur
within the morphological stems (e.g. for Polish). The puriur better tokenization algorithms
cannot be separated from the quest for the data compredgjonttams which identify the
inflectional paradigms (Goldsmith, 2001) or the abstracaph syntax structures (Nowak et al.,
2000).

4 The shortest grammar and excess entropy

Let us denote the set of the non-initial rules of grami@aas Gp := G\ {bo — 9o}, Where
A\ Bis the difference of seta andB. We will call Gg the vocabulary ofs. The length of the
vocabulary is defined as

lenGg := Z leng; = lenG — lengp. (25)
(bi—gi)€Go

We use notation 1eB¥P (v) := 1enGMPL (v) — leng}P* (v) respectively.

If the average length of the word-like productiapsi # 0, does not depend significantly on
the text then we may suppose tIG%fD'- (v) is proportional to the number of word types in text
v. In fact, we can observe an analog of Guiraud’s Iaw (2). If a@klat the data published by
Nevill-Manning (1995, figure 3.12 (b), p. 69), we can obsezugirical proportionality

lenGSERYTYRv) [ (lenv)®, (26)



where 12 < a < 1 andG5=?Y""URv) is some approximation oB}PL (v) computed by the

algorithm called SEQUITUR.

In this section, we would like to present some general thealgesult. We shall relate the
length ofG('\)"DL (v) to the finite-order excess entropy. It is well known that ¢hare intimate
relations between block entropy and the expected lengthsrat codes used in data compres-
sion. In particulat, Kieffer and Yahg (2000) discuss theaggpt of grammar-based codes, which
represent stringe € V* as uniquely decodable binary stringév) € {0,1}* by the mediation
of the admissible grammars.

Let F = Uyey+ F (V) be the set of admissible grammars for all strings. Fundlioiv+ —
{0,1}" is called a grammar-based code if

C(v) = B(G°(v)), (27)

where grammar transfor@ computes grammas©(v) € F (v) and grammar encod@& repre-
sents any grammads < F as a unique binary string(G) € {0, 1}*.

Let us introduce the expected length of c&tiéor the strings of lengtim drawn from sta-
tionary distributionP,

HE(n):= § P(v)-lenC(v). (28)

vevn

CodeC is called universal (more precisely, weakly minimax unsagy if

HE(n) > H(n), (29)
lim. H(n)/n= lim H(n)/n (30)

for any stationary distributioR. See Cover and Thomigs (1991, sections 5.1-6 and 12.10) for
a general background in information and coding theory.

Additionally, let us callC an irreducible code if for each input stringe V*, grammar
GC(v) is irreducible | Kieffer and Yang (2000, theorem 8) provefthilowing result:

Theorem 1 There exists such grammar encodthat any irreducible code of forniL(R7) is
weakly minimax universal.

Itis a very strong and profound theorem. In particular, dgldiE_ (v) := B(GMPL(v)) is univer-
sal since the shortest gramn@'®L (v) is irreducible. Theorerfd 1 can be used to prove univer-
sality of the modified SEQUITUR code hy Nevill-Manning (Kfief and Yang! 2000, section
6.2). Universality of the famous Lempel-Ziv code, howeveproved differently since it is not
an irreducible code and it uses a different grammar enc@@®rgr and Thomas, 1991, section
12.10).

It has been checked empirically that codes whose gramnmasharter usually enjoy shorter
lengths. For instance, Grassberger (2002) compressed B3&f Gnglish text and obtained
compression rates (in bits per character) le()Zlenv =~ 2.6 for Lempel-Ziv code LZ and
lenNSRP%v)/lenv ~ 1.8 for some heuristic irreducible code NSRPS. Other resessafe-
ported comparable results (de Marcken, 1996).

By analogy to definition[(13) of finite-order excess entrdy), let us introduce the ex-
pected excess code length

EC(n) := 2H®(n) —H¢(2n)
= Y P(vu)[lenC(v) +lenC(u) - lenC(vu)]. (31)

v,uevyn



Theorem 2 For any weakly minimax universal code C inequality
EC(n) > E(n) (32)

is true for infinitely many n. (See appenfix A for the proof.)
Inequality [32) is valid in particular fo€ = MDL or for any irreducible code.

