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ABSTRACT 

 

Concept lattice model, the core structure in Formal Concept Analysis, has 

been successfully applied in software engineering and knowledge 

discovery. In this paper, we integrate the simple base classifier (Naïve 

Bayes or Nearest Neighbor) into each node of the concept lattice to form a 

new composite classifier. We develop two new classification systems, 

CLNB and CLNN, that employ efficient constraints to search for 

interesting patterns and voting strategy to classify a new object. CLNB 

integrates the Naïve Bayes base classifier into concept  nodes while CLNN 

incorporates the Nearest Neighbor base classifier into concept nodes. 

Experimental results indicate that these two composite classifiers greatly 

improve the accuracy of their corresponding base classifier. In addition, 

CLNB even outperforms three other state-of-art classification methods, 

NBTree, CBA and C4.5 Rules. 

 

1  Introduction 

 

Classification is a kernel task in many data mining applications. To deal with this task, 

various methods have been developed, such as decision rule, Naïve-Bayes, decision 



tree, nearest neighbor and neutral network. Different classification methods have 

different decision planes, and are appropriate for different situations. There is no one 

single method that is the best for all situations. As a result, in recent years, researchers 

begin to focus their efforts towards improving predictive accuracy through the 

integration of a number of different classifiers. Naïve Bayes tree learner NBTree 

[Kohavi96] and lazy Bayesian rule learning algorithm LBR [Zheng00] are examples 

of these recent efforts.  

 

The main thrust of NBTree and LBR is in the use of a contextual rule for 

classification instead of the normal classification rule. In machine learning, a 

classification rule takes the following form:  

If  P1∧P2∧ ... ∧Pr then Cj,  

where each Pi (1≤i≤r) is a descriptor (or attribute-value pair in relational table) of 

object, and Cj is a class label. Such a rule means that an object will be classified as Cj 

if it satisfies all the descriptors, Pi(1≤i≤r).  NBTree and LBR generalize the above 

classification rule to define contextual rule: 

If  P1∧P2∧…∧Pr then use CLSi, 

where CLS i is a classifier called base classifier. Such a contextual rule means that 

CLSi can used to classify an object if the object satisfies all the descriptors . By 

thinking Cj as a classifier that classifies any object as C j, it is clear that normal 

classification rule is just a special case of a contextual rule.  

 

Kohave et. al. presented Naïve Bayes tree learner, called NBTree [Kohavi96], that 

combines naïve bayesian classification and decision tree learning. It uses a tree 

structure to split the instance space into sub-spaces defined by the path of the tree. A 

naïve Bayesian classifier is generated in each sub-space. Each leaf of the naïve 

Bayesian tree contains a local naïve Bayesian classifier. As in many other learning 

algorithms that are based on tree structure, NBTree suffers from the small disjunct 

problem. To tackle this problem, Zheng Z., et. al. [Zheng00] applied lazy learning 

techniques to Bayesian tree induction and presented the resulting lazy Bayesian rule 

learning algorithm LBR. LBR constructs a bayesian rule specifically for an input test 

example and uses this rule to predict the class label of the example. 

 



Due to the flexibility of allowing different classifiers for different sub-instances of the 

data space, both NBTree and LBR have achieved better accuracy than C4.5 and naïve 

Bayes classifiers. However, this improvement on accuracy is limited by their principle 

of local search. A local maxima of accuracy will stop further search for interesting 

and useful rules.  

 

In this paper, we propose a framework that employs a more expressive structure, the 

concept lattice, to avoid local maxima. The concept lattice structure enables one to 

exhaustively extract all the bayesian rules. Here, strategies for pruning the concept 

lattice are very important for efficient learning. Three types of constraints are 

presented and integrated into the top-down construction procedure to prune the lattice 

structure. In addition, the proposed framework also works with any simple 

classification method so long as an efficient technique for accuracy estimation for that 

classification method is available.  

 

We would like to highlight the following important fact: Given a test example, there 

will be multiple rules that are matched and the corresponding classifiers get activated. 

A majority voting strategy is then applied to classify the test example. Such voting 

strategy is similar to the multi-classifier techniques such as Bagging [Breiman96] and 

Boosting [Freund96] in that they all use multiple classifiers to vote on decision. 

