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Methodology for data-driven predictive maintenance models design, 

development and implementation on manufacturing guided by domain 

knowledge 

The 4th industrial revolution has connected machines and industrial plants, 

facilitating process monitoring and the implementation of predictive maintenance 

systems (PdM) that can save up to 60% of maintenance costs. Nowadays, most 

PdM research is carried out with expert systems and data-driven algorithms, but it 

is mainly focused on improving the results of reference simulation datasets. 

Hence, industrial requirements are not commonly addressed, and there is no 

guiding methodology for their implementation in real PdM use-cases. The 

objective of this work is to present a methodology for PdM application in 

industrial companies by combining data-driven techniques with domain 

knowledge. It defines sequentially ordered stages, steps and tasks to facilitate the 

design, development and implementation of PdM systems according to business 

and process characteristics. It also facilitates the collaboration among the required 

working profiles and defines deliverables.  It is designed in a flexible and 

iterative way, combining standards, state-of-the-art methodologies and referent 

works of the field. Finally, the proposed methodology is validated on two use-

cases: a bushing testbed and a press machine of the production line. These use-

cases aim to facilitate, guide, and speed up the implementation of the 

methodology on other PdM use-cases. 

Keywords: predictive maintenance; methodology; data-driven; domain 

knowledge; manufacturing 

1. Introduction 

The industrial sector has been in constant development since the creation of the first 

machine, being classified into different revolutions according to the technologies that 

drove relevant changes. The first brought mechanisation with water power and steam 

power, the second brought mass manufacturing by product lines and electric energy and 

the third, which was related to digital revolution based on Information Technology (IT) 

and electronics, brought production automation Lukac (2016). All of them have brought 

benefits to the society by creating more affordable and accessible quality products that 
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improved average quality life and boosted companies’ production while optimising 

costs. 

Nowadays, there is a transition towards the fourth revolution denominated as 

industry 4.0, which is driven by Cyber Physical Systems (CPS), Industrial Internet of 

Things (IIoT), Big Data, Cloud Computing and Remote Sensing Frank et al. (2019). Its 

objective is to improve industrial processes and adapt to their requirements using 

software, sensors and intelligent control units as described by Lukac (2016). The 

integration of these components forms infrastructures that collect much data in data 

lakes, which companies believe it can enhance their competitivity. This process-related 

data can be combined with big data and data analysis techniques to solve numerous 

problems; common applications in industry are listed below: Predictive Maintenance, 

product quality inspection, manufacturing parameters optimisation and energy 

consumption optimisation  Frank et al. (2019). 

Studies like Dhillon (2002) present that effective maintenance can reduce 

industrial company costs up to 50% by correcting failures of machines, systems and 

people. Currently, most industrial companies use the following maintenance 

approaches: either preventive/time-based maintenance that apply periodical 

interventions to avoid failures, or corrective maintenance that waits until failures occur 

to apply interventions. However, these maintenance strategies have a big optimisation 

potential. On the one hand, component working life can be extended by taking 

advantage of their unexploited correct working time before failure, which reduces 

downtime and replacement costs. On the other hand, replacing components before 

failure would avoid expensive breakdowns whose reparation is much more expensive 

than components cost given maintenance costs such as repairing tasks and production 

time loss. These are the gaps that Predictive Maintenance aims to address Selcuk 

(2017). 

Concretely, Predictive Maintenance has a huge potential for manufacturing 

companies, which can achieve an Overall Equipment Effectiveness (OEE) over 90% by 

increasing asset availability and performance as stated by Coleman et al. (2017), and a 

1000% increase in Return on Investment (ROI), indicated by Lavi (2018). It is the most 

advanced level of maintenance, and often the most efficient, allowing strategic decision 

making. These systems have been applied in many fields such as automotive, 
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manufacturing, service and other industry domains (Prajapati et al. 2012; Selcuk 2017) 

by anticipating and attending failures to ensure smooth operation, enhancing total 

productive maintenance, improving OEE, safety and protecting the environment. The 

development of data-driven Predictive Maintenance systems is based on the data 

collected from CPS. 

To date, many companies have optimised their costs using data-driven and 

computational models or increased sales using recommender systems, but according to 

the survey conducted by, only around 20% are deployed to production. Nonetheless, 

even though there are many publications of data-driven model application for 

maintenance, many manufacturing companies have not implemented Predictive 

Maintenance systems yet given they do not know their potential business benefit and 

cannot see a clear ROI. Nowadays, the application of data-driven techniques for 

manufacturing process improvement is easier and cheaper than ever before, given the 

accessibility to machine data monitoring systems and online platforms. Even studies 

like Ransbotham et al. (2017) expect artificial intelligence to have noticeable impact in 

manufacturing by 2022. Predictive Maintenance is expected to boost industrial 

companies’ competitiveness by enabling data-driven process understanding and 

Predictive Maintenance strategies for decision making. 

Predictive Maintenance (PdM) is a widely researched topic in academia. 

Conversely, the implementation of these systems in industrial companies is slower and 

resource and time costly. Some important reasons for these facts are the absence of 

knowledge and baggage of industrial companies in this field, data variability and 

unstructured development. Many state-of-the-art Predictive Maintenance works are 

developed based on experience and use it to justify undertaken decisions. However, no 

systematic forms or methodologies have been found to guide the development of data-

driven PdM models supported on domain knowledge from scratch, that can be used in 

the implementation of other use-cases or systems to reduce uncertainty or arbitrary 

decisions. 

1.1 Contribution 

The main objective of this article is to propose a methodology to implement Predictive 

Maintenance data-driven models guided by domain knowledge. This will boost 
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industrial and manufacturing companies by systemising model development steps 

adapted to their requirements, enabling maintenance optimisation and knowledge 

discovery in industrial machinery. In addition, this paper presents three secondary 

objectives. (1) summarise the most common problems industrial companies face in the 

application of Predictive Maintenance systems application (2) present the resources, 

profiles and strategies that enable structured and agile PdM implementation (3) define 

the methodology, specified into simple and flexible steps, containing necessary steps for 

model development. The hypothesis of this work is that despite each company and PdM 

system has its own characteristics, a general flexible enough methodology can be 

defined as reference, so that projects and companies can follow it to address their 

requirements. Hence, the presented methodology will systematise PdM system 

development, resulting into projects costs saving by planification and agile model 

development. 

This work is aimed at different working profiles such as data scientists, business 

managers and domain technicians. They will learn about which are the resources, 

general steps and methodology to deploy a PdM model in their company successfully. 

This can help them understand project requirements like which profiles are necessary in 

each part of the process and thus facilitate project planning. 

This work is organised as follows. Section 2 reviews Predictive Maintenance 

background and manufacturing companies’ requirements.  Section 3 reviews and 

categorises state-of-the-art models for Predictive Maintenance and analyses current 

Predictive Maintenance standards and methodologies, presenting their gaps. Section 4 

explains the main contribution of this work: the proposed PdM methodology, 

complemented with step-by-step indications to guide its implementation. Section 5 

presents the adoption of the methodology and adaptation to successfully meet 

requirements of a real use-case. Finally, Section 6 concludes this work by highlighting 

its most relevant aspects and gaps addressed by the proposed methodology, together 

with and prospect on how it could impact future PdM models development. 

2. Background 

This section summarises the basic context and background of manufacturing companies 

and Predictive Maintenance. It is useful to understand the basis and problems that the 
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proposed methodology aims to address. 

2.1. Manufacturing companies: context and requirements 

Currently, many manufacturing companies are transitioning their data collection 

systems to cloud platforms with the objective to create machines that are self-aware, 

increasing their overall performance and facilitating maintenance management Vaidya 

et al. (2018). This transition by the adoption of data analysis and intelligent maintenance 

application enables data collection of relevant assets that facilitates implementing 

Predictive Maintenance and proactive maintenance strategies. Nonetheless, some 

challenges must be commonly faced by companies in this process, some of which are 

highlighted below. 

According to Guzman and Rodriguez (2014), there are three failure types 

classified by the stage of asset life. In the initial working period, the failures can be 

caused by improper mounting or component defects. Once machine working and 

operation has stabilised, random failures arise due to: inadequate working 

Environmental and Operational Conditions (EOC); accidents; and change of necessary 

parts, among other reasons. In final machine or asset working period, the majority of 

failures are caused by natural wear; arising clearances and imbalances. 

Usually, an industrial company that worked hard to achieve a good and 

competitive share of the market, produces machinery that rarely fails; given that the 

engineering work behind the design, and mounting is usually optimal. This type of 

companies tends to have very little historical failure data; which makes difficult for data 

scientists to gather the data. Even so, when problems or failures arise, delays and stops 

happen in machines and production lines, resulting in companies’ loss. To prevent 

failures, these companies commonly apply periodical maintenance. Nonetheless, failure 

anticipation and prevention can save maintenance costs caused by many reasons like 

production time loss, component replacement, repair tasks or production delays.  

