
ar
X

iv
:c

s/
04

07
03

4v
1

 [
cs

.A
I]

 1
5

Ju
l 2

00
4

On the Complexity of Case-Based Planning

Paolo Liberatore

July 10, 2021 — 7:49

Abstract

We analyze the computational complexity of problems related to
case-based planning: planning when a plan for a similar instance is
known, and planning from a library of plans. We prove that planning
from a single case has the same complexity than generative planning
(i.e., planning “from scratch”); using an extended definition of cases,
complexity is reduced if the domain stored in the case is similar to the
one to search plans for. Planning from a library of cases is shown to
have the same complexity. In both cases, the complexity of planning
remains, in the worst case, PSPACE-complete.

1 Introduction

Case-based reasoning [23, 1, 32] is a problem solving methodology based on
using a library of solutions for similar problems, i.e., a library of “cases” with
their respective solutions. Roughly speaking, case-based planning consists
into storing generated plans and using them for finding new plans [15, 8, 29].
In practice, what is stored is not only a specific problem with a specific
solution, but also some additional information that is considered useful to
the aim of solving new problems, e.g., information about how the plan has
been derived [30], why it works [20, 16], when it would not work [17], etc.
Different case-based planners differ on how they store cases, which cases they
retrieve when the solution of a new problem is needed, how they adapt a
solution to a new problem, whether they use one or more cases for building a

1

http://arxiv.org/abs/cs/0407034v1

new solution, etc. The survey papers by Bergmann et al. [8] and by Spalazzi
[29] give a detailed introduction to case-based planning.

In this paper, we study the computational complexity of case-based plan-
ning, i.e., we characterize the complexity of case-based planning using the
theory of the NP-completeness [18]. What makes this analysis different from
the other results on the complexity of planning [9, 26, 25, 7, 3, 5, 6, 4]. is
that case-based planning is not actually a problem, but rather a family of
solutions for a problem. In fact, the theory of computational complexity can
only characterize the complexity of problems, not of family of solutions. On
the other hand, case-based planning always requires solving some specific
subproblems, such as, for example, the adaptation of a plan to a different
problem. In this paper, we study the complexity of some problems that are
related to case-based planning.

The first problem we consider is that of finding a plan given another
plan that works on a slightly different domain. This problem formalizes the
task of plan adaptation that case-based planners have to perform. While the
formalization of this problem disregards many aspect of plan adaptation in
practice (e.g., more plans for similar cases may be available), it nevertheless
contains the main requirement of plan adaption: building a new plan given
an old one. This problem has been already analyzed by Nebel and Koehler
[27, 28] under the constraint of minimal plan change: the new plan should
be as similar to the old one as possible; plan adaptation in this case is called
conservative. There are some scenarios in which this constraint is reason-
able (e.g., we schedule the actions of the old plan before starting planning,
and not executing them results in an additional cost); while conservatism
is sometimes obtained as a byproduct of algorithms that work by changing
an old plan [20], it is usually not a requirement. On the contrary, not en-
forcing minimal change has been considered a viable alternative for escaping
the high complexity of conservative plan adaptation [2]. The absence of the
constraint of conservatism is also evident in the generative case-based plan-
ning approach, which differs from the transformational case-based approach
outlined above in that the new plan is generated from scratch (rather than
from the old plan), and the case is used to guide the choices made during
the search [8].

The main problem of analyzing a solution technique, rather than a specific
problem, is that the implemented solutions may greatly differ to each other.
While the abstract idea of reusing old plans is part of all case-based planners,
even giving a common definition of “an old plan” is not easy. This may be

2

simply a specific plan, but can also be an abstract plan, or a partially ordered
plan, and may include additional information [20, 30, 17]. Moreover, the
plan adaptation problem may not be tackled at all: planning by derivational
analogy [13, 31] uses the traces of the search done for finding a plan, rather
than the plan itself; generative case-based planners [8] build a plan from
scratch by using information from more than one case, rather than adapting
a specific plan. In the opinion of the author of the present paper, the problem
of plan adaptation in its simpler formalization is a good starting point for
the computational analysis of plan adaptation, even if it is not the problem
that is faced in practice.

