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Robotic systems composed of several mobile robots moving in human environments pose several prob-
lems at perception, planning and control levels. In these environments, there may be obstacles obstruct-
ing the paths, which robots can remove by pushing or pulling them. At planning level, therefore, an
efficient combination of task and motion planning is required. Even more if we assume a cooperative
system in which robots can collaborate with each other by e.g. pushing together a heavy obstacle or by
one robot clearing the way to another one. In this paper, we cope with this problem by proposing κ-TMP,
a smart combination of an heuristic task planner based on the Fast Forward method, a physics-based
motion planner, and reasoning processes over the ontologies that code the knowledge on the problem.
The significance of the proposal relies on how geometric and physics information is used within the
computation of the heuristics in order to guide the symbolic search, i.e., how an artificial intelligence
planning method is combined with low-level motion planning to achieve a feasible sequence of actions
(composed of collision-free motions plus physically-feasible push/pull actions). The proposal has been
validated with several simulated scenarios (using up to five robots that need to collaborate with each
other to reach the goal state), showing how the method is able to solve challenging situations and also
find an efficient solution in terms of power.

Keywords: Task and motion planning; manipulation planning; knowledge-based representation;
reasoning process.

1. Introduction

The fulfillment for robotic systems composed of several mobile robots moving in environments
with fixed and movable obstacles is a great challenge, mainly due to the need to find a sequence
of motions that are feasible, i.e., motions that do not make the robot collide with fixed obstacles
and that if necessary interact with movable obstacles to remove them and clear the path. If it
is assumed that mobile robots can perform Transit, Push, and Pull actions, the problem can be
efficiently tackled if a smart combination of high-level (symbolic) planning and low-level (ge-
ometric and physical) planning is proposed. At the high level, different symbolic task planners
developed by the artificial intelligence community have been proposed. Among them, the Fast
Forward planner, that is a heuristic-based planner, has demonstrated to be very efficient. At the
low level, different motion planners have been proposed. Among them, the physics-based mo-
tion planners allow to plan motions of the robot from an initial configuration to a goal one, being
the interaction with some objects possible (and hence permitting the purposeful manipulation of
objects).

The combination of the Fast Forward task planner and a physics-based motion planner is
therefore appealing, and is proposed here. Also, the use of knowledge-based techniques may
enhance both planning levels, e.g., by handing over sufficient information to the robots regarding
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the way to interact with the obstacles. The coding of knowledge by means of ontologies make it
more flexible the use and the reasoning over the knowledge, providing fruitful information for
the selection and execution of actions.

When the robotic system is composed of more than one robot, planning is even more chal-
lenging, since in this case the problems require the coordination of sub-tasks (a robot must be
required to push away some obstacle to clear the path for another robot to travel to different
regions in the workspace), or the execution of cooperative actions between several robots (the
push of a heavy obstacle may require the use of more than one robot).

Contributions: The present study proposes a knowledge-oriented task and motion planning
method, called κ-TMP, based on the use of physics-based motion planning and information to
compute the heuristic to search a feasible plan using the Fast-Forward task planner. The proposal
is designed to cope with several mobile robots sharing the tasks and collaborating with each
other in order to obtain the most efficient feasible global plan. By incorporating ontological
knowledge, the method offers, together with the physics-based motion planner, off-line and on-
line reasoning processes on symbolic literals to determine the actions feasibility and side-effects
that guide the search of the plan. As a consequence, the proposed planning approach empowers
robots to be more autonomous and have the capability to accomplish goals in complex scenarios.

This proposal assumes that the information of the configuration space connectivity is available
beforehand, which is feasible for a mobile robot in a 2D workspace, that all the robots are equal
and that they move one at a time. The direct extension of the proposed method to multiple
manipulator robotic systems with high-dimensional configuration spaces is not possible since the
first assumption may not hold, although a variant of the method is currently under development
as pointed out in the conclusions.