Industrial companies mainly use two data collection methods, classified into real 

machine and simulation. On the one hand, real machine data is retrieved either manually 

by an operator or automatically from a CPS-based platform; like the one proposed in the 

Mantis project by Albano et al. (2018). On the other hand, simulations create data aimed 

to simulate real machine behaviour under different conditions; which are based on 
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physical testbeds such as the ones presented by Borodulin et al. (2017), or Digital Twins 

(Aivaliotis et al. 2019; Alexopoulos et al. 2020), which are software simulations based 

on techniques like theoretical domain knowledge, finite element method, data mining or 

statistics. These simulation techniques can generate artificial failure data in industrial 

scenarios, where failure data is usually scarce. However, the results obtained from 

simulation platforms may differ from real machine behaviour. For this reason, some 

models are first validated with simulated data and then applied to real machines, using 

real data to train and test the system. 

In any case, production machine data acquisition and visualisation are highly 

recommended, this can be done in several ways: firstly, online collection permits 

interactions with acquisition and online modifications, despite being more expensive. 

Secondly, offline collection offers the best trade-off regarding costs and implementation 

difficulty. Finally, manual collection is intractable when dealing with big amount of 

data, although it can be useful for small datasets. Another important concern regarding 

data collection is assuring customer privacy, since these seek to protect their data and 

knowledge from competence. Therefore, customer data must be transmitted, stored and 

analysed securely, avoiding data leakage to third parties and thus ensuring data analysis 

is beneficial for both, manufacturers and their customers. 

2.2. Predictive Maintenance context, opportunities and challenges 

Predictive Maintenance aims to keep assets working correctly and only apply 

maintenance actions when these stop working properly. This maintenance strategy 

extends components’ working life with respect to periodical maintenance, while 

preventing damages by scheduling interventions before failures occur; concretely before 

corrective maintenance, as stated by UESystems (2019). The main benefits of PdM over 

other maintenance strategies are: maintenance cost reduction by avoiding unplanned 

maintenance; increasing the working life of assets by anticipating to failures and 

performing maintenance before they occur; and improving operational safety by 

preventing failures. In addition, OEE can be enhanced by downtime reduction and 

productivity increase. 

Predictive Maintenance consists of monitoring assets behaviour and comparing 

it with previously analysed working conditions. This historical data is used to search for 
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similar patterns and predict condition trend evolution, anticipating maintenance 

requirements in early stages by detecting failures and degradation. The concept of PdM 

is a step further from the Condition Based Monitoring (CBM), the application of 

prognosis and health management in the maintenance field that arose in 1940s Wiseman 

(2006).  However, nowadays PdM is more accessible than ever before given that current 

technology permits its automatising.  

PdM enables performing maintenance in a proactive way, based on anomaly 

detection, diagnosis and prognosis techniques. Concretely, its power lies on deploying a 

system that continuously monitors assets health to give data-driven maintenance 

information and recommendations to maintenance technicians. Historical failure and 

maintenance data is useful to learn from previous experiences and prospect on future 

events. Many works present component degradation patterns in a plot denominated P-F 

curve like UESystems (2019), where health decreases from healthy working condition 

until failure as time or machine cycles go by. 

Predictive Maintenance architectures must deal with many factors, peculiarities, 

and challenges of industrial data; the most relevant ones are discussed below. One 

principal challenge of industrial data is its behaviour and data variability among assets. 

Even two identically produced machines vary given mechanical tolerances, mount 

adjustments, variations in EOC and many other factors. These difficult the creation of 

robust models, which hinders the reusability of PdM models among machines and 

assets. In addition, gathering high quality data is difficult given that sensors can be 

misplaced or damaged, the installed sensor types might not be suitable for the use-case, 

an adequate sampling frequency may not be adopted, additional context data is missing 

etc. In this scenario, building a training database that enables robust data analysis is one 

of the main challenges. After ensuring high quality data is collected, an adequate 

preprocessing and filtering must be performed to remove distorting noise that 

environmental factors create, with the objective to prepare the data for the data-driven 

model. Moreover, with the increase of collected data dimensionality, the complexity and 

resources required to process it grow. Another challenge of PdM is that industrial 

companies have difficulty on obtaining failure data as they take care of the machines to 

ensure their right working condition. Moreover, sometimes it is troublesome to identify, 

define and prioritise the use-case to solve. 
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Regarding monitored EOC data, environmental conditions refer to external 

conditions that influence the assets, like ambient temperature or surrounding vibration 

perturbations; operational conditions are technical specifications assigned to working 

processes, such as desired speed, force and positions. Additionally, sensor data comes 

from measurements taken by machine sensors, and derived variables are calculated by 

combination of the aforementioned ones or by converting them to other units of 

measurement. 

Several components are more prone to be studied and applied PdM than the rest 

given they play a key role in industrial processes and suffer from higher failure rates. 

The article by Zhang et al. (2019)  study some of these components like bearings, 

blades, engines, valves, gears and cutting tools . In addition, several common target 

failure types for condition monitoring are imbalance cracks, fatigue, abrasive and 

corrosion wear, rubbing, defects and leak detection. The publication by Li and Gao 

(2010) classifies the possible failure types of systems by its cause: component failure, 

environmental impact, human mistakes and procedure handling. Besides, there are 

many different condition monitoring techniques that enable data acquisition from the 

components, like vibration analysis, ultrasound, temperature and many more, like stated 

by Serradilla, Zugasti, and Zurutuza (2020). 

PdM based on condition monitoring is possible given that the data follows 

patterns such as: trends, seasonality and noise, as indicated by Brownlee (2018). 

Analysing more than one variable in the same dataset is known as multivariate problem. 

In this situation, the variables are commonly analysed together, adding more context 

and complementary information, but at the same time, complexity. 

The paper by Venkatasubramanian et al. (2003) presents 10 desirable 

characteristics a PdM system should have to address industrial requirements: “quick 

detection and diagnosis, isolability (distinguish among different failure types), 

robustness, novelty identifiability, classification error estimation, adaptability, 

explanation facility, minimal modelling requirements, real-time computation and 

storage handling, multiple fault identifiability”. It can be useful to give perspective 

when choosing PdM architectures and models adapted to address use-case requirements. 
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3. Related works 

This section presents state-of-the-art and related PdM works containing techniques and 

methodologies that facilitate their development based on data-driven models. It helps to 

relate contributions of this work with widely reviewed current publications. 

3.1. Predictive Maintenance modelling 

The implementation of Predictive Maintenance models is a widely researched area. 

These can be classified by the amount of knowledge and data they require to be created 

(Liao and Köttig 2016) as presented in Table 1. 

Table 1 Summary of PdM state-of-the-art works according to their technique 

PdM 

approach 

Characteristics Techniques and references 

Physical and 

knowledge-

based 

methods 

• Require domain knowledge 

• Mathematical models that are developed by 

domain experts 

• Linked to physical models 

• Require in-depth understanding of how the 

system works 

• White box, easy to understand 

• Have difficulties to model complex systems 

 

First principle modelling Zhao 

and Magoulès (2012), parameter 

estimation Okoh et al. (2017), IF-

ELSEs Vlasov et al. (2018), 

fuzzy-logic techniques Alvares 

and Gudwin (2019). 

Data-driven 

methods 
• Predict the systems state by monitoring their 

condition with methods that learned from 

historical data 

• Suitable for complex systems given they do 

not require to understand how physical 

processes work 

• They result in white, grey or black box 

approaches according to the used techniques 

• The most complex methods, which are 

usually the most accurate ones, are more 

difficult to interpret 

• They require a higher amount of data 

Statistical methods Able et al. 

(2016), reliability functions Zhou 

et al. (2007), artificial intelligence 

methods  Yuan et al. (2016). For 

instance, fuzzy rule-based Diez-

Olivan et al. (2017), Bayesian 

Networks Ansari et al. (2020), 

deep learning Malhotra et al. 

(2016), and tree ensemble based 

like XGBoost Cerqueira et al. 

(2016) or Random Forest Dos 

Santos et al. (2017). 

Hybrid 

methods 
• Combine domain knowledge-based models 

with data-driven techniques, sharing 

characteristics of both 

• They aim to achieve accurate models whose 

estimations are linkable to physical meaning 

• Merging different models increases 

complexity 

Combine physical/knowledge-

based and data-driven methods 

for RUL estimation Liao and 

Köttig (2016), hybrid model that 

qualifies uncertainty for RUL 

estimation Zhao et al. (2013), 

domain technicians create model 

for failure detection and 

prediction with water pipe data Li 

and Wang (2018), and combine 

knowledge-based rules systems 

with data-driven methods to 

refine them Cao et al. (2020).  
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Physical/knowledge-based and data-driven systems both have proven to work well for 

many different use-cases, but choosing one over the other and even selecting a specific 

architecture should be relative to use-case requirements. Nonetheless, lately data-driven 

techniques have gained popularity given their easiness to automatise and higher 

accuracy in modelling complex systems. Therefore, creating accurate data-driven 

systems guided by domain technicians to embed expert knowledge could combine 

virtues of both approaches. This approach can simplify the lifecycle of PdM 

architectures, facilitating their design, development, deployment, and monitoring. 

