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Abstract

The sound inventories of the world’s languages self-organize themselves giv-
ing rise to similar cross-linguistic patterns. In this workwe attempt to capture this
phenomenon of self-organization, which shapes the structure of the consonant in-
ventories, through a complex network approach. For this purpose we define the
occurrence and co-occurrence networks of consonants and systematically study
some of their important topological properties. A crucial observation is that the
occurrence as well as the co-occurrence of consonants across languages follow a
power law distribution. This property is arguably a consequence of the principle
of preferential attachment. In order to support this argument we propose a syn-
thesis model which reproduces the degree distribution for the networks to a close
approximation. We further observe that the co-occurrence network of consonants
show a high degree of clustering and subsequently refine our synthesis model in
order to incorporate this property. Finally, we discuss howpreferential attachment
manifests itself through the evolutionary nature of language.

1 Introduction

Sound inventories of human languages show a considerable extent of symmetry. This
symmetry is primarily a reflection of the self-organizing behavior that goes on in shap-
ing the structure of the inventories (Oudeyer, 2006). It hasbeen postulated previously
that such a self-organizing behavior can be explained through the principles of func-
tional phonology, namely,maximal perceptual contrast(Lindblom and Maddieson,
1988),ease of articulation(de Boer, 2000; Lindblom and Maddieson, 1988), andease
of learnability(de Boer, 2000). These explanations are an outcome of themacroscopic
level (Arhemet al, 2004) of analysis, and are quite commonly used by traditional lin-
guists (Boersma, 1998; Clements, 1993; Flemming, 2002; Lindblom and Maddieson,
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1988; Trubetzkoy, 1969). Of late, it has been shown that evenin the microscopic
level (Arhemet al, 2004), the emergent behavior of the vowel inventories in particular,
can be satisfactorily explained through multi-agent simulation models (de Boer, 2000).
However, instances of such modeling either in the micro or inthe mesoscopiclev-
els (Arhemet al, 2004) to demonstrate the organizational principles of theconsonant
inventories, are absent in literature.

In this work we present a mesoscopic model, grounded on the theories ofcomplex
networks(for a review see (Albert and Barabási, 2002; Newman, 2003)), in order to
capture the self-organizing principles of the consonant inventories. We call our model
mesoscopic since it does not make use of the functional properties of the macro level
for explaining the structure of the consonant inventories;nor does it incorporate micro-
scopic interactions between the speakers of a language (usually modeled through lin-
guistic agents (de Boer, 2000)), in order to reproduce this structure. We rather base our
model on slightly coarse grained components like languagesand consonants, and study
the interactions between and within them respectively. In order to capture these inter-
actions we define two networks namely,PlaNet or thePhonemeLanguageNetwork
andPhoNetor thePhoneme PhonemeNetwork. PlaNet is abipartite network which
has two sets of nodes, one labeled by the languages while the other by the conso-
nants. Edges run between the nodes of these two sets depending on whether or not a
particular consonant occurs in a particular language. On the other hand, PhoNet is the
one-mode projection1 of PlaNet onto the consonant nodes. Hence PhoNet is a weighted
unipartitenetwork of consonants where an edge between two nodes signifies their co-
occurrence likelihood over the consonant inventories. Theconstruction of PlaNet, and
subsequently PhoNet, are motivated by similar modeling of various complex phenom-
ena observed in nature and society, such as,

• Movie-actor network, where movies and actors constitute the two partitions and
an edge between them signifies that a particular actor acted in a particular movie
(Ramascoet al, 2004). In the corresponding one-mode projection onto the actor
nodes, any two actors are connected as many times as they haveco-acted in a
movie.

• Article-author network, where the edges denote which person has authored which
articles (Newman, 2001). In this case the one-mode projection onto the author
nodes comprises of a pair of authors connected as many times as they have co-
authored an article.

• Metabolic network of organisms, where the corresponding partitions are chemi-
cal compounds and metabolic reactions. Edges run between partitions depending
on whether a particular compound is a substrate or result of areaction (Jeonget
al, 2000). In this case the one-mode projection onto the chemical compounds
comprises a pair of compounds connected by as many edges as they have co-
participated in a metabolic reaction.

