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This paper describes Metacat, an extension of the Copycat model of
analogy-making. The development of Copycat focused on modelling con-
text-sensitive concepts and the ways in which they interact with percep-
tion within an abstract microworld of analogy problems. This approach
differs from most other models of analogy in its insistence that concepts
acquire their semantics from within the system itself, through perception,
rather than being imposed from the outside. The present work extends
these ideas by incorporating self-perception, episodic memory, and
reminding into the model. These mechanisms enable Metacat to explain
the similarities and differences that it perceives between analogies, and to
monitor and respond to patterns that occur in its own behaviour as it
works on analogy problems. This introspective capacity overcomes
several limitations inherent in the earlier model, and affords the program
a powerful degree of self-control. Metacat’s architecture includes aspects
of both symbolic and connectionist systems. The paper outlines the
principal components of the architecture, analyses several sample runs
and examples of program-generated commentary about analogies,
and discusses Metacat’s relation to some other well-known models of
analogy.
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1. Introduction

This paper describes a computational model of analogy-making and perception
called Metacat, which is based on the earlier Copycat model developed by

Hofstadter and Mitchell (Hofstadter 1984, Mitchell 1993). Like Copycat, Metacat
models the complex interplay of bottom-up and top-down processes involved in
perception, using an emergent architecture that incorporates aspects of both
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symbolic and connectionist systems. Metacat, however, builds on the earlier model
by focusing on self-perception and its relation to other cognitive processes. The
long-term goal of this line of research is to understand how high-level cognitive
phenomena such as concepts, analogical thinking, creativity, and self-awareness can
emerge from a subcognitive substrate composed of a large number of fine-grained,
nondeterministic actions, each of which is far too small by itself to support such
phenomena.

Few people would claim that the individual neurons making up a human brain
are ‘‘conscious’’ in anything like the normal sense in which humans experience
consciousness. We are forced to accept the fact that self-awareness arises, somehow,
out of nothing but billions of low-level chemical reactions and neuronal firings. How
can individually meaningless physical events in a brain – even a huge number of them
– ultimately give rise to meaningful awareness and understanding? Hofstadter has
argued that two ideas are of paramount importance:

What seems to make brains conscious is the special way they are organized – in particular, the
higher-level structures and mechanisms that come into being. I see two dimensions as being
critical: (1) the fact that brains possess concepts, allowing complex representational structures
to be built that automatically come with associative links to all sorts of prior experiences, and
(2) the fact that brains can self-monitor, allowing a complex internal self-model to arise,
allowing the system an enormous degree of self-control and open-endedness. (Hofstadter and
FARG 1995)

The development of Copycat was intended to explore the first idea, by creating a
computer model of analogy-making in which the representation of concepts is deeply
intertwined with the program’s mechanisms for high-level perceptual processing.
Concepts in Copycat are not modelled as static representational structures; rather,
they are dynamic entities that respond to perceptual processing in a highly context-
sensitive way, bending and adapting to the situation at hand in a flexible manner.
Furthermore, they actively influence perceptual processing itself. This tight coupling
of concepts and perception in the model gives rise to an ability to perceive similarities
between different situations by describing them in terms of a common set of
underlying concepts applicable to both situations. The ability of Copycat to make
analogies is a direct consequence of the nature of the program’s representation of
concepts.

The Metacat model explores the second idea, by endowing Copycat with a
capacity for self-watching, defined here as the ability of a system to perceive – and to
create explicit representations of – its own perceptual processes. Our objective has
been to develop mechanisms that allow the program to monitor its own activity and
to explicitly characterize the conceptual associations that implicitly arise as it solves
analogy problems (Marshall and Hofstadter 1997, Marshall 1999). This can be
thought of as adding a higher ‘‘cognitive’’ layer on top of Copycat’s ‘‘subcognitive’’
layer, enabling the program to watch and remember what happens at its subcognitive
level as perceptual structures are built, reconfigured, and destroyed. This type of
self-reflective awareness is common in humans, who are quite capable of paying
attention to, and explicitly articulating, patterns in their own thinking (Chi et al.
1989, 1994).

Copycat and Metacat are concerned with high-level perception, by which
we mean that level of perceptual processing in which concepts play a critical
role (Chalmers et al. 1992). In contrast, low-level perception refers to the processing
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of raw, modality-specific sensory data obtained directly from the environment, such
as the detection of edges in retinal images, or the processing of audio frequencies
from the inner ear, without regard to the meaning of this information. Low-level
perceptual processing is the first step along the path leading to high-level perception,
with many intermediate processing stages lying in-between involving ever greater
degrees of abstraction. The end result of this process is the conscious recognition or
understanding of the input stimulus as an instance of a particular mental concept or
set of concepts.

Consider, for example, the everyday experience of recognizing your mother.
A pattern of light falls on the hundred million or so photoreceptor cells in your
retina, and a fraction of a second later, the idea of your mother comes to mind. A
particular mental concept has become highly activated, while most others remain
dormant. This process of recognition, for the most part, takes place below the level
of conscious awareness. One does not have to do much deliberate thinking in order
to recognize one’s mother (at least in the absence of degraded environmental
conditions such as poor lighting). High-level perception depends largely on
subcognitive processing mechanisms (Hofstadter 1985b).

The activation of the concept of mother elicited by a facial image is a relatively
simple example of high-level perception in action. This same phenomenon, however,
often occurs in more abstract contexts, such as when a person hears an unfamiliar
piece of music for the first time and recognizes it as coming from a particular musical
period or composer, or when a painting is recognized to be, say, an Impressionist
work, or as belonging to Picasso’s ‘‘Blue period’’. Moving to an even higher level of
abstraction, a complicated social situation involving tangled webs of people, objects,
relationships, and conflicting choices may collectively be perceived as a ‘‘Catch-22’’
situation. Even the concept of mother is, in reality, a subtle matter. Depending on
context, a wide variety of things can be viewed as abstract instances of this concept.
The Earth, for example, is sometimes described as the mother of all living things, an
idea commonly expressed by the phrase ‘‘Mother Earth’’. Strictly speaking, of
course, considering a planet to be a mother makes no sense, but given the right
context we can effortlessly see how the idea applies, thanks to the natural flexibility
of human concepts.

In general, concepts in the mind are not sharply defined entities with clear-cut
boundaries, always applying to certain things but never to others. Rather, the
boundaries of concepts are inherently ill-defined and blurry, and are
strongly influenced by the context in which perception occurs. We refer to this
type of inherent flexibility as conceptual fluidity, in order to stress the idea of
concepts as nonrigid, adaptable, and highly context-sensitive. Much work has
been done in cognitive psychology investigating the nature of the distances between
concepts and categories (see, for example, Tversky 1977, Smith and Medin 1981,
Goldstone et al. 1991). In particular, the strength of associations between
concepts can change dynamically, according to context. Under the right pressures,
concepts that are normally far apart may be brought close together, so that
they are both seen as applying to a particular situation (such as when the
Earth is regarded simultaneously as an instance of planet and mother). This
phenomenon, which we refer to as conceptual slippage, is what enables apparently
dissimilar situations to be perceived as being ‘‘the same’’ at a deeper, more
abstract level.
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Copycat and Metacat differ in important ways from many other models of
analogy proposed by researchers in AI and cognitive science. See French (2002) for
a recent overview. Probably the most important difference is the emphasis our
models place on the representation of concepts, and the role played by concepts in
making analogies. Other well-known models have focused on the mechanisms
and psychological constraints involved in mapping a source situation to a target
situation (Gentner 1983, Falkenhainer et al. 1990, Forbus et al. 1994); on the
satisfaction of multiple competing constraints when constructing this mapping
(Holyoak and Thagard 1989); on the mechanisms that allow stored analogs to be
retrieved from memory (Thagard et al. 1990, Kolodner 1993, Forbus et al. 1995);
on the integration and mutual interaction of processes responsible for retrieval,
mapping, and transfer (Eskridge 1994, Kokinov and Petrov 2001); and on distrib-
uted representations of structure (Halford et al. 1994, Hummel and Holyoak 1996,
1997, Holyoak and Hummel 2001, Wilson et al. 2001). All of these issues are
important, and any full and satisfying theory of analogy should certainly include an
account of them. In our view, however, a complete theory must also integrate
concepts, perception, and meaning into the picture.

When humans make analogies, we not only construct mental mappings
according to constraints, we also understand the meaning of the concepts connected
by these mapping-structures. For example, a person making an analogy between
a situation involving water and another involving heat presumably maps mental
structures representing water to structures representing heat, at some level of
abstraction. But people also understand what the underlying concepts of water
and heat mean, from long experience with these concepts in the world. Of course, the
act of making the analogy deepens this understanding by facilitating a transfer of
knowledge from one situation to the other. But the important point is that the
constituent concepts underlying the analogy are themselves meaningful to the
person. Likewise, a computer model of analogy should offer some account of how
the underlying symbols and structures that represent concepts in an analogy acquire
meaning themselves, in addition to an account of the structure-mapping processes
involved. That is, the structures that the program uses to represent analogies should
be meaningful to the program itself. This is essentially the familiar symbol-grounding
problem (Harnad 1990), recast in analogical guise.

Some connectionist models of analogy have attempted to address this problem
by moving away from the use of symbolic representations of source and target
situations. Much recent work has focused on the use of distributed encoding
techniques such as Plate’s holographic reduced representations (Plate 1994, 1998),
Kanerva’s binary spatter code (Kanerva 1996, 1998), or Smolensky’s tensor
products (Smolensky 1990). Examples of such models include Drama (Eliasmith
and Thagard 2001) and the STAR models of Halford et al. (1994) and Wilson et al.
(2001). All of these approaches encode explicitly structured representations of
source and target situations as distributed activation patterns, which are suitable
for processing by connectionist networks. These representations can be manipulated
in a holistic fashion, without having to be decomposed into their constituent
components (Chalmers 1990, Chrisman 1991, Blank et al. 1992). However, currently
the representations used by these models do not acquire their meaning internally
through the system’s own perceptions or through learning. Instead, meaning is
imposed from outside the system through an essentially arbitrary assignment of
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semantics to the patterns of activation that serve as the constituent building blocks of
representations. The hope is that eventually these systems will be able to use learned
patterns based directly on sensory stimuli – instead of arbitrary patterns – as
representational building blocks, which will make the representations meaningful
to the system itself.

Blank’s (1997) Analogator model attempts to integrate learning and analogy-
making into a single connectionist framework using distributed representations
based on tensor products. Analogator learns to make analogies between very
simple visual scenes composed of geometric shapes, on the basis of spatial
relationships such as above or below. Unlike the models mentioned previously,
however, Analogator does not start with explicitly structured representations.
Instead, the system itself learns the meaning of spatial relationships by creating
its own internal representations of analogies, through direct experience with visual
scenes. In other words, the meaning of the underlying components of Analogator’s
analogies is acquired through the system’s own perceptions. See Gasser (1993) for
a more general discussion of perceptual grounding within the context of simple
visual scenes.