What makes giving a formalization that is at the same time general and
precise a difficult task is that plan adaptation cannot always be separated
from the other steps of case-based planning. For example, the plan to adapt
is not chosen arbitrarily in the library of plans; it is chosen because it is
expected to be adaptable to the new situation; moreover, more cases may be
selected, leading to more than one “starting point” for the search of the new
plan. Being impossible to precisely formalize the whole case-based planning
process and remain general enough, we consider the problem of case-based
planning in a very general way, in which the only assumption that is made
is that a case, or a library of cases, is a data structure of polynomial size.

The problems that are therefore considered are: planning from a specific
known plan, and planning from a “generalized” case or a library of cases. The
first problem formalizes the basic plan adaptation step; the second problem
formalizes the fact that cases usually contain additional information other
than the plan itself; the third problem is a formalization of the whole case-
based planning process.

In the analysis of these problems, we do not enforce the constraint of
minimal change. The resulting freedom in the search for plans may simplify
the algorithms [2], but makes the computational analysis more complicated.
Indeed, the theory of NP-completeness formalizes problems that can be ex-
pressed in a scheme like the following one:

Instance: a planning domain;

Question: is there a plan for the domain?

(for some reason not clear to the author, the words “instance” and “question”
are often written in “small caps” font.) The fact that this is a decision

3

problem (the solution can only be yes or not) is not a big restriction, as
search problems (where the solution can be a more complex data structure)
can be usually reduced to a number of decision problems. What makes this
formalization restrictive in the setting of plan adaptation is that there is no
slot in the scheme where to place the old plan. Indeed, the old plan is not
exactly part of the instance, as it presence does not change the definition of
the problem. As well, it is not part of the question. The plan adaptation
problem would be better formalized by a list of three parts:

Instance: a planning domain;

Hint: a plan for a similar domain;

Question: is there a plan for the new domain?

This is still a decision problem (its solution is either yes or not). How-
ever, its definition contains a new part, the hint, which is not necessary for
answering the question, but can be useful nevertheless. In other words, the
existence of a plan only depends on the domain, not on the hint. The differ-
ence between the hint and the instance makes the analysis of plan adaptation
carried on in this paper different from that of conservative plan adaptation:
in the latter problem, the plan for the similar domain is part of the instance,
as the new plan to be found depends on the old one [27]. In other words,
the instance of conservative plan adaptation contains a plan for a domain,
and the question is whether there exists a similar plan for the new domain.
Roughly speaking, an hint is something we could disregard while looking
for a solution, while the old plan cannot in the case of conservative plan
adaptation.

The problems we analyze in this paper are the problem of adaptation
from a specific plan, from a plan plus other information, and the problem of
planning with a library of cases. In all these cases, we are given an instance
of the planning problem and an hint, which can be a plan, a plan plus other
information, or a plan library. The technical results of this paper is that plan
adaptation of a single specific plan can be as hard as generative planning (i.e.,
planning “from scratch” disregarding the hint completely); planning from a
more general definition of cases may be easier than generative planning in
some cases, but is as hard in general. The same results hold for case-based
planning, i.e., planning from a library of cases.

4

2 Preliminaries

The planning problems analyzed in this paper are formalized using the propo-
sitional STRIPS formalism. A STRIPS instance (or a STRIPS domain) is a
4-tuple 〈P,O, I,G〉, where P is the set of conditions, O is the set of opera-
tors, I is the initial state, and G is the goal. The conditions are facts that
can be true or false in the world of interest. A state S is a set of conditions,
and represents the state of the world in a certain time point. The conditions
in S are those representing facts that are true in the world, while those not
in S represent facts currently false.

The initial state is a state, thus a set of conditions. The goal is specified by
giving a set of conditions that should be achieved, and another set specifying
which conditions should not be made true. Thus, a goal G is a pair 〈M,N〉,
where M is the set of conditions that should be made true and N is the set
of conditions that should be made false.

The operators are actions that can be performed to achieve the goal. Each
operator is a 4-tuple 〈φ, η, α, β〉, where φ, η, α, and β are sets of conditions.
When executed, such an operator makes the conditions in α true, and those
in β false, but only if the conditions in φ are currently true and those in η
are currently false. The conditions in φ and η are called the positive and
negative preconditions of the operator. The conditions in α and β are called
the positive and negative effects or postconditions of the operator.

Given an instance of a STRIPS planning domain 〈P,O, I,G〉, we define a
plan for it as a sequence of operators that, when executed in sequence from
the initial state, lead to a state where all the conditions in M are true and
all those in N are false. More details about the definition of STRIPS can be
found in [14] and [9].