The rest of the paper is structured as follows. First, Section 2 summarizes some related work
and Section 3 formulates the problem and explains the solution overview. Then, Section 4
presents and illustrates the semantic manipulation knowledge, Section 5 the off-line and on-line
reasoning processes on symbolic literals, and Section 6 details how the knowledge-based task
level and the motion planning level are combined. Finally, Section 7 shows some implementation
issues and simulation results, and Section 8 sketches the conclusions and future works.

2. Related Work

2.1. Heuristic Task Planning

One of the most efficient task planning approaches among those that search in the state space
is the Fast Forward (FF, (Hoffmann & Nebel, 2001)), which performs a heuristic search. It
has two main components, as depicted in Figure 1, the Enforced Hill-Climbing (EHC) module
devoted to select the more promising successor state using the heuristic values, and the Relaxed
GRAPHPLAN module that computes these heuristic values in terms of the estimated number of
actions needed to reach the goal. This later module also computes the set of helpful actions
(i.e. those actions that executed from that state have a high probability of being in the solution
plan), which allows making the exploration more efficient. The Relaxed GRAPHPLAN module
is based on a relaxed version of the Planning Graph (Blum & Furst, 1997), that is a graph
that interleaves state-levels (involving a number of literals) and action-levels (representing a
set of actions). Mutual exclusion relations are defined among actions as well as among literals
(indicating how the combination of literals can be true at each state-level). Action-levels contain
actions whose preconditions are met in the previous state-level, and they may add or delete
some literals in the subsequent state-level. The construction phase is launched from a state-level
that includes the initial state of the problem, and continues till a state-level is found where all
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Figure 1.: The Fast-Forward planner architecture (from (Hoffmann & Nebel, 2001)).

goal conditions are satisfied. The relaxed version of the Planning Graph (called RPG) ignores
the delete lists of the actions (so mutual exclusion relations do not take effect in the planning
phase). The heuristic value is then computed as the number of actions in the plan extracted from
the RPG, and the helpful actions are those actions of the RPG appearing in the first action level.
If EHC fails, everything done so far is skipped and the FF restarts considering Best-First Search
(BFS) instead of EHC.

2.2. Task and Motion Planning

Different approaches have dealt with different strategies to combine task planning (based on
high-level symbolic reasoning) with motion planning (based on low-level geometric computa-
tions), with the aim of finding a feasible plan to solve a given task. Some of them like (Erdem,
Haspalamutgil, Palaz, Patoglu, & Uras, 2011; Srivastava et al., 2014), consider an independent
module as a generic interface between both planning levels, or define a semantic attachment
module to a planning domain description as a tool to appraise the truth value of grounded pred-
icates by operating on geometric information of the states (Dornhege et al., 2012). Other ap-
proaches also deal with ways to relate both planning levels, like (Galindo, Fernández-Madrigal,
González, & Saffiotti, 2008), (Dearden & Burbridge, 2014), and (Mansouri & Pecora, 2016)
that use semantic map, learning techniques, and hybrid reasoning for that purpose, respectively.
There are also some approaches such as (Cashmore et al., 2015; Kimmel et al., 2012) propos-
ing an implementation framework which provides an environment to develop task and motion
planning problems. On the other hand, however, there are approaches not that general, but more
dependant on the task planner used, like for instance those based on Hierarchical Task Networks
(HTN), on heuristic search methods as FF, or based on constraint solving.

Among those based on HTN, the work of de Silva, Pandey, Gharbi, and Alami (2013) focuses
on a combination that facilitates backtracking at different levels, also including an interleaved
backtracking procedure. Also based on HTN, the work in Kaelbling and Lozano-Pérez (2011)
presents an aggressively hierarchical approach that constrains the abstract plan steps so that they
are serializable (i.e. so that the particular way that the first step is carried out does not make it
impossible to carry out subsequent steps), and handles the integration by operating on detailed,
continuous geometric representations.

