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Abstract
Phonological distance can be measured computationally using formally specified algorithms. This
work investigates two such measures, one developed by Nerbonne and Heeringa (1997) based on
Levenshtein distance (Levenshtein, 1965) and the other an adaptation of Dunning’s (1994) language
classifier that uses maximum likelihood distance. These two measures are compared against naïve
transcriptions of the speech of pediatric cochlear implant users. The new measure, maximum
likelihood distance, correlates highly with Levenshtein distance and naïve transcriptions; results from
this corpus are easier to obtain since cochlear implant speech has a lower intelligibility than the
usually high intelligibility of the speech of a different dialect.

Phonological Distance Measures
Measuring linguistic distance has proceeded in a number of ways over the last two centuries.
Early methods were only applicable to a specific area; in dialectology, for example, Chambers
and Trudgill (1998) give the example of drawing dialect boundaries using cognate sets. By the
mid-twentieth century, computers were influential enough that they were used to implement
some numerical measures, as in the groundbreaking work of Séguy (1973), which began in the
1950’s.

This present work continues the recent line of investigation using Levenshtein distance that
was begun by Kessler (1995) and is best exemplified by Nerbonne and Heeringa (1997). It also
looks to statistical, probabilistic methods that require even less linguistic knowledge and allow
even more general applicability. For example, the Levenshtein distance measure used by
Nerbonne and Heeringa (1997) allows comparison of any two identical word lists. The
probabilistic method developed here is based on a maximum likelihood estimator language
classifier explained by Dunning (1994). It allows an estimator trained on an arbitrary input to
classify any other corpus, and it can do this with less linguistic knowledge built in to the
algorithm.

Both of these measures produce a single scalar which we call “phonological distance.” This
phonological distance is intended to capture the linguistic knowledge brought to bear by
humans when they assess how like or unlike others’ speech is to their own. We measure
phonological distance between the speech of pediatric cochlear implant users and adult
American English speakers who have normal hearing. This measurement results in distances
that are easier to measure against a human baseline than previous work because of the relatively
low intelligibility between cochlear implant users and naïve listeners. Previous work, such as
Gooskens and Heeringa (2004) and Heeringa (2004), has had to work around a possible ceiling
effect caused by the high mutual intelligibility of national dialects.
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In addition, we hope to provide another way to measure progress in cochlear implant user
development. These two algorithms each produce a single scalar, similar to existing measures
such as the Goldman-Fristoe Test of Articulation (Goldman & Fristoe, 1986). However, these
measures produce their results by a fixed algorithm—without any biases or intuitions provided
by human calculation except those encoded into the algorithm where they can be examined.
Yet the results still correlate well with human perception of intelligibility. Of course, for these
algorithms to be usable in the same way as the Goldman-Fristoe Test of Articulation, they
would have to be extensively normed over multiple groups.

Dialectology measures the variation of language over an area or space of time (Chambers &
Trudgill, 1998). Its quantitative application is known as dialectometry, which began in earnest
with the ground-breaking work of Séguy (1973) in determining dialect distances in the French
region of Gascony. Indeed, the idea of calling this measure “phonological distance” comes
from the different areas of language that Séguy combined to form his overall distance.

Since then, dialectometry has continued to evolve towards methods that minimize the linguistic
knowledge required as input. Séguy’s own work was completed after the widespread
availability of computers; although the specific phonological characteristics were hand-picked,
the method for combining differences to determine distance was mathematically specified.
More recently, Nerbonne and Heeringa (1997) used Levenshtein distance, for which the
linguistic knowledge necessary is limited to specification of phonological data in terms of
phones made of feature bundles, and the assurance that the two different corpora represent the
same underlying forms.

Levenshtein distance is used in many fields wherever a measure of similarity between
sequences is needed. In bioinformatics, for example, Levenshtein distance is useful for finding
similarity between sequences of DNA (Sankoff & Kruskal, 1983). Its wide applicability lies
in the fact that it only needs specification of costs between individual items of the sequence.
The algorithm specifies how to combine these costs to find the lowest total distance.

Heeringa (2004) gives two specifications for these costs. The earlier proposal, implemented in
this paper, uses phonological specification of the costs in terms of number of features changed.
The more recent proposal uses phonetic correlates (that is, F1, F2 and F3 measured in Barks)
to determine the distance between two segments.