In both Analogator and Metacat, perception is tightly interwoven with analogy-
making. Analogator, however, focuses more on the learning of analogical behaviour
than on the explicit modelling of concepts. In contrast, Metacat emphasizes concepts
and the ways in which they interact with perception, but does not attempt to model
learning. Another difference is that Metacat’s representations have a more symbolic
flavour than the purely distributed representations created by Analogator. Never-
theless, the representations created by both models are much more closely tied to
perception than the traditional predicate-calculus-based representations used by
many of the models cited earlier.

2. Analogy-making in an idealized world

How can something as elusive as the meaning of concepts be modelled in a computer
program? The approach taken by Copycat and Metacat is to start small, by
eschewing real-world complexity in favour of a microworld – a tiny, idealized
world designed to strip away as many distracting, surface-level details as possible
from analogy-making while still preserving the fundamental essence of the phenom-
enon (Hofstadter 1984). This philosophy differs from that of most other current
computer models of analogy, which typically operate on representations of ‘‘real-
world’’ situations that are not grounded in the program’s own perceptions. We
believe, however, that this is a deep and important issue that should be tackled
head-on, rather than being sidestepped or ignored. In our approach, we restrict
the number of concepts available in the world, which makes it possible for our
models to represent concepts in a very rich and dynamic way that ties them
intimately to perception. A limited set of concepts, however, need not imply a
limited set of interesting analogy problems. Despite the microworld’s apparent
simplicity, it harbours an exceedingly rich variety of subtle analogy problems, in
which many surprisingly creative and non-obvious answers are possible.

The raw material of this world consists of 26 abstract objects, represented
as lowercase letters for convenience, among which only three relations are
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meaningful: sameness, predecessorship, and successorship. All letters except a have
an immediate predecessor, and all except z have an immediate successor. All other
information pertaining to letters has been factored out, such as their shapes or
semantic connotations. Analogies are stated in terms of short letter-strings (called
the initial string, the modified string, and the target string, respectively), which can be
thought of as idealized situations. For example: ‘‘If abc changes to abd, how does
mrrjjj change in an analogous way?’’ Or, more succinctly:

abc ⇒ abd
mrrjjj ?⇒

Most people, on seeing this problem for the first time, answer mrrkkk or mrrjjk
(Mitchell 1993). The rightmost component of abc (the letter c) is perceived as
changing to its successor, so doing the ‘‘same thing’’ to mrrjjj amounts to changing
the rightmost component of mrrjjj to its successor – either jjj viewed as a chunk, or
just the rightmost letter j. There are, however, many other possible answers to this
problem, which people tend to give less often, including:

. mrrjjd (change the rightmost letter literally to d)

. mrrddd (change the rightmost chunk to ds)

. mrrjjj (change just the cs, of which there are none)

. mrrjkk (view mrrjjj as mr–rj–jj and change the rightmost pair to its successor)

. mrrjdd (view as mr–rj–jj, but change the rightmost pair to ds)

. mrsjjj (change the third letter to its successor)

. mrdjjj (change the third letter to d )

. mrsjjk (view as mrr–jjj and change the third letter of each chunk to its successor)

. mrskkk (change all letters after the first two to their successors)

. mssjjj (change every occurrence of the third letter to its successor)

. mrrjjjj (view mrrjjj abstractly as 1–2–3 and increase the rightmost length by one)

. mrrkkkk (view as 1–2–3 but change both the length and letters of the rightmost
chunk)

. abd (change the whole string literally to abd )

. abbddd (change the letters to as, bs, and ds but retain the 1–2–3 structure)

. mrk (change js to ks but make everything single letters)

. mrd (change js to ds but make everything single letters)

Clearly, some of these answers are more obvious or plausible than others, but
each one is defensible, and makes more sense than a completely random response
such as pxznntg. There is, however, no single, indisputably ‘‘correct’’ answer. In fact,
a wide range of answers is possible for almost every conceivable problem in this
world. The subtlety and richness of analogy-making has not been sacrificed at the
expense of simplicity; on the contrary, it has been brought into focus more clearly
precisely because of the world’s austerity.

It is also important to stress the intended universality of the microworld.
‘‘Letters’’ here are really nothing more than instances of abstract, atomic categories,
among which only a small set of relations are meaningful (i.e., successorship,
predecessorship, and sameness). It is therefore misleading to regard Copycat’s or
Metacat’s analogies as being about alphabetical strings of letters per se. Rather, strings
should be viewed as representing idealized situations involving abstract categories
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and relations. The architecture of Copycat is ‘‘configured’’ so that these categories and
relations mirror our intuitive notions about successorship, predecessorship, and
sameness among letters of the alphabet, but this need not be the case. A different con-
figuration could in principle be used, reflecting a different set of abstract relationships,
without significantly altering the basic model. In fact, a program similar to Copycat,
called Tabletop, models spatial aspects of high-level perception within a different
domain: that of ordinary objects on a table, such as cups, glasses, and silverware
(French 1995, Hofstadter and FARG 1995). Important differences exist between
Copycat and Tabletop, but the two programs can be regarded essentially as different
instantiations of a single underlying architecture, each of which operates in an abstract
world of categories and relations. Copycat is configured so that these categories and
relations reflect properties of letters of the alphabet, while Tabletop is configured so
that they reflect properties of objects on a table.

Copycat’s microworld is sometimes criticized as being unable to represent
analogies between different domains of knowledge. So-called ‘‘cross-domain’’
analogies – for example, between the solar system and the Rutherford-Bohr model
of the atom, or between water flowing through a pipe and heat flowing through a
metal bar (Gentner 1983, Holyoak and Thagard 1989, Falkenhainer et al. 1990) –
typically involve source and target situations characterized by very different kinds of
‘‘real-world’’ concepts. According to this view, the true power of analogy comes
from being able to map quite different domains onto one another, allowing a transfer
of knowledge to occur between them. In contrast, it is argued, since Copycat’s
source and target situations are restricted to letter-string concepts only, the model
is ‘‘domain-specific’’, and hence fails to capture the most important aspects of
analogical processing. According to Forbus et al. (1998):

The most dramatic and visible role of analogy is as a mechanism for conceptual change, where
it allows people to import a set of ideas worked out in one domain into another. Obviously,
domain-specific models of analogy cannot capture this signature phenomenon. . . . If we are
correct that the analogy mechanism is a domain-independent cognitive mechanism, then it is
important to carry out research in multiple domains to ensure that the results are not hostage to
the peculiarities of a particular micro-world.

However, such a hasty conclusion overlooks the principle of universality at the
core of Copycat’s microworld. We fully agree that analogy is a very general, domain-
independent cognitive mechanism. Indeed, this is the fundamental reason why we
have chosen an abstract microworld as our framework for modelling analogy. Since
the ‘‘letters’’ – as far as the program is concerned – are really just atomic categories
linked by abstract relationships, there is in principle no reason why idealized versions
of ‘‘cross-domain’’ analogies cannot be constructed within this world as well.

For example, the answer mrrjjjj to the earlier problem could be interpreted as
just such an analogy. On the surface, different sets of concepts apply to the situations
represented by the strings abc and mrrjjj. In an abstract sense, these strings can
be viewed as situations taken from two very different domains, each of which
encompasses a distinct subset of the concepts available in the larger ‘‘universe’’ of the
letter-string microworld. The concept of successor, for instance, is relevant to abc
but not (at first glance) to mrrjjj, while the concept of group plays a central role in
mrrjjj. If the two situations are looked at in the right way, however, by seeing the
string mrrjjj in terms of group-lengths rather than letter-categories, the idea of
successorship can be transferred over from the first situation to the second, resulting
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in a kind of mini paradigm shift that reveals the parallel 1–2–3 successorship
structure of mrrjjj, which consequently leads to the answer mrrjjjj. Of course, both
of these ‘‘domains’’ involve concepts from Copycat’s letter-string world, but the
crucial point is that they involve different subsets of concepts, just as the domains of
‘‘cross-domain’’ analogies from the real world involve different subsets of concepts
taken from the larger universe of real-world concepts and relationships.

In fact, on closer examination, the distinction between different domains is often
far from clear. For instance, Holyoak and Thagard (1995) discuss a complex analogy
between World War II and the 1991 Persian Gulf War. Should this analogy be
regarded as a ‘‘cross-domain’’ analogy, or as an analogy between two situations
within the common domain of military conflicts? What about the analogy between
the solar system and the Rutherford-Bohr atom? Does this analogy involve two
distinct domains (i.e., the domain of atomic physics and the domain of astronomy),
or the single domain of scientific theories? In our view, the purported distinction
between ‘‘cross-domain’’ and ‘‘intra-domain’’ analogies, as well as the distinction
between ‘‘domain-general’’ and ‘‘domain-specific’’ models of analogy, is artificial,
and depends on the particular definition of the domains involved, which in turn
depends on how we as researchers choose to carve the world up into categories. The
power of a microworld derives precisely from its ability in principle to model any
number of different subdomains of the real world within a common abstract
framework.

3. Three families of analogy problems

Figure 1 shows three families of analogy problems, which will be used as examples
throughout the remainder of the paper to illustrate the principal mechanisms and
capabilities of Metacat. These problems give a sense of the types of parallels and
distinctions that can be made between analogies in the letter-string world. Each
family consists of two distinct (but similar) analogy problems, with horizontal rows
showing a set of possible answers for each problem.

The first family consists of the problem abc) abd; xyz) ? and its variant
rst) rsu; xyz) ? (top of figure 1). Viewing c as changing to its successor in
abc) abd; xyz) ? suggests changing z to its successor. However, this is not possible
in the letter-string world, so one is forced to try something else. One way out is to
adopt a literal-minded approach and change z to d, yielding xyd. On the other hand,
if the alphabetic symmetry between a and z is noticed, then the more abstract answer
wyz may come to mind, based on seeing abc and xyz as mirror images of each other
wedged against opposite ends of the alphabet. In this symmetric interpretation of the
problem, doing the ‘‘same thing’’ to xyz means changing the leftmost letter to its
predecessor instead of changing the rightmost letter to its successor. Many people
consider this answer to be more elegant and compelling than xyd.

Now consider the variant problem rst) rsu; xyz) ?. The literal-minded answer
xyu and the symmetric answer wyz are both possible, and arise for the same reasons
as in the previous problem – with one important difference. In this problem there is
far less justification for seeing rst and xyz as mirror images of each other, unlike in
the case of abc and xyz, with their strong a-z symmetry, which makes the answer wyz
a weaker analogy here than in the previous problem. While it could be argued that
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wyz is still a better analogy than xyu in this problem, it is clearly not as superior to
xyu as wyz was to xyd in the previous problem. The two wyz analogies, therefore, are
quite different in character, even though they involve identical answers. Indeed, the
presence or absence of alphabetic symmetry is the fundamental difference between
them. The literal-minded answers xyd and xyu, on the other hand, represent
essentially identical analogies, despite their surface-level differences.

