Generating Frequent Itemsets Incrementally: Two Novel
Approaches Based On Galois Lattice Theory

Petko Valtchev!), Rokia Missaoui®, Robert Godin?, Mohamed Meridji%
Y DIRO, Université de Montréal, C.P. 6128, Succ. “Centre-Ville”,
Montréal, Québec, Canada, H3C 3J7
) Département d’Informatique, UQAM, C.P. 8888, succ. “Centre Ville”,
Montréal, Québec, Canada, H3C 3P8

Abstract

Galois (concept) lattice theory has been successfully applied to the resolution of the association
rule problem in data mining. In particular, structural results about lattices have been used in the
design of efficient procedures for mining the frequent patterns (itemsets) in a transaction database.
As transaction databases are often dynamic, we propose a detailed study of the incremental as-
pects in lattice construction to support effective procedures for incremental mining of frequent
closed itemsets (FCIs). Based on a set of descriptive results about lattice substructures involved
in incremental updates, the paper presents a novel algorithm for lattice construction that only
explores limited parts of a lattice for updating. Two new methods for incremental FCI mining
are studied: the first one inherits its extensive search strategy from a classical lattice method,
whereas the second one applies the new lattice construction strategy to the itemset mining con-
text. Unlike batch techniques based on F'CIs, both methods avoid rebuilding from scratch the FCI
family whenever new transactions are added to the database and/or when the minimal support is
changed.

Key Words: Frequent closed itemsets, incremental methods, formal concept analysis, Galois lat-
tices.

1 Introduction

Association rule mining from a transaction database has been a very active research area since the
publication of the Apriori algorithm [2]. Several improvements to the basic algorithm and many new
approaches have been proposed during the last decade.

It is well-known that the most challenging and time-consuming step in association rule mining is
the detection of frequently occurring patterns in the transaction sets (frequent itemsets) [1, 5, 14].
Such a step may generate a prohibitive number of frequent itemsets (and hence association rules) even
from a reasonably large dataset. The frequent closed itemsets (FCIs) research topic [21, 22, 31, 30]
constitutes a promising solution to the problem of reducing the number of the reported association rules.
Yet another difficulty arises with dynamic databases where the transaction set is frequently updated.
Although the necessity of processing volatile data in an incremental manner has been repeatedly
emphasized in the general data mining literature (see for example [11]), a few incremental algorithms
for association rule generation (and hence frequent itemset detection) have been reported so far [6, 7,
9, 25, 23]. The conclusion drawn from some of these studies highlights the need for more storage space
due to the impossibility to prune some of the infrequent itemsets at run time.



Our own approach to incremental FI generation is motivated by the belief that FCIs provide the
key to compact rule sets and low storage requirements. Therefore, we have been investigating the
potential benefits of using Galois lattice theory and formal concept analysis as a formal framework for
the resolution of the FCIs mining problem. In this paper, we examine the links between incremental
lattice construction and incremental FI generation. First, we establish the necessary correspondence
between basic elements of both frameworks. Then, we present a way to transform a recent version of
classical lattice algorithm into a FCI-mining procedure and discuss efficient implementation in terms of
a trie structure. As the resulting approach relies on extensive exploration of the temporary FCI family
upon each update, we investigate possible pruning strategies that limit the number of examined FCIs.
For that reason, we provide a set of characteristic properties for the lattice substructures involved in
incremental updates and embody them into a new incremental algorithm that concentrates on a subset
of relevant lattice nodes. The new algorithm is in turn transformed into an incremental FCI-miner
whose performances are compared to those of a recent batch procedure [22].

The paper starts with a short recall on association rule mining problem (Section 2) followed by a
brief summary of relevant results from Galois lattice theory and algorithmics (Section 3). The outline
of our approach is given in Section 4.3 whereas an efficient implementation based on a trie structure
is presented in Section 4.4. Section 5 describes an alternative approach that avoids the search of the
entire set of CIs when a new transaction is added. Section 6 provides a short survey of related work
and Section 7 discusses preliminary results about the practical performances of our method.

2 Association rule mining problem

Let T = {iy,i2, - ,im} be a set of m distinct items. A transaction T contains a set of items in I,
and has an associated unique identifier called TID. A subset X of I where k = |X]| is referred to as
a k—itemset (or simply an itemset), and k is called the length of X. A transaction database (TDB),
say D, is a set of transactions. The fraction of transactions in D that contain an itemset X is called
the support of X and is denoted supp(X). For example, the support of efh in Table 1 is 33%!. Thus,
an itemset is frequent (or large) when supp(X) reaches at least a user-specified minimum threshold
called minsupp.

As a running example, let us consider Table 1 which shows a supermarket database with a sample
set of transactions D = {1,---,9} involving items from the set I = {a,---,h}. The itemsets whose
support is higher than 30% of |D| are given on the right of Table 1.

Trans. | Items Itemset | Supp. || Itemset | Supp. || Itemset | Supp.

1 a,b,c,d e f,g h a 3 b 4 c 5

2 a, b,c, e f d 5 e 4 f 5

3 c,d, f,g, h g 4 h 4

4 e, f,g h ab 3 ac 3 bc 4

5 g bd 3 cd 4 cf 3

6 e, f,h ef 4 eh 3 fg 3

7 a, b,c,d th 4 gh 3

8 b, c, d abc 3 bed 3 efh 3

9 d fgh 3

Table 1: Left: A sample transaction database. Right: The itemsets of support greater than 30%.

An association rule is an implication of the form X = Y, where X and Y are subsets of I, and
XNY =0 (e.g., e = h). The support of a rule X = Y is defined as supp(X UY") while its confidence

!n the rest of the paper, we shall use the number of the transactions supporting X instead of the fraction.



is computed as the ratio supp(X UY')/supp(X). For example, the support and confidence of e = h
are 33% and 75% respectively.

Given a database of transactions, the problem of mining association rules consists in generating all
association rules that have certain user-specified minimum support and confidence (called minconf).
This problem can be split into two steps:

e Detecting all frequent (large) itemsets (FIs) (i.e., itemsets that occur in the database with a
support > minsupp),

e Generating association rules from large itemsets (i.e., rules whose confidence > minconf).

The second step is relatively straightforward. However, the first step presents a great challenge
because the set of frequent itemsets may grow exponentially with |I].

Since the most time consuming operation in association rule generation is the computation of frequent
itemsets, some recent studies have proposed a search space pruning based on the computation of
frequent closed itemsets only, without any loss of information. In particular, approaches inspired by
Galois lattices [4] have been suggested to that end [30, 21]. Thus, only a subset of FIs is produced
and stored, which is made up of the frequent closed itemsets (FCIs). An itemset X is a closed itemset
if adding an arbitrary item i from I — X to X results in an itemset whose support is lower than the
support of X (see next section for a formal definition):

Viel—X,supp(X U{i}) < supp(X).

The following table provides the set of all CIs, both frequent (more than 30%) and infrequent ones,
relative to the TDB of the previous example (see Table 1).

Set of CI | Closed itemsets
FcCrI ¢, d, g, £, be, cd, cf, ef, th, abc, bed, efh, fgh
CI - FCI | abcd, abcef, cdfgh, efgh, abcdefgh

The key property in the CI framework states that any itemset has the same support as its closure,
and hence is as frequent as its closure. For example, the closure of the itemset b is bc and both sets
have a support of 4.

Previous work [11, 21] has shown that CIs and FCIs may be used in the generation of all FIs
and rules, whereby there is no need to further access the TDB. Another important aspect of the rule
generation problem is the enormous number of rules that can be generated even for high support and
confidence thresholds. Producing minimal covers, or basis, for the entire rule sets is more useful from
the user point of view. Again, previous work has shown that such minimal covers can be generated
directly from the set of FCIs [24] or the lattice of CIs [30] (see the next section). Furthermore, the CIs
lattice structure provides a context for the efficient generation of rules limited to any given frequent
item subset [11].

The possibility of incrementally constructing the FI set is a highly sought feature within a dynamic
database where new transactions may be added at any time. To motivate our study of the algorithmic
problems which arise with dynamic data, let us consider the following example. Assume that the initial
TDB, D, includes only transactions {1,2,4---,9} while the increment is made up of transaction #3.
The following table provides the sets of CI for both the initial TDB and the increment. The augmented
TDB, i.e., D, is the union of D~ and the increment.

Set of CI | Closed itemsets
CI d, g, be, ef, abc, bed, efh, abed, abcef, efgh, abcdefgh
Increment | c, f, cd, cf, th, fgh, cdfgh




While a batch algorithm would have to start the computation of the CIs in D from scratch, an
incremental method will use both the new transaction and the existing set of Cls from D~ to compute
the new CIs in Increment and thus obtain the complete set of transactions from D.

Just like in the general case of FIs, there is clearly a room for incremental techniques which maintain
efficiently the FCI set upon the insertion of new transactions. In the rest of the paper, we present
an approach based on algorithms for Galois lattice construction, which, to the best of our knowledge,
pioneers the work on the subject.

3 Background on Galois lattices

The following is a summary of the key results from the Galois lattice theory [4], which provide the
basis of our approach towards incremental generation of frequent closed itemsets.