Now, we shall link the expected excess code lerighP" (n) with the length of MDL
vocabulary. LetL™(v) := lenGMPL (v) be the length of the shortest grammar drff(v) =
lenG}'PL (v) be the length of its vocabulary. Defie!(v) as the maximal length of a string
which appears in stringat least twice.

Theorem 3 We have inequalities

L™(v) <leny, (33)
L™(v),L™(u) < L™(vu) + L= (vu), (34)
0 < L™(v) +L"™(u) — L™(vu) < LI (vu) 4+ L= (vu). (35)

(See appendix]A for the proof.)

Inequality [35) states that the vocabulary length for thertgst grammar cannot be roughly
less than the excess length of the shortest grammar. Infdlgllieuristic reasoning, we shall
argue that the excess length of the shortest grammar medtiply a slowly growing function
cannot be less than the excess length of code MDL. In ordes tone need some pretty strong
symmetrical bound for the length of code MDL in terms of thegth of the shortest grammar.

It is known that functiorB of Theorenill satisfies 18(G) < y(lenG), wherey(n) :=n-
(c+logn) for some constart (Kieffer and Yang, 2000, section 4). The following symmesiti
bound for code MDL seems probable:

Conjecture 4 There is inequality
lenMDL(v) —y(L™(v))| < f2(L™(v)), (36)

wherey(n) := n- f1(n) and functions ;f> 0 satisfy0 < fi(n+1) — fi(n) < ¢;/n for some con-
stants ¢

Now we can give a bound for the excess length of code MDL in $esfrthe excess length
of the shortest grammar.

Theorem 5 If Conjecturd® is true then

lenMDL(v) +lenMDL(u) — len MDL(vu)
L>Y(vu)

< [L™(V) +L"(u) — L™(vu) +dy ] d2+clloglenvu+clw<vu> +ciLl”H(w),  (37)

where d = 3c,/c1 and & = max(f1(1), fa(1)cy/c2). (See appendX]A for the proof.)

Recall thatHMPL (n) /n = 5, yn P(V) - L™(v)/ lenv approaches entropy ratefor n — o by
Theorentll. We may speculate tihat O for the language production. Let us assume a stronger
statement, namely, that

lenv < d3L™(v) (38)
for some constartdz and (almost) every human text On the other hand, notice thiat*(v) <

lenv follows by definition ofL>1(v). By these two inequalities, we hak&*(vu) /L™(vu) < da.
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Combining the latter witH{37) anf{B5) gives
lenMDL(v) 4 lenMDL(u) — len MDL(vu)

< [Lg'(vu) + L7 (vu) + d1 ] [da+ c1loglenvul], (39)
whered, := dy +c¢1(d3 + 1). Averaging [3B) withP(vu) for v,u € V", we obtain
[LE'[2n] +L™1[2n) 4 d1] [da + c1log(2n) ] > EMPE (n), (40)
where
L[N := % P(v)-lenL?(v), L>Y[n]:= % P(v)-lenL>Y(v). (41)
ve ve

By inequality [40) and Theoref 2, we also have
[LG'[2n] + L™[2n] + dy ] [da+ c1l0g(2n)] > E(n) (42)

for infinitely manyn. In particular, if stationary distributio”P obeys Hilberg's law[{[l) then
inequality

L2 [n] 4+ L~%[n] > constn”/logn (43)

holds for infinitely manyn by equation[{19).

5 Hilberg’s law and Guiraud’s law

In this section, we would like to make the final step in demyvi@uiraud’s law from relation
@3). First, let us have a closer look at Guiraud’s and ZifHiss. It is widely-known that if
Zipf's law (@) holds with the samB for all N then Guiraud’s lawf{?2) is satisfied with=1/B
for largeN, cf.Karnai (2002, section 3.2) or Ferrer i Cancho and|Sab®13.

In fact, the number of word typeg and the number of word tokemé can be computed
given the word frequencies,

V=Y 1, N= Y cw) (44)

w:c(w)>0 w:c(w)>0

so any relation betweevi andN is a function of the exact distribution of frequencigsv).
The converse is not true. In general, frequea@y) cannot be computed given only V, and
N since different texts usually have different keywords.ll Stte may seek for hypothetical
derivations of formulal{3) given formul@l(2) and some addhitil assumptions.