A planning case is a pair 〈Do, Po〉, where Do is a planning instance and
Po is a plan for it. Plan adaptation is formalized as follows: we are given
a plan case and a specific domain D that contains the same conditions and
actions of the domain Do. The problem is that of finding a plan for D. This
is a simplification of the plan adaptation step of case-based planners, but
contains all main components: the case with a solution and a new instance
to be solved. Somehow, we are studying this problem in isolation from the
general case-based planning process, as for example we disregard the fact
that the case is typically chosen in such a way P0 is expected to be useful for
finding a plan for D. We then consider the problem of plan adaptation in

5

the assumption that the case is not only a pair 〈Do, Po〉 but may also contain
other information; we abstract over the kind of information that is stored,
so that our results are independent on whether we use derivational traces,
abstractions, previous failures, etc. We prove that planning adaptation is
feasible, in this case, provided that the domain of the case and the current
domain are similar.

The second problem we consider is whether a library of plans can improve
the efficiency of finding a plan for a new domain. A simple (and somehow sim-
plistic) definition of a plan library is a set of cases {〈Di, Pi〉 | 1 ≤ i ≤ m}. We
consider this definition of plan library as a special case of some importance,
but the result we prove holds for any kind of plan library. This generalization
is necessary because a case library usually contains much more information
than just a set of planning instances with their relative solutions (e.g., plans
may be abstract, they may be partially ordered, the library may contains
indexes using for example description logics [22], the cases themselves may
be abstract and stored hierarchically, etc.) By assuming that the library
of cases is an arbitrary data structure, our results carry on to all specific
classes of plan libraries. We remark that the complexity-theoretic results for
this generalized definition of case library are more related to the generative
case-based planning than to the transformational approach, in that the plan
library is only assumed to be used when it is useful in the process of searching
for a new plan, and is not necessarily used to provide a starting point of the
search process.

3 Results

The problem of deciding whether there exists a plan for a STRIPS instance
is denoted as PLANSAT, and is known to be PSPACE-complete [9, 10]. If
a planning case 〈Do, Po〉 is also known, the problem cannot become more
difficult, as we can simply disregard the case and find the plan using D
only. Essential to this trivial result is that we do not enforce adaptation
to be conservative, as motivated in the Introduction. The problem of plan
adaptation is therefore in PSPACE. While a problem cannot be made harder
by the presence of an hint, it may become easier. The following theorem
shows that this is not the case for plan adaptation.

Theorem 1 Deciding whether there exists a plan for a STRIPS instance D,

6

given a case 〈Do, Po〉, is PSPACE-complete, even if Do and D only differ
from one condition of the initial state.

Proof. The problem is in PSPACE, as we can find the a plan for D disre-
garding the case 〈Do, Po〉.

We prove that the problem of plan adaptation is PSPACE-hard by show-
ing a reduction from PLANSAT. In other words, we show that, given an
instance of PLANSAT 〈P,O, I,G〉, there exists 〈Do, Po〉 and D such that Po

is a plan for Do, the domains Do and D only differ for one condition of the
initial state, and D has a plan if and only if 〈P,O, I,G〉 has a plan.

The domains Do and D are obtained from 〈P,O, I,G〉 by adding a single
condition a, a single action e = 〈{a}, ∅,M,N〉, where G = 〈M,N〉 is the
goal of the original instance, and possibly modifying the initial state:

Do = 〈P ∪ {a},O ∪ {e}, I ∪ {a},G〉

D = 〈P ∪ {a},O ∪ {e}, I,G〉

The plan Po that is part of the case is 〈e〉. It can be easily verified that Po

is a plan for Do (its preconditions are verified in the initial state of Do, and
its consequences are exactly the goal.) As a result, 〈Do, Po〉 and D constitute
a valid plan adaptation instance.

A case-based planner, while looking for a plan for D, would first check
whether Po works in D and then try to adapt it if it does not. In this case,
Po is not executable at all in D, as the precondition a of e is not true in the
initial state of D. Moreover, the plan Po is completely useless for solving
D, as it requires a to be true, while a is not not initially true in D and
cannot even be made true because no action in O ∪ {e} makes it true. As
a result, a can be removed altogether from D, along with e that is never
executable. After this change, D becomes 〈P,O, I,G〉, which is exactly the
original instance. We can therefore conclude that D has a plan if and only if
the original instance has a plan, thus proving the PSPACE-hardness of the
plan adaptation problem.