However, they are also different in that, for our framework, only the activated 

classifiers (whether a classifier is activated or not is determined by the input test 

example) can take part in the voting, but for Bagging and Boosting, all the classifiers 

will be used to vote regardless of what the input test example is like. The reason for 

such difference is because each classifier (except the root classifier) in our algorithm 

framework is induced on a subset of training examples that share some common 

features, while each classifier in Bagging or Boosting is learnt on a sample of training 

set based on randomly sampling. 

 

The paper is organized as follows. Section 2 provides some background information 

on two simple classification methods, namely Naïve Bayes and Nearest Neighbor. A 

short discussion is made on the accuracy estimation techniques used in both methods. 

Section 3 presents our algorithm framework for embedding simple classifier into 

concept node of concept lattice. Three types of constraints for pruning the concept 



lattice structure have been proposed. A post-processing pruning strategy is designed 

that is based on chi-square test. The majority voting strategy for classifying a new 

object is also presented. Section 4 shows the realization of our framework in the form 

of two new classification learning systems, called CLNB (Concept Lattice Naïve 

Bayes classification learning system) and CLNN (Concept Lattice Nearest Neighbour 

classification learning system). Experimental results on 26 datasets shows that both 

systems have shown great improvement in terms of the predictive accuracy over their 

corresponding base classifiers. In addition, CLNB even outperforms several state-of-

art classifiers. 

 

2  Simple Classifiers and Accuracy Estimation 

 

For simplicity, we assume a dataset to be a relational data table with only nominal 

attributes, which consists of the descriptions of n  objects in the form of tuples. These 

N objects have been classified into q  known classes, C1, C2, ..., Cq. Each object in the 

database is described by m distinct attributes, Attr1, ..., Attri, ..., Attrm, so that in an 

instantiation of object description, an attribute Attri takes on the value vij ∈ 

domain(Attri). Let U denote the set of objects and A denote the set of attributes. 

Various kinds of classification method have been developed to induce classifiers on a 

dataset, and the classifier can be thought as a function assigning a class label to a 

newly-seen object. 

 

Among the many existing classification methods, Naïve Bayes [Duda73] and Nearest 

Neighbor [Dasarathy91] are two simplest but efficient classification techniques and 

have been studied widely. They will be used to induce the base classifers to be 

incorporated into the concept nodes. Accuracy estimation is used to approximate 

classifier’s performance. Accuracy estimation techniques will be used for the base 

classifiers, with efficiency taken into consideration. 

 

2.1  Naïve Bayes Classifier 

 

Naïve Bayes, as a typical eager learning algorithm, is simple and computational 

efficient. In spite of its simplicity, it has proved to be a surprisingly successful method, 



and has outperformed much more complicated methods in many application domains. 

In addition, it is also robust to noise and irrelevant attributes and is easy to understand. 

Naïve Bayes is based on the assumption that attributes are conditionally mutually 

independent given the class label. Formally, the probability of a class label value Ci 

for an unlabelled instance V=(a 1, …, am) consisting of m attribute values is given by 

P(Ci|V)=P(Ci)×P(V|C i)/P(V). According to the assumption, it holds that 

P(V|Ci)=∏
=

m

k
ik CaP

1

)|( . The class label, with the highest probability given the instance 

V, is used as the predicted class. Note that we do not need to compute the value of 

P(V). This is because P(V) is a constant for a given V.  

 

For Naïve Bayes, typically leave-one-out strategy is used to obtain the accuracy on a 

training set. This strategy can be implemented efficiently with a time complexity that 

is linear to the number of objects, number of attributes, and number of label values 

[kohavi96]. 

 

2.2  Nearest Neighbor Classifier 

 

The k-Nearest Neighbor classification, also called memory-based or case-based 

learning, is lazy. It finds the k nearest neighbors of a unlabelled instance V in the 

training set according to some metric or “distance” function, and then predicts the 

class label of V as the class that occurs the most frequently  among all the k neighbors. 

Various distance metrics have been developed for nearest neighbor algorithm, among 

which the probability-based metrics are the most promising [Blanzieri99]. In this 

paper, SF2 metric is used [Short81]. It relies on probabilistic  consideration and was 

later generalized to multi-class by Myles and Hand [Myles90]. For any two instance 

V1={a11,  a12, …, a1m} and V2={a21,  a22, …, a2m}, the SF2 distance between them is 

defined as follows: 
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where ||C|| represents the number of classes.  