3.2. Methodologies and standards for Predictive Maintenance 

There are a great number of ways to create data-driven Predictive Maintenance systems. 

Nonetheless, most of them generally address one or many of the incremental stages 

presented in the following reference architecture. The first step is anomaly detection, the 

second is diagnosing the anomaly, the third is prognosis of anomalies evolution and the 

fourth and last step is mitigation, like presented by Welz (2017) and is defined in the 

PdM roadmap of Figure 1. 

 

Figure 1 PdM roadmap by Serradilla, Zugasti, and Zurutuza (2020). 

The standardisation, specifications and guidelines on manufacturing and PdM 

are gathered in norms and standards. The norm UNE-EN 13306 (2018) defines 

maintenance and maintenance management terms, which enable the understanding of 

key PdM concepts. It also classifies existing maintenance strategies in a tree scheme 

regarding their underlying technique, summarises the operating time distribution in 

down state and the sub-states of up state, and defines how to address intelligent 

maintenance by prioritising the most critical failures. The Open System Architecture for 
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Condition Based Maintenance (OSA-CBM) specification by Lebold et al. (2002) is a 

standard information flow architecture for CBM systems, on which the aforementioned 

reference architecture is based. It proposes XML schemes to facilitate CBM 

implementation and 7 layers of information flow. The international standard ISO 17359 

(2018) is based on other standards, and provides a guideline for condition monitoring 

and machine diagnosis based on sensor data. It presents a procedure for implementing 

PdM on a schematic flowchart, divided in key steps that complement the stated 

reference architecture. Moreover, O’Donovan et al. (2015) presents a set of data and 

system requirements for implementing equipment maintenance applications of smart 

manufacturing in industrial environments. It also presents an information system model 

that provides a scalable and fault tolerant big data pipeline for integrating, processing, 

and analysing industrial equipment data. 

Many publications present their own variations and frameworks that 

complement the reference architecture and stated standards, some relevant ones are 

presented below. Rana, Kumar and Srivdya (2016) present a guideline to help 

companies in the analysis of the most suitable maintenance strategy for each use-case. 

As they state, two relevant aspects are the analysis of data collection method and failure 

mode effects and criticality analysis (FMECA) Jordan (1972). If the Predictive 

Maintenance turns out to be most optimal, there exist other works that recommend the 

stages or suitable steps to facilitate its implementation, as the ones presented below. 

The article published by Deloitte Institute (2017) presents a PdM journey in 

levels. Level 0 provides a maintenance based on reactive resolution of failures, level 1 is 

based on visualisation, level 2 depends on rules created by expert-knowledge, level 3 is 

supported on data-driven anomaly detection, level 4 is based on prognosis models and 

the 5th and last level is based on the identification and mitigation of the anomaly using 

Root Cause Analysis (RCA). 

The review by Khan and Yairi (2018) proposes a data-driven flowchart 

methodology to successfully apply PdM. It is supported on OSA-CBM, PdM reference 

guidelines, architectures and previously reviewed articles. Moreover, it states that the 

difference between traditional data-driven, statistical and traditional Machine Learning 

(ML) in comparison with deep-learning methods is that the latter one feeds the model 

with preprocessed data given it can extract features directly whereas the former ones 
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also need feature selection and extraction. Conversely, this article is focused on the 

capability of deep learning models’ application in system health management.  

Moreover, Nuñez and Borsato (2018) presents an ontological model to guide the 

implementation of expert systems for prognosis and health management. They 

demonstrate its applicability by implementing an expert system that models the RUL of 

a mechanical machine before entering into a functional failure.  

Furthermore, the publication by Bousdekis et al. (2015) proposes how diagnosis, 

prognosis and decision support is influenced by company management and the relation 

of these tasks with maintenance management. It also explains how each PdM stage can 

influence or result into maintenance actions. This is the way PdM systems impact 

company maintenance by giving recommendations and prospect. 

In addition, there are other methodologies designed to handle general machine 

learning life-cycle that can also be used for PdM model development. One of principal 

ones is CRISP-DM by Chapman et al. (2000), even though it is not specifically 

designed for maintenance and therefore it does not consider how to handle industrial 

requirements.  

All in all, related methodological publications are either: about CBM, focused 

on details of data-driven model types, roadmaps that show trends and highlight future 

directions, focused on technical aspects of one or two PdM steps, overlook the 

importance of domain expertise, not specific for PdM and therefore not adapted to its 

characteristics, or are not developed to address industrial companies’ requirements. For 

these reasons, many publications end up following their own steps to address their use-

cases. 

A research on electronic databases including Scopus, Engineering Village, 

Springer Link, Science Direct and the search engine google scholar was performed in 

the time period between 2011 and 2021, to search for articles with the terms “predictive 

maintenance” AND “methodology” AND (“data-driven” OR “life-cycle” OR 

“development”). This research reported no methodology for data-driven Predictive 

Maintenance systems application that details: their design, development and 

implementation, defining the required steps and resources, while specifying how to 

combine data-driven models with domain knowledge adapted to industrial use-case 

requirements. 
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4. MEDADEK-PdM

The main contribution of this paper is the MEthodology for DAta-Driven techniques 

and Expert Knowledge combination for PreDictive Maintenance (MEDADEK-PdM) 

presented in Figure 2. It contains the general stages and main steps to guide 

manufacturing companies in the design, development and deployment of data-driven 

PdM systems. It is open and modular, being flexible and adaptable to address different 

industrial use-case requirements iteratively while keeping simple to facilitate its 

implementation and understanding. Therefore, it enables the addition of new steps 

adapted to each use-case requirements while permitting the omission of the steps 

without asterisk, which are advisable yet not indispensable. 

Moreover, this methodology presents the tasks required to complete the steps, 

the required worker profiles to succeed in its application, and specifies which 

deliverables are generated by the end of each stage. Concretely, three main working 

profiles collaborate in the implementation of this methodology: business profile 

contributes with business vision and leads problem definition, domain technician 

contributes with domain expertise supervising the project and collaborating in tasks, and 

data-scientist guides the project and handles the tasks related to data-driven model 

development, deployment, and monitoring. The complete step-by-step version of the 

methodology is presented in APPENDIX A. 

This diagram is inspired by CRISP-DM  data analysis methodology as described 

by Chapman et al. (2000) and PdM standards and methodologies like the ones presented 

in the article by Reliasoft Corporation (2007), and the ones presented in Section 3.2. 

Business 
analysis

Business, 
product and 

proccess 
analysis

Problem 
definition *

Resources 
analysis

Design and 
implement 

data 
collection 
process *

Data 
resources 

verification 
and pre-

analysis *

Data 
collection re-
definition *

Collected 
data 

validation *

Domain 
knowledge 

analysis

Model 
development

Model design 
for use-case 
requirements 

*

Data 
preparation 
for model 

requirements 
*

Model 
selection *

Design 
validation 
strategy *

Model 
creation and 
optimisation 

*

Model 
validation 

and ranking *

Model 
deployment 

and 
monitoring

Deployment 
strategy 

definition *

Model 
deployment 

to production 
*

Analyse 
model alerts 
and mitigate 

problems

Monitor 
model 

performance 
and correct 
working *

Model 
retraining

Figure 2 Scheme of proposed data-driven PdM methodology. Consists of four stages and their steps.
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Methodologies and standards for Predictive Maintenance. It contains four main 

sequential groups, denominated as stages: business analysis, resources analysis, model 

development and model deployment and monitoring. Its iterative design facilitates and 

fastens models going into production, and then promotes incremental iterations to 

enhance their performance. 

4.1. Business analysis 

Business analysis is the first stage of the methodology, which is composed by two steps. 

• Business, product and proccess analysis 

The first step is to perform business, product and proccess analysis adopting a 

business vision by understanding the products and services the company offers, its 

business model and how they are related to the manufacturing proccess. It enables to 

prioritise among problems that address business requirements, such as production 

parameters optimisation, quality control and choosing the suitable maintenance 

strategy. 

• Problem definition 

If previous step’s analysis results in prioritising maintenance optimisation, the assets 

with highest impact have to be evaluated, starting with the most common and 

critical failure types identified with tools like Failure Mode Effects Analysis 

(FMEA) and FMECA by Jordan (1972). After that, the most suitable maintenance 

strategy for each asset has to be evaluated: whether Predictive Maintenance, 

periodical maintenance or corrective maintenance; thus completing problem 

definition. A good resource for this analysis is the guideline by Rana, Kumar and 

Srivdya (2016). Finally, if Predictive Maintenance is the maintenance strategy to be 

implemented, then the methodology advances to the second stage; which focuses on 

analysing use-case resources. 