There are some planning approaches using different variants of the FF planner, which is also
used for the current proposal. The work in Cambon, Alami, and Gravot (2009) presents an
interleaved search at the symbolic and geometric levels, where the motion planner, which is
based on the PRMs, calls the task planner to guide roadmap sampling. Upon failure of a selected
action, the PRM is left for further exploration (thus considering the probabilistic completeness
of sampling-based motion planners). The approach computes the heuristic value which relies on
symbolic distance to goal. Therefore, the heuristic function is not informed in terms of geometric
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information. To compensate this lack, the work of Garrett, Lozano-Pérez, and Kaelbling (2015)
proposes an approach, called FFRob, that when computing the heuristics analyses the action
feasibility by using a conditional reachability graph based on a probabilistic roadmap motion
planner.

Finally, among those based on constraint solving, the approaches (da Silva, Wu, & Lin, 2016;
Saha, Ramaithitima, Kumar, Pappas, & Seshia, 2014) have embedded different motion prim-
itives within constraint-based task planners. These approaches focus on difficulties found in
motion planning problems for mobile robots like avoiding dynamic obstacles when a robot is
doing its task. With focused on manipulation tasks, the work in Neil T. Dantam and Kavraki
(2016) proposes the Iteratively Deepened Task and Motion Planning method that employs an
incremental constraint solver and keeps dynamically adding or eliminating a number of task
constrains according to the feedback received from the motion planner. The approach is able
to find an alternative plan when an infeasible one is identified. It first finds the task plan, and
then motion planning is employed to evaluate the feasibility of actions in the plan. The concept
of geometric backtracking has been investigated by the works of Lagriffoul, Dimitrov, Saffiotti,
and Karlsson (2012) and Lagriffoul, Dimitrov, Bidot, Saffiotti, and Karlsson (2014) in which a
set of linear constraints is generated from the kinematic model of the robot and the symbolic
actions computed by the task planner. These constraints are used for pruning during geometric
backtrack search. These approaches may restart the whole planning process in the case of iden-
tifying geometric constraints while evaluating geometrically the final plan. In contrast to these
approaches, the current proposal considers simultaneously task and motion planning, where the
FF task planner is also guided by physics-based motion planning information by taking into
account geometry constraints while planning. Therefore, the proposed combination avoids to
restart the whole planning process when a new geometric constrain is detected.

To the best of our knowledge, there are no approaches within the framework of simultaneous
task and motion planning that use a physics-based motion planner and information to guide task
planning. This paper aims to contribute in this line by taking into account how the task planning
search can be enhanced using the physics-based information, resulting a power-efficient and
feasible manipulation plan. Moreover, it considers how multi mobile robots can collaborate or
share a task together in order to solve a manipulation problem.

2.3. Knowledge representation using ontologies

In the main, an ontology tackles the concern about reality of things existence and categorizes
conceptual knowledge regarding objects in the world upon a particular domain. Ontologies have
emerged as a notable technique to explicitly expose knowledge in the artificial intelligence field
at expressing the abstract knowledge in the form of concepts along relations. They are able to be
encoded and stored in the Web Ontology Language (OWL) whose main purpose is to classify
knowledge on a world-wide accessible database (developing and depicting ontology models can
be done using the Protégé tool1 which is a powerful and flexible editor to represent ontology
applications).

OWL enables the structure of knowledge representation by proposing classes, individuals
and object properties: classes are collections of various objects sharing common properties;
individuals are allocated to describe particular instances of classes; object properties determine
how individuals can be related with each other.

Knowledge-based representation techniques, like ontologies, can enhance manipulation plan-
ning by providing informative data with respect to the robot’s world. In this regard, for in-
stance, knowledge concerning housework activities was elaborated in (Tenorth & Beetz, 2009)

1http://protege.stanford.edu/
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and (Tenorth & Beetz, 2012) describing and reasoning over ontological actions along their ef-
fects, and the approach in (Provine, Schlenoff, Balakirsky, Smith, & Uschold, 2004) used on-
tologies for path planning. Ontological knowledge has also been integrated in HTN-based plan-
ning (Di Marco, Levi, Janssen, van de Molengraft, & Perzylo, 2013; Freitas et al., 2014), or to en-
code information inside a high-level planning that combines the FF with HTN planning (Klusch,
Gerber, & Schmidt, 2005).