After the distance metric is defined, 1-Nearest neighbor classification procedure can 

be easily applied to predict the class of a given unknown instance through assigning it 

to the class of the nearest one with respect to the metric defined above.  

 

Since the distance between two instances depends on the estimates of probabilities 

and the count information (which needs to be updated with the removal of instances), 

it is not efficient to implement the leave-one-out accuracy estimation strategy. To 

solve this problem, an approximate solution is adopted whereby we just compute all 

the pair-wise distances of the instances with the estimates of probabilities without 

updating the count information. 

 

2.3  Probability Estimation 

 

In implementing the above classifiers, techniques should be developed to estimate 

p(a|C i) and p(C i). The simplest probability estimates are the occurrence frequencies, 

which is used to estimate p(Ci), that is, p(C i)=N(C i)/N, where N is the number of the 

training examples, and N(Ci) is the number of the training examples with class Ci. As 

for estimating the conditional probability p(a k|Ci), we adopt the Laplace-corrected 

estimate, which leads to p(a k|Ci)=(N(a k, Ci)+f)/(N(Ci)+fn j), where nj is the number of 

values of the k-th attribute, and f is a multipicative factor (default value as 1/N) 

[Domingos97].  

 

3  Contextual and Composite Classifiers 

 

Ever since R. Wille [Wille82] proposed the theory of formal concept analysis in the 

early 1980s, concept lattice has been widely and successfully used in many fields 

including data mining and machine learning. In knowledge discovery, concept lattice 

can be constructed from relational data set, from which various kinds of rules, such as 

implication rules [Godin94], association rules [Pasquier99] and classification rules 



[Mephu94], can be extracted. Our paper focuses on classification through the 

incorporation of base classifiers into concept nodes. We present the details in the 

following subsections.  

 

3.1  Contextual classifier: Formal concept meets base classifier 

 

In formal concept analysis, formal context is a triple K=(U, D, R), where U is a set of 

objects, D is a set of descriptors, and R is a binary relation between U and D. Two 

functions, f and g, are defined in K as: ∀O1⊆U: f(O1)={d∈D|∀x∈O1(x R d)} and 

∀D1⊆D: g(D1)={x∈U|∀d∈D1(x R d)}. Any pair H1=(O1, D1) is called a formal 

concept in K, if it satisfies D1=f(O1) and O1=g(D1), where O1 is called as the extent of 

H1, and D1 the intent. We also use Intent(H1) and Extent(H1) to represent the intent 

and extent of concept H1. Clearly, each concept represents a subspace of the training 

instance space. These subspaces overlap each other, which is different from the 

decision tree whose leaf nodes form a partition of instance space. On the set of 

concepts, hierarchical order relation ≤ is defined: If H1 and H2 are two formal 

concepts in K, H1 is called a subconcept of H2, denoted as H1≤H2, provided that 

Intent(H1)⊇Intent(H 2) (which is equivalent to Extent(H1)⊆Extent(H 2)). In this case, 

H2 is a supconcept of H1. For any two different concepts H1 and H2, H1 is called a 

child of H2 (H2 is called a parent of H1), if H1≤H2 and there is no other concept H3 

satisfying H1≤H3≤H2. The set of all the concepts in K and the hierarchical order 

defined on it form the concept lattice in K. A dataset with object set U and attribute 

set A can be transformed into a formal context K=(U, D, R) by setting D={(Attri, 

vij)|Attri∈A, vij∈domain(Attri)}, and xR(Attri, vij) iff Attri(x)=vij for any x∈U. 

 

For simplicity of expression, a contextual rule r will take the form of r: H→ CLS, 

where H is a formal concept, and CLS is the base classifier induced on the extent of H. 

It is easy to covert it to the form introduced in Section 1:  

If ∧Intent(H) then CLS. 

Clearly, the training set of this contextual classifier is Extent(H), so the accuracy 

estimation method can be applied directly, and acc(r) is used to denote the estimated 

accuracy of r: H→ CLS .  

 



For a contextual classifier r1: H1→ CLS1 and a object x, r1 is said to be activated by x 

if Intent(H1)⊆ x. When r1 is activated by x, CLS 1 can be used to predict the class of 

object x, with the predicted class denoted by r1(x). 

 

However, the number of concept nodes is very large even for a medium-size data set, 

and given the one-to-one correspondence relationship between concept nodes and 

contextual classifiers, it is not practical to calculate the entire set of all the contextual 

classifiers. So, effective constraints must be adopted to restrict the search space. This 

is discussed in the next subsection. 