3.1 The basics of ordered structures

P = (G,<p) is a partial order (poset) over a ground set G and a binary relation <p if <p is
reflexive, antisymmetric and transitive. For a pair of elements a,b in G, if b <p a we shall say that a
succeeds (is greater than) b and, inversely, b precedes a. If neither b <p a nor a <p b, then a and b
are said to be incomparable. All common successors (predecessors) of a and b are called upper (lower)
bounds. The precedence relation <p in P is the transitive reduction of <p, i.e. a <p bif a <p b
and all ¢ such that a <p ¢ <p b satisfy ¢ = a or ¢ = b. Given such a pair, a will be referred to as
an immediate predecessor of b and b as an immediate successor of a. Usually, P is represented by its
covering graph Cov(P) = (G, <p). In this graph, each element a in G is connected to both the set of
its immediate predecessors and of its immediate successors, further referred to as lower covers (Cov')
and upper covers (Couv") respectively. In the following, we shall visualize a partial order by its Hasse
diagram, that is the line diagram of the covering graph where each element is located “below” all its
SUCCEeSSOors.

A subset A of G is a chain (anti-chain) in P if all elements in A are mutually comparable (in-
comparable). A subset B of G is an order ideal (order filter) if Va € G,b € B, a <p b= a € B
(b<pa=a€ B). Foragivenset A C X, theset [ pA = {c € X|Ja € A,c <p a} is the smallest order
ideal containing A. Dually, TpA = {c € X|Ja € A,a <p c} denotes the smallest order filter containing
A. In case of a singleton A, we shall note |pa instead of | p{a} (1pa instead of tp{a}). Moreover,
the order interval [a,b] is the subset of nodes obtained by the intersections of an order filter Tpa and
an order ideal | pb. A convez subset of an order is a subset that includes for any pair of its members
the interval they might compose. A mapping ¢ between two posets P and @ such that ¢ : P — @
is said to be order preserving if an order relation between two elements of P entails an order relation
between their respective images under ¢ in Q:

z<py= o) <q dy).

Furthermore, ¢ is said to be an order embedding of P into @ if the condition is also a sufficient one:

z<py e ¢(r) < dy)-

A lattice L = (G, <r,) is a partial order where any pair of elements a, b has a unique greatest lower
bound (GLB) and a unique least upper bound (LUB). GLB and LUB define binary operators on G
called respectively join (a Vi b) and meet (a A b). In a complete lattice L, all the subsets A of the
ground set have a GLB and a LUB. In particular, there are unique maximal (top, T) and minimal
(bottom, L) elements in the lattice. A structure with only one of the above operations is called semi-
lattice, e.g., the existence of a unique GLB for any couple (set) of elements implies a (complete) meet
semi-lattice structure.



3.2 Basics

The domain focuses on the partially ordered structure?, known under the names of Galois lattice [4]
or concept lattice [29], which is induced by a binary relation R over a pair of sets O (objects) and A
(attributes). For example, Figure 1 on the left shows the binary relation K = (O, A, R) (or context)
drawn from the TDB of Table 1 where transactions are taken as objects, items as attributes, and oRa
is to be read as “transaction o has an item a”. Two functions, f and g, summarize the links between
subsets of objects and subsets of attributes induced by R.

Definition 1. The function f maps a set of objects into a set of common attributes, whereas g° is the
dual for attribute sets:

e f:P(O)—P(A), f(X)=X"={a€ AVo € X,0Ra},
e g:P(A) - P(0), gY)=Y'={o€ OVa € Y,oRa}.

For example, w.r.t. the table K in Figure 1, f(14) = fgh and g(abc) = 127*. Furthermore, the

12456789 (O @

a b ¢ d e f g h
I1/X X X X X X X X
2| X X X X X
4 X X X X
5 X
6 X X X
7|X X X X
8 X X X
9 X
3] X X X X X]|

1U abcdefgh

Figure 1: Left: Binary table K~ = (O = {1,2,4,...,9}, A = {a,b, ..., h}, R) and the object 3. Right: The
Hasse diagram of the Galois lattice derived from K.

compound operators go f(X) and f o g(Y) (denoted by ") are closure operators over P(0) and P(A)
respectively. This means, in particular, that Z C Z" and (Z")" = Z" for any Z € P(A) or Z € P(O).
Thus, each of the " operators induces a family of closed subsets, further denoted C¢ (from attributes)
and Cg (from objects) respectively. With the example of Figure 1, the attribute set in Cg, represents
the CIs in the TDB D~ presented in the previous section.

A key result of the domain states that, when ordered with set inclusion, both C% and Cg form
complete lattices which are sub-lattices of P(O) and P(A) respectively. Moreover, f and g constitute
bijective mappings between Cg and Cg, and isomorphisms between the corresponding lattices. This
allows the pairs of mutually corresponding closed subsets to be organized in a unique structure.

Definition 2. A closed pair or concept is a pair of sets (X,Y) where X € P(O), Y € P(A),
X =Y andY = X'. X is called the extent and Y the intent of the concept.

For example, (178, bcd) is a closed pair, but (16,efh) is not. Within the CI mining framework, the
closed pairs are useful as they contain both a closed itemset Y and the (closed) set X of all transactions
which share exactly Y, i.e., the supporting transaction set.

2 An excellent introduction to partial orders and lattices may be found in [8].
3Hereafter, both f and ¢ are expressed by ’.
4We use a separator-free form for sets, e.g., 127 stands for {1,2,7}, and ab for {a,b}.



Furthermore, the set Cx of all closed pairs/concepts of X = (0O, A,I) is partially ordered by in-
tent/extent inclusion:
(X1,1) <k (X2,Y2) & X; C X, Y2 C V7.

Theorem 1. The partial order L = (Cx, <x) is a complete lattice, called Galois or concept lattice,
with joins and meets defined as follows:

b Vf:1(Xi: V) = ((Uf:1 Xi)", ﬂle Yi),

o Nima (X6, Yi) = (Mizy Xi, (Ui, Y9)")-

The Hasse diagram of the lattice £~ drawn from K~ = ({1,2,4,...,9}, A, R) is shown on the right
side of Figure 1 where itemsets and transaction sets are drawn on both sides of a node representing a
closed pair. For example, the join and the meet of the closed pairs ¢; = (178, bed) and ¢o = (127, abe)
are (1278,bc¢) and (17, abed) respectively.

The Galois lattice provides a hierarchical organization of all closed pairs which may be used to
speed-up their computation and subsequent retrieval. It is particularly useful when the set of closed
pairs is to be generated incrementally, a problem which is addressed by the next paragraphs.

3.3 Rules and order

As indicated earlier, association rules can be advantageously generated from FCIs rather than FIs.
However, even in this case, there is still a large set of generated rules with information redundancy. It
is therefore more useful and relevant to provide the user with a non redundant rule set.

For example, suppose the following rules are valid with the same support and confidence levels:

ab—cde ab—c ab—d
abc = d abed - e abde — ¢

The first rule ab — cde is sufficient because the other ones do not give additional information. It
is therefore more efficient to generate only the first one. A subset of rules S of a rule set R which
preserves the information of R is called a cover of R. In general, it is more relevant from the user point
of view to present minimal covers for rule sets. Minimality could be caracterized by several criteria.

Minimal covers for exact rules (100% confidence) have been extensively studied in formal concept
analysis (for example the Guigues-Duquenne basis [13, 10]) and database design based on functional
dependencies [17]). The Guigues-Duquenne basis is minimal with respect to the number of rules which
is a relevant criteria from a data mining perspective. Rules of the basis are of the form p — p” where p
is a pseudo-closed set (also called pseudo-intent). An item set p is pseudo-closed if it is not closed and it
contains the closure of all its subsets which are pseudo-closed. In [20, 24], the generic basis is proposed
as an extension of the Guigues-Duquenne basis by taking into account the support and confidence of
the rules. The generic basis can be generated from the FCIs by using Algorithm 1 previously presented
in [11] on the order covering graph (Hasse diagram) of the FCIs and computing the confidence levels
using the cardinality of the extents. The covering graph can also be used to efficiently generate a basis
for rules constrained by a subset of the item sets. It is therefore useful to maintain not only the FCIs
but also the covering graph for data mining purposes. Partial rules are rules with a less than 100%
confidence. The Luxenburger cover basis [16] is a cover for partial rules. The basis corresponds to
rules of the form X — Y — X where X and Y are closed and Y covers X. The covering relationship
corresponds to the Hasse diagram of the CIs. Therefore, a natural way to present these rules is to
show the Hasse diagram to the user. This basis is also easily extended to take into account the support
of the rules [19]. These facts support the importance of maintaining the order covering relationship
between the FCIs from a data mining perspective.



4 Incremental lattice update for closed itemset generation

Incremental methods construct the lattice £ starting from £y = ({(#, A)},0) and gradually incorpo-
rating a new object o; into the lattice £;_; which corresponds to a table K;—1 = ({o1,...,0i—1}, 4, I).
Each incorporation involves a set of structural updates [26].