Business analysis is the only stage where the three required profiles for the 

methodology work together for its completion: the business manager provides business 

perspective and helps to define business requirements; the domain technician provides 

technical and operating expertise; and the data scientist helps to guide this stage while 

learning background from other profiles. As a result of completing this stage, two 
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documents can be created: Document 1.1 resources characteristics contains a summary 

of how business works, business model, products and services, and how manufacturing 

process works; and Document 1.2 problem definition, which explains manufacturing 

critical assets ordered by impact, which are maintenance requirements for these assets 

and components, and analysis of maintenance strategy suitability for them.  

4.2. Resources analysis 

After understanding the business and defining use-cases, the second stage is resources 

analysis for the problem. 

• Design and implement data collection process 

The first step is to design and implement data collection process. The data should be 

collected initially under similar EOCs that want to be modelled from the same 

machines and assets through time. Comparisons among different machines/assets of 

the same type, even if being built under the same specifications, is difficult given 

differences in EOCs, tolerances, adjustments, etc. EOC information is essential to 

give data-driven algorithms working context of the monitored assets, like 

environmental perturbations or working conditions that can affect its performance 

and result in anomalies or component degradation. Whereas monitored EOCs can 

boost model accuracy, there exist other relevant variables that are not controlled or 

even monitored like environmental noise and disturbance, lack of sensors or their 

misplacement. Missing information like this that influences the monitored process 

adds uncertainty, and a result, the created PdM system will be less accurate. 

In addition, sampling rate of variables is of utter importance. 

According to the Nyquist-Shannon sampling theorem, a signal of unknown 

frequency locations has to be sampled at least at 2 times its frequency in order to 

enable signal reconstruction, thus maintaining enough information to avoid non 

reversible information loss by the aliasing effect, presented by Mishali and Eldar 

(2009). Anyway, collecting more data than needed is preferable to collecting less 

than the stated, given in oversampled data downscaling is possible, but under-

sampled data cannot reconstruct original data correctly. However, big data 

collection and storage results into higher costs, so the collection strategy should be 

correctly designed to fit use-cases requirements to reduce costs and computational 
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time. The use of signal processing techniques is encouraged to design a suitable data 

collection strategy that addresses the use-case’s PdM characteristics. Signal 

processing techniques can help to determine a suitable sampling frequency. 

Moreover, signal processing techniques include filters such as IIR Filters, Chebysev, 

Butterworth or Bessel as stated by Almaged and Hale (2019), which can be used to 

reduce the bandwidth of a signal that has a higher sampling frequency than required. 

When the sampling rate of the variables is different, in order to enable data analysis 

in any timestep for all available variables, timestep by imputation such as repeating 

last value or interpolation can be useful. 

• Data resources verification and pre-analysis 

The second step is data resources verification and pre-analysis. It must be retrieved 

from the storing device, usually the online platform or hard disk on PLC. After that, 

a preliminary data analysis has to be performed using tools such as time-series or bi-

variate plot visualisation, correlation analysis, feature description and distribution 

plots. It is extremely important to take into consideration that correlation does not 

mean causality and therefore, avoid believing that two or more variables are related 

whilst this relation is caused by external factors. For instance, these could be 

collected under same circumstances or were only modified at the same time by 

coincidence. This problem can be avoided with the integration of theoretical and 

domain expertise to validate aforementioned relations. 

• Data collection re-definition 

The third step is data collection re-definition, where the integration on similar 

machines in aspects such as sensor type, models or placement is standardised. 

Moreover, the problem has to be re-evaluated considering the gathered data to check 

its suitability. This stage may reveal that collected data is not adequate for the 

defined use-case requirements and company characteristics, so iteration between 

current and previous steps is necessary until these are addressed; performing tasks 

like adding data sources or even revaluating the problem. Despite the initial machine 

monitoring process may not collect the most representative data for the designed 

task, this step helps to identify its gaps for further improvement. In addition, this 

methodology enables model contribution maximisation whilst minimising 

development effort; thus facilitating improvement by iterating steps. 

• Collected data validation 
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The fourth step is collected data validation from data sources in general, and 

sensors in particular. The procedure consists of asserting it is in the expected range 

given sensor placement, sampling frequency, sensor type and related aspects. If any 

deviation is detected, iterations between current and previous steps are necessary to 

fix it. In addition, this step must be validated from domain technician perspective, 

thus iterating between current stage and following one to enable validation based on 

domain knowledge. 

• Domain knowledge analysis 

The fifth and last step of resources analysis stage is domain knowledge analysis to 

gain insight about the use-case, its variable types, their physical meaning, how they 

are collected and the relation among them, both theoretically and in real process. 

This knowledge is essential for many steps such as data analysis, data preparation, 

model selection or ranking, and facilitates the creation of simpler, more accurate and 

easier to understand models. Nonetheless, even if domain knowledge is a key 

resource to understand data, there are usually differences between theoretical 

knowledge and collected data given the physical process is affected by many factors 

of collection procedure and component variability. For that reason, it important to 

analyse if data behaves as theoretically expected and if does not, be able to reason 

why. This can help discover problems in data acquisition process. 

Data scientist and domain technician profiles have to work together in this stage in 

order to define use-case requirements and design the data collection process. Moreover, 

the data scientist will learn domain knowledge to understand better relations among 

variables and therefore facilitate data analysis and interpretation, combining domain 

knowledge with data-driven techniques. Domain technicians will also help to validate 

collected data and refine it until the obtained data is representative for the use-case. 

By the end of this stage, two deliverable documents can be generated that can 

help in the analysis of resources suitability for the use-case and detect gaps, thus 

guiding the implementation of the methodology. Use-case requirements are collected in 

Document 2.1, whereas Document 2.2 contains information about resources to address 

them like: description of available data and how data collection process works; 

information of data pre-analysis with documentation of data and its characteristics, data 
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visualisation plots, sensor placement or normal working range of variables; and data 

relation to physical meaning and domain knowledge.  

These documents can facilitate the understanding of use-case requirements 

linked to its objectives, physical process, and data. Moreover, presentations composed 

by visual plots and concise text descriptions are interesting to convey the results of data 

analysis and resulting models to domain technicians and thus facilitate the 

communication to acquire knowledge. Therefore, domain knowledge can be used to 

complement data and resources analysis. 

4.3. Model development 

This is the stage where data-driven model of PdM system is designed, data is prepared 

according to its requirements, it is created and validated, obtaining as a result a version 

ready for deployment. It assumes that, after performing a preliminary data analysis and 

validation with domain expertise, the selected data subset contains predictor variables 

that are related to target variable. Moreover, relationship among variables is unknown 

given the complexity of physical systems. Therefore, the model is created under the 

basis that predictor variables have the power to predict target variables using an 

unknown function that the created model aims to represent in this stage. Several 

examples of target variables for PdM are: anomaly detection, diagnosis by RCA, health 

index calculation and prognosis, and RUL. Another assumption is that the observed data 

is big enough and of sufficient quality to represent those relations that can be 

generalised beyond the training process. 

This stage has a more in-depth technical background than the rest to facilitate its 

implementation, given a high number of questions and difficulties arise when dealing 

with tasks related to data adaptation for the model, model selection and validation. To 

facilitate the understanding of this section, it is divided in the following subsections: 

Model development flow explains the flow of this stage’s steps, while Data preparation 

extension and Model selection extension complement the information of corresponding 

steps with technical information. The reader not interested in technical details can skip 

the last two subsections and continue reading on Model deployment and monitoring 

stage.  
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4.3.1. Model development flow 

• Model design for use-case requirements 

The first step of this stage is model design for use-case requirements. The addressed 

machine learning task must be chosen to accordingly, defining model requirements 

that could better fit that task with current data characteristics, such as classification, 

regression, clustering, one-class classification, etc. Then, state-of-the-art research on 

data-driven Predictive Maintenance models should be carried out to find commonly 

used data-driven architectures and models that could fit the problem and selected 

task, supported on articles like (Carvalho et al. 2019; Serradilla, Zugasti, and 

Zurutuza 2020). 

• Data preparation for model requirements 

The second step is data preparation for model requirements, based on these 

processes: cleaning, preprocessing, feature engineering and split into train and test 

datasets. Commonly used data preprocessing techniques are: incorrect values 

cleaning, encoding and discretisation, segmentation, feature scaling (including 

normalisation and standardisation), noise reduction (reduce random variations of 

sensor output that are not related to sensor input) and imbalance data handling. 

