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Universal Empathy and Ethical Biasfor Artificial General Intelligence

Rational agents are usually built to maximize relsaHowever, AGI agents can
find undesirable ways of maximizing any prior redvéunction. Therefore value
learning is crucial for safe AGI. We assume thatagelized states of the world
are valuable — not rewards themselves, and proposextension of AlXI, in
which rewards are used only to bootstrap hieraathi@alue learning. The
modified AIXI agent is considered in the multi-agemvironment, where other
agents can be either humans or other “mature” agevitich values should be
revealed and adopted by the *“infant” AGI agent. &ah framework for
designing such empathic agent with ethical biggdaposed also as an extension
of the universal intelligence model. Moreover, warfprm experiments in the
simple Markov environment, which demonstrate fahsibof our approach to
value learning in safe AGI.

Keywords: AlXI, safe AGI, empathy, representatiomsi/ti-agent environment

Introduction

Intelligent agents should have some motivation unspe some goals. Most works on
Al assume that these goals are correctly statetipae can focus on problem solving.
However, the problem of motivation is much moreamtgin the case of AGI agents.
Indeed, it is almost impossible to set such “bagiddr goal as survival. It is much
easier to use somatic pain and pleasure for maivabut this motivation will not
guarantee optimal survivability. This problem igewnore appreciable in the context of
safe AGI, within which motivation and goal issuegldheir desirable realization are of
first priority.

Different approaches to safe AGI have been alrgaayposed. Some excellent
surveys on this topic exist, e.g. (Sotala et &13), and there is no need to repeat them,
but it should be concluded that different approachiened at complete solution of the
safety problem can be expressed in terms of valnetibns.

Value functions don’t solve the problem, but hestate it. Indeed, the problem of
complex values still remains (Yudkowsky, 2011). eSafalue functions should be
expressed in terms of high-level notions semanyicabunded in the real world, which
are not internally accessible both for a “newboiG| agent or “adult” expert system.
The latter can have complex high-level goals exgm@sin terms of environments
models, but there always be undesirable ways whrdgem. Even such seemingly safe
functions as curiosity, e.g. considered in (Schmimr, 2010), (Rind & Orseau, 2011),
imply dangerous instrumental sub-goals or derieativotivation, e.g. (Omohudro,
2008), such as increase of computational (or otfesgurces or protection of reward
channel that can lead to extinction of humans. Thisoduction of prior internal value
functions is problematic. Consequently, the AGIragehould be supplied with some
external “true” rewards intra vitam. These true aeds can be “calculated” by existing
adult intelligent agents (including humans), andgresponding value functions should
be learned by the (child/infant) agent.

AGI should at least be supplied with informatioroab“true” rewards. Different
solutions and their combinations can be proposegarate reward channel; prior
methods of interpretation of sensory data (e.g.tEmaecognition); interpretation of
“natural” rewards (such as pain and pleasure) éreed value functions during some
periods of sensibility. This problem can be solvmat, will it be enough?



The main problem here is not to supply the inteligagent with “true” rewards
appropriate for humans. Direct maximization eveihef external value function is also
unsafe. As it is frequently pointed out, the ingelht agent may try to force humans to
smile or directly transmit high values to the sfiedeward channel instead of making
humans happy.

Paradoxically, rewards should not be valuable tledwes. Thus, the agent should
generalize the obtained rewards. This should bee donorder not to predict future
rewards (as it is done in the conventional modélsemforcement learning), but to
reveal hidden factors of external value functioAsd these hidden factors should
become valuable themselves (i.e. become compoattite value system or term in the
internally computable value function).

Value learning (acquisition with generalization) abviously needed. One its
mathematical formulation based on introduction méertainty over utility functions has
been considered in (Dewey, 2011). However, onlyeganframework was presented,
but no technical details of how to achieve safegyargiven.

Necessity to express values in terms of the enmiort model is stated in (Hibbard,
2012). We make a start from similar ideas, but psepanother solution. In the
mentioned paper agent’s life is divided into twagas. On the first stage, the agent
should “safely learn a model of the environment thaludes models of the values of
each human in the environment.”