One could ask if Guiraud’s law or Zipf’s law do hold with thens@p or B for texts of various
size and origin. The answer is complex. For instance, Ko{@@02, section 2.5) discusses
Guiraud’s law extensively and according to the plot in htscl valuep ~ 0.75 holds perfectly
for samples of sizeN < [1.4- 10°,1.8- 107} drawn from San Jose Mercury News corpus. Such
value ofp would correspond t8 =~ 1.33 if formula [3) with constanB held for all word ranks.
Nevertheless, if we investigate the rank-frequency plotsio large collections of texts, we
encounter a different regularity.

Ferrer i Cancho and Solé (2001) discovered that paranietarformula [3) depends on
word rankr(w). For multi-author corpora there are two regimes whgiie almost constant.
Namely, we have

B— {Bl: 0< r(W> < Rl: (45)

Bz, Ri<r(w),
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whereB; < B; ~ 1. Let us note that for sufficiently short text collectionsose withV < Ry)
only one of two regimes can be observed. For single-authpoca and (w) > Ry, we have an
exponential decay af(w) rather than a power-law.

In another case of some multi-author collection of Engliskts counting 8- 108 word
tokens| Montemurro and Zanette (2002) repoBegd: 1, B, ~ 2.3 andR; ~ 6000. The inves-
tigated collection is only 10 times larger than SIJMN corpuweyed by Kornai. If formula
@) with constanB =~ 2.3 held for all word ranks then we would have Guiraud’s |&aW (Zhw
p ~ 0.43. Anyway, if there are two regimes Bf like in (48), then we could obtain Guiraud’s
law (@) withp =~ 0.75 for allN if also parameteR; depends on the text length Until we have
more experimental data on the dependence betiMesmdR;, we can be only sure that there is
inequality

V > constN%43, (46)

Let V(v) be the number of orthographic word types in texand N(v)—the number of
orthographic word tokens therein. If we assume that the rfezagth of the word tokens in text
v does not change substantially witlhen text lengtiN(v) measured in orthographic words is
proportional to text length lenmeasured in phonemes or letters,

N(v) Olenwv. 47)

In view of sectior[B, we may suppose that the number of ortiqggc word typed/(v)
is proportional to the number of the production rules in thergest grammagMPL (v), cf.
Nevill-Manning (1995, figure 3.12 (c) vs. (a), p. 69). If theeam length of the non-initial
productions does not change substantially agaitis¢n the number of the rules is proportional
to lengthL(v) of the vocabulary of the shortest gramn@\P* (v), cf.INevill-Manning (1996,
figure 3.12 (a) vs. (b), p. 69). Resuming, we would have priiqaelity

V(v) OLg(V). (48)
Assuming relationd{47) anf{48), we can restate Guiraaw#d) as
L2(v) > const (lenv)®4, (49)

which resembles relatiof{R6) reported by Nevill-Manhikgcept for the effects of averaging
and the negligible length>*(v) of the longest substring appearing more than once, indgguali
@9) is implied by inequality[(43) with the very rough estitea ~ 1/2 done by Hilberg. We
could say that Hilberg’s law can be some explanation of Gdilalaw. Let us discuss the
plausibility of such explanation.

Zipf’'s law is often understood as a specific algebraic refeghip between the counts and
ranks of various objects—not necessarily words. In sucleigdization, Zipf's law is observed
also out of the linguistic domain, e.g. in income distribat{Pareto, 1897). We do not know if
one can find a general explanation of Zipf’s law both in lirgjigi and non-linguistic contexts.
Explaining Zipf's law in the purely linguistic context seermomehow easier. One needs “only”
to assign some reasonable relative frequey) to every stringv of phonemes and then to
define how any finite stringshould be cut into words. The existence or nonexistencdatfoa
@) should follow by pure mathematical deduction from thisse assumptions.

That idea inspired Mandelbrat (1953) to formulate somesitas explanation of Zipf’s law.
His assumptions are:

1. Stationary distributio® is an 11D distribution, i.e. it satisfie§{IL6).
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2. SetV of atomic symbols is the set of phonemes and spaces. The vkedg in any text
are defined as the space-to-space strings of phonemes.