4.1 Principles of the incremental approach

The basic approach initially described in [12] and then improved in [27], follows a fundamental prop-
erty of the Galois connection established by f and g on (P(O), P(A)): both families of closed subsets
are themselves closed under set intersection [4]. Thus, the integration of a new object/transaction is
mainly aimed at the insertion into £;—; of all concepts (further called new concepts) whose intent
does not correspond to the intent of an existing concept, and is the intersection of {o;}’ with the
intent of an existing concept. Hence, three groups of concepts in £; ; are distinguished: generator
concepts (denoted G(0)) which give rise to new concepts and help compute the respective new intents
and extents; old concepts (denoted U(o)) which remain completely unchanged; and modified concepts
(labeled M(o0)) which evolve by integrating o; into their extents while their intents remain stable. The
delimitation of the three sets together with the creation of the new concepts, and their subsequent
integration into the existing lattice structure constitutes the main part of the algorithm’s task.

1: procedure ADD-OBIECT(In: L a lattice, o an object)

2:

3: SORT(L) {in descending order}

4: for all ¢ in £ do

5. if Intent(Z) C {0}’ then

6: ApD(Extent(c),0) {(¢) is a modified concept}
7: else

8: Int « Intent(c) N {o}’ {(¢) is an old concept}
9: if not (Int’, Int) € L then

10: ¢ + NEw-CONCEPT(Extent(¢) U {o}, Int) {(¢) is a generator}
11: UPDATE-ORDER(c,¢) ; ADD(L, ¢)

Algorithm 1: Update of a Galois (concept) lattice upon an insertion of a new object.

4.2 Description of the lattice algorithm

In the sequel, we consider the subset of the algorithm described in [12] which deals with the recog-
nition of the above three concept sets and the creation of new concepts only. Details about the lattice
order updates (primitive UPDATE-ORDER) are skipped since they are irrelevant to our purposes. Thus,
the concepts are first sorted in increasing order with respect to the corresponding intent sizes® (line
3) and then each of them is examined in order to identify its actual category (lines 4-11). Modified
concepts ¢ are those whose intent Intent(¢) is included in the description of the new object o, i.e.,
the set of attributes {0}’ (line 6). The remaining concepts are potentially old unless the intersection
between the intent Intent(c) and {0}’ represents a completely new intent in £ in which case ¢ is a
generator and a new concept c¢ is created. A property which remains implicit in the code states that
a generator is the mazimum of the set of concepts which generate a new intent by the intersection of
their intent with {o}’. It is noteworthy that the extent of the new concept is just the extent of its
generator, Ezxtent(¢), augmented by the new object o, a fact we shall use in computing the support for
CIs.

5The result is a (decreasing) linear extension of the lattice order.




As an illustration, consider the insertion of object o = 3 into the lattice £ induced by the object set
{12456789} which is drawn on the right hand-side of Figure 1. Following Algorithm 1, the three cate-
gories of concepts are U(o) = {cur,cpo}, M(0) = {cg1, cpa, cpa}, and G(0) = {cgs, cps, Cae, s, C10, C11, C12 )
The new concepts (identified by the CIs) are: {c, f,cd,cf, fh, fgh,cdf gh}; their complete integration
within the Galois lattice may be observed in Figure 2 which shows the result of the whole operation
once object #3 is inserted.

123456789 _Q @

Figure 2: The Hasse diagram of the concept (Galois) lattice derived from K.

4.3 Incremental generation of frequent closed itemsets

A method for computing the CI family may be drawn from Algorithm 1 by focusing on relevant
aspects of the concepts, as discussed in the following paragraphs. Our approach has been named
GALICIA (for GAlois Lattice-based Incremental Closed Itemset Approach).

4.3.1 Principles of the approach

Our aim is to construct C% only by looking at the new transaction, T}, and the current family of
ClIs, C%,G. The following observations underlie our approach.

First, for each transaction 7', its itemset It is a CI Then, since the family C%_ is closed under
intersection, its update upon the addition of T,, amounts to computing all the intersections of existing
CI with Iz, , which are not already present in it”. The set of resulting CIs, say 6C?, is split into
two parts: already existing Cls and new CIs. Any intersection may be generated more than once,
e.g., ¢ is generated by both bc and abc on Figure 1. However, there is always a unique minimal® CI,
further called the minimal generator, which helps generate it (be for the case of the new CI ¢). It is
noteworthy that the minimal generator of an already existing closed itemset X is X itself, whereas
new Cls clearly diverge from their minimal generators. Hence, existing intersections are compared to
modified concepts in £~ and new intersections to new concepts. Furthermore, a minimal generator CT
corresponds to the intent of a (maximal®) generator concept.

6We assume D = D~ U {T, }.

7All such intersections are closed in D.

8With respect to set-theoretic inclusion.

9Here maximal is taken with respect to lattice order which is the inverse of intent inclusion.



The absolute supports of CIs in Cf, are obtained from supports in D~ in the following manner:
for all Cls in §C?, their support in D is the support of their minimal generator plus one, while the
supports of the remaining CTs stay unchanged. This means, in particular, that all the supports of CIs
corresponding to existing intersections have to be increased by one in Cf.

It is important to note that since the approach is incremental, there is a need to keep the whole
set of CIs, including those which are not frequent. This is due to the fact that after one or many
insertions of new transactions, some Cls may become frequent while some FCIs may become infrequent
closed itemsets. Moreover, discarding some Cls acting as intents of generator concepts will lead to
disregarding their corresponding new concepts. As an illustration, let’s assume that Transactions 10
and 11 are added to D (see Table 1) with itemsets abed and abede respectively. In that case, some
FCIs such as cf, efh, fgh will become infrequent CIs (27%) while abed will turn frequent itemset
(36%). If ever abcef is discarded during the update process simply because it is an infrequent (22%)
CI, then the new CI abce will never be generated.

4.3.2 Description of the algorithm

Algorithm 2 hereafter preserves the main control structure of its lattice counterpart: each CI of the
current collection (FamilyCT) is examined to establish its specific category (modified, old or minimal
generator of a new CT). Like in the lattice procedure, modified CIs simply get their support increased
(line 9) and old ones remain unchanged (line 11). Processing generators diverges slightly from the
lattice version as no order is supposed in FamilyCI'®. Actually, each new CI is stored together with
the maximal support already reached for that CI. Thus, each time the CI is generated (lines 13-17), the
support is tentatively updated. Furthermore, the storage of new CIs is organized separately (collection
NewClI) so that unnecessary tests can be avoided. This computation yields the correct support at the

: procedure UPDATE-CLOSED(In: T}, a transaction, FamilyCl a collection of itemsets)

. Local : NewCl a collection of itemsets

: for all e in FamilyCl do
I. < e.itemset
if I. C I,, then

1

2

3

4:

5. NewCl < 0 ; I, < T),,.itemset

6

7

3

9 e.supp + + {e is modified}

10:  else

11: Y « I.N I, ; ey « lookup(FamilyCl, ) {e is old or potential generator}
12: if ey = NULL then

13: ey < lookup(NewCl, Y) {e is a potential generator}

14: if ey = NULL then

15: node < new-node(Y, e.support + 1) ; NewCl < NewCl U {node})

16: else

17: ey .support < max(e.support + 1, ey .support)

18: FamilyCl < FamilyCl U NewCl

Algorithm 2: Update of the closed itemset family upon a new transaction arrival.

end of the current CI family traversal since minimal generators are CIs with maximal support among
all CIs generating a new CI. This fact is strongly reinforced by an implementation proposal which
utilizes trie structures in order to reduce redundancy in both the storage and the update of the CI
family.

10A sorted collection could have been used instead, but this would offer only a modest reduction of the support
computation overhead, whereas the main complexity source, i.e., the intersection calculations, remains untouched.




4.4 Trie-based method

In the following, we describe GALICIA-T, an improved version of GALICIA based on tries.

4.4.1 Trie basics

The trie (from retrieval) data structure [15] provides a good trade-off between storage requirements
and manipulation cost. It is currently used to store sets of words over a finite alphabet. In its basic
form, a trie is a tree whereby letters from the alphabet are assigned to edges, so that each word
corresponds to a unique path in the tree (see Figure 3). Nodes carry minimal information: those
corresponding to the end of a word, further called terminal nodes, are distinguished from the rest,
called inner nodes. As an illustration, see the trie corresponding to the CIs over £~ which is given
on the left part of Figure 3. Here, terminal nodes are drawn as filled circles and inner nodes as empty
ones.

Tries offer a highly compact representation since all prefixes common to two or more words are
represented only once in the trie. Such factorization not only reduces the storage space, but also
provides for more efficient operations, e.g., search or insertion of a word into the trie. Tries where
words represent sets — as in our case — provide very efficient operations which can be carried out in a
time linear in the size of the alphabet, regardless of the size of the trie.

4.4.2 Description of the algorithm

In our framework, two tries are used to represent closed itemsets (in terminal nodes): one for the
current CT family, FamilyCI, and another one for the increment set of CIs, NewCI. The trie type used
here is basically a tree of nodes with a distinguished root. A node is a record with item, terminal,
successors, support and depth fields. The successors collection is a sorted, indexed and extensible
collection with primitives for lookup, order-sensitive traversal, insertion of a new member, etc. Sorted
lists of items!! are used to represent transactions and individual CIs. T}, is the new transaction with
its itemset I,,, and Y., is the current intersection between a CI and I,.

procedure UPDATE-CLOSED-TRIE(In: T}, a transaction)
Global : FamilyCl a trie of itemlists ; Local : NewCl/ a trie of itemlists
NewCl < new-trie() ; I, + SORT(T,.itemset)

TRAVERSAL-INTERSECT(I,,, NULL, root(FamilyCl))
merge( FamilyCl,NewCl)

Nogswb

Algorithm 3: Trie-based update of the Cls upon a new transaction arrival.