Two other answers are also worth mentioning. The answer dyz, although
perhaps a bit far-fetched, is certainly possible for abc) abd; xyz) ?. This answer
depends on noticing the abstract symmetry between abc and xyz (and thus changing
the x in xyz instead of the z) but taking a very literal-minded view of abc) abd (thus
changing x to d instead of to its predecessor). The answer uyz to the problem
rst) rsu; xyz) ? arises in a similar fashion, except that once again, there is no good
reason to see rst and xyz as mirror images in the first place. This blend of
abstractness and literal-mindedness makes both of these answers seem incoherent.
It could even be argued that since abc and xyz are completely symmetric in every
way, while rst and xyz are not, changing x to d in abc) abd; xyz) ? is even more
incoherent than changing x to u in rst) rsu; xyz) ?, making dyz a more incoherent
analogy than uyz. Just like the two wyz analogies, the key distinction between dyz
and uyz is the presence or absence of alphabetic symmetry. In other words, the way
in which the two wyz analogies are different is analogous to the way in which the dyz
and uyz analogies are different. Here we have a simple example of a ‘‘meta-analogy’’
in the letter-string microworld.

The second family of analogies consists of the answers mrrkkk and mrrjjjj to the
pair of problems abc) abd; mrrjjj) ? and xqc) xqd; mrrjjj) ? (middle of figure 1).
Each of these analogies relies on seeing the target string mrrjjj in terms of its

xyz family

abc ⇒ abd
xyz ⇒ xyd

abc ⇒ abd
xyz ⇒ wyz

abc ⇒ abd
xyz ⇒ dyz

rst ⇒ rsu
xyz ⇒ xyu

rst ⇒ rsu
xyz ⇒ wyz

rst ⇒ rsu
xyz ⇒ uyz

mrrjjj family

abc ⇒ abd
mrrjjj ⇒ mrrkkk

abc ⇒ abd
mrrjjj ⇒ mrrjjjj

xqc ⇒ xqd
mrrjjj ⇒ mrrkkk

xqc ⇒ xqd
mrrjjj ⇒ mrrjjjj

eqe family

eqe ⇒ qeq
abbba ⇒ baaab

eqe ⇒ qeq
abbba ⇒ aaabaaa

eqe ⇒ qeq
abbbc ⇒ qeeeq

eqe ⇒ qeq
abbbc ⇒ aaabccc

Figure 1. Three families of letter-string analogies.
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three components m, rr, and jjj – corresponding to the three letters of the initial
string – and on viewing the rightmost letter of the initial string as changing to
its successor. The rightmost component of mrrjjj (the jjj group) accordingly
changes to its successor, yielding mrrkkk if mrrjjj is viewed in terms of
letter-categories (as m–r–j), or mrrjjjj if it is viewed in terms of group-lengths
(as 1–2–3).

In the problem abc) abd; mrrjjj) ?, the answer mrrjjjj represents a stronger
analogy than mrrkkk, because viewing mrrjjj as 1–2–3 reveals an abstract similarity
between the target string’s structure and the parallel a–b–c structure of the initial
string. On the other hand, the answer mrrkkk makes for the stronger analogy in the
problem xqc)xqd; mrrjjj) ?. Unlike abc, the string xqc possesses no internal
successorship structure, so viewing mrrjjj in an unstructured way as m–r–j more
closely parallels xqc, while viewing it as 1–2–3 amounts to being unnecessarily
‘‘clever’’. In short, the two mrrkkk answers are actually quite different in character,
as are the two mrrjjjj answers.

The third family of analogies consists of the problem eqe) qeq; abbba) ? and
its variant eqe) qeq; abbbc) ? (bottom of figure 1). In these problems, eqe can
be viewed as ‘‘turning itself inside-out’’ by swapping the letter-categories of its
constituent letters to yield qeq. If abbba is viewed as a–bbb–a, corresponding to the
three letters of eqe, then a natural way of doing the same thing to abbba is simply to
swap the letter-categories of the components, yielding baaab. This approach,
however, leads to a ‘‘snag’’ in the case of abbbc, because swapping three letter-
categories makes no sense. One way around this difficulty is to view the letters of eqe
as changing individually to q, e, and q, instead of getting collectively swapped.
Changing abbbc in an analogous way would then amount to changing its three
components to q, eee, and q, yielding the answer qeeeq.

A more elegant way of avoiding the snag is to perceive abbbc abstractly as 1–3–1
and then swap the lengths of the components instead of the letter-categories, yielding
aaabccc. This is reminiscent of the answer mrrjjjj to the problem abc) abd;
mrrjjj) ?.

On the other hand, we can do this in the problem eqe) qeq; abbba) ? as well,
swapping lengths instead of letter-categories to yield aaabaaa. However, as in the
earlier analogy xqc)xqd; mrrjjj)mrrjjjj, viewing abbba as 1–3–1 is unnecessarily
‘‘clever’’, since swapping letter-categories works just fine. Thus the difference
between the answers baaab and aaabaaa in the problem eqe) qeq; abbba) ? is
like the difference between the answers mrrkkk and mrrjjjj in the problem xqc) xqd;
mrrjjj) ?, because in both problems viewing the target string abstractly actually
makes for a weaker analogy.

In contrast, viewing the target string abstractly in the problems eqe) qeq;
abbbc) ? and abc) abd; mrrjjj) ? makes for a stronger analogy in each case –
although not for precisely the same reasons. In the case of eqe) qeq; abbbc) ?,
viewing abbbc as 1–3–1 has the added benefit of enabling a snag to be avoided,
whereas no snag arises in abc) abd; mrrjjj) ?. In other words, the answer aaabccc
is strong for both pragmatic and aesthetic reasons, while mrrjjjj is strong for
aesthetic reasons only. Likewise, eqe) qeq; abbba) aaabaaa is a weaker analogy
than eqe) qeq; abbbc) aaabccc, even though both involve seeing the target string
as 1–3–1, because paying attention to lengths is justified in the latter analogy on
account of the snag, but not in the former.
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4. The Copycat model

This section summarizes the architecture and processing mechanisms of Copycat,

which serve as the foundation for Metacat’s architecture. Several important

limitations of the original model, which have been addressed in Metacat, are also

pointed out.
The Copycat architecture has been discussed at length elsewhere (Mitchell 1993,

Hofstadter and FARG 1995), so details will be omitted here. Briefly, the program
consists of a long-term memory for concepts, called the Slipnet, together with a
short-term memory for perceptual structures, called the Workspace. The Slipnet is
a semantic network of nodes representing concepts about the letter-string world
(see figure 2), with weighted links between nodes encoding the strength of
associations between concepts. Some links are labelled by particular nodes, and
may stretch or shrink according to the activation of the label node, allowing the

Figure 2. The Slipnet.
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Slipnet to dynamically adapt to the perceptual context at hand. Some concept nodes,
shown capitalized in figure 2, represent categories of other concepts. For example,
left and right are both instances of the more abstract Direction category, and the
concepts letter and group are both instances of ObjectCategory.

The Workspace is the site of subcognitive processing activity. In the Workspace,
small nondeterministic computational agents called codelets examine the letters
of an analogy problem and attempt to build a coherent set of structures around
the letters, representing a particular interpretation of the problem. Codelets look for
sameness, successor, or predecessor relationships among letters, possibly chunking
them together into groups based on a common relationship (for example, creating
a ‘‘sameness group’’ from the three js in mrrjjj, or chunking the individual letters
of abc into a single ‘‘successor group’’). The program’s high-level behaviour emerges
in a bottom-up fashion from the collective actions of many codelets working
in parallel, analogous to the way in which an ant colony’s high-level behaviour
emerges from the individual behaviours of the underlying ants, with no centralized
locus of control.

In general, the letter-strings of an analogy problem can be viewed in many
different ways, giving rise to a vast space of potential configurations of Workspace
structures. In order to discover a good configuration in a reasonable amount of time,
many potential pathways through ‘‘interpretation space’’ must be explored simul-
taneously, with proportionally more attention being paid to promising pathways
than to those that don’t seem to be leading anywhere interesting. This type of
differential parallelism, called the parallel terraced scan, is one of the central ideas of
the Copycat architecture.

To achieve this differential effect, structures are built in stages by chains of
codelets. At first, a codelet simply proposes a new structure as a possibility. The
proposed structure is then evaluated by other codelets at later stages in the chain. If
the structure seems promising enough, it gets built, and acquires a strength value
indicating how well it fits into its surrounding context. By distributing structure
creation over several interleaved stages, many different pathways can be explored in
parallel. In addition, every codelet has an urgency value that reflects the estimated
promise of the pathway it is exploring. Codelets are selected to run, probabilistically,
on the basis of their urgencies. Therefore promising regions of the search space tend
to be explored more quickly and to a greater depth, on average, than less promising
regions.

Figure 3 shows a set of perceptual structures at the end of a run on the problem
abc) abd; mrrjjj) ?. Several groups can be seen, including one built from other
groups and one consisting of the single letter m. One proposed group (shown as a
dashed structure), which was being tentatively explored but had not yet been built by
codelets, can also be seen. In this run, the program has perceived the abstract 1–2–3
successorship of mrrjjj and mapped this onto the a–b–c successorship of abc.
Horizontal and vertical structures called bridges show the correspondences between
analogous components of each situation. For example, the c–jjj bridge indicates that,
in this interpretation of the problem, c and jjj play analogous roles in their respective
strings. Concept-mappings associated with each vertical bridge can also be seen
(they are not shown for horizontal bridges). For example, rightmost) rightmost and
letter) group are associated with the c–jjj bridge, since c and jjj are both rightmost
objects, but one is a letter and the other is a group. Non-identity concept-mappings

J. B. Marshall278



such as letter) group are called slippages, and serve as the basis for generating
an answer. For instance, the LetterCategory)Length slippage underlying the
high-level bridge between abc and mrrjjj reflects the fact that the ‘‘successorship
fabric’’ of abc is based on letter-categories, while that of mrrjjj is based on group-
lengths. This slippage, together with the letter) group slippages, leads the program
to produce the answer mrrjjjj by changing the length of the rightmost group in mrrjjj
to its successor, instead of changing the letter-category of the rightmost letter as was
done in abc.

Concepts in the Slipnet influence the search for a mutually consistent set of
perceptual structures by acquiring activation in response to codelet activity in the
Workspace. This activation, which may spread to neighbouring concepts, strongly
affects the nondeterministic decisions made by codelets, resulting in top-down
pressure that guides the program in its search for a good interpretation of a problem.
Each concept has a fixed conceptual depth value associated with it, which represents
its intrinsic degree of abstractness or generality. The activation of a concept
gradually decays at a rate that depends on its conceptual depth, with highly abstract
concepts such as opposite tending to decay more slowly than shallow, surface-level
concepts such as d.