This theorem proves that checking the existence of a case 〈Do, Po〉 does
not simplify the check of existence of a plan for a domain D that is similar
to Do. Namely, the problem remains PSPACE-complete. We remark that
the hardness part of this theorem holds even if the instances are similar, not
only in this case. This result is therefore relevant even in those settings in

7

which the choice of the case to reuse is not driven by the similarity of the
domain to the one to be solved [19].

Analyzing the proof, we observe that the reduction used for proving the
hardness part can be described as: “given a planning instance 〈P,O, I,G〉,
there exists a case 〈Do, Po〉 and a domain D such that...”. The important
part is that we have chosen the specific plan Po that is part of the case. In a
way, this theorem proves that there exists a plan forDo that does not simplify
the plan existence problem for D, i.e., some plans do not help.

A natural question is now: given that some plans do not help, may it be
that some other plans do? In other words, it may be that a sensible choice of
a plan Po for Do is useful for solving the problem for D. We give a negative
answer to this question.

Theorem 2 The problem of checking the existence of a plan for D, given a
case 〈Do, Po〉, where Po is any plan of Do, is PSPACE-complete even if D
and Do only differ from one condition of the initial state.

Proof. The proof is based on the idea of reducing the PLANSAT problem to
the plan adaptation problem in which Po is the only plan of Do. By proving
that Po is not useful for solving PLANSAT for D, we prove that no plan is,
in general, useful.

The proof of Theorem 1 has the only problem that Po = 〈e〉 may not be
the only plan ofDo. We therefore modify the domainDo to make it so. Given
a PLANSAT instance 〈P,O, I,G〉, the domains D and Do are still based on
the set of conditions P ∪ {a}, where a is a new condition. The operators are
O′ ∪ {e}, where:

O′ = {〈α, β ∪ {a}, γ, δ〉 | 〈α, β, γ, δ〉 ∈ O}

e = 〈{a}, ∅,M,N〉

In words, we add a as a negative precondition of each operator in O. The
new action e is defined as in the proof of the previous theorem. The domains
D and Do are defined as:

Do = 〈P ∪ {a},O′, I ∪ {a},G〉

D = 〈P ∪ {a},O′, I,G〉

8

The plan Po is 〈e〉. This time, Po is the only plan for Do, as all other
actions have a as a negative preconditions, while a is initially true and no
action makes it false. On the other hand, the action e is not executable in D,
as a is initially false and no action makes it true. As a result, we can remove
a and e from D, and this makes it identical to the original instance. As a
result, D as a plan if and only if 〈P,O, I,G〉 has a plan. This proves that
the problem of plan adaptation remains PSPACE-hard regardless of how the
plan in the case 〈Do, Po〉 is chosen.

This theorem proves that no plan for Do can be useful in finding a plan
for D, even if D and Do only differ for a single condition of the initial state.
This result, however, only holds when we assume that a case is exactly a
pair 〈Do, Po〉, i.e., a domain and a plan for it. As explained in the Introduc-
tion, case-based planners usually record with plans other information such
as derivational traces, abstractions of the plan, information that anticipates
when the plan may fail, etc. This additional information can simplify the
plan adaptation process. Since case-based planners greatly differ on what
information is recorded, we simply assume that the case is recorded as a pair
〈Do, Ao〉, where Ao is a polynomial-size data structure. We can prove that
such cases may be of help if the new domain to be solved is similar to the
one in a case.

The theorem showing this fact, as well as the following one, requires a
digression into the topic of problem preprocessing. Problems such as plan
adaptation can be formalized as set of pairs 〈Do, D〉, where the question is:
given Do, is there any Ao such that solving the question of plan existence
of D can be done in polynomial time given 〈Do, Ao〉? In terms of problem
preprocessing, we are given 〈Do, D〉 and ask whether preprocessing Do can
result in a data structure Ao that makes the PLANSAT problem on D easy
to solve, i.e., polynomial-time. Problems for which preprocessing lowers the
complexity to P form the class ❀P, a.k.a. comp-P, a.k.a. compilable to P.
The following lemma shows that the problem of plan adaptation is compilable
to P.