Algorithm 3 describes the main steps of an update with a single new transaction T}, namely the
creation of the increment trie, the sorting of the T}, itemset, the traversal of the trie with the generation
of the new CIs and finally the merge of the two tries!2.

Algorithm 4 is a recursive procedure that models the simultaneous traversal (with detection of
common elements) of two sequences of items: the I, representing the yet unseen part of the new
itemset (T),.itemset) and the path of the trie starting from the root and leading to the current trie
node (node). In general, the second sequence can be completed to a full CI in several manners, each
of them corresponding to a suffix stored in the trie starting from the current node on.

The traversal starts with a tentative expansion of the current intersection over the current node
(lines 5 — 6). Each time a terminal node is reached (line 7), the currently generated intersection

HTtemlist nodes provide item and next primitives.
2Dye to space limitation, details of the merge operation are omitted.

10




1: procedure TRAVERSAL-INTERSECT(In: I,,, Y.y itemlists, node a trie node)
2:

3: Global : FamilyCl, NewCl tries of itemlists

4:

5. if (I, # NULL) and (I..item = node.item) then
6: add(Ycurr, I,.item)

7: if node.terminal then

8. n « lookup(FamilyCl,Y cur)

9: if n = NULL then

10: update-insert(NewCl, Ycurr, node.support + 1)
11:  else

12: if node.depth = || Ycur|| then

13: n.support 4+ +

14: if (not node.terminal) or (I, # NULL) then
15:  for all n in node.successors do

16: while (I, # NULL) and (I,.item < n.item) do
17: I, < I,.next
18: TRAVERSAL-INTERSECT (I, Yeurr, N)

Algorithm 4: Trie-based update of the CIs: single node processing.

(Yeurr) corresponds to a CI of C%. In these cases, the status of the set Yiyrr, i.e., either new CI
or already existing in C%_,, should be established by checking whether it is already in the basic trie
FamilyCI (line 8). The result of the check may in turn trigger an (tentative) insertion of Y,y into
the NewClI trie, whenever it is a new CI (line 10), or an update of the current node support (line
12—13). The second case occurs when the current CI of the trie, i.e., the one ending by node, happens
to be a modified element of Cf,_,). Recall that modified CIs are exactly those included, as subsets,
in T,.itemset. This fact is established by comparing the length of the current intersection, || Yeyrr||,
to the depth of the current node, i.e., the length of the path from the root to node (line 12). Unless
a termination condition is reached (end of I, and terminal node - line 14), TRAVERSAL-INTERSECT
is recursively called for each suffix (lines 15 — 18). In doing so, the successors of node are listed in a
lexicographic order, so that the current itemlist I,, could be gradually reduced (lines 16 — 17).

The following table illustrates the work of Algorithm 4 on two distinct branches of the trie, abede f gh
and efgh, upon the insertion of the itemlist cdf gh.

node.item | I, Yeurr terminal | supp
a cdfgh | NULL N - node.item | I, Yeurr terminal | supp
b cdfgh | NULL N e cdfgh | NULL N -
c cdfgh | ¢ Y 4 f fgh f Y 5
d df gh cd Y 3 g gh fg N -
h h fgh Y 3
h h cdf gh Y 2

It should be read as follows: the first column provides the item in node, the second is the value of
I,, (available part of T},), the third column is the intersection computed so far, and the fourth one
indicates, whether node is terminal, i.e., whether the value of Y., represents a CI. The fifth column
provides, whenever a terminal node is reached, the computed support.

Figure 3 depicts the result of the entire trie traversal. On the left, the state of FamilyCI before the
insertion of transaction 3 is shown. On the right, the situation before the merge of both tries FamilyCI
and NewCT is shown.

The above Algorithm 3 can be completed to a first-class procedure for mining FCT from a transaction
database. Here, details concerning the filtering of infrequent CI are ignored, but the task could be
easily carried out through a rough index for CI based on support values: once a value for the minsupp

11




Figure 3: Left: The trie FamilyCI of the CIs generated from D~. Middle: The trie NewCI of the new CIs
relative to transaction #3. Right: The trie FamilyCI after the insertion of transaction 3.

is provided, the filter would simply enumerate the buckets of CI in the index satisfying it.

5 Narrowing the search for updates

The previous algorithm may be improved by the application of some further results about the lattice
sub-structures ignored in Algorithm 4 during the process of new object insertion.

5.1 Rationale

Although the use of a trie structure potentially leads to gains both in efficiency and storage, the
complete exploration of the entire CI family upon each insertion may still prove too expensive for
large databases and/or inefficient for sparse ones (see Section 7). In such databases, every transaction
insertion concerns only a limited set of either new or exiting CIs, whose size is far smaller than the
size of the entire CT family C¢. This fact motivates a smarter incrementation strategy which focuses
exclusively on the relevant subset of CIs instead of traversing completely Cg.

Although relevance could be defined in various ways, we start with a narrow definition which amounts
to considering only CIs that are directly involved in the restructuring of Cg, i.e., modified and gen-
erator CIs. Ideally, a traversal procedure should be able to enumerate those elements according to
an unspecified order, so that no other element is even considered. Whatever the feasibility of such
an ambitious goal, a tentative discovery of modified and generator nodes will require the storage or
just-in-time computation of some order information from the lattice to ease the “jumps” between
members of the target set. In turn, upon each insertion, such information would have to be updated,
thus leading to a problem which is quite similar to lattice maintenance. Therefore, in the resolution
of this problem, we shall reason in a way similar to the extensive search case, i.e., first, define a lattice
maintenance procedure and then show how it simplifies to an algorithm for closed itemset update.

5.2 Problem definition and target structures

To solve the problem of selective update of a lattice £, one has to carry out three main steps, each
leading to a set of questions to be answered. First, the target set, i.e., G(o) U M(o) in the current
lattice £ should be discovered. Then the new concepts in N(0) have to be created and their components
computed. Finally, the members of N(o0) have to be properly connected to the existing lattice nodes
so that £ is transformed into £7.

Initial work on incremental methods provides few explicit clues on how the tasks one and three are
to be addressed: from Godin et al. [12] we know that generators are maximal for the attribute set

12



that results from the intersection between the concept intent and the description of the new object.
Moreover, the authors proved that in £ every generator is a lower cover of the generated new concept.
Later work on a broader class of lattices called type lattices [26] has established that the set of all
generator concepts induces a meet sub-semi-lattice of both £ and L%, and that this structure is
isomorphic to the sub-order of £ induced by N(0). However, few results have been provided about
the precedence relation between new elements. Finally, a recent work [27] has explicitly characterized
the precedence relation in £t and the way it is obtained from the precedence in L.

In the following paragraph we generalize and complete this partial results into a complete framework
that enables the design of “surgical” incremental algorithms.

5.3 Theoretical foundations

We focus on a substructure of £ that contains all concepts with o in their respective extents, i.e.,
both new concepts, N (o), and modified concepts that will be further noted M+ (o) to distinguish them
from their counterparts in £. This larger structure is the order filter generated by the object-concept
of 0 in LT, denoted v(0). The filter, itself denoted 1 v(0), induces a complete sublattice of £T. Tts
choice for a pivotal structure has been motivated by the existence of an isomorphic structure in £
which is, unsurprisingly, made up of G(0) and M(0). Thus, when N(0) is to be integrated into £, the
desired links can be inferred from the structure isomorphic to 1 v(o) within L.

5.3.1 Set definitions

First, two maps linking the lattices £ and £t are defined'®. The map o sends a concept ¢ from £
in the concept in £T that has an identical intent, whereas a mapping <y sends every ¢ from £ to the
concept from £ whose extent corresponds to extent of ¢ modulo o.

Definition 3. The mappings o :C — C* and v :CT — C are established as follows:
e o(X,Y)=(Y"Y) where Y' is computed in KT,
e y(X,Y) = (Xy1,X]), where X; = X — {o}.

Observe that o is a join-preserving order embedding, whereas v is a meet-preserving function.
Moreover their subsequent application results in a identity over C, i.e., y o o = idc.

To formally define N(0) within £+, we use the following fact: if o is dropped out from the context,
these concepts will disappear since the result of the subtraction of o from their own extent is an already
existing extent.

Definition 4. The set of new concepts in LT is
N(o) = {c= (X,Y)|c € CT;0 € X;(X ~ {o})" = X — {o}}.

As opposed to new concepts, the subtraction of o from the extent of modified concepts in M™ (o),
does not change the intent. The corresponding definition may be bridged to £ via 7 to define M(o).

Definition 5. The sets of modified concepts in Lt and in L are:
e M¥(0) = fe= (X,V)|c € CHi0 € X;(X — {o}) =V},
e M(o) ={c=(X,Y)|ce ;3¢ € M*(0),c =~(¢)}.