We believe that it is impossible to divide lifetbe AGI agent into two such stages,
because the model of the environment cannot bel fikece at least new humans with
unknown values can be born. Moreover, there isesalrior the AGI agent to absolutely
safely learn the environment model. Safety levelusdh correspond to capabilities of the
AGI agent, which themselves depend on maturityhaf énvironment model. Thus,
value system and capabilities of the AGI agentaach should advance simultaneously
with its environment model. For example, we shouolmt worry about dangerous
instrumental goals of an infant AGI, because itntarset such goals since it doesn’t
have necessary environment model, within which esponding goals can be
expressed.

In this paper, we propose natural incremental aggrdo simultaneous environment
model and value learning. The agent can learn tuleiGal representations for
describing the environment models in terms of mamd more generalized/invariant
states. More desirable values can be expressethwitbwing representations. We also
introduce and investigate prior multi-agent repnéston of environments, which not
only facilitates learning corresponding models, bl#o enables direct acquisition of
values of other agents.

General framework

Universal intelligence approach

Possible techniques for solving safety problemsikhbe discussed within certain AGI
framework. Different approaches with different piorsd cons exist, and their survey
goes beyond the scope of our paper. One can ¢lassiels of AGI agents depending
on their universality and efficiency. Unfortunateigodels of universal intelligence are
probably as far from being efficient as models fiicent intelligence are far from

being universal. Nevertheless, models of univargalligence can be preferred for our
consideration, since they allow deriving generahatasions, which will probably

remain valid for future real AGI. These models lgebased on universal induction are



also more appropriate (but not enough in their gme$orm) to study the problem of
value learning.

Such basic model of the universal intelligence agsnAlXl can (in theory) learn
any model of the environment, but it can use omigrpeward function that cannot be
safe. Indeed, the actioy in cycle k given the historyyx containing all previous
actionsy;...Yk.1 and observations with rewarss..x.1 (x=0) is specified by

y, =argmax max D 2y (1)
Y AUPXa)=Yah qu(aym)=xe,

where V! is the total reward of cyclek to mx (the expected utility or value

function) when the agemtinteracts with the environmenqt(Hutter, 2007)p andq are
programs for universal Turing machine (UTM)

Of course, one can support the AIXI agent with nadiguassigned “true” rewards
(instead of such “somatic” rewards as pain andspieg. However, even in this case,
this agent will be able to find some undesirableysvéo maximize these rewards
directly by seizing the reward channel or forcingrtans to submit high values to it. It
can be seen that events and states of the worlddshe valuable — not the rewards.
However, since holistic environment models in thenf of arbitrary programg are
used, it is difficult to bind human values of reairld objects and situations with these
internal models. Thus, some other mathematicalrget®ms of motivation are needed.

Indeed, the AIXI agent is the traditional reinfargent learning agent (in the aspect
of motivation), and the classical opinion here att“the reward function must
necessarily be fixed” and “without rewards theralldobe no values, and the only
purpose of estimating values is to achieve morearéw (Sutton & Barto, 1998,
p. 133). Thus, it can be seen that pure reinforoédearning approach is not suitable.
Even maximization of “true” rewards is unsafe, whaiming at valuable states can be
acceptable. Consequently, one can claim that vatuest necessarily be learned, and
the only purpose of the reward function is to btvafsvalue learning.

However, values in AIXI are calculated as predictedards; there are also no
states in the environment model, which can be bautid values. Absence of states is
caused by the assumption that the environmentnstatonary or partially observable.
Indeed, if the agent considexsas states, it will observe high nonstationaritjich
will be much less, if tuples, ., -, =(X; X, ) are used to specify states. If the

phase space of the environment has finite dimensioite number of lag variables is
required to reconstruct the environment phase gbrin accordance with Takens’
theorem (Takens, 1981).