To be sure, Slipnet concepts come nowhere close to capturing the full power and
fluidity of human concepts. Nevertheless, there is a sense in which they are genuinely
meaningful entities – not simply passive, static tokens manipulated by the program.
For example, a Slipnet node such as successor responds to situations in a continuous,
context-dependent way, with its level of activation changing to reflect the current
degree of perceived relevance of the idea of successorship in the problem at hand.
A wide range of superficially dissimilar situations, represented abstractly as letter-
strings, can in principle activate it – strings such as abc, ijk, pqrst, iijjkk, mrrjjj,

Figure 3. An interpretation of the problem abc) abd; mrrjjj) ?.
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xxsssbbbb, axypqr, and aababcabcd. Under the right circumstances, all of these
strings can be interpreted by the program as examples of successor groups. The
semantics of the successor node arises precisely from the way in which this node
responds to different situations perceived in the ‘‘environment’’ of the letter-string
microworld. In other words, its meaning is determined by its behaviour within the
system, not by a particular interpretation imposed on it from outside the system.
Given Copycat’s ability to flexibly recognize a wide range of instances – some fairly
abstract – of the same concept, it seems reasonable to say that the program’s
concepts have at least some small degree of meaningfulness, or genuine semantics,
within the confines of its tiny, idealized world. See Hofstadter and FARG (1995,
Chapter 6) for an in-depth discussion of this point.

Slipnet concepts also serve as the basic building blocks for other structures called
rules, which describe how strings change.y For example, in figure 3, two rules can be
seen. The top rule, Change letter-category of rightmost letter to successor, describes
how the program views abc as changing to abd. The bottom rule, Increase length of
rightmost group by one, describes mrrjjj)mrrjjjj. Internally, rules are structured
collections of Slipnet nodes. Outwardly, they are displayed as short English phrases
for readability, but this is really just a surface-level ‘‘veneer’’ masking the underlying
conceptual representation. For instance, the top rule in figure 3 is composed of the
concepts LetterCategory, StringPosition, rightmost, letter, and successor. The bottom
rule is composed of Length, StringPosition, rightmost, group, and successor.

Copycat places severe restrictions on the types of changes that are allowed in the
initial string. At most, one letter is allowed to change, such as in abc) abd. For
instance, all of the analogies in the eqe family shown in figure 1 are beyond Copycat’s
ability to handle. This is because the development of Copycat concentrated on
designing mechanisms for perceiving similarities between the initial string and the
target string via bridges and slippages, rather than on characterizing differences
between strings via rules. Developing robust mechanisms for mapping the initial
string to the modified string, and for creating rules based on this mapping, was
postponed to a later phase of the project. These mechanisms have now been extended
and generalized in Metacat to handle arbitrary mappings between strings, enabling a
much wider class of string changes to be described by rules, including eqe) qeq. See
Marshall (1999, Chapter 3) for a full discussion of Metacat’s new rule-building
mechanisms.

The overall degree of Workspace organization is measured by a number from 0
to 100 called the temperature. This number is a function of the total quality of
structures present in the Workspace – where the quality of a structure is determined
by its strength. Temperature also regulates the amount of randomness used by
codelets in making decisions. In other words, temperature plays both a passive and
an active role. At high temperatures, when few Workspace structures exist, decisions
are made in a highly random manner, since not much is yet known about the
problem. However, as relationships among the letters are noticed and new structures
are built, the temperature falls, and Copycat begins to gain ‘‘confidence’’ in the

yThis usage of the term ‘‘rule’’ differs significantly from the traditional AI meaning of the term. Rules

in Copycat and Metacat are completely unrelated to the ‘‘if-then’’ rules used in expert systems or other

rule-based production systems.
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emerging interpretation of the problem. At lower temperatures, decisions are made
less randomly, being more strongly biased by the estimated quality of newly
emerging structures, all of which compete for the attention of codelets. At very
low temperatures, codelets pay attention to only the most promising structures, and
decisions become largely deterministic. Thus the type of strategy used by the
program to explore its search space gradually shifts from being very diffuse and
stochastic at high temperatures to being very focused and deterministic at low
temperatures.

To reiterate, processing in Copycat is driven by a large number of fine-grained
probabilistic decisions that depend on the current temperature. These decisions may
cause new structures to be built or existing structures to be destroyed, which in turn
changes the temperature and consequently affects processing, forming a feedback
loop. Temperature thus serves as a very simple form of self-watching in Copycat,
since it enables the program to regulate its own behaviour to a limited extent. In
other words, tying the stochastic activity of codelets to the temperature makes the
program sensitive to its own actions.

This type of self-watching, however, is very primitive and unfocused. Tempera-
ture allows Copycat to respond to its immediate situation in a reactive way, but the
program remains oblivious to longer-term patterns that arise in its processing over
time. This can result in very unhumanlike behaviour. For instance, when presented
with the problem abc) abd; xyz) ?, Copycat usually attempts to change z to its
successor, which is impossible in the program’s microworld. It hits a snag, and is
forced to try something else. However, it typically ends up just trying the same thing
over and over again, often as many as ten or twenty times in a row before stumbling
by chance on an alternative answer (such as xyd ). Unlike people, the program is
unable to recognize when it has fallen into a repetitive and futile pattern of
behaviour. Because it has no memory of its past experiences, it cannot recognize
that it has already encountered some situation before, or tried the same set of actions
in response.

5. From Copycat to Metacat

Since Copycat is incapable of remembering its past actions or experiences, it has no
knowledge of how it arrives at its answers, and is therefore unable to explain the
rationale behind the analogies it makes, or why one analogy is better or worse than
another. In contrast, Metacat’s architecture includes several new components and
mechanisms that allow the program to monitor itself, enabling it to recognize,
remember, and recall patterns that occur in its ‘‘train of thought’’ as it makes
analogies. To do this, Metacat creates an explicit temporal record of the most
important processing events that occur during a run. This record is continually
examined by codelets for patterns, in much the same way that codelets examine
letter-strings for patterns. It also provides the basis for constructing an abstract
description of an answer in terms of the key concepts and events that led to its
discovery. Consequently, Metacat is able to construct much richer representations of
analogies, enabling it to compare and contrast them in an insightful way.
Furthermore, by monitoring its own processing, Metacat can recognize when it
has become stuck in a rut, enabling the program to break out of the rut by explicitly
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focusing on ideas other than the ones that seem to be leading nowhere. This
capability affords the program a powerful degree of self-control.

The remainder of the paper describes the architecture of Metacat, focusing on
the ways in which it extends the capabilities of Copycat, and analyses several sample
runs that illustrate different aspects of the model. Since Metacat is an extension of
Copycat, its architecture includes the Workspace, the Slipnet, and the mechanisms
for codelet processing. It also includes three new components: the Episodic Memory,
the Themespace, and the Temporal Trace.

5.1 The Episodic Memory

Metacat stores descriptions of analogies in its long-term Episodic Memory. When a
new answer is found, an answer description is created from the information available
in the temporal record and the Workspace. This description includes the four letter-
strings of the analogy, as well as the rules, bridges, slippages, and other structures
that give rise to the answer. Other structures called themes are also included, which
describe the key underlying concepts of the analogy.

Themes provide a basis for comparing and contrasting answers, as well as a
metric for judging the degree of similarity between them. For instance, when Metacat
makes a new analogy, it may be reminded of a similar analogy it has seen in the past
if the themes associated with the newly created answer description, acting as a
memory retrieval cue, match those of some previously stored answer description
sufficiently well. In effect, the pattern of themes in an answer description serves as an
index for storing and retrieving an answer from memory.

In addition to remembering answers, Metacat also remembers the snags that it
encounters while solving problems. On hitting a snag for the first time, the program
creates a new snag description that characterizes the failure in terms of the themes
and other structures involved, which it then stores in the Episodic Memory. Snag
descriptions can be compared on the basis of their themes, enabling Metacat to
evaluate the similarity of different failure situations. Furthermore, comparing the
themes of snag descriptions and answer descriptions can provide clues as to how
failures can be avoided in certain problems.

5.2 Themes and the Themespace

Themes are short-term memory structures that describe the characteristics of
mappings between letter-strings in a high-level, abstract way. They are composed
of Slipnet concepts, and are created in Metacat’s Themespace in response to
structure-building activity in the Workspace. For example, in the problem
abc) abd; xyz) ?, if a crosswise mapping is built between abc and xyz as a result
of noticing the alphabetic symmetry between a and z, a theme composed of the
concepts AlphabeticPosition and opposite will be created. A StringPosition: opposite
theme will also be created, representing the idea that objects in opposite positions in
their respective strings correspond to one another, as expressed by the bridges a–z
and c–x. On the other hand, if the a–z symmetry is not noticed and a parallel
mapping consisting of the bridges a–x, b–y, and c–z is built instead, no Alphabe-
ticPosition theme would be created. In this case, a StringPosition: identity theme
would describe the parallel mapping. Thus themes capture the essential aspects of
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an analogy by concisely summarizing how the letter-strings are perceived in relation
to one another.

Like Slipnet concepts, themes take on varying levels of activation, reflecting the
extent to which the ideas they represent play a role in the program’s current
perception of the problem. In this sense they behave as passive representational
structures. However, in certain situations, to be explained below, themes can exert
strong top-down thematic pressure on perceptual processing. This pressure, which
can be turned on or off by the program itself, selectively weakens or strengthens
existing structures in the Workspace, and may cause codelets to focus on building
specific types of new structures. In fact, unlike Slipnet concepts, themes can assume
both positive and negative levels of activation. With thematic pressure turned on,
positively activated themes encourage the creation of structures compatible with the
ideas represented by the themes. Negatively activated themes, on the other hand,
discourage the creation of such structures; instead, they promote the creation
of alternative structures incompatible with themselves. Thus themes act like a set
of ‘‘knobs’’ that can be used to focus the attention of the program on specific sets of
ideas. By twisting the knobs – that is, by varying the pattern of theme activations
under thematic pressure – Metacat’s perceptual processing can be steered in
particular directions, guided by the ideas explicitly represented by the themes.

5.3 The Temporal Trace

The Temporal Trace (or the Trace for short) serves as the locus for self-watching in
Metacat. Like the Workspace and Themespace, it is a short-term memory that stores
information over the course of a single run. The Trace stores an explicit temporal
record of the most important processing events that occur during problem solving.
Examples of such events include the strong activation of a theme or concept, making
a conceptual slippage, creating a new rule, hitting a snag, or discovering a new
answer. Of course, a large number of events of all sizes occur during the processing of
almost any analogy problem, ranging from local ‘‘micro’’ events such as individual
codelet actions to global ‘‘macro’’ events such as the discovery of new answers.
However, only those events above a threshold level of importance get represented in
the Trace. This allows Metacat to filter out all but the most significant events, giving
the program a very selective, high-level view of what it is doing.