13n the following, each time the correspondence operator / is computed in the respective context of the application
co-domain (i.e., K or KT).

13



To formally define generators, consider a member ¢ = (X,Y") of N(0) and observe that by definition
the set X — {0} is closed in K*. Hence, there is a concept ¢ in LT with ¢ = (X — {0}, (X — {0})") and
we shall call this concept the generator of ¢ in LT.

Definition 6. The sets of generator concepts in LT and in L are:
* GT(0) ={c=(X)Y) | o g X; (X U{o})" = X U{o}},
e G(o)={c=(X,Y) | Y € {o};(XU{0})" = XU{o}}, whereby the closure" is computed within
K.

A definition of G(o) that is closer to the classical one (mentioned in the previous paragraph) relies
on the intersection of the concept intent with the description of 0. The following property says that
generators in £ are those concepts whose intent Y is not included in {0}, but Y is the closure of its
own intersection with {o}'.

Property 1. The set of generators in L is G(o) = {c = (X,Y)|Y € {o};Y = (Y n{o})"}.

5.3.2 Factor structures

We now generalize the intersections with the description of o to the entire set C, i.e., we define a
mapping that links £ to the lattice of the powerset of all attributes, 24.
Definition 7. The function Q : C — 24 computes: Q(c) =Y N {o}'.

The function Q induces an equivalence relation over the set C, whereby the class of a concept ¢ will
be denoted [c]g.
The reverse function of @ induces an equivalence relation on C. When the set of equivalence classes
C/o together with the following order relation:
[c1]e /0 [e2]e & Q(e2) C Q(er)

are considered, the resulting partial order, £,g, is a complete lattice since it is clearly isomorphic to
1 v(0) (the intents of concepts in 1 v(0) are all subsets of {0}’ which are closed in KT, just as the
specific Q values for each class in C,q).

Property 2. £,o = (C/0,</q) is a complete lattice.

Furthermore, a substructure in £ similar to 1 v(0) may be defined by considering a unique represen-
tative for each class in C;g. Actually, such a class happens to have a unique maximal element which
corresponds to the closure of the respective Q value.

Property 3. Vc= (X,Y) € C, 3 ¢ = max([c]g), whereby ¢ = (X,Y) with Y = (Y N {o}")".

Let us denote by E(0) the set of all class maxima. From Property 1 and from the trivial observation
that M(o) C E(o0), we deduce the fact that class maxima are exactly the set of all generators and
modified concepts.

Property 4. The set of all class mazima in L is E(o) = G(o) U M(0).
The set E(o) taken as a suborder of £ is clearly isomorphic to £,¢ (same reasons as for 1 v(0)).
Property 5. (E(0), <|g(0)) = L/0 = (T v(0), S‘Jfr,,(o)>-

The above property generalizes our previous findings expressed in the following property stating
isomorphism between key structures for our maintenance algorithm.

Corrolary 1. (G(0), <|g(0)) = (N(o),ng(a)% whereby both structures represent meet sub-semi-
lattices of their respective global lattices.

In sum, the increase of a context K by a new object o results in the integration of a (possibly empty)
meet semi-lattice into the underlying lattice £, which is isomorphic to an existing sub-semi-lattice.

14



5.3.3 Precedence relation in £t

Following Property 5, we are now looking for an efficient way of inferring the structure of 1 v(o0) with
respect to <+ from the information in <. Two questions have to be answered, a first one concerning
the way the new concepts will be integrated within £, i.e., the new precedence links that are to be
created, and second, emphasizing on the obsolete links from < to be removed in <¥.

At a preliminary step, a mapping can be defined between C and CT which — when restricted to E(o)
— represents the isomorphism between both sets related to 0. The mapping x sends a concept ¢ from
L to the concept in £ whose intent is Q(c).

Definition 8. The function x : C — CT is established as x(X,Y) = (Y{,Y1), where Y1 =Y N {o}'.

Figure 4: The lattices £, £+ and the auxiliary lattice 24 together with the related functions ¥, o, v and Q.

The entire set of mappings defined in the previous paragraphs is illustrated in Figure 4.

A first step in the solution is, given a new concept ¢ in N(0), to define its upper covers in LT (which
are clearly among the members of 1 v(0)). These can be identified by looking at the upper covers of
the respective generator in £, y(c) in the semi-lattice (E(0),<|g(o)) and taking the images of those
concepts by x. However, the precedence relation of (E(0), <|g(,)) is not directly available and its
construction could be an expensive task. Fortunately, the necessary information may be inferred <, as
it was pointed out in [27], with a little additional computation. In fact, using the monotony property
of @ on L, we prove that whenever the class of a generator ¢; is an upper cover of another class in
Lo whose generator is ¢z, there is an upper cover of ¢; that belongs to [c2]o.

Property 6. For each ci,cz in G(0): [c1]o </g [c2]o = € [e2]g 1 c1 < €

Consequently, the upper covers of a new concept can be detected by looking at the upper covers of
the respective generator in £ and by taking the minima of their images by .

Corrolary 2. For each ¢ in N(0) and each ¢ in CT: ¢ <t ¢ & ¢ € min({x(¢)|y(c) < ¢}).

At a second step, we consider the upper covers of concepts in L1 that lay beyond N(o0). In [26], we
have shown that the only elements of C* — N(0) which got new upper covers with respect to £ are the
generators in GT(0). Thus, given a generator ¢ in G (0) the unique new upper cover is the respective
new element x(7y(c)).

Property 7. For each ¢ in N(0) y(o(c)) <t ¢. Moreover, for each ¢ in CT — N(o):
c<teee<t (o(c).

Finally, the links to be dropped in <1 are exactly those linking a generator to a modified concept
in £, as we pointed out in [27]. The following property sums up the results of the above paragraph.

15



Property 8. The relation <T is obtained from < as follows:

<t= {(c1,e2) | (v(er),7(e2)) €<} U {(e(v(e);e) | c € N(o)}
U {(e0) [ ceN(), ceMin({x(¢) [v(c) <e})} — {(er,e2) [v(er) € G(o), y(e2) € M(0)}

5.4 The algorithm

The structural results from the previous paragraphs underlie a procedure that, given an object o,
transforms £ into £T. The procedure is a first-class lattice construction algorithm whose merits will
be examined in a separate study. As our concern is limited to itemset mining, we provide a slightly
simplified version that computes a lattice where nodes are closed itemsets with support information
and precedence links. The initial CI mining procedure that strictly follows the lattice structure is
further adapted to work on a flat set of ClIs, i.e., with no order links.

5.4.1 Principles of the method

The key idea of the algorithm is to discover the set E(0) in the most efficient way. For that reason, a
traversal of the lattice £ discovers the equivalence classes in C,g, whereby at each class processing, its
maximal element is detected. Thus, unlike previous incremental methods which are exclusively top-
down strategies, our method applies a bottom-up traversal which starts at the lattice bottom element.
Once the maximum of a class is found, the method relies on Property 6 to move further upwards.
Actually, the computation continues with the examination of the upper covers of the current element.
While modified concepts are processed by the method the very first time they are met, a separate step
represents the creation of new elements and the computation of the appropriate precedence links.

5.4.2 Data structures

The method relies on three abstract data structures: a regular trie, a more advanced trie structure,
called Krs-trie, and a stack. The Krs-trie (for Key-Length Sorted trie) is an extensible collection of
nodes indexed by unique keys (an intemset or itemlist) with the additional possibility of retrieving
nodes in an order depending on the length of the respective keys. The primitives of the Krs-trie
structure include insertion of a new node (put()) and lookup (get()). More advanced operations are
the retrieval of the longest key not yet examined (get-longest-key()) and the resolution of key unicity
conflicts (put-update()). The last operation allows, whenever a key already exists in the KLs-trie, to
selectively replace the indexed node with the new node, depending on the value of numerical criteria
to optimize. It is noteworthy that a KLs-trie can be efficiently simulated by a regular trie extended
with an index based on key-length.

In our algorithm, Classes represents the minimal nodes of all classes in C/qg. It is a KLs-trie whereby
the nodes are CIs, keys are the respective Q values and the conflict resolution criterion is the length
of the respective CI. More precisely, shorter elements are favored, a fact which corresponds to the
intuition that the shorter a CI, the higher it lays in the lattice, and therefore, the closer it lays to the
respective class maximum. The structure is used to guide the exploration of the lattice in such an order
that minimizes the efforts of detecting the maximal element of each equivalence class. The remaining
structures are Generators, a traditional stack of CIs used to store generators in £, and Classes™, a
trie of CIs indexed on Q values which represents 1 v(0). The first one enables new CIs creation while
both contribute to order computation.