2.4. Physics-based Motion Planning

Kinodynamic motion planning refers to the planning of a collision-free trajectory from a start
to a goal state while satisfying a given set of (kinematic and dynamic) constraints. The plan-
ning is performed in the state space that records the robot dynamics. At any time, the state
of the system is described as x = (q, q̇) where q represents the configuration of the robot in
the configuration space. A forward propagation step is performed using the propagation func-
tion described as ẋ = f(x, u), with u representing the control inputs. The sampling-based
motion planners, especially tree-based planners such as the Rapidly-Exploring Random Tree
(RRT, (LaValle & Kuffner, 2001)), the Kinodynamic Motion Planning by Interior-Exterior Cell
Exploration (KPIECE, (Sucan & Kavraki, 2012)) and the Synergistic Combination of Layers
of Planning (SyCLoP, (Plaku, Kavraki, & Vardi, 2010)), can plan efficiently in the existence of
kinodynamic constraints.

Physics-based motion planning is an enhanced form of kinodynamic motion planning that in-
corporates a physics engine (such as Bullet (Erwin, 2013) or ODE (Russell, 2007)) as state prop-
agator. Therefore, it allows the handling of manipulation tasks since it considers the dynamic
interaction between rigid bodies along with the kinodynamic and physics-based constraints, like
in the approach presented in (Stilman & Kuffner, 2005) that considers the problem of navigat-
ing among movable obstacles that may be moved away to clear the path for the robot. To deal
with the computational complexity of physics-based motion planners, a few approaches have
been proposed to reduce the planner search space, like the work in (Zickler & Veloso, 2009) that
uses a non-deterministic finite state machine to guide control sampling. With the same aim, the
approach in (Muhayyuddin, Akbari, & Rosell, 2017a) performed a reasoning process over the
high-level knowledge (stored in the form of ontologies) to guide the low-level motion planner
by delimiting from where the objects can be interacted.

2.5. Integrating Task Planning and Physics-based Motion Planning

Recently, we addressed the manipulation problem of a mobile robot that is able to push and pull
movable objects by combining different knowledge-based task planners with physics-based mo-
tion planners. First, a modified version of the Planning Graph algorithm was proposed (Akbari,
Muhayyuddin, & Rosell, 2015b) to allow the retrieving of a number of potential plans that were
then evaluated by a physics-based motion planner to find the least-cost feasible one. Then, the
approach was modified to evaluate the feasibility of actions while planning (Akbari, Muhayyud-
din, & Rosell, 2015a), allowing to cut off some infeasible action branches at the task level. These
approaches are computationally expensive in terms of number of calls to the motion planner. To
mitigate the aforementioned drawback, a more efficient combination of task and physics-based
motion planning was suggested based on a version of the FF planner (Akbari, Muhayyudin, &
Rosell, 2016) that called the physics-based motion planner on the actions selected in the RPG
plan computed to obtain the heuristic. The approach was designed for a single robot and also
considered, in order to determine the pre- and post-condition of the push and pull actions, the
geometric reasoning concerning the connectivity of the configuration space.
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The present study extends this latest approach to tackle problems in which multiple robots
may either share tasks (e.g. one robot moves an object away to free the path for the other robot),
or cooperate with each other (e.g. by pushing the same object). Accordingly, the graph of con-
figuration space connectivity is dynamically updated with respect to the results of the actions
applied by each robot during the planning process. Moreover, the current proposal is more effi-
cient computationally in terms of the number of queries set to the motion planner.

3. Problem Formulation and Solution Overview

3.1. Scope and Motivating Example

The scope of the present proposal is to deal with collaborative tasks in which mobile robots
may interact with obstacles in the environment (by pushing or pulling them) in order to fulfill
the goal of traveling to their target regions. For this purpose, robots are required to share the
tasks by assisting each other for clearing the path towards the goal or by executing cooperative
actions.