1From a bipartite network, one can construct its unipartite counterpart, the so-called one-mode projection
onto actors, as a network consisting solely of the social actors as nodes, two of which are connected by
an edge for each social tie they both participate in. For example, two consonant nodes in the one-mode
projection are connected as many times as they have co-occurred across the language inventories.
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Modeling of the complex systems referred above as networks has proved to be a com-
prehensive and emerging way of capturing the underlying generating mechanisms of
such systems (Albert and Barabási, 2002; Newman, 2003). Inthis direction there have
been some attempts as well to model the intricacies of human languages through com-
plex networks. Word networks based on synonymy (Yooket al, 2001), co-occurrence
(Cancho and Solé, 2001), and phonemic edit-distance (Vitevitch, 2005) are examples
of such attempts. The present work also uses the concept of complex networks to de-
velop a platform for a holistic analysis as well as synthesisof the distribution of the
consonants across the languages.

In the current work we present some of the exciting properties of the consonant
inventories through the analysis as well as synthesis of PlaNet and PhoNet. A sig-
nificant property we observe is that the consonant nodes in PlaNet as well as PhoNet
have a power lawdegree distributionwith an exponential cut-off. This property is
arguably a consequence of the principle ofpreferential attachment(Barabási and Al-
bert, 1999). In order to support this argument we present a synthesis model for PlaNet
which generates the degree distribution of the consonant nodes and mimics the real
data to a very close approximation. However, though the degree distributions of the
empirical and the synthesized PlaNet match closely, their one-mode projections (the
empirical and the synthesized PhoNet) seem to differ especially in their clustering co-
efficients(Watts and Strogatz, 1998). The clustering coefficient of the empirical PhoNet
is substantially higher than that of the synthesized version, indicating that consonants
tend to frequently occur in cohesive groups or communities (Mukherjeeet al, 2007).
We therefore modify the synthesis model and allowtriad (i.e., fully connected triplets)
formation. As a consequence of this modification the degree distributions of PlaNet
and PhoNet as well as the clustering coefficient of PhoNet match their respective syn-
thesized versions with a very high accuracy.

The rest of the article is structured as follows. In section 2we formally define
PlaNet and PhoNet and outline their construction procedure. We also present some
interesting studies pertaining to the structural properties of PlaNet as well as PhoNet
in the same section. In section 3 we propose a synthesis modelfor PlaNet based on
the principle of preferential attachment. We also identifysome necessary refinements
in the synthesis model (in order to improve upon the average clustering coefficient
of PhoNet) and subsequently extend it to incorporate these refinements in the same
section. Finally we conclude in section 4 by summarizing ourcontributions, pointing
out some of the implications of the current work and indicating the possible future
directions.

2 Definition, Construction and Analysis of PlaNet and
PhoNet

In this section we formally define PlaNet and PhoNet followedby a description of
their construction procedure. We also present some interesting studies pertaining to the
topological properties of these networks.
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Figure 1: Illustration of the nodes and edges of PlaNet.

2.1 Definition

Definition of PlaNet: We define PlaNet (the network of consonants and languages)
as a bipartite graph G =〈VL, VC , E〉 where VL is the set ofnodeslabeled by the
languages and VC is the set of nodes labeled by the consonants. E is the set of edges
that run between VL and VC . There is anedgee ∈ E between two nodesvl ∈ VL and
vc ∈ VC if and only if the consonantc occurs in the languagel. Figure 1 illustrates the
nodes and edges of PlaNet.

Definition of PhoNet: PhoNet, which is the one-mode projection of PlaNet (pro-
jection taken on the consonant nodes), can be defined as a network of consonants repre-
sented by a graph G =〈 VC , E 〉 where VC is the set of nodes labeled by the consonants
and E is the set of all the edges in G. There is an edgee ∈ E between two nodes, if
and only if there exists one or more language(s) where the nodes (read consonants)
co-occur. The weight of the edgee (alsoedge-weight) is the number of languages in
which the consonants connected bye co-occur. Figure 2 presents a partial illustration
of PhoNet.

2.2 Construction

Construction of PlaNet: Many typological studies (Hinskens and Weijer, 2003; Lade-
foged and Maddieson, 1996; Lindblom and Maddieson, 1988) ofsegmental inventories
have been carried out in past on the UCLA Phonological Segment Inventory Database
(UPSID) (Maddieson, 1984). UPSID records the sound inventories of 317 languages
covering all the major language families of the world. In this work we have used UP-
SID comprising of these 317 languages and 541 consonants found across them, for
constructing PlaNet. Consequently, there are 317 elements(nodes) in the set VL and
541 elements (nodes) in the set VC . The number of elements (edges) in the set E as
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Figure 2: A partial illustration of the nodes and edges in PhoNet. The labels of the
nodes denote the consonants represented in IPA (International Phonetic Alphabet). The
numerical values against the edges and nodes represent their corresponding weights.
For example /k/ occurs in 283 languages; /kw/ occurs in 39 languages while they co-
occur in 38 languages.