Lemma 1 The problem of checking the plan existence of D is in ❀P, given
〈Do, D〉, where Do is a domain that only differs from D for a constant number
of conditions in the initial state and goal.

Proof. Cadoli et al. [12] proved that all problems for which a polynomial
number of varying parts (in this case, the number of possible D) that cor-
respond to the same fixed part (in this case, Do) is a constant, then the

9

problem is compilable to P. This is actually the case, as D and Do only differ
for a constant number c of conditions in the initial states or goal; as a result,
for any Do there are only |P|c possible D. Since c is a constant, this function
|P|c is polynomial in the size of Do and D. As a result, the problem can be
compiled to P, i.e., it is in ❀P.

The following is an easy corollary of the above lemma.

Theorem 3 For every domain Do there exists a data structure Ao such that
〈Do, Ao〉 allows for solving the problem of plan existence of a domain D that
only differs from Do for a constant number of conditions in the initial state
or the goal in polynomial time.

Proof. By the above lemma, the fixed part Do of the problem 〈Do, D〉 can be
preprocessed in such a way the result of this phase is polynomial in size and
allows for solving the problem of plan existence for D in polynomial time,
if D and Do only differ for a constant number of conditions of the initial
state and goal. As a result, for any given Do there is a polynomial-size data
structure Ao such that 〈Do, Ao〉 makes polynomial the problem PLANSAT for
every D that only differ to Do only for a constant number of conditions of
the initial state or goal.

We remark that this result is theoretical, in that it abstracts over the
possible “extended representations” of cases. How this result apply to the
various specific representations of cases is an open question.

The question of whether an extended representation of cases, or a whole
library of cases, is of help in finding a plan for a new domain that can differ
from the ones that have already been analyzed for a non-constant number
of conditions can be given a negative answer by showing that the problem
of solving PLANSAT on 〈Do, D〉 is not compilable to P. We indeed prove
that this problem is ‖❀PSPACE-complete. This is proved by means of the
following lemma.

Lemma 2 For every operator o over P, the STRIPS instance 〈P,O, I,G〉
has a plan if and only if the instance 〈P ∪ {y},O ∪ {o}, I ′, G〉 has a plan,
where y is a new condition not in P, the operator o′ is o with the addition
of y as a positive precondition, and I ′ is I or I ∪ {y} depending on whether
o ∈ O or not.

10

Proof. Since y is a new condition not in P, and is only mentioned as a
precondition of o′, no operator change its value. As a result, it is true if and
only if it is true in the initial state. Moreover, y is positive in the initial state
if and only if o ∈ O. As a result, o′ is equivalent to o if o ∈ O, and cannot be
executed if o 6∈ O. Since the addition of y and o′ and the possible removal
of o are the only changes from the first instance to the second, the property
of plan existence does not change.

This lemma looks like a trivial property, but in fact it says something
interesting about the complexity of the PLANSAT problem: regardless of
whether o ∈ O, we can let o′ to be in O, and use a variable y to encode
whether o in O or not. In other words, we are making an element of the set
of operators fixed, as o′ is added to the set of operators regardless of whether
o ∈ O. Since the original problem can be reduced to this new one in which
the set of operators has a fixed part, the complexity of the new problem is at
least as high as that of the original problem. By iterating this procedure, we
can make the set of operators completely fixed. As a result, the complexity
of the problem remains the same even if the set of operators is fixed.

The formal proof uses a sufficient condition for proving that a problem is
non compilable to P called representative equivalence.

Lemma 3 The problem of determining a plan for D, given 〈Do, D〉, where
Do andD contain the same conditions and operators, is ‖❀PSPACE-complete.

Proof. Membership follows from the fact that PLANSAT is in PSPACE, and
that any problem in PSPACE is also in ‖❀PSPACE.

Hardness: we show a reduction from the PLANSAT problem when oper-
ators are restricted to have two preconditions and two postconditions. The
problem of plan existence has been proved PSPACE-hard even under this
restriction [10].