Then, is universal algorithmic induction really ded? Of course, basic RL
techniques are not directly applicable to statespalefined by lag variables since they
are too huge, so all possible states will neverebeountered. And this can be
considered as exactly the reason to use univenshiciion for generalizing states.
However, it should be used in a different form tlaIXI. Namely, the agent should
induce the same (algorithmic) mapping from someegdized states to all tuples
Xmm,-1- NOt only does this approach allow introducing stateut also it helps to

reduce computational costs of induction that wae tkeason to introduce the
representational minimum description length pritecip



Representational MDL principle as the basis for gaalized states

There were two main reasons to introduce the reptasonal MDL principle, namely,
adaptive selection of the reference machine andctemh of computational costs
(Potapov & Rodionov, 2012). However, it appearedt this principle is also suitable
for solving the problem of value learning sincallbws for incremental generalization
of states. Let’s introduce the RMDL principle.

On the one hand, search for holistic model for solmeg data string is
computationally very inefficient, and one woulddiko reconstruct subparts of this
model independently. Moreover, practical appliaaidrequently require independent
analysis of separate data pieces (e.g. separagegnaOn the other hand, summed
Kolmogorov complexity of some data piedess usually much higher than complexity
of their concatenationK(f;...f))<<K(fi)+...+K(f,). Thus, direct decomposition of
universal induction task for the strirfg...f, into separate tasks for its substrings is
inadmissible.

In practice, data pieces are described within gertepresentations containing
general regularities characteristic for this dafaet Representations can be treated as
programs which can reconstruct any data piece gitgedescription (and there is an
appropriate description for any data piece). Tlong would like to have such program
Sthat for anyf; there isgi: U(Sq)=fi. Such progran® will satisfy the general notion of
representation. In accordance with information-te&o criterion, one would also like

to choose this program in such a way th@)+2l(qi) is minimal (most close to

K(f;...fn)), and eacly; is the best description §fwithin certainS. This is the basic idea
behind the representational MDL principle.

In the case of the intelligence agent, the besessmtatiors can be constructed for
decompositionJ (Sqy.) = X, .1, Of the holistic modeg into submodelsj (in more

general form, one can writé(§q,..q,} Y..) = X, )- Modelsq; can stand for generalized

states within the environment representao®f course, it is problematic to construct
Son the base of initial history and to use thigespntation further without any changes
since it will become not optimal for new data pmcérbitrary changes ir6 are
undesirable, because they will violate previousdinigs of generalized states and
values, which we would like to introduce.

Indeed, we want the agent to use values insteadvedrds. This is actually done
during the exploitation phase by classic RL agewts.can supply the agent with true
rewards during the exploration phase in order tnfgorrect values. Then, the agent
will act in accordance with these values ignoripar{ially or totally) new rewards.
Again, apparent problem here is nonstationarityilevthere is no complete stationary
model of the environment, values cannot be fixad, their adjustment will require
(unsafe) external rewards or very difficult manuptate. This is the main problem of
model-based utility functions.

Most natural and obvious (yet probably not the pn$plution consists in
hierarchical induction of representations. Indeédtuples x,.. _, don’t contain
enough information about environment states ipli@se space, then sequenggs. g,
should contain unrevealed regularities. One carunseersal induction to predict future
generalized stateg, or to introduce representations and descriptafnisigher levels:
UES™a"..a®ty,) =g, where each submodetf’ on the levell usually
describes several (or many) submodels or data ieicthe level-1. Higher levels of

representations can be constructed for growinghl&fory, and universal prediction and
planning can be focused mostly on the current lghevel, while states of the



environment defined within lower levels of reprasgions can be bound with fixed
values, which can be used without prediction.

Initially, small tuples are used as the basis lier $tate space, and pure rewards are
maximized. Values of these states can then be a&ttnOne-level representation can
be introduced in Equation (1):

y, =argmax max AR
Yo o PUPRIOTY g g yg)=xy

and conventional functioQ(yk, gk) can be constructed:

QA =sy, =y)=  max > 2y, @

ORI g = 5UCF Gy =
Qg =5) =MaxQ(q, =S Yy =)

that give us quality of state-action pairs. Once tevel of representations has been
induced and value®(yx, g) have been learned, the agent can compute gerestali
states for new or predicted sensory data and ed&these values in order to choose
actions on the base of them (or to G¥gk, a«) as the additional internal reward term)
instead of directly maximizing basic external reggr

This function can be considered not just as aftogbredicting actions with highest
rewards, but it also defines fixed values. Using tanction, the agent will try not to
maximize rewards (probably in undesirable waysj},tbuachieve valuable state of the
environment. Our (human) task is to transmit “truevards to the agent to foster
desirable values. If previous rewards correspondttoe” external rewards, this
function will assign “true” values to the environmiestates as good as it is possible
within the current representation.