Feature engineering can be done either extracting hand-crafted/traditional features 

that are relevant for the problem, or by using algorithms like Principal Component 

Analysis (PCA) or deep learning to extract features automatically from preprocessed 

features. The first type of features are easier to understand but require domain 

knowledge and are not specifically designed for the problem. In contrast, the second 

type of features are more difficult to understand but are trained directly from the 

data for the problem, so these do not require manual design of features. The 

extracted features should always be adapted to problem requirements and 

characteristics such as time-series, for instance extracting them in time-windows or 

cycles, to create features in new space where data context is easier to identify. When 

there is less information or data available, domain expertise and theory can help to 

gain additional insight or learn knowledge beyond the data. Data preparation is an 

essential step to achieve meaningful model results, and therefore, more in-depth 

information is presented in the subsection Data preparation extension. 

• Model selection 
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The third step performs model selection, analysing state-of-the-art models and 

evaluating which could better fit the characteristics defined in step one of current 

stage. Moreover, the set of target variables must be chosen for the model and think 

of how these are related to the PdM stage it will perform, adapted to data 

characteristics like information level and additional resources like the available 

domain knowledge. More than one type of model can be combined to create a more 

robust model, thus complementing the gaps that only one model can have. 

Furthermore, the training strategy for the model must be defined to assert the model 

is robust to noise or changes in EOC by selecting the appropriate data train/test 

partition strategy or using cross-validation. In order to facilitate the selection of a 

model that addresses the desired PdM stages, the subsection Model selection 

extension explains how to create them, and which type of models are most suitable 

for use-case data characteristics and requirements. 

• Design validation strategy 

The fourth step is the design validation strategy that will be used to compare and 

rank models in training and testing phases. It consists of choosing the most suitable 

metrics according to use-case characteristics, considering which are the target 

variables and how the model is designed to fit them. In addition to the quantitative 

approach the validation metrics offer, additional qualitative comparison strategies 

can be defined with domain technicians to integrate domain validation; these 

strategies assert that models also address use-case peculiarities from technical 

perspective. 

• Model creation and optimisation 

Hereafter, the model creation and optimisation take place in step five, based on the 

defined use-case requirements, prepared data, selected model and designed 

validation strategy in current stage. The model is trained to map predictor variables 

to target variables with the objective to minimise the error of its estimations, thus 

learning to relate them based on data. However, it must be constrained to generalise 

from data beyond the training set; this way it will work with novel data belonging to 

the same distribution. 

• Model validation and ranking 

The sixth and last step of this stage is called model validation and ranking, where 

validation metrics together with domain knowledge are used to evaluate, compare 
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and finally rank the generated models. This step enables to prioritise and validate 

models in a systematised way, asserting that the chosen ones are the most suitable 

for the data and are aligned with use-case requirements; commonly, iterating 

between the two last steps of this stage is necessary to achieve this suitability. The 

Monte Carlo simulations technique can be used validate data-driven models for 

PdM, as implemented in Ley and Orchard (2021). Once the model meets the desired 

characteristics, it is ready for deployment. 

This model development stage is guided by data scientists, who use different data-driven 

techniques to clean and prepare the data to create the chosen data-driven model. 

Nonetheless, constant interactions with domain technicians are necessary to assert the 

developed data-driven model addresses use-case requirements and ensure its estimations 

are related to physical meaning. This facilitates diagnosis, increases trust of 

stakeholders in the model, and ensures the model is created in a robust way; avoiding 

data biased relations by validation with domain knowledge. 

In this stage two deliverables are generated: Document 3.1 contains the 

decisions and steps performed for data preparation and model development, gathering 

the following aspects: definition of suitable model characteristics to address use-case 

requirements; data preparation steps for the model; research on state-of-the-art models 

and reasons for prioritising some models over others; definition of model validation 

strategy; and definition of how domain knowledge is integrated into models, specifying 

how it guides their development and validation. In addition, the deliverable 3.2 is the 

data-driven Model trained and validated in training data, guided by domain technicians 

to integrate domain knowledge.  

4.3.2. Data preparation extension 

Model should be chosen to address use-case and data requirements. Accordingly, its 

performance, interpretability, processing time and many other characteristics vary 

among use-cases and are tied to their limitations and decisions undertaken during the 

preparation. For instance, linear models are usually faster and easier to interpret, but 

they have limitations when modelling non-linear data relations. 
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The most challenging task of PdM system development is to obtain a dataset that 

is representative for the problem, preprocessed, and containing only features that are 

relevant yet interpretable if possible. It is better to focus efforts on collecting better data 

when the collected one is not good enough or little for the designed task rather than 

optimising a specific model to achieve a slightly higher accuracy. The reason behind 

this statement is that even the most complex models capable of modelling any kind of 

relationship are useless in a dataset that lacks of information on target variables, or 

when these are not useful for the previously defined business problem. 

Commonly, process data contains time-series signals, which can show 

characteristics like seasonality, stationarity and trend. Thus, observations of one 

variable are related to observations of the same in different timesteps and cycles, which 

can be useful to detect trends. This data is typically analysed together by taking chunks 

of specific size of continuous observations, technique denominated as sliding window. 

After analysing a specific time or cycles frame, the window advances to next chunk. 

Data can also be divided and loaded into smaller datasets when it does not fit into 

computer or server RAM, enabling to load and free memory at will. Some libraries that 

are specifically designed for that task facilitate this implementation. In addition, many 

factors influence performance of developed algorithms; the main ones are discussed 

below. 

When the modelled data belongs to different working conditions, these can be 

grouped by similarity to be analysed together or even create one model for each 

working mode. The latter can improve accuracy while simplifying the model, but does 

not generate common relations among data of different EOC. This issue can be solved 

by using only one model instead of many and feeding it with working condition data. 

With the objective to create a model that adapts to use-case requirements, data 

peculiarities, and in further stages be able to interpret its predictions or trust it, it is 

necessary for data scientists to gain domain knowledge. However, many times they will 

need the assistance of expert technicians for model interpretation or optimisation on any 

step performed by following the Predictive Maintenance stages presented in the 

methodology. 
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4.3.3. Model selection extension 

Selecting the most adequate machine learning task to solve for each use-case is not 

trivial. This subsection aims to facilitate the analysis and choice of ML architectures 

given data characteristics, and recommended ML type to solve the corresponding task 

presented in Figure 3; these are described in incremental levels according to the 

information companies have with regard to data, in the paragraph below. The roadmap 

presented in this Figure can be used to select the correct model type to address target 

steps of PdM roadmap (Figure 1). Moreover, this section describes the characteristics of 

ML tasks for each PdM stage: anomaly detection, diagnosis, prognosis, and mitigation. 

Data acquisition and preprocessing are two additional stages that prepare data for PdM 

which are often overlooked. Despite this fact and being resource demanding, these are 

necessary to obtain high-quality data and, as a result, accurate models.  

 

Figure 3 Roadmap to assess in data-driven task and machine learning model selection according to available 

data levels. Higher levels indicate higher information on collected data, which enable more accurate results 

and possibilities to address PdM roadmap of Figure 1. 

 

Information about the capabilities of each data level in Figure 3, and which PdM steps 

can address is explained in the following list:  
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• L0) the company lacks working historical data. Therefore, the only possible 

approach is using domain knowledge-based systems that embed prior theoretical 

and expertise into the system.  

• L1) unclassified data can only be treated in unsupervised way by clustering data-

driven systems, and self-learning by tracking reconstruction residuals using 

compression techniques like autoencoder, calculating prediction error of 

regressors or by using discriminators of generative models. 

• L2) domain technicians confirm that collected data belongs to normal working 

condition, so novelty detection techniques, commonly one-class classification 

algorithms, are used to detect instances different or far from the already known. 

This level also enables self-supervised prognosis, which can be used to identify 

changing trends on machine condition by integrating domain expertise. 

• L3) there are few failure observations classified and the rest are classified as 

correct data, so semi-supervised algorithms are used like data-augmentation for 

imbalance class data handling, and synthetic failure data generators. Monitoring 

few failures of one failure type may not be enough to train a supervised model, 

and therefore more observations may be required. However, any failure data can 

be used to validate and calibrate models trained on level two, obtaining more 

accurate and robust models. 

• L4) there is enough failure and non-failure data, therefore the problem is 

supervised. In this scenario, binary classification algorithms are used to classify 

failure and correct observations, and when there are different types of failures 

classified in training data, multi-class classification algorithms are used to 

differentiate them. This supervised historical data has applications on supervised 

machine condition prognosis to estimate how it will evolve, and therefore detect 

trends like degradation. 