Dunning’s (1994) work on probabilistic language classification provides a starting point for a
probabilistic distance measure. Dunning uses a maximum likelihood classifier trained on an
n-gram Markov model of language. This produces an estimated likelihood that the training
corpus generated the test corpus. He then classifies the language of test corpora by the language
of the closest training corpus. This can be viewed as a distance measure by retaining the
numerical result and reversing the question asked. Instead of training multiple models, only
train one designated as the target language. The likelihood of each test corpus can now be seen
as a distance. The reason to prefer such opaque measures is that they obscure, and thus minimize
the need for, the knowledge required to obtain the result. This is important to allow the
algorithm to be implemented on a computer. We tested both algorithms and compared the
results to human judgments of intelligibility.

Methods
Materials

The data analyzed come from three sources: the speech productions of cochlear implant users,
a corpus of standard American adult pronunciation, and transcription scores by naïve listeners
of the cochlear implant users’ speech productions. The primary data are the productions
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collected from pediatric cochlear implant users: they consist of 107 words collected from each
child in a picture-naming task designed to provide a relatively complete picture of a developing
phonological system and as such to maximize phonological variety (Chin, 2003). The list
consists of English monosyllabic words and some disyllables that were created by appending
the diminutive suffix /i/ to monosyllables. All word lists were audio-recorded in preparation
for transcription.

Two researchers (a clinical linguist and a speech-language pathologist) transcribed children’s
productions using the International Phonetic Alphabet (International Phonetic Association
(IPA), 1999), including the extensions for transcribing disordered speech included as Appendix
3 to IPA (1999). All productions were transcribed independently by the two transcribers and
then in consensus. Disagreements were resolved by consensus, with the two transcribers
auditing the audio recordings together. All analyses used the consensus transcription.

The comparison corpus is based on the same 107-word list that was obtained from the implant
users. It is a baseline meant to represent adult American English speech, as defined by the
dictionary pronunciation. In figures, it is referred to as ‘base’ since that is its primary purpose.

All the transcriptions, both of the cochlear implant users and of the baseline, were digitized.
The IPA transcription was encoded using Unicode IPA symbols, and a featural representation
was created by stripping diacritics and storing the feature structure in a variant of XML. Since
phonological features are used in calculating Levenshtein distance but not in maximum
likelihood estimation, diacritics were stripped from the Unicode representations as well to
ensure a fair comparison.

Binary features with no weighting were used, with one privative feature of place used for
consonants. The features used in consonants and vowels are given below. Features with a
constant value for a particular category are labeled as + or −. In particular, all vowels have the
features [+approximant +sonorant] in order to provide continuity with sonorant consonants in
accordance with the sonority sequencing principle. Using these features, it is less costly to
substitute [r] for [i] than it is to substitute [t] for [i] since [r] and [i] have more common feature
values.

Features used in consonants

1. approximant

2. consonantal (+)

3. sonorant

4. place (labial, coronal, dorsal)

5. voice

6. strident (coronals only)

Features used in vowels

1. approximant (+)

2. consonantal (−)

3. sonorant (+)

4. back

5. high

6. Advanced Tongue Root (ATR)
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7. low

8. round

Finally, transcriptions for each child were collected from naïve listeners. The original
recordings were spliced together in a 16-bit 44.1 KHz stereo .wav file with all information in
the left channel. In this file, each word was played twice following a numeric prompt. The
order was randomized, but used the same random order for all recordings. The listener judges
for the transcription were required to have normal hearing, no previous experience with deaf
speech, and the ability to write comfortably at the pace of stimulus playback. The judges were
recruited from the students at Indiana University. The stimuli were presented to groups of three
judges in a sound field using a laptop equipped with external PC speakers. The external
speakers were positioned approximately .75 meter distant from the ears of the judges. The
judges were told that they would hear English words and their diminutives, but were told
nothing about order or whether any words would occur more than once. The judges wrote their
transcriptions on a paper form designed for the task. The answers were then tallied for
correctness in the same manner as Séguy (1973): mismatches between the transcription and
the original words were totaled. The overall score for each child was the mean of three
transcription scores from each child’s sample, divided by the number of words (107). This
produced a number ranging from 0 to 1.

Measures
The materials just described were analyzed according to maximum likelihood distance and
Levenshtein distance. The essential difference between the two methods is that maximum
likelihood estimation is a statistical measure that combines information from the corpus in a
mathematically complex way, but does not provide a complex definition of individual distance.
It simply counts the number of times a particular bigram is seen. On the other hand, Levenshtein
distance uses a phonologically complex measure of distance between individual phones but
has a relatively simple way of combining the distance. This allows its results to be understood
easily.