5.4.3 Algorithmic code

The pseudo-code of our method is given in Algorithm 5. After the initialization step (line 8), the
traversal starts from the bottom CT that corresponds to the entire itemset which enters the Classes

16



1: procedure UPDATE-LATTICECI(L : a lattice of Cls, T, : a new transaction)
2:

3: Local : Generators: a stack of Cls

4: : Classes™: a trie of Cls indexed by itemsets

5: : Classes: a KLS-trie of Cls indexed by itemsets

6: : M; the set of modified Cls

7:

8: Generators < () ; Classes < ) ; Classest « ()

9: I, « Ty.itemset ; Lo.val@ < I,
10: put(Classes, I,, Lz) {insert the bottom in the KLS-trie}

11: while not empty(Classes) do

12: ¢ « get-longest-key(Classes) {extract the biggest intersection yet to process}
13: ¢« CrLassMax(c)

14:  if is-generator(¢) then

15: push(Generators, c)

16:  else

17: c.support + +

18: add(My;, ¢); put(Classes™, c.valQ, €)

19:  for all ¢ € ¢.succ do
20: é.val@ « éitemset N I, ; put-update(Classes, é.valQ, ¢)

21: for all ¢ € Generators do
22: ¢ ¢ create-node(c.val@, c.support + 1) ; UPDATEORDER(G, c)
23:  put(Classes™, c.valQ, &)

Algorithm 5: Lattice-based construction of the CI family of a transaction database.

KLS-trie as a first value (lines 9-10). The next step is the gradual discovery of the equivalence classes in
L (lines 11-20) starting from the bottom in £,g. The traversal is guided by the key-length-based order
in Classes (line 12) which insures that the classes are examined in an order that is compatible with
<o (although the order of their discovery may be different). The rationale behind that assertion is
that the later a class is processed, the greater is the chance of its representative ¢ node to be close to the
class maximum ¢ (line 13) (and therefore, there is a smaller search effort to find that maximum above
¢ by CrassMax). Once the maximum of the currently examined class is discovered, its status, i.e.,
either generator or modified, is established (line 14). Generators are simply memorized (line 15) while
modified nodes are completely processed (lines 17-18). First, the support is increased, then the node is
registered both as modified and as class maximum in £* (line 18). In both cases, the upper covers of
¢ are tentatively inserted into Classes with the respective keys (lines 19-20). Finally, the Generators
stack is gradually examined, at each step pulling out its head and processing the respective node (lines
21-23). This includes the creation of a new CI and the computation of the adjacent precedence links
(line 22). Finally, the new node is registered in Classes™ as the maximum of its respective class in £
so that the computation of further precedence links involving the potential lower covers of this node is
enabled. It is noteworthy that this procedure relies strongly on a top-down traversal of the set G(0),
insured by the stack data structure and the order of discovery of all generators which is compatible
with <.

5.4.4 Main primitives

The above algorithm uses two main primitives, CLASSMAX and UPDATEORDER. The first one is
intuitive. It admits various algorithms ranging from a naive exhaustive exploration of the respective
class to an advanced procedure that directly finds the shorted up-going path in the cover graph of the
lattice that leads to the maximum class. The second primitive implements the results summarized
by Properties 6 and 8. It is detailed in Algorithm 1. The respective new element is connected to its

17




procedure UPDATEORDER(In: ¢,, ¢, nodes)
Global : Classes™ a trie of Cls indexed by itemsets

Candidates + ()

for all ¢ € cy4.5ucc do
¢ « get(Classes™, c.valQ)
add(Candidates,c)

TrueCovers + MINIMA( Candidates)

for all ¢ in TrueCovers do

11:  NEWw-LINK(cn,é)

12: if ¢ € M, then

13: Drop-LINK(cg, ¢)

@R

—
Qv

Algorithm 6: Computation of the precedence relation for a new node.

upper covers which are chosen as the minima of the candidate set. The candidates are the maxima of
the classes in £1 (found in Classes™) for each upper cover of the generator. Obsolete links are finally
dropped out.

The only primitive used by the algorithm, MINIMA, computes the minimal elements of a set of CIs
with respect to inverse set inclusion (maxima when inclusion is considered).

5.4.5 Example

In the following, we provide the trace of the algorithm execution on an example including the
already augmented dataset from Figure 1 with its corresponding lattice (see Figure 2) and a new
object (transaction) 10 with description begh. The following table provides the state of the main
variables and data structures after each step of the main loop from Algorithm 5. The concepts of the
lattice in Figure 2 are identified by numbers that correspond to a bottom-up, level-wise breadth-first
traversal of the lattice, from left to right. For example, the following list of concepts (identified by their
intents) illustrates this numbering: #1 = abcedefgh, #2 = abed, #6 = bed, #8 = cd, #15 = d, and
#19 = (. Moreover, in the columns corresponding to Classes and Classes™, the elements represent
pairs (key, concept-id), where key is actually the respective value for Q of the second element.

c c Classes ClassesT M, Gy
#1 | #1 | (begh,#1) 0 0 [}
#1 | #1 | (cgh,#3),(bc, #2) | — — #1
(gh, #5)
#3 | #3 | (b, #2),(gh, #11) | — — #1,43
(c, #8)
#2 #13 | (gh,#11), (c, #16) | (be, #13) #13 #1,43
F#F11 | #11 | (g,#17),(c, #16) (be, #13) #13 #1,#3,#11
(h, #14)
F#14 | #14 | (g,#17),(c, #16) (be, #13) #13 H#1,#3,#11,#14
(0, #18)
#16 | #16 | (g, #17),(0, #19) (be, #13),(c, #16) | #13,#16 F#1,#3,#11,#14
F#17 | #17 (@ #19) (be, #13),(c, #16) #13,#16,#17 #1,43,#11,#14
(g, #17)
#19 | #19 | 0 (be, #13),(c, #16), | #13,#16,#17,#19 | #1,#3,#11,#14
(g, #17),(0, #19)

18




5.5 Closed itemset mining

The above algorithm relies on order information to keep the effort on restructuring C¢ minimal.
However, besides the clear reduction in the number of examined lattice nodes, there is a new compu-
tation and storage overhead due to the presence of the order links. This can be a serious drawback
with datasets which generate large number of CIs and therefore require additional storage.

5.5.1 Principles

To cope with the memory shortage, we define a more economical version of Algorithm 5 which does
not require order information, but rather extracts the necessary minimum from the flat set Cg. Thus,
the new algorithm, further called GALICIA-M, does not represent a traversal of any structure but rather
a search for modified and generator CIs through their respective equivalence classes induced by the
function Q. Once those classes are available, the relevant CIs are detected by taking the elements that
are smallest in size or, alternatively, have the strongest support (which also means they are minimal
with respect to the set inclusion). For this purpose, the classes need first to be constituted explicitly.

The main improvement with respect to GALICIA-T is in the fact that the algorithm avoids the explicit
construction of the upper most class in Lo, i.e., the class of the top element in £ (corresponding to the
itemset included in each transaction). The gain of the new strategy is particularly high with sparse
transaction sets where no item is shared by all transactions and the number of existing CIs whose
intersection with the new transaction is empty approaches the size of the entire CIs family. In other
words, the algorithm examines explicitly only those CT whose intersection with T3, is non-trivial, i.e.,
does not represent a subset of the universal CI. Thus, compared to the lattice-based method, the new
strategy trades the parsimony in the examination of candidate CIs (lattice nodes) for lower storage
requirements and no order computation overhead.

procedure UPDATE-FAMILYCI(C® : an indexed set of Cls, T}, : a transaction)

Local : Classes a set of sets of Cls
: Candidates a set of Cls

Tea < MAX(C?) ; Iiop + Tca.itemset
I, < Ty.itemset ; Candidates « ()
for all i € I, - I;,p do
UPDATE( Candidates, lookup(C®,i)) {gradually construct all non-trivial intersections}
10: Classes < SORT(Candidates) {separate the classes in C%}
11: for all © € Classes do
12: ¢ + MAX(O) {extract the node of maximal support in ©}
13:  if is-generator(c) then

14: ¢ < create-node(c.itemset N I,,, c.support + 1)
15: for all ¢ € ¢.itemset do

16: put-at-item(C*,é,7)

17:  else

18: c.support + +

Algorithm 7: Order-free update of the CI family of a transaction database.

5.5.2 Description of the algorithm

The algorithm starts by filtering all classes of Lo except for the upper most one. Then it computes
the maximum of each class and determines its status, i.e., modified or generator. At a final step, the

19




necessary updates (support increase, new CI creation, etc.) are carried out. Algorithm 7 describes
the main steps of the approach.

5.5.3 Example

The efficient construction of the classes in C% — [T¢.] is supported by a simple indexing structure
that allows all CIs that share a given item i to be found in a direct manner. The structure can be
thought of as a vector of (ordered) lists of CI identifiers whereby each entry in the vector is indexed
by an item. Consider now the example given in section 5.4, i.e., the insertion of a transaction 10 with
description begh into the TDB D = {1,2,3,---,9}. The following table illustrates the vector entries
associated to the four items in I,, (itemsets are given instead of identifiers for clarity reasons).

Item | Indexed CIs
b be, abe, bed, abed, abeef, abede f gh
c ¢, be, cd, cf, abe, abed, abeef, cdf gh, abede f gh
g g, fgh, efgh, cdfgh, abcdefgh
h fh, efh, fgh, efgh, cdf gh, abcde fgh

The content of Classes after the sorting step (line 10) is presented in the table below, together with
the indication of the class maximum and its respective status (generator or modified).

00 [ [l Max (o) | Status [ 90 [ [l Max(lo) | Status
c ¢, cd, cf c M, be be, abe, bed, abed, abee f be M,
g g g Y cgh | cdfgh cdf gh G
h fh,efh fh G begh | abedefgh abcde fgh G
gh | fgh, efgh fgh Gy

At any creation of a new CI ¢ the lists corresponding to each item in é.itemset are updated by
adding the identifier of ¢ to them (lines 15-16 in Algorithm 7).