Given these assumptions Mandelbrot derived Zipf's law fmace-to-space words and hence
Guiraud’s law can be inferred as well. In fact, Mandelbrat dot discuss Guiraud’s law but,
as we have said, Zipf's law does imply Guiraud’s law autoozly. Mandelbrot's explana-
tion assuming the existence of “intermittent silences” wasted or rediscovered by many
researchers, e.g. by Belevitch (1956), Miller (19%7), Rekl. (1990) and Lil(1992). There is
some historical summary of that literature done byl Li (1998)

Although Mandelbrot’s explanation of Zipf’s and Guiraudtsvs earned some popularity
among natural scientists, we should stress that both o§#tgraptions are false with respect to
the intended application to natural language. First, welevobject to modeling human lan-
guage production by an IID distribution. Second, Manddlbrdefinition of word is biased by
the spelling conventions of the most popular alphabetiptcwhich use blank spaces to sepa-
rate words. No regular “intermittent silences” appear mspoken versions of the correspond-
ing ethnic languages (Jelinek, 1997). That phenomenon abenge for automatic speech
recognition and it motivated some interest in the shortdstissible grammars as a means for
restoring the boundaries between the words (de Marcker)199

In this article, we present another explanation of Guiralai. Our assumptions are:

1. Stationary distributio® exhibits Hilberg’s lawl[(ll) for alh.

2. We may assume thatis a set of phonemes only. The word tokens in any text are define
as the nonterminal tokens of the shortest admissible gramma

We think that the derivation of Guiraud’s law based on Hitpelaw is better linguistically
justified than the classical explanation by Mandelbrot.rélege several reasons for that claim:

1. The new explanation assumes that human narration exisilbdng probabilistic depen-
dence, itis not a 11D distribution. In appendiX B, we rechbit no infinitary distribution
P can be modeled by a stationary hidden Markov chain with aefinitmber of hid-
den states. This fact can have some important implicatiensdmputational linguistics
(Jelinek; 1997).

2. The new explanation does not assume the pre-existengaoés between the words in
the natural language production. Children can learn theecbtokenization of speech
into the words even if they do not know yet what the words are.

3. Space-to-space words for the IID distributions do noehaw definite internal structure.
It is no longer true for the new explanation. The nonternsradlthe shortest grammar
exhibit the internal structure of recursive rule produetioSuch nonterminals have well-
defined parts. Without any change of the model, we can speakny of Guiraud’s
and Zipf’'s laws for the words but we can also discuss laws wiétate words to their
elements. Some example of the latter is Menzerath’s lanchwiiates that the longer the
word is the shorter its constituents are (Menzerath, [ 1928y#&nn, 1980). By means of
the grammar-based codes one can define the structure ofiikebjects and investigate
many quantitative linguistic laws not only for the languggeduction but also for any
other stationary distributions.

4. Stationary distribution is called ergodic (roughly) lietrelative frequency of any fixed
word does not vary significantly across different texts. Bgne theorem, every IID dis-
tribution is ergodicl(Debowski, 2005, chapter 4). Neveltlss, empirical studies do not
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corroborate Mandelbrot's assumption that language pitomlu® is ergodic. The mere
existence of concept “the keywords of the text” reflects #a that different texts use
different vocabularies systematically. Words, once thyear in some text, tend to reap-
pear. Let us stress that some significant variation of thel\frequenciesanbe modelled
by non-ergodic stationary distributions. Many non-ergadationary distributions are in-
finitary (Debowski, 2005, chapters 4 and 5), see also appdid It is an interesting
guestion whether Hilberg’s lavil(1) implies non-ergodidaitfystationary distributiorP.
Some further discussion of Hilberg’s law and non-ergodstrdiutions could give us in-
sight where to seek general quantitative laws in the intevariability of language. Any
such laws would be of great importance to computationaliistgcs as well.

6 Conclusions

In this article, we have discussed some implications of étgfts (1990) hypothesis on the en-
tropy of natural language production. That hypothesisest#tat finite-order excess entropy
E(n) of the n-letter strings is proportional to the square roomnofSo far, the proportionality
has been roughly verified only for< 50. On the other hand, we have argued that Hilberg's
hypothesis, when extrapolatedrimf the text length magnitude, provides a better explanation
of Guiraud’s law than the classical explanation based oexistence of “intermittent silences”
(Mandelbrat| 1953).