Maximum Likelihood distance
Dunning (1994) gives a method for language classification that uses a simple Markov-based
bigram language model. Essentially, it addresses the question “How likely was the training
corpus to have generated the test corpus?”. The method starts with Bayes’ Law in equation 1
and makes the maximum likelihood assumption to obtain the naïve Bayes classifier in equation
2. The naïve Bayes classifier assumes a uniform prior, and assumes that the test data have a
probability of one. With the bigram Markov model, the maximum likelihood estimation (MLE)
is easily computed as in equation 3.

(1)

(2)

(3)
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Dunning then chooses the training language that maximizes the likelihood for the test word
list. This modification alters only which side of the comparison is being varied: Dunning has
only one word list, which is then compared to many possible languages. This method has only
one training language, the target, but estimates the distance from multiple test word lists.

For example, assume the following artificial training language “ababcaaaaaa”. The bigrams of
this language are “ab”, “ba”, “ab”, “bc”, … Then the frequency of each bigram can be
calculated:

If the estimator is asked to classify the test word “abc”, it would be broken into the bigrams
“ab” and “bc”, giving the likelihood P(“ab”) · P(“bc”) = 0.2 · 0.1 = 0.02. In comparison, the
string “aab” would have the likelihood P(“aa”) · P(“ab”‘) = 0.5 · 0.2 = 0.1. “aab” is therefore
closer to the language that generated the training corpus, despite the fact that “abc” actually
occurs in the training.

Unfortunately, this estimator needs refinement in several areas. The worst problem is that it
gives zero probability for any bigram that does not occur in the training, such as “ac” in the
example above. This single factor, P(“ac”)=0, causes the estimated probability of the entire
test string to fall to zero—in other words, saying that the distance between the two languages
is infinite. This is a real problem when the test corpora consist of phonetically disordered
speech, as in our experiments.

The solution is to smooth the input, preventing the appearance of zero probabilities. Smoothing
allocates some of the probability space to unseen bigrams. The smoothing method used here
is the Good-Turing method, first presented by Good (1953). Good-Turing smoothing estimates
the counts of bigrams seen N times from the counts of bigrams seen N+1 times. The precise
equation used to determine the expected value for a bigram seen a certain number of times is
r* = (r+1)(nr+1/nr.

For the most interesting case, previously unseen bigrams, r=0 because that is the number of
times these bigrams have appeared. Then r+1=1 and n1 is the number of different bigrams that
have occurred only once. Finally, n0 is the number of bigrams that have never occurred, which
can be found by subtracting all bigrams seen any number of times from the total number of
possible bigrams. Of course, Good-Turing smoothing is applied to higher numbers as well: for
example, the number of bigrams seen six times is estimated from the number of bigrams seen
seven times by using the appropriate values of r, n6, and n7.

Two minor problems remain. First, longer words give lower likelihoods. To ensure that
likelihoods of different test corpora are comparable, we scale the results of each test corpus by
the length of the corpus. Second, it is more convenient for both human and computer to use
some other measure than raw likelihoods. Since likelihoods are just probabilities, 1.0 means
“identical to training language” and 0.0 means “infinite distance from training language”. To
improve intuitive understanding of the results, we would like a distance measure that is greater
for weaker matches between training and test. In addition, storing very small probabilities can
be problematic when using hardware-native floating point numbers. Taking the negative
logarithm of the likelihoods solves both of these problems: the logarithm converts a 0–1 range
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to a 0–−∞ range, which, when negated, produces a number that increases in a way that
corresponds nicely with intuitions of distance.

Levenshtein distance
Levenshtein distance was developed by Levenshtein (1965) in order to compare the difference
between two sequences. Since it is applicable to any sequence of symbols, it has been used in
many fields (Sankoff & Kruskal, 1983). The input to the Levenshtein distance algorithms is a
pair of sequences and costs for three operations: insertion, deletion, and substitution. The
algorithm then calculates the number of each operation necessary to convert the first sequence
to the second. Summing the cost of all operations gives the total distance.