Many task and motion planners cope with manipulation problems involving pick and place
actions, i.e., without considering push/pull actions. Alternatively, some other approaches that
consider those actions are purely based on motion planning, i.e., do not include high-level rea-
soning. With respect to other approaches, the scope considered here pose challenging situations
(even more when considering several robots) where, on the one hand, the availability of high-
level reasoning is required (like when more than one object may be obstructing the path) and,
on the other, the planning of robot motions with interaction with the obstacles is also necessary
(push actions are required because the robot cannot pick the objects because they are too heavy
or simply because no robotic arm is available).

As a motivation example, it is assumed that several robots are able to execute the following
actions:

• Transit: To travel freely in an indoor environment.
• Push/Pull: To change the position of an obstacle by pushing or pulling it. Depending on

the weight of the object this task must be executed simultaneously by several robots.

An indoor environment cluttered with obstacles is considered. The following classification of
obstacles and regions is established:

• Fixed obstacles: Obstacles whose location cannot be changed by the robots, either because
they are attached to the environment, like walls, or because they are too heavy to be moved
by them. Collisions with fixed obstacles is not allowed.

• Manipulatable obstacles (MObs): Obstacles that can be pushed or pulled by the robot.
Some constraints may exist regarding the directions in which they can be moved.

• Manipulatable regions (MRgn): Regions next to the manipulatable obstacles from where
the robot can interact with them (no collisions are allowed from elsewhere).

• Disjointed configuration space region (Ci): Region of the configuration space such that a
collision-free path exists between any two of its configurations.

• Critical Objects: Those MObs whose removal may connect two disjointed regions to-
gether.

Two disjointed configuration space regions Ci and Cj are said to be neighboring regions if
the removal of a critical obstacle makes them connected. It will be assumed that displacing an
obstacle will not end creating a new disjointed configuration space region, i.e., the effect of a
push/pull action will not partition any Ci into two, nor will this happen due to the positioning of
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Figure 2.: A manipulation example: two robots (shown as small cylinders) are required to reach
the goal region by pushing or pulling some obstacles in the way (manipulatable obstacles are
shown as boxes and are labeled in an increasing order with respect to their weight). Workspace
regions are labelled with the name of the corresponding disjointed configuration space regions.

a robot.
As a motivating example, consider the problem shown in Figure 2 where two robots have to

transit from their initial locations towards a goal region. To solve the task, several obstacles shall
be removed since no collision-free paths exist. The set of MObs are labeled from A to M in an
increasing order with respect to their weight, and are also colored according to it (the heavier,
the darker). It is assumed that obstacle M is beyond the capacity of the robots and that obstacle
L can be manipulated only if both robots do it simultaneously, while the other obstacles can be
manipulated by a single robot. Besides, MObs must be manipulated through the manipulation
regions (highlighted in light blue) where the robot must be located in order to pull or push them.
It must be noted that, on the one hand, the execution of cooperative actions is required (pushing
object L) and, on the other, the coordination of sub-tasks is also a need (obstacle G must be
removed by robot 1 in order to allow robot 2 to move towards the goal).

In the planning phase, a great number of potential actions have to be considered, being their
actual applicability and feasibility under appraisal. It is worth noting that some manipulation
actions do not provide fruitful effects to solve the problem (e.g. there is not enough room to
either push or pull object B in order to connect regions C2 and C4), and that such type of actions
must be detected in advance in order to avoid any dead-end plan. Furthermore, among the set of
feasible solution plans, the least-cost one is the one sought. These aforementioned issues pose
substantial challenges that can be properly handled by considering an efficient combination of
task and physics-based motion planning.