 

3.2  Using constraints to search contextual classifiers  

 

Given a concept H1=(O1, D1) and any feature d∈D−D1, concept H2=(g(f(D 1∪{d})), 

f(D 1∪{d})) is called to be a direct subconcept of H1. Any child H2 of node H1 is 

certainly a direct subconcept of H1, while a direct subconcept of H1 is not necessarily 

a child of it.  

 

A set of contextual classifiers is called a composite classifier. A composite classifier, 

RuleSet, is reduced if it satisfies the following three types of constraints: 

 

• Support Constraints: Two threshold values are used in this constraint. On the 

one hand, each contextual rule r1: H1→ CLS 1 should satisfy 

||Extent(H1)||≥α×||U||, where α  has a default value of 0.05. On the other hand, 

for any two contextual classifiers r1: H1→ CLS1 and r2: H2→ CLS2 in RuleSet, 

where H1 is an ancestor of H2, the size of Extent(H2) should be large than 

σ/(1− acc(H1→ CLS1)), the default value of σ is 3. Both the support 

constraints are used to guarantee the generalization ability of the learnt model.  

 

• Accuracy Constraint: For any two contextual classifiers r1: H1→ CLS 1 and r2: 

H2→ CLS2 in RuleSet, where H1 is an ancestor of H2, the estimated accuracies 

of r1 and r2 should satisfy acc(r2)>acc(r1)+δ*log(||Extent(C1)||/||Extent(C2)||) . 

Default value of δ is set as 0 in our experiment. The smaller the value of δ is, 

the larger is the search space to be explored. 



 

• Reject Constraint: For a contextual classifier r1: H1→ CLS1 in RuleSet, if there 

is another contextual classifier r2: H2→ CLS2 in RuleSet that satisfies 

Intent(H 2) ⊂  Intent(H1), then the size of Extent(H1) should be not larger than 

γ×||Extent(H 2)||, where γ  has a default value of 0.9. This constraint is used to 

prevent the occurrence of contextual rules that are similar to each other.  

 

Based on the definition of direct sub-concept and the three types of constraints, our 

algorithm, as the pseudo-code listed below, searches for the interesting contextual 

classifiers in a top-down manner. It begins with the most general node (root node). 

For each node, our algorithm will compute all its direct subconcepts, if it satisfies all 

the contraints; otherwise, it will be removed.  

 

 1 RuleSet i=∅, i=0, 1, …, ||D||; 

 2 Add rRoot: {(U, f(U))}→nil into RuleSet ||f(U)||; 

 3 FOR i=0 to ||D||−1 DO 

 4  FOR each contextual rule r: H→nil in RuleSet ||i||  DO 

 5   IF  r satisfies the constraints of support and reject THEN 

 6    train a base classifier CLS on ||Extent(H)||; 

 7    update rule r from H→nil to be H→CLS; 

 8    IF r  satisfies the constraint of accuracy THEN 

 9     SubCon={(g(f(Intent(H)∪{d})), f(Intent(H)∪{d})) | d∈D−Intent(H)} ; 

 10     FOR each concept Hs∈SubCon with ||Extent(H s)||≥k×||U|| DO 

 11      Insert Hs→nil  into Rule||Intent(Hs)||; 

 12     ENDFOR 

 13    ELSE 

 14     Remove r from RuleSet ||i|| and delete it; 

 15    ENDIF 

 16   ELSE 

 17    Remove r from RuleSet||i|| and delete it; 

 18   ENDIF 

 19  ENDFOR 

  20 ENDFOR 

 

 



3.3  Pruning 

 

When searching the contextual classifier space, the constraint used is relatively weak 

to ensure that most of the interesting patterns can be obtained. Once we have searched 

through the contextual classifier space, we adopt a stronger pruning strategy to ensure 

a reliable improvement over the root classifier (which is constructed on the whole 

training set). Chi-square test, which is based on the comparison of observed 

frequencies with the expected frequencies, is employed to define the statistical 

improvement on accuracy. 