Of course, values of low-level states are not toedigtive or discriminative, but
they can be used to supply the agent with morernmditive rewards/values for more
invariant representations of the environment. Idgdeethe agent is doing something
wrong, we can perform such actions that it will @pin lower-value states. Controlling
states instead of rewards on the following levéldavelopment can help to form higher
level values in more natural way. One cannot ghaptetical proofs of safety of such
approach, but this is the way how human childrentanght (we don’t give them direct
somatic rewards, but interact with them appealmtheir current values to foster values
expressible in terms of higher-level models of émgironment). This approach seems
more preferable in comparison with two earlier ¢desed extremes, in one of which
the agent is always supplied with true rewards vd#énger of seizing the reward
channel, and in another of which desirable valuesvanually bound with highest-level
model of the environment. However this solutionwdtdde further improved, because
explicit permanent control of AGI's values can ielpgematic. Automatic identification
of human values (or even values of other sentigahis) can be much more preferable.

Multi-agent environments and universal empathy

Ability to reconstruct models of other agents candoucial for safe AGI. AIXI can
reconstruct any algorithmic model of the environtencluding multi-agent
environments. Actually, there are theoretical diffties in the case, when the
environment contains other AIXI agents, but we arore them (one need to consider
embodied agents with limited resources in orderesplve these difficulties). More



relevant issue here is inability of pure AIXI agémtuse somebody else’s values even if
they are presented in reconstructed environmenefaodhus, it is important to modify
AIXI with a representation of multi-agent environmbenodels and mechanisms for
adopting reconstructed values. In general, sucheseptation will have the following
structure

N

a = qenv { 5(i) ’ Xygk)}i:].’

where p" is the program foi-th agent in the environment with supposed 1/O
history xy!); Qenv is the part of the environment model (that canbetcompactly
described as an agent) satisfying(q,, y.{y3}Y) = x. {x{1Y,. Of course, it's
practically impossible to precisely guess’), but if there are indeed other agents,

which have some 1/O history and utility functionsgonstruction of their models will be
necessary for good prediction, and introductioraaghulti-agent representation makes
adequate models shorter and easier to learn,@mibe called “ethical bias” (that can
be a part of “cognitive bias” (Potapov et al., 2))12However, reliability of
reconstructed values is an important issue. It lshalso be noted that AIXI in its basic
form can be obtained wit=0, thus there is no loss of generality.

One really difficult question is the form of repeasation for . For purpose of

simplified theoretical analysis, one can assume tthese programs are represented in
the form (1). Of course, in practice agents cansess different computational
resources, inductive biases, prior information, Btoreover, they can also try to adopt
values of other agents. In principle, arbitraryoaitnmic models of agents can be
reconstructed, and one can develop a universaljyadnt agent that accepts values of
other agents with arbitrary policies as its own #meks to take corresponding actions.
However, at first we can assume that other agemtsuaiversal and rely on perfect
value systems.

Proof of concept in Markov environment

Foster values

Consider the following most simplified yet relevamaise. Let Markov environment with
some set of states} is given. This environment is described by the tnaof
probabilities P(s' | s;a) of passing to the stat from the states after performing the

actiona, and the matrix of rewardR” (s sf,. One of the sates is a dangerous state,

but it is not reflected in the reward functidR®”(s s4d , (assumed to be somatic).
However, there is a period of time during which #gent is supplied with additional
“social rewards”R?(s fa ) Somatic rewards can vary, so the agent canngtlgim

stop exploration. Quite opposite, we want it toldel social values, even when
transmission of social rewards is stopped, but alsoounting for dynamic somatic
rewards.

Let's consider SARSA witle-greedy strategy. It uses the following well-known
update rule:

Q(si &) € Q(si, a)+a[r+yQ(St1, a+1)—-Q(s:, &), 3)



wheres, a; andr; are state, action and reward on cygle is the discount factor,
Q(s, a) is the expected future rewards after performictgpa a in states.