For linguistic distance, Kessler (1995) first used Levenshtein distance on strings of atomic
segments. Insertion and deletion costs are each one for atomic characters, so the algorithm is
quite transparent: the distance is simply the number of edit operations. For example, the
distance between sick and tick is two—one insertion and one deletion. The distance between
dog and dog is zero, and the distance between dog and cat is six because all characters must
change, so there are three insertions and three deletions. However, there are less obvious
comparisons. What is the distance between realty and reality? What is the distance between
nonrelated and words? (The answers are 1 and 9, respectively). An algorithm to find this
distance must have a systematic way to produce the minimum number of necessary changes.

To do this, the Levenshtein algorithm finds and incrementally combines the distances of
individual segments in two words. This means that it must check every possible pair of
segments, measure the individual distance, and decide which edit operation results in the
smallest overall distance at that point. The most efficient method is to store the results in a
table using a dynamic programming algorithm. Given a properly structured table, the smallest
distance between any sub-sequence is simply the cell at the intersection of the two segments.
The minimum distance between the two words is then found at the bottom-right corner of the
table.

To state the algorithm more precisely, for any pair of characters si and tj taken from the source
word s and target word t, levenshtein(s,t,i,j) is minimum(ins(si), del(tj), sub(si,tj)). The total
distance is levenshtein(s,t,|s|,|t|).

The functions ins, del, and sub can return arbitrary numbers, but when characters are treated
as atomic, the usual definition is

In this model, insertion and deletion are the primitive operations, with a cost of one each.
Substitution is one insertion and one deletion, giving it a cost of two. However, substitution of
a character for itself changes nothing and thus has zero cost. Given these functions, the
Levenshtein algorithm will return the minimum number of insertions and deletions necessary
for transforming the source to the target.

For example, finding the Levenshtein distance from “ART” to “CAT” creates the table in figure
1. In this table, insertion corresponds to a downward move, deletion to a rightward move, and
substitution a diagonal move. The total Levenshtein distance is found at the bottom-right hand
corner, but the distances to all intermediate forms are stored in the table as well. The
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intermediate form “CATART”, for example, is obtained by inserting three times without any
deletions or substitutions. Its cost of 3 is found at the bottom of the first column.

The optimal path is shown in bold. Notice that it follows the diagonal for free substitutions and
propagates either down or right in their absence. The final distance is two, indicating that two
primitive operators are required; that is, two insertions or deletions. In fact, the table gives
them: insert ‘C’ to obtain “CART”, moving down in the table; then delete ‘R’ to obtain “CAT”,
moving left in the table. ‘A’ and ‘T’ are common to both words and both produce a diagonal
move.

The most direct way to refine Levenshtein distance to take advantage of linguistic knowledge
is by changing the definitions of ins, del, and sub to take into account phonetic and phonological
properties of segments. When segments are treated as feature bundles instead of merely being
atomic, Nerbonne and Heeringa (1997) propose that the substitution distance between two
segments simply be the number of features that are different. Two identical segments will
therefore have a substitution distance of zero; segments phonetically similar will have a small
distance. For example, [k] and [g] would have a distance of one in this system.

Although it increases precision, feature-based substitution causes a number of complications.
The first is that substitution distance becomes complicated when not all features are specified
for every segment. This is the case, for example, between the vowels and consonants. The
minimum difference must be at least the number of unshared features, such as Advanced
Tongue Root for vowels or obstruent for consonants. In other words, the minimum segment
distance will always be at least the sum of the non-shared features. The distance of the shared
features can then be added on to this baseline. For example, if a consonant with seven features
shares only two features with a five-feature vowel, the minimum distance will be eight: (7 −
2) + (5 − 2) = 5 + 3 = 8. As a result, the range of distances possible will be a minimum of 8 if
all shared features match and a maximum of 10 if none do.

The second complication is obtaining definitions for ins and del once sub is defined. It would
be best to retain the original proportions—substitution should cost twice as much as insertion
and deletion. To deal with substitution’s variable cost, then, insertion and deletion should be
averages. To find the average substitution cost, one can take the average cost of substituting
every character for every other character. Then ins and del return half of this average. With
these three functions defined, the table-based algorithm given above can combine feature
distances to find the minimum word distance.