One way to appreciate the abstract, chunked nature of the information in the
Trace is to consider the typical number of steps that occur during a run of Metacat.
This depends on the level of granularity used to describe steps. At a very fine-grained
level of description, where each step corresponds to an action performed by a single
codelet, a run may consist of many hundreds or even thousands of steps. At this level
of description, no two runs are ever exactly the same, even if they involve the same
letter-strings (unless both runs start with the same random number seed). On the
other hand, at the level of description of the Trace, a typical run consists of a few
dozen steps. At this level of granularity, each step corresponds to a single event
recorded in the Trace, and represents the actions of many codelets.

For example, figure 4 shows the contents of the Trace after a run on the problem
abc) abd; xyz) ?, in which the program, after trying unsuccessfully a couple of
times to change z to its successor, answered xyd. The events that occurred during the
run appear in chronological order from left to right. This run involved a total of
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1,558 codelets, but the high-level picture shown in the Trace consists of just twelve
events, which represent the ‘‘major milestones’’ encountered along the way in the
program’s search for an answer. For instance, the Slipnet concept identity got
activated early on, due to the program perceiving the as and bs in abc and abd as
corresponding to one another. This was followed by the chunking of abc and xyz
into predecessor groups going in the same direction (both to the left). Next, the rule
Change letter-category of rightmost letter to successor was created for describing
abc) abd, which led inevitably to a snag. In the aftermath of the snag, another rule
was created (Change letter-category of rightmost letter to ‘d’), and abc and xyz were
reperceived as successor groups (again going in the same direction – only this time to
the right). However, the program then attempted to use the first rule again, resulting
in another snag. Finally, after creating a third rule and again perceiving xyz as a
successor group, the program found the answer xyd.

Once processing events have been explicitly represented in the Temporal Trace,
they are themselves subject to examination by codelets. This allows Metacat to
perceive patterns in its own behaviour in much the same way that Copycat perceives
patterns in letter-strings: via codelets looking for relationships among perceptual
structures. In Metacat’s case, these perceptual structures include the ‘‘reified’’
processing events in the Trace. When a new answer is found, an answer description
is created by examining the temporal record to see which events contributed to the
answer’s discovery.

This approach is similar in flavour to work on derivational analogy, in which
the trace of a problem-solving session is stored in memory for future reference,
together with a series of annotations describing the conditions under which each
step in the solution was taken (Carbonell 1986, Veloso and Carbonell 1993, Veloso
1994). In Metacat’s case, however, the information in the Trace is used as the basis
for constructing an abstract description of the answer found, rather than being
permanently stored itself.

6. Pattern-clamping and self-control

The Trace allows Metacat to monitor the processing activity in the Workspace at a
very abstract and highly chunked level of description, enabling the program to ‘‘see’’
what it is doing during a run. Equally important, however, is the program’s ability
to respond to what it sees by clamping particular themes and concepts at high
activation, resulting in strong top-down pressure on processing. Various types of
patterns, consisting of sets of themes, concepts, or codelet urgencies, can be clamped
by the program in response to events in the Trace. Clamping a pattern alters
the probabilities that certain types of codelets will run, or that certain types of
Workspace structures will be built, which may lead the program to revise its
interpretation of a problem by reorganizing structures in the Workspace in

Figure 4. The temporal record of a run on the problem abc) abd; xyz) ?.
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accordance with the ideas represented by the pattern. Thus patterns serve as a
‘‘medium’’ through which the program is able to wield control over its own
behaviour.

When an event is recorded in the Trace, the themes most active at the time of
the event are stored along with it. These themes serve as the event’s thematic
characterization. In the case of a snag event, the thematic characterization represents
a failed way of interpreting the problem. For example, in solving abc) abd; xyz) ?,
Metacat usually first perceives abc and xyz as going in the same direction,
which leads to a snag whose thematic characterization includes the theme String-
Position: identity. If Metacat continues to hit the same snag over and over, a series of
snag events will accumulate in the Trace, all with very similar thematic characteriza-
tions. This similarity may be noticed by codelets (the probability becoming higher
as more snags accumulate), causing them to take action by clamping the ‘‘offending’’
themes, including StringPosition: identity, with strong negative activation.
This encourages the program to explore alternative ways of interpreting the
problem, which may subsequently lead it to discover other answers such as
wyz. In this way, Metacat can recognize its own repeated failures and respond
accordingly.

Codelets called Progress-watchers are responsible for deciding whether or not to
unclamp a clamped pattern. In general, the purpose of clamping a pattern is to
catalyse a series of events that reorganize the perceptual configuration of the
Workspace in some way. It is therefore better to wait until the structure-building
activity occurring in the wake of a clamp has settled down before concluding that the
clamp has ‘‘run its course’’. If a Progress-watcher codelet runs while a pattern is
clamped, it examines the most recent event in the Trace to determine how much time
has elapsed since the event occurred. If the amount of elapsed time is less than a
minimum settling period, then the codelet simply fizzles, leaving the clamped pattern
still in effect. On the other hand, if enough time has passed without any new
important events having transpired, the codelet unclamps the pattern and then
evaluates the amount of progress that was made since the clamp occurred.
Depending on the amount of progress achieved, the codelet may decide to spawn
a follow-up codelet to see whether a new answer can be made based on the newly
created structures.

The criteria for evaluating the success of a clamp can vary. Sometimes, the
purpose of clamping a pattern is to promote the creation of specific types of
Workspace structures. Other times, the purpose is to encourage the creation of
structures of any type, so long as they are compatible with the clamped pattern. The
progress achieved by a clamp can be measured by observing the number of structures
that get built in the immediate aftermath of the clamp, and the extent to which they
are compatible with the pattern.

If no patterns are clamped when a Progress-watcher codelet runs, then instead of
checking on the progression of events in the Trace, the codelet checks on the current
rate of structure-building activity in the Workspace. This activity is measured by a
number from 0 to 100, which serves as a quick estimate of the ‘‘freshness’’ of the
current structures in the Workspace. More precisely, it is an inverse function of
the average age of the most recently created structures. Thus the activity level tends
to remain high as long as new structures are being built, but eventually drops to zero
in the absence of new structures.
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If the activity level is zero, indicating that nothing much is happening in the
Workspace, then Metacat may have arrived at an impasse in its search for answers
to the current problem. This is not quite as bad as hitting a snag, but it still ought to
prod the program into trying something different. However, in the case of an
impasse, there is usually no clear set of ‘‘offending’’ structures or themes to pin
the blame on, unlike in the case of a snag. Indeed, the impasse may well arise from
a lack of appropriate structures, rather than from the existence of the ‘‘wrong’’
structures. Therefore, in the absence of Workspace activity, Progress-watcher
codelets check to see whether particular types of new structures may be needed. If
so, they may clamp a pattern of codelet urgencies in response, in an attempt to
catalyse structure creation.

For example, a Progress-watcher might examine the quality of the rules that
have been built so far. If no good rules yet exist, the codelet might try to encourage
the creation of better rules by clamping a pattern of codelet urgencies that strongly
increases the probability that rule-seeking codelets will run, while inhibiting other
types of codelets. Eventually, other Progress-watchers will turn off the clamp once
enough time has passed with no more events having been added to the Trace.
Since this particular clamp is only concerned with the creation of new rules, the
amount of progress achieved is judged solely on the basis of the quality of the rules
that get created in the clamp’s wake (if any).

6.1 Answer justification

Metacat’s pattern-clamping mechanisms give it another important capability, which
Copycat lacks. Unlike Copycat, Metacat is able to evaluate analogies suggested to
it by the user, in addition to making analogies on its own. When provided with a
specific answer to a problem, the program ‘‘works backwards’’ from the answer
toward an understanding of why it makes sense. Once the answer has been
understood, it can be compared and contrasted with other answers that the program
has either been shown or has discovered on its own.

This type of ‘‘hindsight understanding’’ presents little difficulty for humans.
People who are asked to solve the problem abc) abd; mrrjjj) ?, for example, may
not think of the answer mrrjjjj, even when given an unlimited amount of time.
However, as soon as this answer is suggested to them, they have no trouble seeing
why it makes sense, even though they didn’t think of it themselves. In a similar vein,
suggesting the somewhat tongue-in-cheek answer abd usually elicits a few laughs,
along with nodding agreement that it makes sense in a silly way, although few people
give this answer on their own (Mitchell 1993). This is not to say that every suggested
answer can be readily understood in retrospect (for example, a person might never
figure out the justification for an answer such as mssjjj), but for many non-obvious
answers, no additional explanation beyond just the answer itself is needed.

When Metacat runs in justify mode, it attempts to discover a way of interpreting
the problem such that the given answer makes sense. To do so, it begins by building
up perceptual structures among the letter-strings, as usual. This bottom-up
approach, however, may lead it to build an inconsistent interpretation of the
problem that does not support the answer in question. Nevertheless, examining
parts of this interpretation may suggest new ideas to focus on. More precisely, an
Answer-justifier codelet may compare the rule structures involved and, based on their
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differences, clamp a pattern of themes designed to reorganize the mapping between
the initial string and the target string in a way consistent with the rules and the
answer.

For example, when Metacat is asked to justify the answer wyz to the problem
abc) abd; xyz) ?, it usually starts out by building same-direction mappings
between all of the strings. (Snags do not arise in justify mode, since the answer
already exists.) In addition, the ‘‘top’’ rule Change letter-category of rightmost letter
to successor describing abc) abd, and the ‘‘bottom’’ rule Change letter-category of
leftmost letter to predecessor describing xyz)wyz may be created. This state of
affairs is shown in figure 5. Although the three string mappings are locally consistent
when considered in isolation, together they do not make sense at a global level. The
letters c and x are not seen as corresponding to each other, yet they are both
identified by the rules as being the objects that change in their respective strings (the
c to its successor and the x to its predecessor).

Comparing the two rules to each other, however, suggests the idea of rightmost–
leftmost symmetry, as well as successor–predecessor symmetry. This idea can be
captured by a pattern of themes including StringPosition: opposite, Direction:
opposite, and GroupType: opposite.y Metacat can explore the ramifications of
this idea by positively clamping these themes in the Themespace. The state of the
Temporal Trace at the time of the clamp is shown above the Workspace in figure 5.
As can be seen, clamping the pattern causes the concept of opposite in the Slipnet to
become highly activated. The ensuing top-down thematic pressure strongly promotes

yGroupType and ObjectType are synonyms for the concepts GroupCategory and ObjectCategory.

Figure 5. An inconsistent interpretation of the answer wyz.
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the creation of new structures that support mapping abc and xyz onto each other in a
crosswise fashion, and significantly weakens existing incompatible structures such as
the a–x and c–z bridges. As a result, the original mapping between abc and xyz
shown in figure 5 is swiftly reorganized by codelets into a new mapping consistent
with the clamped themes.