The new explanation is based on two points. First, we obstraethe tokenization of
a text into orthographic words and their morphemes matargslly the production rules of the
shortest admissible grammar for the text. Second, we use pantially heuristic, but largely
deductive, mathematical reasoning to argue that the lesfgtte non-initial production rules of
the shortest grammar cannot be less than finite-order eroéspy.

In the future research, the rough match of the linguistyeaibtivated tokenizations and
the tokenizations given by the shortest grammars shouldiveged as one of the fundamental
problems of quantitative linguistics. One should survgyf&j Guiraud’s, and Menzerath’s laws
for the nonterminals of the admissible grammars and theogréphic words simultaneously
across a large range of text sizes and languages. Promities [4T) and[{48) should be
verified as well.

It seems that the existence of a rich formal structure in #tenal language production is
reflected by its high total excess entrdpyather than by simply positive entropy géiri1) — h.
We think that the further discussion of Hilberg’s hypotlsesin improve the quality of statistical
language models both in quantitative and computationglistics, see appendix B and our
doctoral dissertation (Debowski, 2005).

Since the shortest admissible grammars reproduce alsatér@al structure of words, the
behavior of excess entropy might be linked not only with Gud’'s and Zipf’s laws but also
with Menzerath’s law. The shortest grammars can be useceatetmitionof words and their
constituents in any symbolic string (Nevill-Manning, 199&dopting such a definition, em-
pirical researchers can survey the form of Guiraud’s, Zipdnd Menzerath’s laws also in the
non-linguistic symbolic data (such as DNA). Last but nosteenathematicians can prove some
rigorous theorems.
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A Proofs

Proof of Theorem[2: For any functionf we have identity

m-1 f(om
kZO [26(2n) - £(21n) | 'zk—l+1: f(n) — (2mnn> n (50)

for each finitem. Hence, if [3D) is true then we obtain

H(n)—hn=Y [2H(2kn)—H(2k+1 } z 2k+1 , (51)
=0
00 0o EC 2k

HE(m) —hn = 5 [2HC(@)—HE(2* ) } -5 e (52)

Because of inequality29), we hakkn) —hn < H®(n) —hnso

2 E(2*n) 2 EC(2*n
2 2(k+1>< 2 2§+1>~ (53)

If we putn = 2PM with any p and some fixed/ then [53B) yields

o =C/ok _ k
5 EC(2 M2)k+1E(2 M) o (54)
=

Assume thaE®(2M) — E(2M) > 0 holds only for finitely mank. Then we would have
EC(2M) — E(2M) < 0 for allk > p and somep. Hence, we would have

EC(2M) —E(2'M)

ST <o (55)

~,
1M s

Since [G5) stays in contradiction with{54), our assumptfat E€(2M) — E(2M) > 0 only
for finitely manyk was false. We must ha& (2M) — E(2XM) > 0 for infinitely manyk, and
this is exactly inequality{32) which we were to prove. O

Proof of Theorem[3: In order to provel(33), notice th& = {bg — v} is a grammar fow. Its
length satisfies len= lenG < lenGMPL (v) by (22) and[[ZB).

Now, let us provel[(34) and(B5). Since vocabul@yP! (vu) cannot beat vocabularies
GYPL (v) and GYPt (u) in the efficient representation of any stringand u respectively, we
observe inequalities

lenGMP (v) < leng, + lenGYPL (vu), (56)
lenGMPL (u) < lengr + lenGM¥P* (vu), (57)

whereGHPL (vu) U {bg +— g} andGMPL (vu) U {bg > gr} are some grammars ferandu re-
spectively. Analogically,

lenGMPL (vu) < 1enGMP* (v) + lenGMPt (u) (58)

sinceGMP* (v) U GYIPE (u) U {bg — giyPh (v)giyP- (u) } is @ grammar fowu.
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Assume thaty. andgr are obtained by splitting the initial productigl'®" (vu) into two
parts and recursively expanding the nonterminal at thedsafchecessary. That is, we have

eitherg gr = gyP- (VU) Or g = YL XL, Or = XrYR, andgM'Pt (vu) =y biyr, where nonterminal

bi expands recursively into string xg € V. GrammarGMPL (vu) is irreducible so we must
have leny xgr < L>1(vu), whereL>(vu) is the maximal length of a string which appears in
stringvu at least twice. Thus,

|leng, +lengr — lengy®- (vu) | < L™ (vu). (59)
By (B9), adding[(86) and_(57) yields

lenGMPL (v) +1enGMPL (u) < lenglP* (vu) + 2lenGYPt (vu) + L= (vu)
= lenGMPt (vu) + lenGMP (vu) + L= (vu). (60)