In order for using the condition of representative equivalence [24], we
need first to show three functions for the PLANSAT problem: a classification,
representative, and extension function. We make the following choice:

Class(〈P,O, I,G〉) = |P|

Repr(n) = 〈{x1, . . . , xn}, ∅, ∅, 〈∅, ∅〉〉

Exte(〈P,O, I,G〉, m) = 〈P ∪ {x|P|+1, . . . , xm},O, I,G〉

11

In words, the class of an instance is the number of its conditions. The rep-
resentative of the class n is the instance that has n conditions, no operators,
and empty initial state and goal (this instance has the empty plan 〈 〉 as the
initial state satisfies the goal, but this is irrelevant.) Extending an instance
is obtained by simply adding conditions that are not then contained in any
operator nor in the initial state or goal. Technically, these new conditions
are false in the initial state and not required to have any specific value in the
goal. As a result, 〈P,O, I,G〉 has a plan if and only if Exte(〈P,O, I,G〉, m)
has a plan, as required for the extension function.

We now show a reduction that satisfies the condition of representative
equivalence. By Lemma 2, we can replace O with a set of operators O′ which
contains a fixed operator o′. By iterating this reduction for each possible oper-
ator of four conditions over P, we end up with an instance 〈P ∪Y,OP , I

′′,G〉,
where OP is obtained from the set of all possible operators of four conditions
over P, and Y is a set of new conditions in correspondence with the operators
of OP .

Here we exploit the restriction on the number of preconditions and post-
conditions. The number of possible pairs of preconditions is given by n(n−1);
since each precondition can be either positive or negative, we have exactly
four combinations. As a result, the number of possible preconditions of an
operator are 4n(n−1), assuming that no operator contains the same precon-
dition both positively and negatively. For the same reason, there are exactly
4n(n− 1) postconditions. As a result, there are exactly 16n2(n − 1)2 possi-
ble operators over n conditions. Therefore, the size of 〈P ∪ Y,OP , I ′′,G〉 is
polynomially larger than the size of 〈P,O, I,G〉.

The instances that result from implementing this reduction from two
instances that have the same conditions are the same. By renaming all
conditions to {x1, . . . , xn}, the results of the reduction is the same if the two
instances have the same number of conditions. As a result, this reduction
satisfies the condition of representative equivalence, which is sufficient to
show that the problem that is reduced to (PLANSAT) is C-hard for any class
C for which the problem that is reduced from (PLANSAT again). As a result,
the PLANSAT problem is ‖❀PSPACE-hard.

This proof, based on Lemma 2, has an intuitive construction: we can
progressively make O fixed while maintaining the property of existence of
plans. As a result, the PLANSAT problem can be reduced to the PLANSAT

problem where O is fixed, i.e., when O can be preprocessed. Since making

12

the set of conditions P fixed is only a matter of condition renaming, this
reduction shows that the complexity of the problem does not change even
if P and O are fixed, i.e., the fixed part of the instance is actually fixed.
This method can be used also for other problems. However, giving a general
formulation is made difficult by the fact that “making a part fixed” depend
on the specific problem under analysis.

The result of ‖❀PSPACE-hardness of PLANSAT implies that the knowl-
edge of a case does not reduce the complexity of plan existence, even if the
case can contain arbitrary data besides the plan.

Theorem 4 The problem of checking the plan existence for D does not be-
come polynomial even if a case 〈Do, Ao〉 is known, where Do has the same
conditions and operators of D, and Ao is an arbitrary polynomial-size data
structure depending only on Do, unless the polynomial hierarchy collapses.

Proof. Assume, on the contrary, that for every Do there exists a polynomial-
sized data structure Ao (i.e., the “extended plan”) that makes solving PLANSAT
on D a polynomial task. If this were the case, it would be possible to pre-
process Do obtaining Ao, as the preprocessing phase is not constrained in
any way but that its result must be of polynomial size. Since 〈Do, Ao〉 al-
lows for solving PLANSAT on D in polynomial time, we have that the prob-
lem of plan existence on 〈Do, D〉 is in ❀P. Since the same problem is also
‖❀PSPACE-hard, it follows that ‖❀PSPACE ⊆ ❀P, which implies that
PSPACE/poly ⊆ P/poly thanks to a result by Cadoli et al. [12], which in
turns implies that Σp

2∩Πp
2 = PSPACE thanks to a result by Karp and Lipton

[21]. In other words, the polynomial hierarchy collapses to its second level.

This result can also be extended to the case in which a whole “library
of cases” {〈Di, Pi | 1 ≤ i ≤ m} is given, provided that all domains Di have
the same conditions and operators of the current domain D, and the whole
library is of polynomial size.