computed from PlaNet is 7022. At this point it is important tomention that in order
to avoid any confusion in the construction of PlaNet we have appropriately filtered out
theanomalousand theambiguoussegments (Maddieson, 1984) from it. In UPSID, a
segment has been classified as anomalous if its existence is doubtful and ambiguous
if there is insufficient information about the segment. For example, the presence of
both the palatalized dental plosive and the palatalized alveolar plosive are represented
in UPSID as palatalized dental-alveolar plosive. According to popular techniques (Per-
icliev and Valdés-Pérez, 2002), we have completely ignored the anomalous segments
from the data set, and included the ambiguous ones as separate segments because there
are no descriptive sources explaining how such ambiguitiesmight be resolved.

Construction of PhoNet: Once PlaNet is constructed as described above, we can
easily construct PhoNet by taking an one-mode projection ofPlaNet onto the consonant
nodes. Consequently, the set VC for PhoNet comprises of 541 elements (nodes) and
the set E comprises of 34012 elements (edges).

2.3 Degree Distribution

Thedegreeof a nodeu, denoted byku is defined as the number of edges connected to
u. The termdegree distributionis used to denote the way degrees (ku) are distributed
over the nodes (u).
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Figure 3: Degree distribution of PlaNet for the set VL. The figure in the inner box is a
magnified version of a portion of the original figure.

2.3.1 Degree Distribution of PlaNet

Since PlaNet is bipartite in nature it has two degree distribution curves one correspond-
ing to the nodes in the set VL and the other corresponding to the nodes in the set VC .

Degree distribution of the nodes in VL: Figure 3 shows the degree distribution
of the nodes in VL where the x-axis denotes the degree of each node expressed asa
fraction of the maximum degree and the y-axis denotes the number of nodes having a
given degree expressed as a fraction of the total number of nodes in VL.

Figure 3 indicates that the number of consonants appearing in different languages
follow a β-distribution2 (see (Bulmer, 1979) for reference) which is right skewed with
the values ofα andβ equal to 7.06 and 47.64 (obtained using maximum likelihood
estimation method) respectively. This asymmetry in the distribution points to the fact
that languages usually tend to have smaller consonant inventory size, the best value
being somewhere between 10 and 30. The distribution peaks roughly at 21 (which is
its mode) whereas the mean of the distribution is 22 indicating that on an average the
languages in UPSID have a consonant inventory of 22 (Maddieson, 1999).

Degree distribution of the nodes in VC : Figure 4 illustrates the degree distri-
bution plot for the nodes in VC in log-log scale. In this figure the x-axis represents
the degree (k) and the y-axis representsPk, wherePk is the fraction of nodes having
degree greater than or equal tok.

Figure 4 clearly shows that the curve follows a power law distribution with an ex-

2A random variable is said to have aβ-distribution with parametersα > 0 andβ > 0 if and only if its
probability mass function is given by,

f(x) =
Γ(α+β)
Γ(α)Γ(β)

xα−1(1 − x)β−1

for 0 < x < 1 andf(x) = 0 otherwise.Γ(·) is the Euler’s gamma function.
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Figure 4: Degree distribution of PlaNet for the set VC in a log-log scale. The letterx
denotes the cut-off point.

Table 1: The values of the parameters A andγ.
Parameter Figure 4 Figure 5

A 1.04 41.26
γ 0.71 0.89

ponential cut-off. The cut-off point is indicated by the letterx in the figure. We find that
there are 22 consonant nodes which have their degree above the cut-off range. How-
ever, the remaining consonant nodes of PlaNet exhibit a power law degree distribution
of the form

y = Ax−γ (1)

The values of the parameters A andγ in both the figures, as computed by the least
square error method, are noted in Table 1.