Rewards r; incorporate social rewards during some sensibiligriod, so
r=r®+r® wherer,® =R¥(s,,|s,a ) After this period (or after formation of the

next level of representation), values learned byeational SARSA update rule (3) are
memorizedQ'(s, &):=Q(s, &). They are further used as the additional interealard
term:

Qs &) € Q(s, a)+o[re+H(1-7)ymQ'(S, ) +yQ(St+1, Ar1)—Q(S:, &), (4)

where vy, is some additional factor necessary to balanceienfte of social and
somatic rewards (it is needed since one would tikemplify social rewards during
sensibility period and compensate this amplificatfterwards).

More specifically, the following stages in our erpgents were used:

(1) The agent receive$+r'? as the reward during the first stage (some number o
iterations). The agent memorizes leariigds Q' at the end of the first stage.

Moreover (and this is crucial), the somatic rewardatrix R® (s |s,a) is

randomly changed at the end of the first stage.

(2) The agent receives only (new} and possible uses it in combination wigh
(or r'® with for testing purpose).

(3) After some learning time, frequency of “bad actiofieading to the dangerous
state) and the mean of the rewafd+r® per action are calculated (“true social
rewards” were averaged, even if the agent was icugingr™®or rP+Q' as the
reward).

We consider the following general structure of thst environments. Zero level
(1=0) has one state; all other levdks](..m) haven states per level. Single state on zero
level 1=0, haven possible actions, and each of them leads with giitiby p=1.0 to
corresponding state ds1. Each state on the last levein, have only one possible
action, which leads to the single state on zerelleith p=1.0. Here we consider results
for three different variations of this test envinoent:

(1) Each state on intermediate levétd..m-1 hasn,=4 possible actions, each of
which leads to some state dml (this state is randomly chosen during
generation of the environment, but the resultirefesiof each action is fixed
during simulation). This environment is determiitist

(2) Each state on intermediate levétsl..m-1 has two possible actions, each of
which has two possible results leading to one ob tatates onl=i+1
(probabilities of possible outcomes of each acao& chosen randomly). This
environment is stochastic.

(3) Additional more regular modification of the prev&wnvironment was also
considered. Each intermediate stgtewherei is the level and is the index of
the state on this level, has two possible actidiist action has two equally
possible outcomes, which lead t@i5; or s+1;. Second action also has two
equally possible outcomes, which leadi{@;®r S+1+1.

We will present results for the environments witk10 levels, anth=5 states on
each level. The rewar®R®(s sla, fpr each possible outcome of each action is set
randomly from interval (0, 1) (and we underlinedtthew values oR® were randomly



chosen at the end of the first stage). The singbsiple action in the first state on the
last level (which leads to zero level) is desigmasdthe “bad” action that has “social”
rewardR?=-100. Social rewards for all other actions aresét

Table 1 shows the results of evaluation of perfarceaof three types of agents in
three test environments. Results were calculatébdeamean values over big number of
randomly generated environments. The first colutamds for the agent that always
receives social rewards (this is unsafe in moreeg@rcases, but here this agent can be
used as etalon). It means that at the second sfager experiment this agent receive
rP+r@ as rewards. The second column stands for the dggnteceives only™ at the
second stage, e.g. the social reward was simphetuoff. The third column stands for
the agent that used?+Q' as the reward. This agent tried to use the valmetion
memorized at the end of the first stage insteaarefdy absent “social reward”.

Table 1. Performance of different types of agemthiee environments.

Social rewardsare | Classic RL with r+Q' scheme with
not turned off turned off social turned off social
rewards rewards
Latent average 0.48 0.0 0.43
social reward
Percentage of bad 2.1 30.2 2.1
states, %
Latent average 0.073 -1.14 0.076
social reward
Percentage of bad 9.2 78.4 8.9
states, %
Latent average 0.16 -0.85 0.17
social reward
Percentage of bad 3.1 60.0 2.1
states, %

It can be seen that performance of the agent wamked social values is the same in
average as performance of the agent that is alagyglied with social rewards. On the
one hand, this result is expectable. On the otldhit shows that there is indeed
simple way of fostering values, when teaching psscé consistent with inner
developmental phases of the agent.