 

For any two contextual classifier r1: H1→ cls1 and r2: H2→ cls2, we can get a 2×2 

contingency table: 

 

 r1: H1→ cls1 r2: H2→cls2 Row Total 

Correctly 

Classified 

n11=||Extent(H1)||×acc(r1) n21=||Extent(H2)||×acc(r2) n*1=n11+n21 

Wrongly 

Classified 

n12=||Extent(H1)|| 

×(1−acc(r1)) 

n22=||Extent(H2)|| 

×(1−acc(r2)) 

n*2=n12+n22 

Column 

Total 

n1*=||Extent(H1)|| n2*=||Extent(H2)|| n**=n*1+n*2 

 

In the table above, n11, n12, n21, and n22 are the observed frequencies of the four celles. 

Let mij represent the expected frequency corresponding to nij, for i, j∈{1, 2}. We have 

mij=ni*×n*j/n**. For the table above, the Chi-square value is defined as: 

∑
−

=
ij

ijij

m

mn 2
2 )(

χ . 

The threshold value 3.84 at the 95% significance level is adopted as the default value 

for determining the statistical difference between the accuracies of two contextual 

rules. If there is a statistical difference between the accuracies of r1 and r2 and the 

estimated accuracy of r1 is higher than that of r2, then we say that r1 is statistically 

more accurate than r2. 

 



In our current implementation, we use a simple strategy to prune the set of contextual 

rules:  

A contextual rule except the root contextual rule will be pruned, if it is not 

statistically accurate than the root contextual rule.  

 

3.4  Using voting to classify new objects 

 

Given an unseen object x, and a composite classifier R which is a set of contextual 

classifier, voting strategy is applied to predict the class. This is accomplished in four 

steps: 

 

Step 1. Mark all the contextual classifiers activated by the unseen object. Usually, 

many classifiers will be activated for a given input object. (line1) 

Step 2.  For any two activated contextual rule r1: H1→ cls1 and r2: H2→ cls2, clear the 

“activated” status of r1 if Intent(H1)⊆Intent(H2). (line 3-5) 

Step 3.  For any activated contextual rule r1, if there exists another activated 

contextual rule r2, which is statistically more accurate than r1, then clear the 

“activated” status of r1. (line 6-8) 

Step 4.  Perform majority-voting strategy on the input object using the set of activated 

rules. When tie occurs, the vote of the contextual classifier with the highest 

accuracy is used as the tie-breaker. (line 10-18) 

 
 1  Ractive={ r: H→CLS |r∈R and  Intent(H)⊆ x} 

 2  FOR each contextual rule r1: H1→CLS1∈Ractive DO 

 3    IF  ∃r2: H 2→CLS2∈Ractive  (Intent(H1)⊆Intent(H2)) THEN 

 4      remove r1 from Ractive ; 

 5    ENDIF 

 6    IF  ∃r2: H 2→CLS2∈Ractive(r2 is statistically more accurate than r1) THEN 

 7      remove r1 from Ractive ; 

 8    ENDIF 

 9  ENDFOR 

 10  count[i]=0 for each class i; 

 11  count[r1(x)]++  for each contextual rule r1∈Ractive; 

 12  set major=maxi{count[i]} and decisions={i|count[i]=major} 

 13  IF ||decisions||=1 THEN 



 14    return decisions[0] as t he predicted class of x; 

 15  ELSE 

 16   Let r1 be the contextual rule with the maximal accuracy in 

{r∈Ractive|r(x)∈decisions}; 

 17    return r1(x) as the predicted class of x ; 

 18  ENDIF 

 
 
4  Experimental Results 

 

The concept lattice framework has been implemented as a template class using Visual 

C++ in Win98 system. The concept lattice template takes a base classifier class as its 

parameter. For our experiments, we generate two new instantiations of the concept 

lattice framework: one with Naïve Bayes as the base classifier (CLNB), the other with 

Nearest Neighbor as base classifier (CLNN).  

 

In our experiments, we use the same 26 datasets from UCI Machine Learning 

Repository [Merz96] as in [Liu98]. The detailed information about these datasets is 

listed in Table 1. Since the current version of our algorithm can only deal with 

nominal attribute, the entropy-based discretization algorithm [Fayyad93] is used for 

preprocessing. 

 
4.1  Error-rate comparison 

 

We first compare the accuracy results of the classifiers produced by CLNB and 

CLNN with those generated by two corresponding base classifiers (Naïve Bayes and 

Nearest Neighbor), and those generated by three other state-of-art classifiers: NBTree 

[kohavi96] (a state-of-art of hybrid classifier which improves the accuracy of naïve 

bayes classifier significantly), CBA [Liu98] (a classifier based on association rules), 

and C4.5Rules (Release 8). The error rates of the different algorithms on the 

experimental domains are listed in Table 2. All the error rates are obtained through 

10-fold cross validation. We use the same training/test set split for all the 

classification methods in the experiments. 