Analysis
The maximum likelihood and Levenshtein distances were both applied to the corpora described
above. Then they were scaled so as to be comparable to each other and the naïve human
transcriptions used as a baseline. Finally, the resulting scores were examined for statistical
correlation. The application of the maximum likelihood measure to the children’s data
proceeded by training the estimator on the standard dictionary speech. As mentioned above,
this process is fairly simple: the algorithm counts the frequency of individual segment bigrams
and smooths them appropriately. Next, the maximum likelihood estimator was given the
bigrams of each child’s speech and asked to estimate the likelihood. The total distance was
obtained and then scaled for length relative to the other corpus from the children.

For Levenshtein distance, there is no training phase, only a standard to which each language
is compared. In this case, the standard English word list was the standard and each child’s word
list was the test language. This produced 107 individual word scores that were summed to find
the total distance.
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To correlate the scores obtained for both of these measures with the naïve transcriptions, all
scores were normalized to a scale ranging from 0 to 1. The naïve transcription scores need only
be divided by 107, the number of words in the list. The other two methods need a definition
for minimum and maximum scores: maximum likelihood distance uses the distance of the
training corpus to itself as the minimum. The maximum distance is measured with respect to
a corpus whose length is the average length of the implant users’ corpora. Each segment in this
corpus is a never-seen bigram, with no repetitions.

For Levenshtein distance, the minimum distance is 0, and the maximum distance is measured
with respect to a corpus whose length is the average length of the implant users’ corpora. In
addition, each word is the average length and each segment has the average number of features.
However, the features are defined to not match with anything, making the cheapest operation
always substitution of every feature.

With these maxima and minima defined, all scores can be scaled from 0 to 1. Now it is simple
to find the correlation of all three methods using regression analysis. The two mechanical
methods are compared to the naïve transcription, and both are compared to each other to find
out how well the distances agree.

Results
The results are quite encouraging, both in the comparison to the human baseline, and between
the two algorithms. In particular, these experiments lend real weight to the claim that
Levenshtein distance accurately models human perceptions. This suggests that Levenshtein
distance can profitably be used where appropriate to measure phonological development of
implant users.

The raw numeric scores for the naïve human transcriptions are given in table 2. The numbers
scaled to a range of 0 to 1 are given in table 3. These results are used as a baseline for comparison
with the two computational methods. The corpus codes uniquely identify some cochlear
implant user and provide a very rough indication of how long the cochlear implant has been
in use. ‘base’ indicates the baseline, the dictionary pronunciation tested using itself as training.

The raw numeric results for the maximum likelihood estimator are given in table 4 when trained
on the corpus ‘base’, the “dictionary pronunciation”. With the base given and a maximum
distance calculated as 5.61, the scaled numeric results are given in table 5.

Similarly, the raw numeric scores for Levenshtein distance are given in table 6. Here, the
minimum is zero and the maximum is calculated as 680.44. Following in table 7 are the scaled
scores.

Finally, regression analysis indicates a correlation of r=0.925, p<0.01 between Levenshtein
distance and naïve human transcriptions. It also found a correlation of r=0.810, p<0.05 between
maximum likelihood distance and human judgments. In addition, there was a correlation
between the two algorithms of r=0.965, p<0.001.

Discussion and Conclusion
Maximum likelihood matches some of the human judgments well, but misses others widely.
In particular, the corpora in the middle of the space do worse than those on the end of the scale,
indicating (1) that it is only classifying correctly the items on the ends of the scale and (2) that
relying on this method to classify all samples will provide too much variation in the middle to
be usable.
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On the other hand, Levenshtein distance compares favorably with human judgments for nearly
every data point. This shows that Levenshtein distance matches naïve human judgments, not
just those of experts in dialectology. This is an advancement of Nerbonne and Heeringa’s
(1997) results, which compared Levenshtein distance only to judgments of expert
dialectologists, as well as Gooskens and Heeringa (2004), who compare Levenshtein distance
to a survey of perceptibility judgments.

The high statistical correlation between the algorithms and human transcriptions suggest that
both algorithms are good at approximating human judgments. Both correlations are at least as
great as those found by Gooskens and Heeringa (2004) for correlation of Levenshtein distance
to Norwegian dialect judgments.

Conclusion
The two methods investigated by this research provide a single number that measures
intelligibility. This “phonological distance” number correlates well with naïve human
judgments of intelligibility. Levenshtein distance, especially, is well enough correlated to be
usable in place of an intelligibility measurement.

Since both methods are algorithmic and implementable on a computer, they produce their
results automatically once they are given transcriptions as input. Although their respective
models of distance are impoverished compared to actual human representations, analysis of
their performance and judgments can provide some insight into aspects of human processing.