2.3.2 Degree Distribution of PhoNet

Since PhoNet is a weighted network, we report the distribution of theweighted degree
of its nodes. The weighted degreek for a nodei can be defined as (Barratet al, 2004),

k =
∑

∀j

wij (2)

wherej is a neighbor ofi in the network andwij is the weight of the edge connecting
the nodesi and j. Figure 5 shows the degree distribution curve for PhoNet in log-
log scale. In this figure the x-axis represents the weighted degree (k) and the y-axis
representsPk, wherePk is the fraction of nodes having degree greater than or equal
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Figure 5: Degree distribution of the nodes in PhoNet in a log-log scale. The lettersx
andy denote the cut-off points.

to k. Interestingly, the degree distribution of the nodes in PhoNet show two different
cut-off points marked by the lettersx andy in the figure along with a power law region
spanning fromx to y. Through inspection we find that there are 15 consonants above
the cut-offx which indicates that these consonants co-occur very frequently exhibiting
an hub-like nature (Mukherjeeet al, 2007; Newman, 2003). On the other hand, the
degree distribution of the nodes up to the cut-off pointy is approximately a straight
line indicating that the rate of change ofPk with respect tok is quite slow in this
region. The reason behind this behavior is that there are only a negligibly small fraction
of nodes that exist in this region which, causes almost no increase in the cumulative
fractionPk. However, the rest of the consonant nodes (spanning from thepoint y to
the pointx) show a power law degree distribution of the form specified inequation 1.
Table 1 reports the values of the parameters A andγ.

In most of the networked systems like the society, the Internet, the World Wide
Web, and many others, power law degree distribution emergesfor the phenomenon of
preferential attachment, i.e., when “the rich get richer” (Simon, 1955). With reference
to PlaNet and PhoNet this preferential attachment can be interpreted as the tendency
of a language to choose a consonant that has been already chosen by a large number
of other languages. In order to validate the above argument,in section 3, we present
a synthesis model based on preferential attachment (where the distribution of the con-
sonant inventory size is knowna priori) that mimics the occurrence and co-occurrence
distributions of the consonant nodes to a very close approximation.
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2.4 Clustering Coefficient

The weighted clustering coefficient (in the one-mode projection PhoNet) for a nodei
is defined as (Barratet al, 2004),

ci =
1

(

∑

∀j wij

)

(ki − 1)

∑

∀j,l

(wij + wil)

2
aijailajl (3)

wherej and l are neighbors ofi; ki represents the plain degree of the nodei; wij ,
wjl andwil denote the weights of the edges connecting nodesi andj, j andl, andi
andl respectively;aij , ail, ajl are boolean variables indicating whether or not there is
an edge between the nodesi andj, i andl, andj andl respectively. This coefficient
is a measure of the local cohesiveness that takes into account the importance of the
clustered structure on the basis of the amount of traffic or interaction intensity actually
found on the local triplets. The parameterci in equation 3 counts for each triplet
formed in the neighborhood of the vertexi, the weight of the two participating edges

of the vertexi. The normalization factor
(

∑

∀j wij

)

(ki−1) accounts for the weight of

each edge times the maximum possible number of triplets in which it may participate,
and it ensures that0 ≤ ci ≤ 1. Consequently, the average weighted clustering
coefficient is given by,

cav =
1

N

N
∑

i=1

ci (4)

where,N is the number of nodes in PhoNet.
The value ofcav for PhoNet is 0.89 which indicates a huge clustering among the

nodes of the network. This is primarily due to the fact that inPhoNet the consonant
nodes tend to occur highly in cohesive groups or communitiesas shown by Mukher-
jee et al. (Mukherjeeet al, 2007). In order to further investigate how the clustering
coefficient is related to the weighted degree of the nodes of PhoNet we plot the degree-
dependent clusterings in Figure 6 in log-log scale. The figure shows a scatter plot as
well as an average binned distribution with bin sizes expressed as powers of 2. It is
quite interesting to observe that like many other social networks (Peltomäki and Alava,
2006) in this case also the clustering is substantial (very close to one) for vertices with
small degrees and gets lower with an increasingk. This is because the more neighbors
a consonant node has the less probable it will be for those neighbors to co-occur in the
same language and hence be connected with each other.

The power law degree distributions observed for both PlaNetand PhoNet are in-
dicative of the presence of preferential attachment in the organization of the conso-
nant inventories. We are however interested in estimating the amount of preferential
attachment involved to get an accurate view of the underlying dynamics guiding the
formation of the consonant inventories. This can be best understood through a synthe-
sis model which, we present in the next section that mimics the empirical data to a high
precision.
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Figure 6: Degree versus clustering coefficient for the nodesof PhoNet in log-log scale.
The bold line shows the average binned distribution with binsizes expressed in powers
of 2.