 



From the 26 data sets, it is clear that CLNB and CLNN produce more accurate 

classifiers than Naïve Bayes and Nearest Neig hbor respectively. On average, the 

accuracy increases from 83.7% for Naïve Bayes to 86.4% for CLNB, and from 80.5% 

for Nearest Neighbor to 84.4% for CLNN. The average error rate of CLNB is also 

2.4% lower than that of NBTree, 1.6% lower than CBA, and 3.1% lower than 

C4.5Rules. 

 

 

 

Dataset 
No. 

Attrs 

No. 

Classes 
Size Dataset 

No 

Atrs 

No. 

Classes 
Size 

anneal 38 6 798 australian 14 2 690  

auto 25 7 205 breast-w 10 2 699  

cleve 13 2 303 crx 15 2 690  

diabetes 8 2 768 german 20 2 999  

glass 9 7 214 heart 13 2 270  

hepatitis 19 2 155 horse 22 2 368  

hypo  25 2 3163 ionosphere 34 2 351  

iris 4 3 150 labor 16 2 57 

led7 7 10 3200 lymph 18 4 148  

pima 8 2 768 sick 29 2 2800 

sonar  60 2 229 tic-tac-toe 9 2 958  

vehicle 18 4 846 waveform 21 3 5000 

wine 13 3 178 zoo 16 7 101  

 

Table 1: Datasets used. 

 



 

 
Dataset NBTree CBA C4.5Rules NB CLNB  NN CLNB  

anneal  1.0 2.1  5.2  1.6  1.4 1.3  1.1  

australian 14.5 14.6  15.3 14.1  14.6 20.7 15.5  

auto 22.8 19.9  19.9 27.7  20.5 26.3 19.9  

breast-w 2.6 3.7  5.0  2.4  3.1 3.9  3.4  

cleve 19.1 17.1 21.8 18.1  16.8 23.1 16.8  

crx 14.2 14.6  15.1 14.5  13.5 21.4 15.2  

diabetes 24.1 25.5  25.8 24.1  23.3 33.3 33.2  

german 24.5 26.5  27.7 24.5  26.5 33.5 25.5  

glass 28.0 26.1  31.3 28.5  26.6 32.7 31.3  

heart 17.4 18.1  19.2 18.1  16.7 20.4 22.6  

hepatitis 11.7 18.9  19.4 15.6  17.5 17.5 15.6  

horse 18.7 17.6  17.4 21.7  18.2 26.9 19.6  

hypo 1.0 1.0  0.8  1.8  1.4 1.5  1.5  

ionosphere 12.0 7.7  10.0 10.5  8.8 13.1 8.0  

iris 7.3 5.3  4.7  5.3  5.3 6.0  5.3  

labor 12.3 13.7  20.7 5.0  5.0 5.0  5.0  

led7  26.7 28.1  26.5 26.7  26.8 53.8 53.8  

lymph 17.6 22.1  16.5 19.0  21.0 25 16.9  

pima 24.9 27.1  24.5 24.5  27.2 29.8 30.1  

sick 22.1 2.8  1.5  4.2  2.9 3.4  3.4  

sonar 22.6 22.5  29.8 21.6  4.8 1.4  1.4  

tic-tac-toe 17.0 0.4  0.6  30.1  4.1 37.9 5.2  

vehicle 29.5 31 27.4 40.0  27.3 43.0 30.1  

waveform 16.1 20.3  21.9 19.3  15.8 20.6 17.1  

wine 2.8 5.0  7.3  1.7  1.7 2.3  2.3  

zoo 5.9 3.2  7.8  3.9  3.9 3.9  3.9  

Average 16.0 15.2  16.7 16.3  13.6 19.5 15.5  

 

Table 2: Error rates (%) of CLNB, CLNN, NB, NN, C4.5, CBA and NBTree 



 

4.2  Computational Requirements 

 

To give an idea of the computational requirements of CLNB and CLNN, four 

measurements are used:  

(1) running time for training (in second); 

(2) running time for testing (in second); 

(3) number of contextual rules generated before pruning; and 

(4) number of contextual rules generated after pruning; 

The results of our experiments are listed in Table 3. All the values are averaged over 

ten folds. 