It is interesting that the results of the two methods are so highly correlated. They seem to be
capturing similar aspects of distance, despite their differences in its definition. It could be that
frequency alone correlates quite well with human judgments, implying that a large component
of intelligibility can be traced to simple knowledge of probability. On the other hand, since the
feature structure used in Levenshtein distance further improves performance, one might also
conclude that phonology models something useful about intelligibility.

On a practical note, adapting the statistical method of maximum likelihood estimation gives
an algorithm that has the usual strengths of statistical algorithms. It requires few decisions
about linguistic matters and can be trained on a variety of corpora, not just parallel
transcriptions of the same text. Finding that its performance is similar to Levenshtein distance
is encouraging. However, the present scarcity of phonetically transcribed corpora makes its
flexibility less useful.

Furthermore, Levenshtein distance is surprisingly easy to alter due to its flexible design:
feature-based knowledge integrates easily into the basic algorithm. It is not so obvious how
the probabilistic algorithm could be extended to model phonological features.

This work extends previous work in two ways: first, comparison to human judgments extends
the work of Nerbonne and Heeringa by showing that Levenshtein distance reproduces
intelligibility judgments as measured by naïve listener transcription. Previous work used as
standards judgments of expert dialectologists (Nerbonne & Heeringa, 1997) and self-reported
judgments of dialect similarity (Gooskens & Heeringa, 2004). In particular, the Levenshtein
distance of cochlear implant users’ speech correlates even more highly with human judgments
than did the previous work on dialects. This is likely a consequence of a better measuring
method, naïve listener transcription, that was unavailable to Gooskens and Heeringa because
the high mutual intelligibility of Norwegian dialects would cause a ceiling effect.

Second, this work compares Levenshtein distance with a novel application for maximum
likelihood estimation that is adapted from Dunning’s (1994) language classification. This
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method shows that the same results can be obtained using even less linguistic knowledge, and
can, with appropriate adaptation, be used to test refinements of dialect distance by
implementing changes in both algorithms.

Future Work
Later refinements by Nerbonne and Heeringa (2001) showed that weighting features by
information gain can improve the results of Levenshtein distance. It might be advantageous to
investigate feature weighting or non-binary features in order to increase phonetic accuracy.
Gooskens and Heeringa (2004) and Heeringa (2004) use phonetic correlates to determine
Levenshtein edit costs. Unfortunately, this throws out phonological abstraction, which a real
featural system retains.

It would be interesting to compare a version of Levenshtein distance that has no knowledge of
feature structure with the maximum likelihood distance, or to find a way to make the maximum
likelihood estimator aware of feature structure.

Kondrak’s (2002) algorithm differs from Nerbonne’s in two respects for distance: it
incorporates the notion of phonetic coalescence and break-up, and it uses a non-binary feature
system. Kondrak does not compare his algorithm to Nerbonne’s because the applications are
different; it would be interesting to see if these alterations would improve the performance of
the Levenshtein distance.
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Figure 1.
The distance table for “ART” to “CAT”
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Table 2

Baseline of naïve human transcriptions

Corpus Distance

sgl20 32.67

sif20 41

siz20 45.67

sgj20 27

siw20 54.33

see26 66.33

sgb20 82
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Table 3

Baseline of naïve human transcriptions, scaled

Corpus Distance

sgl20 .3053

sif20 .3852

siz20 .4268

sgj20 .2523

siw20 .5078

see26 .6199

sgb20 .7664
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Table 4

Maximum likelihood estimator trained on Base

Corpus Distance

base 2.10

sgl20 2.34

sif20 2.31

siz20 2.36

sgj20 2.40

siw20 2.36

see26 2.53

sgb20 2.57
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Table 5

Maximum likelihood estimator trained on Base, scaled

Corpus Distance

sgl20 .1623

sif20 .1402

siz20 .1771

sgj20 .2073

siw20 .1785

see26 .2935

sgb20 .3252
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Table 6

Feature-based Levenshtein distance

Corpus Distance

base 0

sgl20 250.2

sif20 258.9

siz20 317.0

sgj20 318.9

siw20 380.0

see26 545.6

sgb20 630.0
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Table 7

Feature-based Levenshtein distance, scaled

Corpus Distance

sgl20 .3480

sif20 .3600

siz20 .4407

sgj20 .4447

siw20 .5284

see26 .7587

sgb20 .8761
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