3 Synthesis Model Based on Preferential Attachment

In this section we present a synthesis model for the PlaNet (henceforth PlaNetsyn)
based on preferential attachment where the distribution ofthe consonant inventory
size is assumed to be knowna priori. Let VL = {L1,L2,...,L317} have cardinalities
(consonant inventory size){k1,k2,...,k317} respectively. We assume that the consonant
nodes (VC) of PlaNetsyn areunlabeled(i.e., they are not labeled by a set of articula-
tory/acoustic features (Mukherjeeet al, 2007) that characterizes them). We next sort
the nodes L1 through L317 in ascending order of their cardinalities. At each time stepa
node Lj, chosen in order, preferentially attaches itself with kj distinctnodes (call each
such node Ci) of the set VC . The probabilityPr(Ci) with which the node Lj attaches
itself to the node Ci is given by,

Pr(Ci) =
di

α + ǫ
∑

i
′
∈V

′

C

(di′
α + ǫ)

(5)

where,di is the current degree of the nodeCi, V
′

C is the set of nodes in VC that are not
already connected to Lj andǫ is the smoothing parameter which facilitates attachments
to consonant nodes that have a degree close or equal to zero. The above process is
repeated until all the language nodes Lj ∈VL get connected to kj consonant nodes.
Algorithm 1 summarizes the synthesis process and Figure 7 illustrates a partial step of
this process.

As we shall see shortly, the aforementioned preferential attachment based model
is able to explain the distribution of the consonants over languages reasonably well.
However, at this point it would be worthwhile to mention the reason behind sorting the
language nodes in ascending order of their cardinalities. With each consonant is as-
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Algorithm 1: The synthesis process

Input: Nodes L1 through L317 sorted in ascending
order of their cardinalities;

for t = 1 to 317{
Choose (in order) a node Lj with cardinality kj;
for c = 1 to kj {

Connect Lj to a node Ci ∈ VC to which it is
not yet connected, following the distribution,
Pr(Ci) =

di
α+ǫ

P

i
′
∈V

′

C

(d
i
′
α+ǫ)

where V
′

C is the set of nodes in VC to which
Lj is not yet connected;

}
}

Figure 7: A partial step of the synthesis process. When the language L4 has to connect
itself with one of the nodes in the set VC it does so with the one having the highest
degree (=3) rather than with others in order to achieve preferential attachment which is
the working principle of our algorithm.

sociated two different frequencies; a) the frequency of occurrence of a consonant over
languages or thetypefrequency, and b) the frequency of usage of the consonant in apar-
ticular language or thetokenfrequency. Researchers have shown in the past that these
two frequencies are positively correlated. Nevertheless,our synthesis model based on

11



Figure 8: Degree distribution of the nodes in VC for PlaNetsyn, PlaNet, as well as when
the model incorporates no preferential attachment; for PlaNetsyn, ǫ = 0.5,α = 1.44, and
the results are averaged over 100 simulation runs.

preferential attachment takes into account only the type frequency of a consonant and
not its token frequency. If language is considered to be an evolving system (Lightfoot,
1999) then both of these frequencies, in one generation, should play an important role
in shaping the inventory structure of the next generation.

In the later stages of our synthesis process when the attachments are strongly pref-
erential, the type frequencies span over a large range and automatically guarantee the
token frequency (since they are positively correlated). However, in the initial stages of
this process the attachments that take place are random in nature and therefore the type
frequencies of all the nodes are roughly equal. At this pointit is the token frequency
(absent in our model) that should discriminate between the nodes. This error due to the
loss of information about the token frequency in the initialsteps of the synthesis pro-
cess can be minimized by allowing only a small number of attachments (so that there
is less spreading of the error). This is primarily the reasonwhy we sort the language
nodes in the ascending order of their cardinalities so that there are only a few random
connections in the initial steps resulting in minimum errorpropagation.

Apart from the ascending order, we have also simulated the model with descending
and random order of the inventory size. The degree distribution obtained by consid-
ering ascending order of the inventory size, matches more accurately than in the other
two scenarios.

Simulation Results: Simulations reveal that in case of PlaNetsyn the degree dis-
tribution of the nodes belonging to VC fit well with the empirical results we obtained
earlier in section 2. Good fits emerge for 0.4≤ ǫ ≤ 0.6 and 1.4≤ α ≤ 1.5 with
the best being atǫ = 0.5 andα = 1.44. Figure 8 shows the degreek versusPk plots
averaged over 100 simulation runs.
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Figure 9: Degree distribution of the nodes of PhoNetsyn and PhoNet in log-log scale.

The mean error3 between the degree distribution plots of PlaNet and PlaNetsyn

is ∼ 0.01. The match degrades as we reduce the value ofα to 1 (linear preferential
attachment) where the mean error is 0.03. The match further degrades as we continue
to reduce the value ofα and is worst forα = 0 (i.e., there is no preferential attachment
incorporated in the model and all connections are equiprobable) where the mean error
is as high as 0.35.