Figure 6 shows the final, globally consistent interpretation, in which c and x are
seen as corresponding. Furthermore, in the wake of the clamp, the previously
unrecognized alphabetic symmetry between a and z has been noticed on account
of the increased attention focused on these letters by top-down pressure, resulting in
a first) last slippage being made. Several other conceptual slippages induced by the
active opposite concept are also visible in the Trace. Consequently, the final answer
description for wyz includes the themes AlphabeticPosition: opposite, Direction:
opposite, GroupType: opposite, and StringPosition: opposite.

6.2 Jootsing

Another type of codelet that watches the action from the high-level vantage point of

the Temporal Trace is called a Jootser (a term coined by Hofstadter, short for

‘‘jumping out of the system’’). These codelets are responsible for noticing repetitive

behaviour that the program has fallen into. An example of such behaviour arising
from repeatedly hitting a snag in abc) abd; xyz) ? was mentioned earlier.

However, Jootser codelets are sensitive to other kinds of situations as well. For

example, it is possible for Metacat to become ‘‘fixated’’ on some idea, such that
it ends up clamping the same pattern over and over again, without making any

Figure 6. The final, consistent interpretation of wyz.
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significant progress. In this case, too, Jootser codelets may notice a series of recurring

events in the Trace and take action.
For instance, if an analogy problem happens to involve a string that changes in

some complicated way, it may be too difficult for the program to build a rule that
describes this change. The program may end up repeatedly clamping patterns in a
futile effort to spur the creation of new rules. Repetitive clamping behaviour can even
arise from unsuccessful attempts to break out of a cycle of snags. That is, clamping a
pattern in response to a recurring snag may prove to be ineffective, leading only to
further snags and more pattern-clamping, rather than to a new interpretation of the
problem.

Faced with several similar clamp events in the Trace, a Jootser codelet decides
probabilistically whether to ‘‘joots’’ based on the number of clamps and the average
amount of progress achieved by each. The more clamp events there are, the more
likely jootsing is to occur, especially if the amount of progress is low, unless recent
clamps appear to be making more headway than earlier ones. Jootsing from repeated
clamps, however, does not involve clamping any new patterns in response, in
contrast to jootsing from repeated snags. Instead, Metacat simply ‘‘gives up’’ in a
graceful manner and stops.

The following two examples illustrate the idea of jootsing. In the first, Metacat
tries to justify the answer aaabccc to the problem eqe) qeq; abbbc) ?. It eventually
gives up after trying unsuccessfully several times to connect the concept of
LetterCategory in eqe to the concept of Length in aaabccc.

By time step 2437, the program has perceived both abbbc and aaabccc as
successor groups based on the letter-categories a–b–c, and has created a variety of
top and bottom rules describing eqe) qeq and abbbc) aaabccc (see figure 7). Over
the next 2000 time steps, the program clamps several patterns of themes as a result of

Figure 7. An emerging but still incomplete interpretation of aaabccc.
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comparing various top and bottom rules to one another. For example, at time step
4363, the program compares a top rule that describes the objects of eqe as swapping
their letter-categories with a similar bottom rule that describes the objects of abbbc as
swapping their lengths. These rules differ by only one concept, but to make them
inter-translatable, a LetterCategory)Length slippage must somehow be made
between eqe and abbbc. The program therefore clamps patterns of themes designed
to induce the creation of a mapping involving this slippage (see figure 8). Unfortu-
nately, however, building such a mapping requires eqe to be seen as a single, chunked
group, which is impossible in the current version of Metacat, since only successor-
ship, predecessorship, or sameness relations are recognized among letters. Thus the
program falls into an unsuccessful cycle of pattern-clamping. Eventually, at time step
6196, a Jootser codelet notices the series of repeated clamps in the Trace and decides
to terminate the run, without having achieved a complete understanding of aaabccc
(see figure 9).

As this example shows, once Metacat recognizes that its attempts to justify an
answer are not succeeding, it may decide to settle for an unjustified answer, depending
on how close it can come to a complete justification. In general, if valid rules exist for
describing both the top and bottom string changes, and if these rules are almost the
same under translation, differing by at most a few concepts, then the program will
throw in the towel, reporting its failure to understand how the unjustified slippages
arise. It will also include unjustified themes based on these slippages in the answer
description that is created at the end of the run.

The more unjustified slippages there are, however, the less likely jootsing is to
occur. Nevertheless, there is always the possibility that the program will give up too
easily, reporting an answer as unjustified when in fact it could be completely justified

Figure 8. Attempting to induce a LetterCategory)Length slippage by clamping themes.
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with further effort, although in practice this does not happen very often. On the other
hand, of course, it is impossible for Metacat to know which answers are beyond its
ability to justify in principle, since this would require a type of self-knowledge far
beyond the capability of the present program (for example, Metacat would have to
know that it is not capable of seeing eqe as a single group). In any case, the program
at least knows that it has settled for an unjustified answer, and notes this fact, along
with the associated unjustified themes, in its Episodic Memory.

The second example of jootsing involves the same problem, eqe) qeq;
abbbc) ?, but this time Metacat must solve it on its own, instead of being given
an answer to start with. In this run, the program begins by structuring abbbc as a
successor group composed of the letter a, the group bbb, and the letter c, as in the
previous example. The two rules shown below are also created to describe eqe) qeq:

. Swap letter-categories of all objects in string

. Change letter-category of leftmost letter to ‘q’
Change letter-category of middle letter to ‘e’
Change letter-category of rightmost letter to ‘q’

Around time step 1100, the program attempts to apply the first rule to abbbc,
which results in a snag, since a three-way swap between a, b, and c is impossible (see
figure 10). If the second rule had been chosen instead of the first, the program would
have found the answer qeeeq, but because this rule is less abstract than the first, it is
less likely to be chosen on average.

Over the next 3000 time steps, Metacat tries again and again to swap the
components of abbbc, often breaking various structures in the process, but always
rebuilding them in the same way as before. Eventually, at time step 4280, a Jootser

Figure 9. The final, unjustified interpretation of aaabccc.
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codelet notices the pattern of recurring snag events in the Trace, all of which involve
the themes StringPosition: identity, ObjectType: identity, and ObjectType: different.
These themes arise from the program’s interpretation of the letters e, q, and e in eqe
as corresponding, respectively, to the letter a, the group bbb, and the letter c in abbbc.
The ObjectType: identity theme is based on the e–a and e–c bridges, while the
ObjectType: different theme results from the bridge between q and bbb, since one is
a letter and the other is a group.

In an effort to avoid the recurring snag, the codelet probabilistically decides to
negatively clamp the ObjectType: identity theme. The ensuing thematic pressure
results in abbbc being reinterpreted as a predecessor group going to the left, and a
new rule being created to describe eqe) qeq, but these new structures do not really
change the basic situation. Soon afterwards, another Jootser codelet tries again, this
time clamping both ObjectType themes, which effectively paralyses the program for
the duration of the clamp period, since no structures can be built that are compatible
with both of these themes simultaneously. Figure 11 shows the state of the
Workspace and Trace at the time of the latter clamp.

A few hundred codelets later, the program hits the snag again. This is
followed shortly thereafter by another clamp. This clamp, like the one before it,
achieves no new progress. After hitting the snag yet again, the program finally
decides to give up. More precisely, at time step 5933, a Jootser codelet notices the
three clamp events in the Trace, all of which have overlapping sets of associated
themes. Moreover, neither of the two most recent clamps have resulted in
any discernible progress, which further increases the probability of jootsing. Conse-
quently, the program prints a termination message and ends the run, instead of just
continuing to cycle.

Figure 10. Attempting to swap the components of abbbc.
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6.3 Levels of control in self-watching systems

Settling for an unjustified answer after repeatedly trying to make sense of it, as in the
first example, or attempting to circumvent a recurring snag by clamping themes, as
in the second example, can be thought of as ‘‘first-order’’ jootsing. In contrast,
recognizing when repeated attempts to circumvent a snag are leading nowhere, as in
the second example, can be thought of as ‘‘higher-order’’ or ‘‘meta-level’’ jootsing –
that is, jootsing from repeated attempts at jootsing.

This important distinction can be framed more clearly in terms of event types in
the Temporal Trace. Let us designate as Type I an event that occurs directly in
response to processing Workspace structures. For example, snag events are of
Type I, because they arise from a failed attempt to apply a rule to a string (as
shown earlier in figure 10). A clamp event that occurs as a result of comparing two
rules when trying to justify an answer (as shown in figure 8) is also of Type I.
Likewise, clamping a pattern of codelet urgencies in an effort to spur the creation of
new structures such as rules is a Type I event as well, since this happens in response
to poor-quality (or nonexistent) structures in the Workspace. In other words, Type I
events in the Trace arise from first-order, subcognitive processing activity in the
Workspace.

On the other hand, a Type II event is one that occurs directly in response to
Type I events in the Trace. For example, clamping a pattern of themes in response to
a recurring snag (as in the second example of section 6.2) is a Type II event, since it is
triggered by noticing a series of snag events in the Trace. In other words, Type II
events arise from patterns of activity at the cognitive processing level, or, said another
way, from viewing subcognitive processing activity at an appropriately abstract level

Figure 11. The situation late in the run, after several snags and clamps have occurred.
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of description. Thus first-order jootsing corresponds to noticing a series of Type I
events in the Trace that all share similar thematic characterizations, and responding
in some appropriate way, while meta-level jootsing corresponds to noticing and
responding to Type II events.

The important point is that the same mechanisms are responsible for both first-
order and meta-level jootsing in Metacat – namely, Jootser codelets and the explicit
representation of processing events in the Temporal Trace. This reflects our belief
that a self-watching system should not be organized as a rigid hierarchy of distinct
levels, with each level responsible only for detecting and responding to patterns
occurring at the level immediately below it, implying the need for an infinite stack of
separate ‘‘watcher’’ mechanisms. Instead, a single set of mechanisms should be
capable of detecting first-order patterns, higher-order patterns within these patterns,
patterns of patterns of patterns, and so on, with all levels fused together and no limit
in principle on the potential complexity of the patterns involved (Hofstadter 1985a).

7. Program-generated commentary

As Metacat works on an analogy problem, it displays a running commentary in
English summarizing the ‘‘ideas’’ that occur to it as it tries to discover an answer (or
to make sense of one provided to it). This narrative, which appears in Metacat’s
Commentary window, corresponds closely to the chain of events in the Temporal
Trace, although it is not an event-by-event transcription of the information recorded
there. Rather, it consists of explanatory messages generated from time to time by
codelets as they go about their business. For example, when Metacat encounters
a snag, it reports this fact and briefly explains why the snag has occurred. Upon
discovering a new answer, it states its ‘‘opinion’’ of the answer’s quality, and
mentions any other answers it has seen in the past that the newly found answer
reminds it of. The program also mentions when it is getting ‘‘frustrated’’ by a lack of
progress, such as in the case of failing to create good rules for describing string
changes. Furthermore, after attempting to focus on some new idea by clamping a
pattern of themes, it gives a brief assessment, in retrospect, of the progress achieved
by the clamp. The program can also comment on the similarities and differences
between various answers, if prompted by the user.