Theorem 5 The problem of checking the existence of plans for D cannot be
solved in polynomial time even if a library of plans {〈Di, Pi | 1 ≤ i ≤ m} of
polynomial size is given, where all Di have the same conditions and operators
of D, unless the polynomial hierarchy collapses.

Proof. This is only a consequence of the above theorem: assume that
Ao = {〈Di, Pi | 1 ≤ i ≤ m}; since 〈Do, Ao〉 does not make PLANSAT on

13

D polynomial-time, then {〈Di, Pi | 1 ≤ i ≤ m} does not make it polynomial-
time either.

As it is clear, some library of plans simplify the problem: for example,
if the library contains a case 〈Di, Pi〉 where D = Di, a plan for D is simply
Pi. The theorem indeed proves that such a simplification is not possible in
general. As it is also clear from the proof, using an extended definition of
cases, in which not only plans are recorded, is not useful either. This result
requires some discussion, which will be given in the next section.

4 Conclusions

In this paper, we have proved two kinds of results: first, adapting a specific
plan to a new domain is as hard as planning from scratch; second, a case or
a library of cases composed of domains, plans, and additional information,
can simplify the problem of planning in some cases, but remains hard in
general. These results are interesting because they are formally, and not
only empirically, proved.

The first kind of results are somehow not surprising, as it has already
been observed that even changing a single condition of the initial state or
goal may make a plan completely useless. Our results are simply formal
proofs of this observation.

The second kind of results are, in the author’s opinion, more interesting.
The fact that “extended” cases sometimes lower the complexity of finding
plans formally validates the trend in case-based planning of storing complex
information in cases, rather than simple plans. Nevertheless, this formal
result only holds in a very general settings, in which no assumption, besides
polynomiality of space, is made about what is stored in the case. How this
result extends to specific form of information used in case-based planners,
such as abstract plans or derivational traces, is an open question.

The negative results about the complexity of planning from an extended
plan or a library of plans are the most interesting ones of this paper. First,
they formally prove that case-based planning can be as hard as generative
planning; while this phenomena has been empirically observed [8], it was not
yet proved that it is intrinsic to the problem and not related to the specific
implementations. Second, compared with the result on “small changes”, it
proves that there exists a trade-off of efficiency and size of library in case-
based planning. Again, what is interesting in this result is that it has formally

14

proved, not only empirically observed.
Let us compare the results of this paper with similar work in the literature.

The computational complexity of planning has been deeply investigated by
several authors, e.g., Bylander [9, 10], Nebel [26, 25, 7], and Bäckström [3,
5, 6, 4]. All these works are on planning from first principles, i.e., are about
planning given only a planning domain. More related to the present work
are that by Nebel and Koehler [27, 28], who analyzed the complexity of
conservative plan adaptation. Their complexity results are about planning
when the constraint to be similar to another known plan is enforced. While
there are some scenarios where this constraint is important, it seems not to
be enforced often in case-based planning. Some work on plan adaptation has
also been done by Bylander [11], who has shown that, probabilistically, plan
modification is simpler than plan generation provided that the domain of the
case is similar to the one to be solved.

As it has already been noticed in the introduction, the problem of plan
adaptation and that of planning with a library of cases is of a different kind of
most problems that are studied in computational complexity, in that the data
we are given include an “hint” that can very well be neglected if necessary.
Such problem format include other problems, such as case-based reasoning
in general. The complexity of other forms of case-based reasoning is an
interesting problem which is however out of the scope of this paper.

References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational
issues, methodological variations, and system approaches. AI
Communications—The European Journal on Artificial Intelligence,
7:39–59, 1994.

[2] T.-C. Au, H. Muñoz-Avila, and D. Nau. On the complexity of plan adap-
tation by derivational analogy in a universal classical planning frame-
work. In Sixth European Conference on Advances in Case-Based Rea-
soning (ECCBR 2002), pages 13–27, 2002.

[3] C. Bäckström. Equivalence and tractability results for SAS+ planning.
In Proceedings of the Third International Conference on the Principles
of Knowledge Representation and Reasoning (KR’92), pages 126–137,
1992.

15

[4] C. Bäckström and P. Jonsson. Planning with abstraction hierarchies can
be exponentially less efficient. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI’95), pages
1599–1605, 1995.