Each data level can use tasks of lower levels in addition to the ones of itself. The higher 

level in the roadmap, the more complete and accurate predictions the model can 

achieve. Machine learning tasks of data levels are used to solve Predictive Maintenance 

steps:   

• Anomaly detection is commonly performed by classification models that classify 

asset condition into faulty or correct, and some can even classify different types 
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of failures. However, these models can only be used when there are enough 

observations of the target failure types. In many cases, there is little or no failure 

data so the common strategy in these scenarios is modelling asset normal 

behaviour and detect anomalies when the data is different. There are three types 

of anomalies regarding the number of observations involved: individual 

observation denominated as local, global which formed by several observations, 

and context is not an anomaly by itself, but it becomes one when additional 

information is given. The type of anomaly to be detected should be chosen 

according to the use-case. 

• Diagnosis: once an anomaly has been detected, diagnosis should be performed 

to analyse which components have been affected, in which way and to what 

extent. Some possible common factors are measurement errors, changes in EOC, 

component degradation while keeping correct working mode, failures and 

conditions that can lead to them. A useful technique to detect failure causes is 

root cause analysis, which is defined by Andersen and Fagerhaug (2006) as 

“structured investigation that aims to identify the true cause of a problem and the 

actions necessary to eliminate it”. It also and defines three levels of causes: 

symptoms, the first-level causes that lead to the problem, and the higher-level 

causes that lead to first-level causes, where root cause is the origin. 

• The used diagnosis techniques have to adapt to use-case, its data requirements 

and the implemented anomaly detection model. When correct and failure data or 

even different type of failures is available, performing a classification of failure 

types is straightforward. Conversely, when there is no failure data classified, this 

step has to be performed in unsupervised or self-supervised ways, by combining 

these types of machine learning models with domain expertise. These techniques 

can make use of health indexes, which represent the percentage of deviation the 

assets suffer with respect to past correct working data that could be related with 

damage. 

• Prognosis in PdM is based on remaining useful life models which estimate the 

remaining time to failure of a component or asset in the working conditions of 

that moment based on its state and the detected and diagnosed anomalies. These 

models can also provide a confidence bound of their condition. Conversely, 

when there is no historical run-to-failure data, data-driven prognosis models can 
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only perform health degradation monitoring and estimation by tracking health 

index in a self-supervised way. 

• Mitigation: the last step consists of providing operators with data-driven 

notifications and recommendations to speed up and optimise maintenance. 

These should be based on alarms and information gathered from previous PdM 

stages in a simple yet effective way to understand by domain technicians.  

Table 2 presents how the integration of domain knowledge with data-driven systems 

can help in each step of Predictive Maintenance methodology application, supported on 

the scheme presented in the review by Khan and Yairi (2018). 

All in all, no algorithm is better than the rest, their suitability depend on use-case 

and data requirements. Moreover, more than one model can be adequate for the same 

use-case. It is useful to analyse their specifications, and choose based on guidelines, 

related reviews and state-of-the-art works like (Selcuk 2017; Serradilla, Zugasti, and 

Zurutuza 2020). Nonetheless, nowadays it is common to combine different techniques  
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Table 2 Contributions of data-driven and domain knowledge in each PdM stage individually and combined. 

Stage Domain knowledge (domain technician) Explainable data-driven techniques Combined 

Data 

adquisition 

and database 

creation 

Define relevant features to monitor according to 

experience and theoretical background. Direct 

relation to physical meaning. Assert collection is 

correct given knowledge. 

Feature relevance with respect to target feature 

according to data. 

Most relevant features selection. Knowledge 

gain on process and understand it better 

combining data and domain knowledge. 

Data 

preparation 

Extract and select the most relevant features to 

monitor according to domain knowledge and 

relation to physical meaning. Validate and clean 

data. 

Preprocessing: automatic machine learning 

based techniques to preprocess data: encoding, 

data cleaning, scalling, noise reduction, 

imbalance data handling and not available data 

handling. Automatic feature extraction, 

selection and fusion. 

Select and extract the most representative 

features for the use-case and target variable that 

could be understood by domain technicians or 

linked to physical proccess. It may be automated 

by data-driven techniques, previously guided and 

afterwards validated by domain technicians.  

Anomaly 

detection 

Help create the data-driven system. Then, assert 

that anomaly detector works well in 

preproduction, production and detect changes in 

trends, helping to decide when to retrain. They 

also enrich models’ output with expertise. 

Automatically detect anomalies based on 

process and related data, comparing it with 

historical database and embedded knowledge. 

Automatic data-driven anomaly detection and 

verification based on experience and theoretical 

background. 

Diagnosis Validate the diagnosis performed by data-driven 

system and complement it with expertise, 

theoretical background and add relevant external 

information, i.e. collecting additional EOC 

information not gathered in the data. 

Diagnose anomaly type if anomaly detector is 

a multiclass classifier. Conversely, when the 

model is binary classifier or unsupervised or 

self-learning, it can outline the reasons or 

variable values that made it be anomaly, 

helping technicians perform diagnosis. 

ML extracts data and models correlations to help 

in diagnosis, and domain technicians use context 

and knowledge to validate and complement 

algorithm predictions and gain additional 

knowledge. 

Prognosis Prognose degradation based on assets properties 

like materials, designed lifecycle and working 

experience. 

Prognose asset degradation by tracking their 

health based on data, monitoring how it 

changes with time. 

Combine data and knowledge to perform more 

accurate prognosis and gain knowledge. 

Decision 

making and 

mitigation 

Plan and coordinate maintenance actions 

supported on maintenance management and 

manufacturing operation management processes, 

using PdM system information to address 

process requirements. This enables moving 

towards a more optimised maintenance. 

Raise alarms, notify strange working 

conditions and give recommendations to 

prevent failures. In addition, advice how to 

perform more optimal maintenance by 

comparing current condition with historical 

data. 

Domain technicians investigate data-driven 

alerts, recommendations and highlighted data by 

comparison with previous events and knowledge 

to interpret, understand and validate their 

predictions. Based on these resources, 

technicians create and execute maintenance plan. 
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to create a more complete architecture that overcomes the gaps of containing 

algorithms, thus better addressing use-case challenges. 

4.4. Model deployment and monitoring 

The final stage of the methodology consists of preparing the model and taking the 

necessary steps for its deployment to production. 

• Deployment strategy definition 

The first step is deployment strategy definition to systematise and speed up the 

action of putting models into production. Firstly, the most suitable location for 

model must be selected, choosing whether it will be executed in cloud or a 

Programmable Logic Unit (PLC) in the production plant or edge. Another relevant 

aspect is the execution periodicity, which can be offline, on streaming, or periodical 

after performing a certain number of cycles or working time. This strategy should 

also contain detailed steps to follow for model deployment to production, which will 

provide with a framework that facilitates model testing in production environment 

while avoiding mistakes. 

• Model deployment to production 

The second step is model deployment to production. For that, first the developed 

model must be tested in a preproduction environment that shares the characteristics 

of the production environment. This enables to detect incompatibilities and possible 

problems of the model in production without interrupting or damaging that system, 

facilitating the deployment of the pretested model. Once the model is running in 

production, it has to be tested by monitoring its performance with new production 

data and maybe generating synthetic failures or degradation data to check that it 

works correctly and raises alert messages. 

• Analyse model alerts and mitigate problems 

The third step of this stage is to analyse model alerts and mitigate problems. It aims 

to assert correct model performance in production, so the model has to work 

correctly with novel production data and should also be tested with different already 

tested data of the training phase to assert the alarms are raised correctly. In case any 

problem or abnormality arises in the process, it should be addressed until the model 

works properly according to the defined requirements. 
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• Monitor model performance and correct working

The fourth step is to monitor model performance and correct working by tracking its

evolution and adaptability to production data with techniques like prediction

uncertainty, detection of changes in data such as EOC, and machine degradation that

should be reflected on data. When any of these indicators suggests that the model is

not working correctly with collected data, a more robust analysis should be

performed before accepting this conclusion. This analysis must combine data-driven

techniques and domain expertise to perform a complete evaluation from both

perspectives, gaining more insight and facilitating the cause detection of incorrect

working.

• Model retraining

If the analysis concludes that the model is not working correctly, then the fifth step

of this stage and last step of the methodology must be performed: model retraining.

This step is supported on the conclusions of the abnormal working analysis

performed in the previous step, which will be used to define the tasks and resources

required to retrain the model. After the resources are collected and tasks are

performed to prepare the retraining, the process switches to the model creation and

optimisation step of the model preparation stage, where the model will be adapted to

new requirements and its development and deployment will continue from this step.

In this last stage, domain technician and data scientist profiles have to work together to: 

define the most suitable deployment strategy for the model in the use-case according to 

its requirements and resources; deploy the model and validate it combining data-driven 

metrics and domain knowledge; monitor its performance and go back to retraining when 

it stops working correctly to adapt to new working conditions.   