After having studied the properties of PlaNetsyn as discussed above, we now con-
struct PhoNetsyn from it in the approach outlined in section 2. Next, the degree dis-
tribution as well as the clustering coefficient of PhoNetsyn is compared with that of
PhoNet. Figure 9 illustrates the degreek versusPk plot for PhoNetsyn (along with that
of PhoNet). It is clear from the figure that the degree distribution curves for PhoNet and
PhoNetsyn are qualitatively similar, although there is a significant amount of quantita-
tive difference between the two (mean error∼ 0.45). Moreover, the average clustering
coefficientc

′

av of PhoNetsyn (0.55) differs largely from that of PhoNet (0.89).
Due to this large deviation from the real data, our synthesismodel needs to be

refined so that it not only mimics the degree distribution of PlaNet but also reproduces
the degree distribution as well as the average clustering coefficient of PhoNet. The
primary reason for this deviation in the results is that the high degree of clustering,
observed in PhoNet, is not taken into account by our synthesis model. Such a high
clustering is a consequence of the fact that apart from preferential attachment there is
some other force governing the structure of the consonant inventories. Mukherjeeet
al. (Mukherjeeet al, 2007) reports that this force tends to bind a set of consonants in

3Mean error is defined as the average difference between the ordinate pairs (sayy andy
′

) where the
abscissas are equal. In other words if there areN such ordinate pairs then the mean error can be expressed

as
P

|y−y
′

|
N
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cohesive groups which essentially leads to the emergence ofa pattern of co-occurrence
(resulting in high clustering) among them.

Therefore, in order to boost up the clustering coefficient werefine the model to
allow the formation of triads (i.e., fully connected triplets). This technique has been
used by several models in the past (Ramascoet al, 2004), which has led to increased
clustering, closer to what is found in real networks. The refinement can be achieved in
our model by having a language node Lj attach to some node Ci ∈ VC if it has already
attached itself to aneighborof Ci. Two consonant nodes C1 and C2 are neighbors if
a language node (other than Lj) attaches itself to both C1 and C2 in an earlier step of
the synthesis process. This phenomenon leads to the formation of a large number of
triangles and/or triads in the one-mode projection, which in turn is expected to yield a
higher clustering coefficient.

In this model we denote the probability of triad formation bypt. At each time step
a language node Lj (chosen from the set of language nodes sorted in ascending order
of their degrees) makes the first connection to some consonant node Ci ∈ VC (Lj is not
already connected to Ci) preferentially following the distributionPr(Ci) (specified in
equation 5). For the rest of the (kj-1) connections the language node Lj attaches itself
preferentially to only the neighbors of Ci (to which Lj is not already connected) with a
probabilitypt. Consequently, Lj connects itself preferentially to the non-neighbors of
Ci (to which Lj is not already connected) with a probability (1-pt). Accordingly, the
neighbor set ofCi gets updated.

The entire idea mentioned above is summed up in Algorithm 2. Figure 10 shows a
partial step of the synthesis process illustrated in Algorithm 2.

3.1 Estimation of Model Parameters

The refined model discussed in Algorithm 2 involves three different parameters namely
pt, α, andǫ. Thus at this point it becomes necessary to figure out how these model
parameters interact and thereby influence the results. For this purpose we perform
simulations of the model for different values ofpt (in the range [0.7,0.95]),α (in the
range [1.1,1.5]), andǫ (in the range [0.2,0.4]) and study the pairwise relationships
between errors that show up in (1) the degree distribution ofPlaNetsyn, (2) the degree
distribution of PhoNetsyn, and (3) the average clustering coefficient of PhoNetsyn.

Figure 11 shows that the mean error between the degree distribution of the pair
PlaNet/PlaNetsyn is negatively correlated to that of PhoNet/PhoNetsyn. Each point on
the plot indicates a certain combination of the values ofpt, α, andǫ. Some of the non-
dominating (Abrahamet al, 2005) points are indicated by black circles in the figure.

Moreover, the mean error between the degree distribution ofPlaNet/PlaNetsyn is
also negatively correlated to the error4 between the average clustering coefficient of
PhoNet/PhoNetsyn. Figure 12 illustrates this negative correlation. In this case again
each point on the plot indicates a certain combination of thevalues ofpt, α, andǫ.
Some of the non-dominating points are marked by black circles in the figure.