In fact, we can rewrite{80) anb{58) &s¥35). Byl(59), we abbeeterg, ,lengg < lenglyPt (vu) +
L>1(vu). Inserting these two inequalities infa (56) ahdl(57) retipely yields [33). O

Proof of Theorem[8: According to Conjecturgl4, we have

lenMDL(v) +lenMDL(u) — lenMDL (vu)
< Y(L(V)) + Y(L™(W) = YL (VW) + F2(L(v)) + F2(L™ () + f2(L™(vu)) (61)

By 0 < fi(n+1) — fi(n) < ci/nand [34), there is

fi(n) < fi(1) + % Gi/k < fi(1) +cilogn, (62)
K=2
fi(L™(v)) < fi(L™(vu)) + L™ (vu) /L™ (vu). (63)
Hence by[(3B),
(L™ (V) + YL () — y(L"(vu))
m m m m m m L>1(VU>
< [L7(v) +L7(u) = L7 (vu) ] F1 (L7 (vu)) 4 c1 [LT(V) 4 L™(u) ] (m(vu)

= [L™(V) + L™(u) — L™(vu)] { f (L™(vu)) +¢1 I;j((\)’u‘;) } +cilt (vu)

< [L™(V) +L™(u) — L™(vu) ] { fi(lenvu) +c1 l}_>ml((\>/$) } +c1 L7 (vu). (64)

On the other hand,
fo(L™(V)) 4 f2(L™(u)) + f2(L™(vu)) < 3f2(LM(vu)) 4 2coL> 1 (vu) /L™(vu)

<3 { fo(lenvu) + 02%} . (65)

Inserting [6#%),[(6b), and(62) intb(61) we obtdinl(37). O
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B Some properties of infinitary distributions

Infinitary distributions seem to be a new interesting clasthe stochastic models for human
narration. The mathematics of excess entropy is just beswgldped, cf. Debowski (2005) for
an overview. Our program is to bring together some advaresdts of mathematics (measure-
theoretic probability theory, coding theory) and some djtiaive linguistic intuitions. We can
give a linguistic interpretation to some mathematical tbats and a formal language to express
some vague hypotheses about the obscure nature of pralialbdnguage models.

We would like to mention four facts about infinitary distrttans which can be important
for quantitative and computational linguistics in the vief\Hilberg’s hypothesis. These are:

1. There are infinitary distributions which are not detetristin stationary distributions. That
is, total excess entrody = co does not imply entropy rate= 0.

2. All stationary distributions which consist in a randonscéption of some infinite random
object must be infinitary and nonergodic (Debowski, 200@&pter 5).

Hence, we may suppose tHat= « holds for the stationary distribution of the language
production because almost every human text refers systaitato a different and po-
tentially infinite fictitious world.

3. For some infinitary distributions, vali¥v) can be computed for every strindyy some
finite procedure, cf. Berthé (1994) and Gramss (1994).

4. No infinitary distribution can be represented by a fintegeshidden Markov model (HMM),
cf.|Crutchfield and Feldman (2003), Upper (1997), Cover amainfas/(1991, section 2.8,
data processing inequality).

In spite of their inadequacy as the models of infinitary distions, finite-state HMMs are

the standard heuristic models of natural language engimgedt happens so only for the
necessity of the effective search for the most probablednddates. Some well-known
applications of HMMs are automatic speech recognizersels|1997) and trigram part-

of-speech taggers (Manning and Schiitze, 1999; DebowdR#l9). It was observed that
the error rate of trigram taggers decreases as a negativer pdthe size of the training

data. When we increase the training data size ten timesrtbierate diminishes only by

half (Megyesi, 2001). In fact, such power-law decay of th®rerate can be also some
consequence of Hilberg’s law (Bialek ef al., 2001).

The lack of space disallows us to exactly explain the tertogyand the reasons for the math-
ematical facts mentioned above. We will try to popularizeneddeas of our thesis among the
linguistic audience in the next articles.
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