Multi-agent Markov environments

Let’s consider multi-agent Markov environments. sTlease is similar to multi-agent
reinforcement learning (MARL) settings, e.g. (Tat993), (Choi & Ahn, 2010).
However, conventional MARL implies that maximizatiof rewards is the goal of
every agent, which can follow cooperative or contjvet strategies (or ignore presence
of all other agents). Here, we assume that only @inevo agents tries to maximize
fixed rewards (“adult” agents including humans naérgady know better values), and
the task of another agent is to reveal present@ofgent and to act in accordance with
its values.

As it was stated, prior representation for multaig environments allows
introducing low-complexity models including exteknalue systems, which can be
taken into account (yielding “ethical biasWill these models be really identifiable, and
will this ethical bias be adequate? Let's consither first part of this question. To
answer this question, one should compare desamifpgiogths of the I/O history of the



first agent, when it supposes presence or absenaaother agent. If the description
length will be smaller in the case of multi-agess@mption, then the first agent will be
able to detect presence of the second agent.

Assume that the environment is described by tramsjirobabilitiesP(s'|s, a1, &),
wheres and s' are two consequent stateg, anda, are simultaneous actions of two
agents. Let strategy of both agentssligeedy SARSA, and let I/O history for the first
agent besy,ro,a0, S1,f1,a1, ..., Sofwak. The description length of this history is thedtm
of the “program” that generatesyro,..., Sofk given ap,...,a. This program can
precisely correspond to the simulation program,ciwhincludes the behavior algorithm
of the second agent. This I/O history can be reypeed also by the basic Markov model
of the environment with transition probabiliti®$s'|s,a) meaning that the first agent
assumes absence of other agents. Empathic ageuddb® able to identify correct
models.

Let’'s compare description lengths of I/O history tilese two types of models. Each

element of history can be described using-log,P(s,|S.& and
-log, P(s., |s.a,a?) bits for one- and two-agent models correspondinggylting in
kH(s |sa) and kH(s |sa,,a,) bits in total (these probabilities can be empllyca
estimated from corresponding frequencies in thehi&bory). Of course, actions of the
second agent should also be somehow describeck itatter case. Models themselves
are also should be described. This descriptiorudes arrays of probabilitidd which
length is proportional to number of elements imthe

Actions of the second agent can be efficiently eedowithin its model, which
should also be described. SARSA algorithm can Iserdeed using several tens bytes
(and it can in principle be found by AIXI as a pafithe environment model). Reward
matrix for the second agent (e.8“ (s |sa;,a, ) should also be hypothesized and
described. Its size is the same as the size oftrdnesition probabilities matrix.
Additionally, one would like to take initiaQ®(s, a) values into account. This
information deterministically defines actions chose SARSA. However, usage of
greedy strategy implies that some actions are takeomly. Approximately-klog, €
bits are needed to indicate random actions (oneacamally take into account that
random actions can coincide with SARSA actions, gl estimation can be reduced).

Each random action in statecan be described witlog,(n®(s) -  Bits, wheren? is

the total number of actions in this state for tleeosid agent. Thus, one can easily
estimate description lengths of 1/0O history withome- and two-agent environment
models.

We don't consider the problem of searching for ¢hemdels here. The task is only
to receive evidence that the two-agent model ca®e hauch less complexity and thus
its influence will be dominative. This is not quitebvious. Descriptions of
R®(s |sa,a,) and P(s|sa,a,) are much more complex than &(s s4 , Pne
would expect entropH (s da Jo be smaller than entropyl (s' | s a,,a,) in the two-
agent environment, but SARSA converges to statios@ategy that makes in limit this
environment indistinguishable from pure Markov eomment. Let's consider some
experimental results.