6 Related work

Since the first publication of the Apriori algorithm [2], there have been an impressive number of
approaches to the problem of association rule mining, most of them aimed at improving the efficiency
of the initial algorithm. For a survey about the subject, the reader is refereed to [14]. In the following,
we report in a non-exhaustive way, some studies that present one or both of the key features discussed
in our paper, i.e., being incremental or computing the FCIs.

One of the earliest work on incremental mining is due to Cheung et al. [6] where the FU P algorithm
updates association rules when new transactions are added. FU P first stores the counts of all frequent
itemsets found in a previous mining process, and then exploits these counts and the newly added
transactions to generate a very small number of candidates. A more general incremental technique
called FUP, is proposed [7] for updating association rules when insertion, deletion, and modification
of transactions occur. Both FUP and FUP, are based on the Apriori framework (e.g., there is a
candidate generation step) that exploits the previous mining output to avoid the generation of useless
candidates. Two other incremental algorithms were proposed independently by [9] and [25]. Both
of them are based on the notion of negative border '* and allow the update of large itemsets when a
set of transactions are added to or deleted from the initial transaction database. The update is made
possible by maintaining support counters for the frequent itemsets and the negative border. In [3], an
incremental algorithm called UW EP, handles a look-ahead pruning by discarding any itemset that
will become non-frequent as early as possible.

M The negative border of a collection of itemsets L C P(A), closed under C, contains all the minimal itemsets in A
that are not in L [18].

20



A recent work reported in [23] extends the limits of incremental approaches by allowing changes to
the basic parameters of the mining process such as support threshold, and analyzing the impact of the
increment (new transactions) on the mining process.

Alternative approaches to mining CIs from a database have been presented in [30, 21], both following
the theoretical guidelines of the Galois lattice/FCA domain [4, 10]. However, both approaches suggest
complex and expensive computations of CI from candidate itemsets.

Finally, some existing techniques use compact representations of the FI family based on trie-like
structures such as prefiz-trees, FP-trees, and digital trees (see [14] for a survey). The CLOSET algo-
rithm [22] relies on a recursive construction of FP-trees to build the set of FCIs.

Based on the criteria described in [23], we believe that our approach has the following attractive
features: (i) it is incremental, (ii) it allows flexible changes to the support threshold, and (iii) it helps
capture the effects of the increment by highlighting the newly discovered FCIs and the changes in the
support of some existing ones. The last feature helps analyze the impact of some actions (e.g., new
business strategies) taken between a previous mining process and the current one (i.e., the mining of
the increment only).

7 Experimental results

We conducted a set of tests in which both variants of GALICIA have been compared to the non-
incremental algorithm CLOSET [22]. Such a choice was motivated by the features shared by both
procedures: (i) the computation of FCIs, and (ii) the use of a trie-like data structure for compact
storage. We were additionally motivated by the fact that Closet is one of the most efficient algorithms
for FCIs generation. The experiments were performed on a 1.3 GHz AMD TB processor with 1.2 GB
main memory, running Windows 2000. Both algorithms were implemented in Java™, whereas we
used an improved version of CLOSET where the search of inclusion between a candidate FCI and an
existing F'CI is powered by a trie structure.

Two synthetic databases [2], namely T25.120.D100K and T25.I110.D10K were used in the experi-
ments. The dataset T25.120.D100K is a large but relatively sparse one: it includes 100, 000 transactions
over 10,000 items where each transaction has 25 items on average, and the average size of the maximal
potentially frequent itemset is 20. This dataset generates 12,868,438 closed itemsets of which 313,409
are of support larger than 0.05% (50 transactions) and 27,112 of support larger than 0.5% (500 trans-
actions). The second dataset, T25.110.D10K, is a smaller but rather dense one: 10,000 transactions
over 1,000 items with average values of 25 and 10 for transaction and maximal frequent itemset sizes,
respectively. A total of 3,530, 786 closed itemsets are generated by this dataset, with 23,852 of them
being of support larger than 0.5% (50 transactions). Table 2 offers a more detailed picture of the way
the above figures evolve when increasing subsets of the entire datasets are considered.

TDB size | Nb of CIs Nb of FCIs TDB size | Nb of CIs Nb of FCIs Nb of FCIs
support = 50 support = 50 | support = 500

2,000 281,209 544 10,000 420,144 22,326 11
4,000 826,114 2,275 20,000 1,148,803 73,851 52
6,000 | 1,562,211 6,977 . . . .
8,000 | 2,479,770 14,701 90,000 | 10,895,757 271,074 22,998
10,000 | 3,530,786 23,852 100,000 | 12,868,438 313,409 27,112

Table 2: Left: T25I10D10K, the evolution of respective sizes for the CI and FCI families (support of 50).
Right: T25I120D100K, the evolution of respective sizes for the CI and FCI families (supports of 50 and 500).

The main statistics that were collected for each algorithm and dataset include the execution time

21



for three types of tasks: processing a single new transaction, processing an increment of several new
transactions, and processing the entire dataset. To provide a better idea about the trends that lay
behind each algorithm, we recorded the above statistics for datasets of variable size. Thus, both
datasets have been separated into increments of fixed size, 2,000 transactions for T25.110.D10K and
10,000 for T25.120.D100K. For each increment, the tests have been carried out with a fixed absolute
support threshold for CLOSET (50 for T25.110.D10K, 50 and 500 for T25.120.D100K).

Another important aspect of our study puts the focus on memory requirements. In a very general
manner, we have registered a surge in the storage space required by GALICIA-T. For example, its
consumption in the case of T25.120.D100K exceeded the available 1 GB!® for 45,000 transactions
which prevented a further sensible comparison of performances. Therefore, in the rest of this section,
we only provide the statistics of the GALICIA-M variant. The following table summarizes the total
memory consumption of both algorithms on the various settings:

Dataset GALICIA-M CLOSET CLOSET
support = 50 | support = 500
T25.110.D10K 456 MB 63 MB —
T25.120.D100K 1 GB 823 MB 389 MB
(swap after 85 K transactions)

Two types of comparisons have been carried out. The first one (see the left-hand side of Figures 5
and 6) aimed at comparing the performance of both algorithms as batch procedures, i.e. when applied
on static datasets. The results of these tests show the clear advantage of CLOSET (and most probably
of some other batch techniques such as CHARM or A-CLOSE) over our method. For reasonable values
of the support threshold, CLOSET proved to be up 30 times faster on T25.120.D100K and up to 100
times faster on T25.110.D10K. Only tiny support values, i.e., when almost all the CIs are to be kept,
tend to favor our method.

GALICIA vs CLOSET (Time on T25120D100K) GALICIA vs CLOSET Time per update (T25120D100K)
- GALICIA Time per batch of 10k 10000.0000
—&— GALICIA Total Time
¢ CLOSET Time supp 50
"%~ CLOSET Time supp 500

100000

10000 1000.0000 -

1000 ] 100.0000

10.0000

Time in seconds
=
8

Time in seconds

>
1.0000 4 X

10 —— GALICIA (global average)
—#- GALICIA (average over 10K)
—A— CLOSET Total (supp 50)

—X%— CLOSET Total (supp 500)

0.1000 -

14— ‘ ‘ ‘ ‘ ‘ ‘
10000 20000 30000 40000 50000 60000 70000 80000 0.0100
Nb of transactions Number of transactions

Figure 5: Left: Total CPU-time for both GaAricia and CLOSET for increasing subsets of T25120D100K, with
min-supp fixed to absolute values (50 and 500). Right: CPU-time for the insertion of a single transaction,
average over both the total set and the current batch of 10 000 transactions compared to the CPU-time for
running CLOSET on the entire transaction set.

The second type of tests (see the right-hand side of Figures 5 and 6) highlights the overhead induced
by re-running CLOSET on the whole updated database versus running GALICIA with the increment
only. Both the diagrams show important trends. First, while the total time taken by CLOSET might

15This seems to be the maximally allowed RAM allocation for the Java VM.

22



lay orders of magnitude lower than the total time of GALICIA, it lays also orders of magnitude higher
than the update time for a single new transaction. For example, when T25I120D100K is concerned,
the processing of half the database, i.e., 50,000 transactions, may well take five hours for GALICIA
and only 20 minutes for CLOSET (see Figure 5 on the left). In the same time, the insertion of a single
transaction in GALICIA ’costs’ just below a second (0.8 seconds, Figure 5 on the right). Next, with the
sparse dataset, the average insertion cost for GALICIA and the total mining cost for CLOSET are quasi-
linear functions of the dataset size. The above facts provide some evidence to support the benefits

Time GALICIA vs CLOSET (Time on T25/10D10K) GALICIA vs CLOSET Time per update (T25|10D10K)
10000 100.000
—- GALICIA Time per batch 2k
—A— GALICIA Total time
—¥— CLOSET Total time supp 50

——GALICIA (global average)
—#- GALICIA (average over 2K)
—— CLOSET Total (supp 50)

1000 10.000 -

1.000 4

0] /
0.100 : : :

2000 4000 6000 8000 10000 0.010
Nb of transactions Number of transactions

Time in seconds
=
8
Time in seconds

Figure 6: Left: Total CPU-time for both GALICIA and CLOSET for increasing subsets of T25I110D10K, with
min-supp fixed to an absolute value of 50. Right: CPU-time for the insertion of a single transaction, average
over both the total set and the current incrment of 2,000 transactions, compared to the CPU-time for running
CLOSET on the entire transaction set.

of the incremental approach. In fact, running CLOSET once with an augmented dataset may cost up
to hundred times more than the time spent for inserting a single transaction with GALICIA. In other
words, one may run, say, several hundreds of insertions with GALICIA while CLOSET is working on the
entire dataset. Of course, this does not make our algorithm more efficient for the whole task as the
total execution time remains too high. However, with a dynamic database, the mining process is spread
over the entire database life-cycle (usually long) so that the main question becomes the establishment
of a proper trade-off between the update costs and the urgent need for intermediate results.