During this stage, two deliverables are generated: deliverable 4.1 contains the 

Model working in production that analyses production process data either on streaming 

or periodically. This model has been tested to assert it works correctly in production, 

and protocols to handle its alerts and retraining are collected in the deliverable 4.2. The 

last deliverable is 4.2 Document, which defines the deployment steps necessary to take 

the model generated in previous stage to production, containing: a protocol to test 

whether the model is working correctly in production; a protocol to analyse and mitigate 

PdM alerts the model generates, thus facilitating domain technicians the application of 
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PdM in the system; definition of how to monitor model performance in production 

using data-driven signals and domain knowledge to analyse and define when retraining 

is required; and guidelines to define how the retraining process should take place.  

As explained throughout this section, the methodology is iterative, which means 

that backward steps are recommended to create a model that fits better use-case 

requirements. According to the previous argument, even when the model development 

has finished and it is into production by the implementation of the last step, it can be 

further improved and should be monitored to adapt to industrial evolving requirements. 

However, even if there is no need for the model to be continuously under development, 

it could have different versions as time goes by to adapt to new circumstances and 

integrate novel knowledge. 

5. Methodology application in fatigue tests remaining useful life 

This section explains how the methodology presented in current work has been applied 

to successfully implement a data-driven model that estimates the remaining useful life 

on bushing testbed experiments, as explained in the article by Serradilla, Zugasti, 

Cernuda, et al. (2020). That work enabled the validation of the methodology, 

demonstrating its application feasibility in an industrial environment where business, 

domain technician and data scientist roles worked together to obtain a model that met 

use-case requirements.  

To sum up, the objective of that article is to apply interpretable yet accurate 

data-driven models to predict the remaining life of fatigue experiments, which belongs 

to the third stage of PdM roadmap of Figure 1. In these experiments, bushings are 

subjected to proportional EOC to real machines, which enables to extrapolate the 

knowledge learnt in controlled environment to real machines in the future. The dataset 

of this use-case contains 576 experiments where 97 EOC variables are monitored in a 

sampling rate of 1 sample per second. Given interpretability is targeted, the obtention of 

easy to understand features and models is essential, which means that domain 

knowledge plays a key role in the design, development and validation of models. 

The complete methodology MEDADEK presented in APPENDIX A has been 

adapted to address current use-case requirements, simplifying and adapting its steps to 

facilitate its understanding and implementation. These steps are grouped by stages and 
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summarised in diagram of Figure 4, where asterisks indicate required steps of the 

methodology, and the step-by-step process is explained in current section. 

 

The first step was business, product and process analysis, which forms the first 

stage together with the second step. It focused on learning about the company of this 

use-case, which designs, manufactures and supplies metal forming machine tools that 

carry out different forming operations to manufacture parts. The second step was 

problem and use-case definition according to impact and priority, thus analysing and 

prioritising the maintenance issues that can have more impact for the business. Most 

manufacturing companies consider critical the unexpected failures given their downtime 

and repair costs. Therefore, the decision to study bushings was taken given they play a 

key role in machines. With the objective to perform experiments and gather data, a 

bushing testbed was used.  

The second stage started in this step continued on the next step of understand 

physical process and data, supported on domain knowledge, first in real machines and 

then how the testbed worked. This facilitated the iteration with the following step 

denominated as data resources verification and pre-analysis, validated with domain 

       

       

       

       

          
                 

                                     

                             

                               
                            

                  

                          
             

                             

           

                          

                          

                                     

              

                               

                                
              

                             

                             
          

                                       

                  

                 

          

                             
        

                               

                                

                         

                

               

       

       

                                  

                                     

                              

                             
               

                            

                               

                                
                               

                

          
     

            

 

 

 

 

 

 

 

 

 

 

 

           

           

Figure 4 Diagram of MEDADEK adapted for explainable bushings’ remaining life estimation use-case. 
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technicians and its labour, which used plots, correlations and distributions to further 

increase the process understanding. As a result, a summary report was created and 

presented to domain technicians to contrast gained knowledge and information and 

answer questions arisen in the process. 

The third stage started on the fifth step of the diagram called data preparation 

for model requirements: cleaning, preprocessing and validation of the collected data. 

Accordingly, it is directly related with the next step data preparation for model 

requirements: feature selection with domain technicians; this separation helps to 

highlight the high relevance feature engineering has in this use-case. This step aims to 

obtain a subset of representative features for the problem as the original features where 

highly correlated among them. Henceforth, domain knowledge and correlation analysis 

where combined to select a subset of features. Then, the following step data train/test 

split for model robustness was selected to be representative for the problem and 

consequently chosen to be analysed afterwards with the chosen model: 10-fold cross 

validation and 80/20 train/test split. The k-fold cross validation technique is a robust 

way to evaluate the performance of a model with new data. The training dataset is 

divided into k pairs of training and validation data subsets, to train and evaluate one 

model for each fold. 

After preparing the data for the model, the model selection step was performed. 

In this step, the PdM task was delimited to a regression problem where the target was to 

estimate the remaining time for experiments at any time according to process data. 

Different state-of-the-art data-driven models were tested in the problem, concretely 

gaussian naive bayes, linear support vector regressor, k-neighbors regressor, linear 

discriminant analysis, xgboost regressor and random forest regressor. Deep learning 

models were discarded given these are harder to interpret and therefore collide with the 

main objective of the use-case. 

At this point, a validation strategy to compare the models was required, so the 

life-cycle advanced to design validation strategy step, where the model ranking strategy 

was defined using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) 

metrics. Moreover, the model validation based on knowledge was defined by interacting 

with domain technicians in the following way: presentations on model results with 

aforementioned metrics and explainability methods to infer models’ overall behaviour 
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and check it fits domain knowledge. Then, the model creation and optimisation step for 

the selected state-of-the-art models was performed, and the model validation and 

ranking step was performed according to the previously defined model validation 

strategy. The testing procedure used 10-fold cross-validation for robustness, and the 

metrics, showed that tree ensemble models were much more accurate than the rest and 

their similar performance made us focus on random forest given it provides a naive 

explainability method of feature importance. The result of 10-fold cross-validation was 

compared with random train-test splits and was similar, so the later was chosen to speed 

up to testing models in training, and then use again cross-validation to test the final 

model; this is the procedure for the step test model performance on chosen feature 

subset. 

Afterwards, the selected random forest regressor was used as baseline to 

improve the previously selected feature subset by applying the step data-driven feature 

selection techniques implementation and comparison, using the already experimented 

80/20 train test split by iterating with the previous step. Its result showed that the best 

error results was feature importance, concluding that this explainability method was 

useful for this use-case. This feature selection analysis was also useful for the next step: 

selected feature subset validation with domain technicians. Here the feature importance 

results and model error deviations when changing selected features were analysed. The 

selection of correlated features was done according to sensor placement, selecting the 

sensors that were physically more important for the prediction. Therefore, the feature 

selection took place combining data-driven techniques with domain knowledge. After 

choosing the final feature subset, all the models were retrained and their performance 

was analysed, which did not significantly change while allowing model simplification 

by input dimension reduction. The last step of the third stage was to use XAI techniques 

to translate feature contribution to physical meaning with domain technicians, which 

uses model explainability to infer knowledge on feature prediction capability on the 

model in both ways: global indicating overall performance and local indicating feature 

importance evolution throughout the experiment, both enabling comparison among 

models. 

The fourth and final stage is dedicated to connecting the developed model with 

the testbed data collection module so that the model can analyse testbed data on 
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streaming. The first step of this stage was deployment strategy definition and 

preparation of production environment, where the deployment platform that replicated 

preproduction environment characteristics was designed and prepared, and it was 

connected to the testbed to enable the integration. After creating the production 

environment, the second stage was model deployment to production, where connection 

between testbed data and model is tested, and the model reads testbed data, use it to 

make predictions of the remaining experiment life, and returns the prediction to the 

testbed. Then, the prediction can be shown to the machine operator or be used to 

generate alerts that can predict current and future working failures of the system, and as 

a result, prevent failures. The penultimate step and currently the step being performed in 

this use-case was monitor model performance and correct working, which is a relevant 

task to keep the model up-to-date and adapted to changes in EOC, machine degradation 

and related factors. The final step of the methodology was model retraining, which 

defines and collects the resources, and performs the tasks necessary to adapt the model 

for the new environment and requirements, and then going back to the step model 

creation and optimisation to complete the retraining when required. 

6. Annotations on methodology application 

6.1. Applicability of the methodology 

The methodology presented in current paper is divided into stages and steps to provide 

manufacturing companies with an easy-to-follow guideline to develop data-driven 

models guided by domain technicians for Predictive Maintenance. It is adaptable to 

company requirements, agile and iterative to minimise the time to production, 

delivering value since early stages. It is based on proof of concepts, going through the 

whole model creation process and ending in production for simplified models and once 

having a model deployed, iterating to improve it. 

Its application has shown that data-driven models influenced by expert 

knowledge enable the application of more accurate yet complex data-driven models in 

industry by the physical meaning integration and understanding of domain knowledge. 