[5] C. Bäckström and B. Nebel. On the computational complexity of plan-
ning and story understanding. In Proceedings of the Tenth European
Conference on Artificial Intelligence (ECAI’92), pages 349–353, 1992.

[6] C. Bäckström and B. Nebel. Complexity results for SAS+ planning. In
Proceedings of the Thirteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI’93), pages 1430–1435, 1993.

[7] C. Bäckström and B. Nebel. Complexity results for SAS+ planning.
Computational Intelligence, 11:625–656, 1995.

[8] R. Bergmann, H. Muñoz-Avila, M. Veloso, and E. Melis. CBR ap-
plied to planning. In M. Lenz, B. Bartsch-Spörl, H.-D. Burkhard, and
S. Wess, editors, Case-based reasoning technology, from foundations to
applications. Springer, 1998.

[9] T. Bylander. Complexity results for planning. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence (IJ-
CAI’91), pages 274–279, 1991.

[10] T. Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69:165–204, 1994.

[11] T. Bylander. A probabilistic analysis of propositional STRIPS planning.
Artificial Intelligence, 81:241–271, 1996.

[12] M. Cadoli, F. Donini, P. Liberatore, and M. Schaerf. Preprocessing
of intractable problems. Information and Computation, 176(2):89–120,
2002.

[13] J. Carbonell. Derivational analogy: A theory of reconstructive prob-
lem solving and expertise acquisition. In R. Michalski, J. Carbonell,
and T. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach. Morgan Kaufmann, Los Altos, 1986.

16

[14] R. Fikes and N. Nilsson. STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208,
1971.

[15] K. Hammond. Case-based Planning: Viewing Planning as a Memory
Task. Academic Press, 1989.

[16] S. Hanks and D. Weld. A domain-independent algorithm for plan adap-
tation. Journal of Artificial Intelligence Research, 2:319–360, 1995.

[17] L. Ihrig and S. Kambhampati. Storing and indexing plan derivations
through explanation-based analysis of retrieval failures. Journal of Ar-
tificial Intelligence Research, 7:161–198, 1997.

[18] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A, chapter 2, pages
67–161. Elsevier Science Publishers (North-Holland), Amsterdam, 1990.

[19] S. Kambhampati. Mapping and retrieval during plan reuse: a valida-
tion structure based approach. In Proceedings of the Eighth National
Conference on Artificial Intelligence (AAAI’90), pages 170–175, 1990.

[20] S. Kambhampati. A theory of plan modification. In Proceedings of the
Eighth National Conference on Artificial Intelligence (AAAI’90), pages
176–182, 1990.

[21] R. M. Karp and R. J. Lipton. Some connections between non-uniform
and uniform complexity classes. In Proceedings of the Twelfth ACM
Symposium on Theory of Computing (STOC’80), pages 302–309, 1980.

[22] J. Koehler. Planning from second principles. Artificial Intelligence,
87:145–186, 1996.

[23] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, Los Altos,
1993.

[24] P. Liberatore. Monotonic reductions, representative equivalence, and
compilation of intractable problems. Journal of the ACM, 48(6):1091–
1125, 2001.

17

[25] B. Nebel and C. Bäckström. On the computational complexity of tem-
poral projection, planning, and plan validation. Artificial Intelligence,
66(1):125–160, 1994.

[26] B. Nebel, Y. Dimopoulos, and J. Koehler. Ignoring irrelevant facts and
operators in plan generation. In Proceedings of the Fourth European
Conference on Planning (ECP’97), pages 338–350, 1997.

[27] B. Nebel and J. Koehler. Plan modification versus plan generation: a
complexity-theoretic perspective. In Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI’93), pages
1436–1440, 1993.

[28] B. Nebel and J. Koehler. Plan reuse versus plan generation: A theoret-
ical and empirical analysis. Artificial Intelligence, 76:427–454, 1995.

[29] L. Spalazzi. A survey on case-based planning. Artificial Intelligence
Review, 16:3–36, 2001.

[30] M. Veloso. Flexible strategy learning: Analogical replay of problem
solving episodes. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI’94), pages 595–600, 1994.

[31] M. Veloso and J. Carbonell. Derivational analogy in PRODIGY: Au-
tomating case acquisition, storage, and utilization. Machine Learning,
10(3):249–278, 1993.

[32] I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise
Systems. Morgan Kaufmann, Los Altos, 1997.

18