4The error in the average clustering coefficient is expressedas
|cav−c

′

av
|

cav
wherecav andc

′

av are the
average clustering coefficients of PhoNet and PhoNetsyn respectively.
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Algorithm 2: The refined synthesis process

Input: Nodes L1 through L317 sorted in ascending
order of their cardinalities;

for t = 1 to 317{
Choose (in order) a node Lj with cardinality kj ;
Connect Lj to a node Ci ∈ VC with which it is
not yet connected, following the distribution,
Pr(Ci) =

di
α+ǫ

P

i
′
∈V

′

C

(d
i
′
α+ǫ)

where V
′

C is the set of nodes in VC to which Lj
is not already connected;
for c = 2 tokj {

Connect Lj with a probabilitypt to a neigh-
bor C

′

i of the node Ci (to which Lj is not yet
connected) following the distributionPr(C

′

i );
and,
Connect Lj with probability (1-pt) to a non-
neighbor C

′′

i of the node Ci (to which Lj is
not yet connected) following the distribution
Pr(C

′′

i ) and accordingly expand the neighbor
list of Ci;

}
}

Further, the mean error between the degree distribution of PhoNet/PhoNetsyn and
the error between the average clustering coefficient of PhoNet/PhoNetsyn do not show
a direct dependence on one another (so that their effects could be assumed to be pro-
portional), even though they are not strictly negatively correlated.

3.1.1 Combining the Objective Functions

In a multi-objective scenario as discussed above, the most common technique, reported
in literature (Abramset al, 2005), to arrive at a solution is to look for trade-offs rather
than a single point that optimizes all the objective functions. One of the popular ways
for such a trade-off is to combine (usually linearly) the objective functions together
to result in a single objective function. In similar lines, we define the errorE which
is the average of the mean error (sayME) between degree distribution of PlaNet and
PlaNetsyn, the mean error (sayM

′

E) between the degree distribution of PhoNet and
PhoNetsyn, and the error (sayCE) in the average clustering coefficient of PhoNet and
PhoNetsyn. In other words,

E =
1

3

(

ME +M
′

E + CE

)

(6)

It is to be noted that there can be multiple other ways of combining the above three
errors and equation 6 is just one of them. Having defined the error E, we perform a
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Figure 10: A partial step of the synthesis process. If the language node L4 (which has
degree 3) has the initial connectiona1 (due to preferential attachment) then according
to the synthesis model the following connections would bea2 anda3 respectively in
that order. This series of connections increases the co-occurrence by allowing forma-
tion of triads in the one-mode projection. The bold line in the figure indicates the edge
that completes the triad.

detailed study of the parameter space in order to compute theminimum value ofE.

3.1.2 Experiment to Compute the Minimum Error

We simulate the above synthesis model with different valuesof α ranging from 1.1 to
1.5 (in steps of 0.1) andpt ranging from 0.70 to 0.95 (in steps of 0.05) and compute the
errorE in each case. Figure 13 shows the three dimensional plot withpt in the x-axis,
α in the y-axis andE in the z-axis for three different values ofǫ which are 0.2, 0.3 and
0.4 respectively. We do not report the results forα > 1.5 since at larger values of
α the errorE continuously keeps on rising mainly due to gelation (a condition where
a single dominant “gel” node is connected to all other nodes)(Ramascoet al, 2004).
Moreover, a reasonable amount of triad formation can only take place at higher values
of pt and hence we do not report the results forpt < 0.70. Further, we do not choose
larger values ofǫ since it is a smoothing parameter. The figure clearly shows that in
our inspection range the minimum error (E = 4.1%) is achieved when the values of
pt, α andǫ are 0.8, 1.3 and 0.3 respectively. We have also empirically observed that
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Figure 11: The correlation of the mean error between the degree distribution of
PlaNet/PlaNetsyn with that of PhoNet/PhoNetsyn. Each point on the plot indicates
a certain combination of the values ofpt, α, andǫ. Some of the non-dominating points
are indicated by the black circles.

these parameters are stable in the sense that a slight perturbation in them brings only a
negligible change in the results.

3.2 Simulation Results

We plug in the best values (corresponding to minimumE) of the parameterspt, α
and ǫ as obtained in the earlier section in Algorithm 2 to synthesize PlaNetsyn and
subsequently PhoNetsyn. The results of this simulation are provided below.