Moreover, even though business vision is an aspect commonly overlooked in state-of-

the-art works, it is essential for project success and its alignment with company 
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requirements and business characteristics. Therefore, data scientists need to know about 

companies and collaborate with domain technicians and business profiles, learning to 

communicate their problems in a simpler way and adapting to their language. 

Manufacturing companies that are starting to implement Predictive Maintenance 

models may not have the most optimal resources or expertise to develop them. For that 

reason, is important to adapt to company requirements and try to generate value with 

available resources. Regardless, data acquisition process should be continuously 

improved given that model performance relies on data quality. Data can be improved in 

many ways such as adding metadata that enriches it with context, augmenting the 

sampling rate to a sufficient to detect the aimed patterns, adding new sensors or 

annotating data. 

6.2. Remarks to address challenges 

Most data scientists would benefit from learning technical knowledge about the use-

cases, like how processes and machines work, and basic mechanical background; these 

skills will facilitate their communication with other profiles and open their vision to 

approaches that complement their mathematical and programming skills. The data-

driven PdM techniques must be suitable for use-case requirements, which makes 

necessary model state-of-the-art research, background acquisition, implementation and 

adaptation of domain knowledge. 

Data quality is an aspect often overlooked and taken for granted, despite being 

one of the most important aspects in data-driven model lifetime, having high influence 

on model performance, and being the base where model development steps are 

supported. Therefore, data preprocessing, cleaning, feature engineering, and data 

validation tasks are relevant to obtain a dataset of predictor variables related to the 

target; these will remove missing data or redundant variables that increase model 

complexity and training resources, while preventing the model from learning biased 

relations from the dataset that are not physically or theoretically related. Even the most 

advanced data-driven systems are unable to achieve good enough performance in bad 

datasets, but more basic algorithms can model well designed and meaningful datasets, at 

least to some extent. Hence, the data collection process optimisation must be a priority. 

Furthermore, data scientists spend much of their working hours in data cleaning, so the 
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optimisation and systematisation of this process can speed up the implementation of the 

whole methodology. 

Collaboration of at least three profiles is essential for successful PdM models 

development: business profile, domain technician and data scientist. Additionally, given 

the data acquisition process is key for these projects, domain technicians must research 

and analyse the adequate sensors for each use-case and computer science roles to 

automate data collection and storage. 

Each use-case has to define its requirements and the developed system must 

address them. Commonly, the implemented systems have to process the data in 

streaming to detected the anomalies that are happening in the moment, and raise alarms 

for operators to stop the machine and check its health, thus preventing failures that can 

damage components, Stated in the article by Rieger et al. (2019). Nonetheless, if the 

aim is to detect periodical degradation, the accuracy of analysis is more important than 

prediction speed, where periodical execution of more precise algorithms is preferable 

over faster yet less accurate ones. All in all, use-case definition is essential to design 

data-driven characteristics. 

A difficulty encountered when modelling machine data is that the components 

deteriorate with time but also maintenance is applied to them to restore their 

components’ health. The work by Bergquist and Söderholm (2016) explains that models 

must be updated with new information about the current process dynamics. It is 

important to define a strategy to retrain models so they can adapt to monitored 

component degradation, but at the same time they are capable of detecting when assets 

are not working properly or are degrading. 

The systematisation of design, creation and deployment of models by the 

presented methodology facilitates estimation of project cost, necessary resources and 

required time. These projects are focused on business and process requirements and 

therefore they can add value to manufactured products, thus improving manufacturing 

company competitiveness. Despite client privacy could be affected when collecting data 

from them, if this process is handled securely, data can bring competitive advantages to 

industrial companies. 

It is important to add business perspective to the problem and think about the 

tasks machine learning can address in industry and concretely their applications on 
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Predictive Maintenance. Although business perspective is out of the scope of this 

article, each company has to embrace its own strategy and think of ways to take 

advantage of this technology. It has applications on managing post-sales services, 

monitoring the aging of their machines in order to find the most fragile/critical 

components, finding failure causes that will enable components improvement by 

proactive maintenance or changing and evolving the business model to servitisation, 

and many other benefits. 

7. Conclusions 

This article presents the main challenges manufacturing companies face when 

implementing Predictive Maintenance, and highlights related works, standards and 

related methodologies as reference framework. Then, presents a four stages 

methodology that is afterwards validated on a real machine use-case, and finally the 

results and lessons learned from this application are exposed.  

The main contribution of this article is the methodology for data-driven 

Predictive Maintenance models generation guided by domain technicians for industrial 

companies: MEDADEK-PdM. It is designed to be open and modular to facilitate its 

adaptation to diverse industrial use-cases in an iterative way. The systematisation of this 

process was necessary due to each company was implementing models according to 

their expertise and had to make significant efforts to understand and structure the whole 

process. In addition, many state-of-the-art works focus on model development under 

controlled environment. For instance they use reference simulated data like turbofan by 

Saxena and Goebel (2008) that do not reflect industrial companies requirements such as 

changing EOC, interpretability or real-time/online data processing. This methodology 

also covers the model deployment stage, which many state-of-the-art works lack, with 

the objective to facilitate companies deploying their models to production. 

Business, domain and data perspectives are necessary to understand which 

problems are more critical to solve, and understand the physical process and data. All 

this context is necessary to create models that better align and fulfil company 

requirements. Data-science should not be an isolated process of the company limited to 

data analysis and computation, it should be integrated and contribute to the whole data 



   

 

38 

 

acquisition process, using expertise and use-case data to ensure high-quality data 

collection, thus facilitating model creation. 

The more data and the higher its quality, the more accurate models can be 

created and more information will be able to infer from them. One relevant task of the 

process is to obtain a representative dataset that contains both, defined target variables 

and predictor variables that are somehow correlated to them, giving context or related 

signals which have the power to estimate target variables. Once obtained this dataset, 

model selection, optimisation, ranking and validation will take place, but the quality of 

these relies on the quality of previous dataset. The data has to be representative for the 

use-case and accordingly the model has to be chosen to meet the requirements of both. 

Moreover, physical, theoretical and domain knowledge are necessary to be able 

to interpret the data and understand the generated data-driven models. Without them, 

even the simplest models are difficult to understand and test whether they are working 

correctly or not, thus being handled as black-box. Therefore, the machines and 

component target operating working modes have to be understood. For this task, 

domain technicians are essential, who explain the relationships among collected 

variables either theoretically or by their expertise and enrich the process understanding, 

data analysis and model creation and validation. 

The completion of this research work has opened up two future research lines. 

The first research line is the validation of the methodology in production line use-cases, 

using it to develop data-driven PdM models guided by domain knowledge. The first 

steps of this research line include the implementation of the methodology to develop a 

PdM system for a stamping production line, which has been disseminated in the work 

Serradilla et al. (2021). The second open research line is the application of the 

methodology to develop PdM systems in other use-cases beyond manufacturing, 

analysing its suitability and adaptability to other research fields. 
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APPENDIX A 

The methodology presented in this article and its main steps have been summarised in 

Figure 5, containing a complete visual scheme with all the tasks, principal subtasks and 

relations that form steps of the methodology. Being an open and modular methodology, 

its implementation is flexible and does not require the adoption of all its steps, only the 

ones marked by an asterisk in the diagram. Moreover, it contains the principal profiles 

involved in each stage and the deliverables like documents and models produced at 

them. 
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Figure 5 Detailed MEDADEK methodology, specifying its stages, steps and tasks in a flow diagram. It also 

contains the required profiles and indicates deliverables created at each stage. 

       

          

                 
           
        

              

               
            

               
              

             
          

                
        

            
            
            

                    

                  
               

                 

        
                

           

          
        
          

                

             

             
               
               

 
 
 
  
 
 
 
  
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
  
 
 
  

 

     

               
           

             
      
         

             
       

        
     

            

        
       
      

             

            

           

             

           
            

        

    

            

         

       

      

    

             
             

           

         
        
        
     

      

       

    

           
      
         

       
         
         

            
           

       

      

       

    

               

      

           

           
          

           
               
            

              

             

              

              

        

             

         

      

          

                   

                           

             

        

              
        

                  
                 

                 

                

              
               

              
         

                

          
          
     

       
                  

            

           

                

                

                   

                   

                

             

          

             

             
           

      
             

                   

          
              
          

             

           

               

      

                

          

        
              

        

       

      
          

    
         

    
         

      

          

    
         

      

          

    
         

      
          

   

      

   

  

      

          

       
           

          

              
                 

       

        
            

      

             

          
       

              
           

         

       

          
             

              

            

           
               

                    
            
        

              

                
         

                
           
           

       

                 

             

     

          

              
            

             

                 
           

                

                

          

              

                

                

              

          

            
              

           
               

         
           
         

            
         

               

            
       

          

            

           
            

            
            

 

  
  

   

   

   