3.2. Problem Formulation

A task planning domain D is formalized as 〈R, S,Kw,Kp〉, where:

• R is a graph describing the connectivity of the configuration space of any robot (all are
considered equal and moving one at a time so the graph is unique irrespective of the robot
used to compute it). The nodes of the graph describe the disjointed regions and the edges
represent the potential connectivity between regions (Section 3.2.1).
• S is a set of states containing both literals and geometric information (Section 3.2.2).
• Kw represents as an ontology the semantic knowledge about the robots and the environ-

ment (Section 3.2.3).
• Kp represents as an ontology the knowledge about the planning components (Sec-
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Figure 3.: Graph R representing the connectivity of the configuration space for the example in
Figure 2. The nodes are labeled with the disjointed configuration space regions; the edges with
the critical obstacles.

tion 3.2.4).

Then, a task planning problem, T , is formally defined by the tuple 〈D, I,G〉 where D is the task
planning domain explained above, I describes the initial state of the manipulation problem and
G the set of goal conditions that have to be satisfied in the final state.

3.2.1. Configuration space information

The connectivity of the configuration space of a mobile robot in a 2D workspace, which can
be obtained using the approach in (Stilman & Kuffner, 2005) for navigation problems, is rep-
resented by a graph R. The nodes of R are the disjointed configuration space regions, and the
edges connecting them are labeled with the name of the critical object(s) whose removal con-
nects two disjointed regions into a single one. A small circle at the end of an edge illustrates that
the corresponding critical obstacle can be manipulated from there. Figure 3 represents the graph
associated to the example of Figure 2, where the first and second robots are initially located at
C1 and C6, respectively, and their goal region is placed in C8 (workspace regions are named as
the corresponding disjointed configuration space regions). The manipulation of obstacles may
change the connectivity of the configuration space. Nevertheless, the topology of the graph will
remain fixed and this information will be introduced by removing the label on the corresponding
edges. Also, the following functions will be used to retrieve information fromR:

• Map(MRgn): Returns the disjointed configuration space region Ci where the configura-
tion of the robot lies when the robot is placed in the manipulatable region MRgn .

• Path(Ci, Cj): Returns true if either Ci = Cj or a path in R exists between nodes Ci and
Cj and the edges in the path have no labels (i.e. the critical objects associated to the edges
in this path have been removed). Otherwise it returns false.
• Neigh(MObs,i) with i = 1, 2: Returns one of the two disjointed neighboring regions sep-

arated by the critical object MObs.

3.2.2. States

A state S is represented by the tuple S = 〈L,W〉 containing a conjunction of literals L formed
based on predicates applied to arguments and that are true in the state, and the geometric in-
formation of the workspaceW representing the obstacles location and the configuration of the
robots. The following set of literals are considered:
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• At(Robot, Region): Holds true if the Robot is in Region.
• IsCrit(MObs): Holds true if MObs is a critical manipulatable obstacle.
• HasAcc(MRgni, MRgnj): Holds true if the function Path(Map(MRgni), Map(MRgnj))

returns true, informing that a path exists to move the robot from MRgni to MRgnj .

A finite set of states is considered, i.e., each geometric information corresponds with one
literal. For example, if there is is a literal At(Rob1, Rinit1), a unique transformation representing
the robot position is assigned to that literal in the corresponding state.

3.2.3. Knowledge about the world

Kw encodes knowledge referring to obstacles (their geometry, pose and physical properties)
and robots (the capability and the constraints). Two literals are defined whose truth values are
evaluated using a lightweight reasoning process over the knowledge:

• IsManp(MObs, Robot): Holds true if MObs can be manipulated by Robot according to its
capability.

• IsManpMRob(MObs, RobotA, RobotB): Holds true if MObs can be manipulated simulta-
neously by RobotA and RobotB according to their joint capability, but cannot be displaced
by any of them separately.

The information in Kw regarding the poses of the obstacles and their geometry is used to build
the connectivity graphR.

3.2.4. Knowledge about the planning components

Kp encodes the information regarding the initial state and the goal conditions to be met, as well
as the action spaceA describing the actions. Namely, an action a is defined by a tuple 〈name(a),
pre(a), effect+(a), effect−(a), Q〉 where:

• name(a) is a symbolic name for the action.
• pre(a) is the set of preconditions of the action defined as a conjunction of literals which

must hold for the action to be performed.
• effect+(a) is the set of positive effects defined as a conjunction of literals to be added as a

result of applying an action.
• effect−(a) is the set of negative effects defined as a conjunction of literals to be deleted

after the action is performed.
• Q is a query to a physics-based motion planner acting onW , that computes a path and its

actual cost, and returns the new state of the workspace.