When taken as a whole, the experimental results suggest that the benefits of the parsimonious update
strategy in GALICIA-M are more substantial with sparse datasets than with dense ones. This may be
due to the fact that execution time gains with respect to GALICIA-T inversely depend on the ratio
between the number of examined elements and the total size of the CI family, a value which is weaker
in the former case.

8 Discussion

Incrementality is a major challenge for data mining methods. The proposed framework for incre-
mentally mining frequent closed itemsets is a first step towards achieving that goal. The framework is
based on the theory of Galois lattice and FCA whose benefits for the association rule mining problem
have already been demonstrated. Two concrete mining algorithms have been devised within the frame-
work, one straightforward and the other one using a pruning mechanism, with an additional valuable
feature which is the low-cost response to a readjustment in the minsupp. Both algorithms were derived
from lattice update procedures, whereby we provided a set of lattice structural properties that underlie

23



the pruning strategy and formulated a novel incremental algorithm for lattice construction.

Appropriate implementation of the basic algorithms have been discussed as well, and their respective
practical performances were compared to those of a major batch algorithm. The results of a preliminary
experimental study on two synthetic datasets of contrasted profiles revealed some potential benefits
but also important limitations in the incremental paradigm. When taken as a whole, they seem to
suggest that a straightforward incremental approach of the kind described here will most probably prove
inefficient in purely static databases when the target support threshold is known a priori. However,
the approach will certainly be more appealing for database applications and data mining tasks where
data stores are very dynamic and the mining task is carried out in an exploratory manner. More
precisely, incremental mining procedures may be very helpful in environments where the user may
want to frequently: (i) modify the support threshold of FIs for a given TDB, and/or (ii) process new
transactions in dynamic databases and analyze the impact of such new transactions on the mining
result.

The scalability of our incremental approach is clearly obstructed by the necessity of maintaining
the whole set of frequent closed itemsets. Therefore, our next step is to address this problem by
introducing the notion of border in order to limit the number of FCIs to maintain while preserving
enough information for its incremental maintenance. A promising track seems to reside in the joint
application of GALICIA with another efficient method for FI computation which relies on ClIs, e.g.,
CLOSET, A-CLOSE or CHARM. The latter could be applied as a preprocessing subroutine that extracts
the FCIs plus the border from the known part of a dataset while leaving the subsequent maintenance
of the result to GALICIA. The idea naturally generalizes to a somewhat different aspect of our lattice-
based framework, i.e., the incremental integration of batches of transactions by lattice merge procedures
as developed in [28]. The underlying framework offers a large choice of possible operations on results
upon updates in the dataset (e.g., insert or remove individual transactions or transaction batches). It
enables the combination of several concrete algorithms working on fragments of the dataset and may
favor the distribution of the computation.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast Discovery of Association Rules.
In U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, editors, Advances in Knowledge Discovery and Data
Mining, pages 307-328. AAAI Press, Menlo Park, CA, 1996.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In In Proceedings of the 20th
International Conference of Very Large Databases (VLDB), pages 487-499, Santiago, Chile, September
1994.

[3] N. Ayan, A. Tansel, and M. Arkun. An efficient algorithm to update large itemsets with early pruning.
In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 99), pages 287-291, San Diego, CA, 1999. ACM Press.

[4] M. Barbut and B. Monjardet. Ordre et Classification: Algébre et combinatoire. Hachette, 1970.

[6] R.J. Bayardo and R. Agrawal. Mining the most interesting rules. In Proceedings of the 5th International
Conference on Knowledge Discovery and Data Mining (KDD’99), 1999.

[6] D. W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of Discovered Association Rules in Large
Databases: An Incremental Updating Technique. In Proc. 12th IEEE International Conference on Data
Engineering, New Orleans (LA), 1996.

[7] D. W. Cheung, S. D. Lee, and B. Kao. A General Incremental Technique for Maintaining Discovered
Association Rules. In Database Systems for Advanced Applications, pages 185-194, 1997.

»

B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge University Press, 1992.

[9] R. Feldman, Y. Aumann, A. Amir, and H. Mannila. Efficient Algorithms for Discovering Frequent Sets in
Incremental Databases. In 2nd SIGMOD Workshop on Research Issues on Data Mining and Knowledge
Discovery, pages 59-70, 1997.

24



[10] B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundations. Springer-Verlag, 1999.

[11] R. Godin and R. Missaoui. An Incremental Concept Formation Approach for Learning from Databases.
Theoretical Computer Science, 133:378-419, 1994.

[12] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms based on galois (concept)
lattices. Computational Intelligence, 11(2):246-267, 1995.

[13] J.L. Guigues and V. Duquenne. Familles minimales d’implications informatives résultant d’un tableau de
données binaires. Math. Sci. Humaines, 95:5-18, 1986.

[14] J. Hipp, U. Guentzer, and G. Nakhaeizadeh. Algorithms for Association Rule Mining - A General Survey
and Comparison. SIGKDD Ezplorations, 2(1):58-64, 2000.

[15] D. E. Knuth. The Art of Computer Programming, Vol. 8, Sorting and Searching. Addison-Wesley, Reading
(MA), second edition, 1998.

[16] M. Luxenburger. Implications partielles dans un contexte. Mathématiques et Sciences Humaines,
29(113):35-55, 1991.

[17] D. Maier. The theory of Relational Databases. Computer Science Press, 1983.

[18] H. Mannila, H. Toivonen, and A. Verkamo. Efficient algorithms for discovering association rules. In
U. Fayyad and R. Uthurusamy, editors, AAAI Workshop on Knowledge Discovery in Databases (KDD-
94), pages 181-192, Seattle, WA, 1994. AAAT Press.

[19] N. Pasquier. Extraction de bases pour les régles d’association & partir des itemsets fermés fréquents. In
Proceedings of the 18th INFORSID 2000, pages 56-77, Lyon (FR), 2000.

[20] N. Pasquier, Y. Bastide, T. Taouil, and L. Lakhal. Closed Set Based Discovery of Small Covers for
Association Rules. In Proceedings of 15¢mes Journées Bases de Données Avancées (BDA’99), pages
361-381, 1999.

[21] N. Pasquier, Y. Bastide, T. Taouil, and L. Lakhal. Efficient Mining of Association Rules Using Closed
Itemset Lattices. Information Systems, 24(1):25-46, 1999.

[22] J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. In
Proceedings of the ACM-SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
pages 21-30, 2000.

[23] V. Pudi and J. R. Haritsa. Quantifying the Utility of the Past in Mining Large Databases. Information
Systems, 25(5):323-343, 2000.

[24] R. Taouil, N. Pasquier, Y. Bastide, and L. Lakhal. Mining bases for association rules using closed sets. In
Proceedings of the 16th International Conference on Data Engineering (ICDE’2000), pages 307-77, San
Diego, Febuary 2000. IEEE Computer Society.

[25] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An Efficient Algorithm for the Incremental Updation
of Association Rules in Large Databases. In Proceedings of the 3rd International Conference on Knowledge
Discovery and Data Mining (KDD 97), pages 263-266, New Port Beach, CA, 1997.

[26] P. Valtchev. An algorithm for minimal insertion in a type lattice. Computational Intelligence, 15(1):63-78,
1999.

[27] P. Valtchev and R. Missaoui. Building concept (Galois) lattices from parts: generalizing the incremental
methods. In H. Delugach and G. Stumme, editors, Proceedings of the ICCS 2001, Stanford (CA), volume
2120 of Lecture Notes in Computer Science, pages 290-303. Springer-Verlag, 2001.

[28] P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards building Galois (concept)
lattices. to appear in Discrete Mathematics, 2001.

[29] R. Wille. Restructuring the lattice theory: An approach based on hierarchies of concepts. In I. Rival,
editor, Ordered sets, pages 445-470, Dordrecht-Boston, 1982. Reidel.

[30] M.J. Zaki. Generating Non-Redundant Association Rules. In Proceedings of the 6th International Con-
ference on Knowledge Discovery and Data Mining (KDD’00), 2000.

[31] M.J. Zaki and C.-J. Hsiao. ChARM: An Efficient Algorithm for Closed Association Rule Mining. Rpi
technical report 99-10, Rensselaer Polytechnic Institute, 1999.

25