Figure 12 illustrates the type of commentary typically generated by the program
during a run. The example on the left shows a run on the problem abc) abd; xyz) ?
in which the program hits the z snag a couple of times and then answers xyd (the
Temporal Trace from this run was shown earlier in figure 4). As it happens, the
answer xyd reminds the program of a similar answer to a different problem that it
has already solved. Continuing on, the program then finds the ‘‘do-nothing’’ answer
xyz, based on the rule Change letter-category of letter ‘c’ to ‘d’. This rule is even more
literal-minded than the rule Change letter-category of rightmost letter to ‘d’. At this
point, prompted by the user, the program compares the answer xyz to the answer
xyd, expressing a preference for xyd.

Next, Metacat is given the answer dyz to the same problem and asked to justify
it (figure 12, right). In this run, the program has difficulty at first discovering a rule to
describe the change from xyz to dyz. Its comment about ‘‘trying harder’’ arises from
clamping a pattern of codelet urgencies in response to this lack of rules. As it turns

J. B. Marshall294



out, three new rules get created in the wake of this clamp. The program therefore
judges the amount of progress made by the clamp as satisfactory. In fact, analysing
the newly created rules leads the program to subsequently clamp a pattern of themes
in an effort to create a mapping between abc and xyz that is compatible with the
rules. This second clamp is indicated by the comment, ‘‘Aha! I have another idea. . .’’
This clamp spurs the creation of many new structures, leading to the interpretation
of abc and xyz as mirror images of each other, which in turn leads to a successful
justification of dyz. The program therefore judges the progress achieved by the
second clamp to be very high, even though it considers dyz itself to be a ‘‘pretty
mediocre’’ answer. Finally, again prompted by the user, the program compares this

Figure 12. Metacat’s commentary from a run on the problem abc) abd; xyz) ? in which it
found the answers xyd and xyz (left), and from a justification run on the same problem in

which the program was given the answer dyz (right).
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answer to the answer xyd found earlier, which it judges in the end to be of higher
quality than dyz.

From these examples, it may appear that Metacat possesses a sophisticated
linguistic ability. However, it must be stressed that this is not the case. The program’s
commentary is generated by a set of prefabricated phrase-templates, which get filled
in and combined in flexible ways according to context. See Marshall (1999,
Chapter 4) for a detailed discussion of these mechanisms. In the run shown in
figure 12, for example, the explanation of the snag is generated on the basis of the
Workspace structures and Slipnet concepts involved in the snag – namely, the letter
z, the string xyz, and the concepts of LetterCategory and successor. As an added
touch, the second time the program hits the snag, it inserts the word ‘‘again’’, on
account of the fact that a previous snag event exists in the Temporal Trace. In
addition, the program uses stock phrases to describe certain numerical values, such
as the overall measure of answer quality (e.g., ‘‘pretty mediocre’’, ‘‘pretty bad’’), or
the progress achieved by a clamp (e.g., ‘‘some’’, ‘‘a lot of’’), or the strength of
reminding of one answer by another (e.g., ‘‘strongly’’). Other phrases are completely
canned, such as ‘‘I seem to have run into a little problem’’, which the program prints
out whenever it hits a snag, or ‘‘Let’s see. . .’’, which is printed whenever the program
compares answers. Furthermore, no type of linguistic interaction with the program
is possible.

The purpose of Metacat’s commentary is to show the progression of activity that
occurs during a run in a very user-friendly and somewhat whimsical fashion, as if the
program were ‘‘thinking out loud’’ while it solves problems, and also to summarize,
in an easily understandable way, the parallels and distinctions between answers that
are perceived by the program. It is not intended as a serious model of language
processing. As will be discussed below, answers are compared on the basis of their
underlying conceptual representations, which consist of the themes and rules stored
in answer descriptions. Metacat’s ability to recognize similarities and differences
between analogies at this representational level is what counts, not its ability to
summarize these comparisons in a human-readable form.

That said, it is important to add that not all of the words used by the program
are completely devoid of semantic content. To be sure, most of them are: ‘‘okay’’,
‘‘think’’, ‘‘mediocre’’, ‘‘I’’, ‘‘me’’, and so on. However, some of them, such as
‘‘letter’’, ‘‘letter-category’’, ‘‘group’’, ‘‘successor’’, and ‘‘direction’’, denote concepts
that the program does genuinely understand – in a limited but quite defensible sense –
within the confines of its letter-string world. These words correspond to Slipnet
concepts, whose semantics emerge from the complex ways in which they interact with
perceptual processing, as discussed earlier in section 4.

Although the colloquial tone ofMetacat’s commentary is meant to be humorous,
it raises the potential danger of the so-called ‘‘Eliza effect’’, which refers to the
widespread tendency of people to read far more meaning than is warranted into text
generated by a computer program. Clearly, the output generated by Metacat might
lead (or mislead) a casual observer into falling for this effect. Therefore, in the
interest of transparency, the program can be run in two different linguistic output
modes. When running in ‘‘Eliza mode’’, Metacat generates the type of commentary
shown in figure 12.With this mode turned off, the program uses more neutral language
to describe the events that occur during a run (the explanations generated
when comparing answers, however, are not affected). For example, figure 13 shows
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the output from the second run of figure 12, alongside the isomorphic output
produced with ‘‘Eliza mode’’ turned off. Exactly the same number of paragraphs
are generated in either case.

7.1 Comparing analogies

When Metacat compares two analogies, it retrieves their answer descriptions from its
Episodic Memory and analyses the themes and rules contained therein. In general,
two answer descriptions may share identical themes (called common themes), they
may have themes of the same type which differ by relation (called differing themes),
or one or both answers may have themes that are not present in the other answer at
all (called unique themes). For example, consider again the xyz family of analogies
discussed in section 3 (figure 1). Table 1 shows some of the information stored in the
answer descriptions created by Metacat for these analogies, including themes

Figure 13. Commentary from a justification run with ‘‘Eliza mode’’ on (left) and off (right),
showing the one-to-one correspondence between the comments generated in each case.

Table 1. Answer descriptions for the xyz family of analogies.

Problem/answer Themes Type of rule

abc) abd; xyz)wyz AlphabeticPosition: opposite Abstract
StringPosition: opposite

rst) rsu; xyz)wyz StringPosition: opposite Abstract
abc) abd; xyz) xyd StringPosition: identity Literal
rst) rsu; xyz) xyu StringPosition: identity Literal
abc) abd; xyz) dyz AlphabeticPosition: opposite Literal

StringPosition: opposite
rst) rsu; xyz) uyz StringPosition: opposite Literal
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characterizing the mapping between the initial string and target string. (For clarity,

not all of the stored information is shown.) The answers xyd and xyu share a

common StringPosition: identity theme. On the other hand, xyu and uyz are based on

the differing themes of StringPosition: identity and StringPosition: opposite. In the

case of the two wyz answers, the first one contains a unique AlphabeticPosition:

opposite theme.
Analysing the themes and rules shown in table 1 brings out clearly the

similarities and differences between these analogies. For example, a crucial distinc-
tion between the first wyz answer and dyz is the abstractness of the rule used to
describe abc) abd. The descriptions of xyd and xyu are identical, reflecting the
strong underlying similarity of these two literal-minded analogies. The difference
between the two wyz analogies lies in the presence or absence of the idea of
alphabetic symmetry. Moreover, the way in which these analogies differ is precisely
the same as the way in which dyz differs from uyz.

The coherence of an answer can be judged by comparing the abstractness of the
answer’s themes with the abstractness of the concepts making up the answer’s rule.
For example, dyz is characterized by themes involving the abstract concept of
opposite, but depends on a literal-minded interpretation of abc) abd. This
‘‘dissonance’’ is the reason that Metacat considers dyz to be an incoherent analogy,
as it explained in figure 12.

The following is a sampling of Metacat’s explanations of the similarities and
differences between some of the analogies in table 1. To generate these explanations,
the program was first run (in justify mode) on each of the answers, and was then
asked to compare them. The figures show the output generated by the program.

In figure 14, the program compares the answers wyz and xyd to the problem
abc) abd; xyz) ?, and explains why it considers wyz to be the better analogy. The
phrase ‘‘a richer set of ideas’’ refers to the fact that wyz’s answer description contains
more themes than xyd’s description.

The next examples illustrate answer comparison across different problems,
namely, abc) abd; xyz) ? and rst) rsu; xyz) ?. This amounts to comparing
answers ‘‘vertically’’ in figure 1. In figure 15, the program explains why it considers
the answers xyd and xyu to be fundamentally the same analogy. As the program
notes, the rules giving rise to these answers are very similar, since they both involve
changing the rightmost letter in a literal-minded way. The program assigns a rating

Figure 14. abc) abd; xyz) xyd versus abc) abd; xyz)wyz.
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of ‘‘pretty mediocre’’ to each answer, based on the low degree of abstractness of the
answers’ underlying themes and rules.

In figure 16, the two wyz answers are compared. In this case, the program
recognizes the essential difference between these analogies – namely, the presence
of alphabetic symmetry in one but not the other – despite the superficial identity
of the two answers.

In figure 17, the program compares the answers dyz and uyz, each of which
involves a somewhat incoherent blend of abstract and literal-minded perspectives.
As in the previous wyz vs. wyz case, the program identifies the presence or absence
of alphabetic symmetry as the fundamental difference between these two analogies.
It also notes their peculiar incoherence, expressing a preference for uyz.

Figure 17. abc) abd; xyz) dyz versus rst) rsu; xyz) uyz.

Figure 15. abc) abd; xyz) xyd versus rst) rsu; xyz) xyu.

Figure 16. abc) abd; xyz)wyz versus rst) rsu; xyz)wyz.
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7.2 Reminding

Closely related to answer comparison is the phenomenon of reminding, in which one

answer may trigger the retrieval from memory of other answers that are in some way

similar. This may happen whenever a new answer is discovered or justified by the

program. When a new answer is found, the answer description created from the

information in the Temporal Trace acts as an index into memory, causing other

stored answer descriptions to become activated in proportion to their similarity to

the new answer. Similarity between answer descriptions is determined by a numerical

measure from 0 to 100 called the distance, which measures the amount of overlap of

the answer descriptions’ themes and concepts. If the activation level of an answer

description exceeds a fixed threshold, Metacat will be reminded of the answer, with

the activation level corresponding to the strength of recall.
Figure 18 shows an example of the state of Metacat’s memory upon discovering

the answer wyz to the problem rst) rsu; xyz) ?, after having seen a few other
answers to this problem and to the problem abc) abd; xyz) ?. There is also a snag
description for abc) abd; xyz) ?, indicating that the program ran into a snag when
solving this problem on its own. The activation levels of answers are indicated by
shades of grey, ranging from white for fully activated answers to dark grey for
dormant ones (so that the less strongly activated an answer is, the more it appears to
fade into the background of Metacat’s memory). In this example, wyz is the most
active answer, since it was just found. It has partially activated the other wyz answer,
and, to a lesser extent, uyz. The other answers, however, are too distant from wyz to
be recalled. As a result, Metacat reports in its Commentary window that the newly
found answer ‘‘somewhat’’ reminds it of the other wyz answer, and ‘‘vaguely’’
reminds it of uyz. (The program uses the terms ‘‘vaguely’’, ‘‘somewhat’’, and
‘‘strongly’’ to describe the activation levels of answer descriptions, corresponding
respectively to the numerical ranges 1–30, 31–70, and 71–100.)