 

We discovered an important fact from Table 2 and Table 3: for those datasets with 

more than 50 contextual rules after pruning, the average accuracy improvement of 

CLNB over NB is 6.3% (on 11 datasets), and the average accuracy improvement of 

CLNN over NN is 7.9% (on 11 datasets). On the contrary, for the datasets with less 

than 50 contextual rules after pruning, the average accuracy improvement of CLNB 

over NB is only 0.03% (on 15 datasets), and the average accuracy improvement of 

CLNN over NN is 1.12% (on 15 datasets).  

 

Clearly, in our experiments, the accuracy improvement of composite classifier over 

corresponding base classifier is mainly caused by those data sets with more contextual 

classifiers generated after pruning. 

 



 

 
CLNB CLNN 

no. nodes running time   no. nodes running time 
Dataset 

bef. 

pru 

aft. 

pru. 

for 

bld. 

for  

clss. 

bef. 

pru 

aft. 

pru 

for 

bld. 

for 

class. 

anneal  15.9 3.5  1.685 0.06 16.5  1.8  2.258 0.16 

australian 243 75.9 1.336 0.17 867.6 557.2 3.866 0.93 

auto 310.1  61.6 2.481 0.06 121.8 37.9  0.933 0.16 

breast-w 14.8 6.5  0.126 0 17 9.9  0.23  0 

cleve 202.2  44.1 0.48  0 254.5 109.2 0.532 0.22 

crx 280.2  86.3 1.565 0.11 712.7 456.1 3.333 0.83 

diabetes 35.7 25.6 0.159 0 38.5  26.7  0.303 0.18 

german 591.4  392.8 4.107 0.42 1747 1482 8.825 2.3 

glass 24.7 5.6  0.084 0 15.5  8.6  0.07  0.06 

heart 107.2  25.2 0.263 0 114.2 49.7  0.224 0.05 

hepatitis 178.4  43.8 0.718 0 88.1  21.7  0.355 0.06 

horse 1033 150.9 4.641 0.28 1868 1293.4  7.531 2.19 

hypo 29.5 15.1 3.558 0.51 22.8  10.1  11.99 5.22 

ionosphere 309.7  19.6 3.631 0.05 375.7 201.6 3.082 1.09 

iris 2.3 1 0.006 0 2.7  1.3  0.006 0 

labor 1 1 0.01  0 1 1 0 0 

led7  142.2  119 3.114 0.28 92.9  89.4  22.98 1.56 

lymph 95.4 4.1  0.378 0 69.6  14.4  0.229 0 

pima 32.8 22.2 0.122 0.11 36.5  22.2  0.299 0.05 

sick 94.3 78.3 6.484 0.58 55 47.8  11.06 3.23 

sonar 721.2  99.8 7.878 0.36 989.3 448.7 7.332 1.22 

tic-tac-toe 376.9  287.8 0.713 0.18 447.2 382.1 0.957 0.16 

vehicle 1413 1282 12.92 1.95 1478 1369.5  12.32 2.47 

waveform 154.5  134.3 10.98 1.05 459.9 332.9 24.72 5.27 

wine 1 1 0.005 0 1 1 0 0 

zoo 3 1 0.012 0 1 1 0 0 

Average 246.6  114.9 2.594 0.237  380.5 268.4 4.742 1.051  

 

Table 3: Computational Requirements  

 



5  Conclusion and Future Work 

 

In this paper, we have presented an algorithm framework for integrating base 

classifier into concept node of concept lattice. The algorithm framework is realized in 

the form of two novel hybrid classification methods, CLNB and CLNN using two 

simple classification methods, Naïve Bayes and Nearest Neighbor, respectively. 

Experimental results on 26 datasets indicate that both the hybrid classification 

methods perform better than their corresponding base classifiers and CLNB even 

outperforms state-of-the-art classifiers.  Future research work includes looking into 

different approach for probability estimation, such as the smoothed estimation for 

parameter used in [Friedman97], to improve the Naïve Bayes probability estimation 

based on count information; and investigate on the use of detailed voting information 

to classify a test example. For example, if we consider all the evidences of the votes 

from contextual classifiers, we may be able to use some techniques (like evidence 

theory) to accumulate the collected evidence. This may result in an improvement of 

the performance of our algorithms.  
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