Figure 14 shows the degree distribution of the consonant nodes of PlaNetsyn in
comparison with that of PlaNet. The mean error between the two distributions is 0.04
approximately and is therefore a deterioration from the earlier result. This is mainly
due to the trade-off involved in the definition ofE. Nevertheless, the average clustering
coefficient of PhoNetsyn in this case is 0.85 as compared to 0.89 of PhoNet. Moreover,
in this process the mean error between the degree distribution of PhoNetsyn and PhoNet
(as illustrated in Figure 15) has got reduced dramatically from 0.45 to 0.03.

The above results equivocally indicate that for a good choice of the parameters
(described earlier) the refined version of the synthesis model not only reproduces the
degree distribution of PlaNet but also the degree distribution as well as the average
clustering coefficient of PhoNet to a very close approximation.
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Figure 12: The correlation of the mean error between the degree distribution of
PlaNet/PlaNetsyn with that of PhoNet/PhoNetsyn. Each point on the plot indicates
a certain combination of the values ofpt, α, andǫ. A few of the non-dominating points
are marked by the black circles.

4 Conclusions, Discussion and Future Work

In this article we have analyzed and synthesized the consonant inventories of the world’s
languages through a complex network approach. We dedicatedthe preceding sections
for the following,

• Propose complex network representations of the consonant inventories, namely
PlaNet and PhoNet,

• Provide a systematic study of some of the important structural properties of
PlaNet and PhoNet,

• Develop a synthesis model for PlaNet based on preferential attachment where
the consonant inventory size distribution is knowna priori,

• Refine the synthesis model so that it not only mimics the degree distribution
of the consonant nodes of PlaNet as well as PhoNet but also reproduces the
clustering coefficient of PhoNet to a very close approximation.

Until now we have been mainly dealing with the computationalaspects of the distri-
bution of consonants over the languages rather than exploring the real world dynamics
that gives rise to such a distribution. Language is a constantly changing phenomena
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Figure 13: The errorE for different values of the parameterspt, α andǫ. The letterz
indicates the point whereE is minimum.

and its present structure is determined by its past evolutionary history. The sociolin-
guist Jennifer Coates remarks that this linguistic change occurs in the context of lin-
guistic heterogeneity. She explains that “. . . linguistic change can be said to have taken
place when a new linguistic form, used by some sub-group within a speech community,
is adopted by other members of that community and accepted asthe norm.” (Coates,
1993). In this process of language change (at the microscopic level), consonants be-
longing to languages that are more prevalent among the speakers in one generation
have higher chances of being transmitted to the speakers of languages of the subse-
quent generations (Abrams and Strogtz, 2003; Blevins, 2004). In the mesoscopic level
this heterogeneity in the choice of the consonants manifests itself as preferential attach-
ment. Further, if two consonants largely co-occur in the languages of one generation,
it is highly likely that they will be transmitted together inthe languages of the follow-
ing generations (Blevins, 2004). The aforementioned phenomenon is what is reflected
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Figure 14: Degree distribution of PlaNetsyn along with that of PlaNet in log-log scale.
The values of the parameterspt, α andǫ are 0.8, 1.3 and 0.3 respectively.

Figure 15: Degree distribution of PhoNetsyn along with that of PhoNet in log-log scale.
The values of the parameterspt, α andǫ are 0.8, 1.3 and 0.3 respectively.
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through the formation of triads discussed in the earlier section. It is interesting to note
that whereas triad formation among consonants takes place in a top-down fashion as
a consequence of language change over linguistic generations, the same happens in a
social network in a bottom-up fashion where actors come to know one another through
other actors and thereby slowly shape the structure of the whole network. Moreover,
unlike in a social network where a pair of actors can regulate(break or acquire) their
relationship bonds, if the co-occurrence bond between two consonants breaks due to
pressures of language change it can be never acquired again5. Such a bond breaks only
if one or both of the consonants are completely lost in the process of language change
and is never formed in future since the consonants that are lost do not reappear again.
In this context, Darwin in his book,The descent of man(Darwin, 1871), writes “A
language, like a species, when once extinct never reappears.”

Although the directions of growth in a social network is different from the networks
discussed in this article, both of them target to achieve thesame configuration. It
is mainly due to this reason that the principle of preferential attachment along with
that of triad formation is able to capture the self-organizing behavior of the consonant
inventories.

In this article we have mainly dealt with the unlabeled synthesis (since the conso-
nant nodes are unlabeled in our synthesis model) of the occurrence and co-occurrence
networks of consonants. However, the work can be further extended in the directions
of a labeled synthesis of the consonant networks (and hence consonant inventories).
We look forward to accomplish the same as a part of our future work.
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