Figure 18. Six answer descriptions and one snag description in memory.
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Snag descriptions enable Metacat to ‘‘appreciate’’ certain answers in ways that
otherwise would not be possible. For example, consider again the answer aaabccc to
the problem eqe) qeq; abbbc) ?. As we saw in the sample runs of section 6.2, the
program is unable to get this answer on its own, because it is incapable of
perceiving e–q–e and 1–3–1 as unified chunks, due to the absence of predecessor,
successor, or sameness relations among the parts. Consequently, it is unable to
connect the idea of letter to the idea of number at an abstract level, and therefore
never sees these ideas as playing analogous roles in eqe and abbbc. Instead, it
ends up repeatedly attempting to swap the as, bs, and cs. On the other hand, if
this answer is provided by the user, the program can make sense of it, although in
an incomplete way. It still considers the connection between letter and number to
be an ‘‘unjustified idea’’. More precisely, it includes an unjustified theme in the
answer description for aaabccc based on its failure to make the slippage
LetterCategory)Length.

The same is true for the answer aaabaaa to the related problem eqe) qeq;
abbba) ?. Metacat can almost make sense of it, but cannot get it on its own.
However, there is a crucial difference between aaabaaa and aaabccc, as was pointed
out earlier in section 3. In eqe) qeq; abbba) ?, swapping letter-categories is
perfectly feasible, so there is no need to view abbba as 1–3–1. That is, no
snag arises in this problem. In a sense, then, the answer aaabccc is the better
analogy, since seeing abbbc as 1–3–1 provides an elegant way around a snag, while
seeing abbba as 1–3–1 is unnecessary. Metacat can make this observation, but it can
only do so if it knows that the problem eqe) qeq; abbbc) ? leads to a snag. If it
has tried this problem on its own, it will know this, because a corresponding
snag description will exist in memory. Conversely, if it is shown the answer aaabccc
without having first tried to solve the problem itself, it will remain unaware of the
possibility of a snag arising, and will not perceive this subtle distinction between
the two analogies.

The following experiment illustrates this behaviour. First, Metacat’s memory
was cleared in order to reset the program to a ‘‘tabula rasa’’ state. It was then shown
the analogy eqe) qeq; abbba) aaabaaa and asked to justify it. At the end of the
run, the program created an answer description for aaabaaa, which it then stored in
memory. Next, the program was shown the analogy eqe) qeq; abbbc) aaabccc.
At the end of the second run, the program reported that aaabccc strongly reminded it
of the first answer, aaabaaa (reminding strength: 80). At this point, the program
had not yet attempted to solve eqe) qeq; abbbc) ? on its own, and therefore did
not know that a snag can arise. When asked to compare these two analogies, the
program reported that it saw essentially no differences between them. Figure 19
shows the program’s commentary.

The program was then reset to a tabula rasa state and asked to justify aaabaaa,
just as before. However, it was next given the problem eqe) qeq; abbbc) ? to work
on its own, with no answer provided. In this run, the program attempted
unsuccessfully to swap the letters of abbbc a couple of times, and then happened
to discover the more literal-minded answer qeeeq. The failure to swap the letters,
however, caused a snag description to be created for this problem in memory. Next,
the program was shown the answer aaabccc to eqe) qeq; abbbc) ?, as before, and
asked to justify it. This time, the program reported that aaabccc reminded it only
vaguely of aaabaaa (reminding strength: 20), indicating that it perceived the
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analogies as being quite different – although still recognizably related. The program’s
commentary is shown in figure 20.

8. Discussion

A number of researchers have developed cognitive models that incorporate
architectural principles similar to those of Metacat, including emergent processing
arising from many nondeterministic agents acting concurrently, and the spreading of
activation among nodes of a semantic network in response to context-sensitive
pressures. Kokinov’s DUAL cognitive architecture, which forms the basis of the
AMBR1 and AMBR2 models of analogical reasoning and memory retrieval
developed by Kokinov and Petrov, is a case in point (Kokinov 1994a, 1994b,
Kokinov and Petrov 2001). The development of these models has been guided by
the belief that subprocesses underlying analogy-making should be integrated into a
larger cognitive system comprising perception, memory, learning, and reasoning.
As in Metacat, dynamic context-sensitive emergent processing plays a central role in
DUAL and AMBR, allowing for the close interaction of representation-building,
mapping, transfer, and reminding.

Despite their architectural similarities, however, Metacat and AMBR differ in
terms of the relative emphasis each model places on different aspects of cognition.

Figure 20. aaabaaa versus aaabccc after encountering the snag.

Figure 19. aaabaaa versus aaabccc before encountering the snag.
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The more recent AMBR2 model (Kokinov and Petrov 2001) is particularly strong in
its approach to modelling the storage and retrieval of memory episodes. In AMBR2,
episode representations are highly emergent, decentralized, and context-sensitive,
and interact with the mapping process in a psychologically plausible manner.
In contrast, Metacat currently lacks sophisticated mechanisms for episodic
memory indexing and retrieval. In the current version of the program, when a new
answer is discovered, the newly created answer description is individually compared
to all others stored in memory, in order to determine the new activation levels of the
stored descriptions – and hence which answers will be recalled as a result of finding
the new answer. This simplistic approach does not scale well if many answers exist in
memory, and is thus unsatisfactory in principle. Furthermore, as Kokinov and
Petrov have pointed out, these memory structures are essentially localized and static
(although their activation levels may change, as mentioned above). Unlike themes
and Slipnet concepts, answer descriptions do not interact with each other through
spreading activation, and do not actively influence perceptual processing, as they
undoubtedly should in order to model priming effects and other influences of
previous problem-solving experiences on perception. Developing better mechanisms
for episodic memory organization and retrieval in Metacat is thus a high priority for
future research.

On the other hand, Metacat is strongly committed to modelling concepts as
active, dynamic entities that acquire their meanings from within the system itself,
through their interactions with perception, as discussed earlier in section 1. AMBR
also models concepts, but their meanings are not tied to the system’s own perceptions
in the same way as in Metacat. For example, AMBR may solve analogy problems
involving the concepts of water and teapot, but the structures representing these
concepts in memory presumably do not become activated by the system’s perception
of real water or real teapots. In contrast, the concepts behind Metacat’s analogies,
such as letter or successor-group, acquire their meanings precisely as a consequence
of how they respond to the perception of ‘‘real’’ letters and groups in Metacat’s
microworld.

Another important difference is Metacat’s focus on modelling self-perception, an
aspect of cognition that is not addressed by most other models of analogy-making.
As we saw earlier, the information gleaned from self-watching plays a crucial role in
the high-level characterization of answers, enabling the program to perceive abstract
similarities and differences between analogies as a whole. We believe that a
psychologically realistic and complete model of analogy-making should offer some
account of higher perceptual levels, including those that reflect aspects of the
system’s own behaviour. In our model, the mechanisms responsible for internal
self-perception are not fundamentally different from those responsible for external
perception. Both involve the building and manipulation of structures by codelets,
whether in the Temporal Trace (for internal perception) or in the Workspace
(for external perception). Furthermore, these processes are tightly interwoven,
and are highly dependent on the context-sensitive activations of concepts.

Metacat also shares similarities with case-based reasoning (CBR) approaches to
analogy (Kolodner 1993, 1994, Leake 1996). For instance, Metacat’s stored answer
descriptions can be likened to cases in CBR, since they form a corpus of experience
on which the program can draw when faced with new situations. The discovery of a
new answer may trigger the retrieval of similar answers that the program has seen in
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the past, in a way reminiscent of the retrieval of stored cases in CBR according to
their degree of similarity to the target situation. In Metacat, retrieved answers are
compared to the current answer by analysing the similarities and differences between
the answers’ associated themes. This is roughly akin to comparing cases in CBR in
order to determine which aspects of a retrieved case can be applied directly to the
target situation without modification, and which aspects must be adapted to fit it.
Finally, Metacat’s snag descriptions can be viewed as cases that store failure
information about analogies.

However, there are important differences between CBR and Metacat. First of
all, even though Metacat solves analogy problems, it was not conceived as a model of
problem-solving per se. Rather, its focus is on modelling the way in which context-
sensitive concepts allow analogies to be perceived and understood. It is more
concerned with analogical perception (and self-perception), than with analogical
reasoning employed specifically as a tool for solving problems. Moreover, the goal of
much CBR work has been to create systems that learn from experience to solve
problems in an increasingly effective or efficient manner, whereas in Metacat the
notion of improving the program’s performance on analogy problems is not relevant.
However, some recent CBR-based approaches to modelling creativity (Bento and
Cardoso 2001, Cardoso and Wiggins 2002) seem to be more in harmony with
Metacat’s goals than previous CBR systems have been.

9. Conclusion

A prime objective of this research is to explore how adaptable, context-sensitive

concepts can give rise to understanding by enabling analogies between apparently
dissimilar situations to be perceived. The present work extends and deepens the ideas

developed in Copycat by incorporating mechanisms for self-watching, episodic

memory, and reminding into the model. These mechanisms make it possible for
Metacat to compare and contrast analogies in an insightful way. The ability of the

program to perceive subtle parallels and distinctions between analogies represents a

significant step beyond the perceptual abilities of Copycat, although much work still
remains to be done.

The examples presented in section 7 illustrate Metacat’s ability to observe and
describe its own behaviour, to recall previously encountered answers, and to explain
the similarities and differences it perceives between analogies. This ability relies on
storing abstract descriptions of answers and processing events, characterized
by patterns of themes, in memory. It is important to emphasize that answer
descriptions are just organized collections of Slipnet concepts, since they are
composed of themes and rules, which are in turn composed of concepts. These
concepts, as the fundamental building-blocks of answer descriptions, form the
substrate on which the program’s understanding of analogies is based, and acquire
their semantics through the ways in which they respond to situations in Metacat’s
letter-string world. Consequently, the English-language commentary generated by
the program about analogies, although just a surface-level veneer in many ways,
ultimately rests on a deeper foundation of conceptual representation tied to
perception.
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Appendix: Source code

The complete source code for Metacat is available, along with instructions for
downloading and running the program, at http://www.cogsci.indiana.edu/metacat.
Demos of the examples discussed in this paper and in Marshall (1999) are included
with the program.
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