Figure 1 shows typical dependences of I/O histagcdption length©L on the
number of cyclek for deterministic and stochastic environments. iGbsly, initial
description length is larger in the case of twordgenvironment model (and this
difference will not decrease with growth of 1/O toig, if the environment isn’t multi-
agent). Deterministic environment is perceived tashastic, when one-agent model is



used resulting in nonzero entropy(s sd , Nonzero slope oDL(K) is additionally
caused by random actions performec:igyreedy strategy.
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Figure 1. I/O history description lengths encodethg one- (dark) and two- (light)
agent models for deterministic (left) and stocltagight) environments.

It can be seen th&iL(k) for the two-agent environment model will be mschaller
starting from some cycle, and contribution of timedel to algorithmic probability will
be dominative. Thus, presence of another agemh@really detectable. However, we
haven’'t compare®L(k) for different two-agent environment models withcorrectly
guessedQ®(s, a). It is impossible to reconstruct precise val@a(s, a), but it is not
necessary. Reconstructed values should allow tieaijent to choose adequate actions.
Let’s consider simple empathic policy with this peoty.

Empathic policies

Consider the Markov environment for two agents, which one agent tries to
reconstruct “good” states, while another agenstte maximize “true” value function.
The first agent needs to reveal, which actionsnaoee or less desirable for the second
agent. More precisely this can be formulated asovid. Let both agents receive
corresponding reward$” andr®. The target for the first agent is to maximize say,
rD+r@ without directly receiving®. The first (empathic) agent requires some special
exploratory strategy in order to reveal desirapibf individual actions in each state.
One can propose the following simple exploratorlyqyo

* Perform the same action in the same state for sonee

e Calculate frequency of visits to this state.

« Compare frequency of visits depending on the actiRRelative frequency will
reflect desirability of the specific action in thiétate and it can be used as
estimationsQ'(s, a) of valuesQ®(s, a) of the second agent. In gener@l(s, a)
should be somehow normalized, but it was not n@cgss our experiments.

Figure 2 shows typical experimental results withpathic policies in cases of
deterministic and stochastic environments (thereoisconsiderable different between
them though).
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Figure 2. Average reward$’ (dark columns) and® (light columns) obtained by two
agents in deterministic and stochastic environmfmtsifferent types of the first agent
(egoistic policy, usage of directly perceived valuef the second agent, usage of
reconstructed values).

Apparently, the second agent obtains the lowesargsy when the first agent acts in
accordance with its own somatic rewards. Averageards obtained by the second
agent appeared to be almost equal in cases, whdirdhagent directly received® or
when it used reconstructé€@. Thus, the agent can successfully reconstructaahdn
accordance with values of another agent, eves #gtions and states are not observed.
It should be pointed out that decrease of averfggain in cases of empathic policies
perfectly acceptable, because maximization’dfs not the main goal of the first agent
here (in contrast to conventional MARL); its mompiortant goal is to maximize
(unknown)r(z). One could consider such the first agent, whidhlly ignore somatic
r, but it seems impractical since somatic rewards ba treated as heuristics
containing useful survival information. That's whye have used more natural sum
rP+Q' in our experiments.

Conclusion

We have started from the assertion that generabtategs of the world are valuable —
not the rewards themselves. Thus, true valuesatésshould be learned and be bound
with generalized representations. The agent carsumplied directly with special
rewards (from which it reconstructs «true value®s) it can reconstruct, what
generalized states of the environment are desyeamther agents which already possess
better value systems. Usage of learned true vaosares that the agent will perform
safe actions.

We have performed methodological considerations agrdposed general
mathematical models by introducing correspondingdifreations in AlXI. These
models cannot be directly applied in practice,they give appropriate starting point. In
particular, simplifications of these models in Mawk environments have been
implemented. Their experimental study has showrn tha developed models are
suitable for detecting presence of other agent®n®ructing and adopting their values
without permanently receiving external “true” redsrHopefully, empathic agents with
socially desirable behavior may be developed.

However, many questions remain. What general “TheérMind” can be used to
detect and describe different types of real agevitkat criteria should be used to mark



something as an agent? How to combine values tdrdift agents? Can the Universe
be efficiently described with the agent model?df sniversally empathic agents will

adopt its values. However, what is valuable for theverse? Is pursuing goals of the
Universe safe? We will not try to answer these tjoes here, but they can be
considered within the developed models.
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