To map the current state sc to the new one sn using a given action a, the successor literals are:

sn.L = {(sc.L ∪ effect+(a))\effect−(a)},

and, when required, the geometric information of the workspace (sn.W) is updated by Q, i.e.,
sn.W = Q(sc.W).

Five actions are defined: Transit, Push, Pull, PushM, and PullM, the last two introduced for
the manipulation actions with multiple robots (to be applied when a single robot is not capable
enough to displace the obstacle).

Since the manipulation world is represented using an ontology, it is convenient to represent the
manipulation domain in the same way (but in a similar manner as actions and their conditions
are defined in PDDL (Ghallab et al., 1998), a standard language used to represent task planning
problems). The use of ontologies provides a well structured way of representing explicit formal
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specifications and gives more flexibility to describe sets of rules for different classes of objects.
The actions along their preconditions, and positive and negative effects are:

Transit(Rob, FRgn, TRgn):

Pre: At(Rob, FRgn), HasAcc(FRgn, TRgn)
Add: At(Rob, TRgn)
Delete: At(Rob, FRgn)

Push/Pull(Rob, MObs, MRgn):

Pre: At(Rob, MRgn), IsManp(MObs, Rob), IsCrit(MObs)
Add: HasAcc(Ra,Rb) ∀Ra, Rb|Map(Ra)=Neigh(MObs, 1) and Map(Rb)=Neigh(MObs, 2)
Delete: IsCrit(MObs)

PushM/PullM(Rob1, Rob2, MObs, MRgn):

Pre: At(Rob1, MRgn), At(Rob2, MRgn), IsCrit(MObs), IsManpMRob(MObs, Rob1, Rob2)
Add: HasAcc(Ra,Rb) ∀Ra, Rb|Map(Ra)=Neigh(MObs, 1) and Map(Rb)=Neigh(MObs, 2)
Delete: IsCrit(MObs)

Note that push/pull actions are constrained to critical obstacles only, because it is their dis-
placement that may change the connectivity of the configuration space. Note also that tran-
sit actions are always feasible provided that the preconditions hold, whereas the feasibility of
push/pull actions will need to be checked.

3.3. Solution Overview

A knowledge-oriented task and motion planning method, called κ-TMP, for solving collabora-
tive manipulation tasks is proposed. It is an enhanced version of the original Fast-Forward task
planner (Fig. 1). The new version (sketched in Figure 4) uses OWL knowledge, reasoning pro-
cesses and a physics-based motion planner to determine the actions feasibility and applicability
during the computation of the heuristic that guides the search.

3.3.1. Manipulation Knowledge

The manipulation knowledge, comprising Kw and Kp, will be coded as an ontology using the
Ontology Web Language (OWL) and will be accessed during the planning phase. It is described
in Section 4.

3.3.2. Reasoning Process on Symbolic Literals

A reasoning process on symbolic literals is proposed to allow the robot reasoning upon actions.
This reasoning process, detailed in Section 5, will allow pruning unnecessary or unfeasible ac-
tions and making better decisions during the planning phase. Offline and online reasoning pro-
cesses are proposed, which are executed before and during planning, respectively:

• The offline reasoning process is responsible of using the manipulation knowledge to build
the graphR and to set the planning problem T .
• The online reasoning process consists of high-level and low-level modules: The high-level

module determines the side effects of actions by taking into account R; the low-level
module evaluates the feasibility of actions using a physics-based motion planner.
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line 5

line 6

line 11

line 14 / line 8

line 3

Figure 4.: The κ-TMP planner architecture (indicated lines correspond to Algorithm 1).

3.3.3. Simultaneous Task and Motion Planning

The proposed task and motion planner is composed of the two main components of the Fast For-
ward method: the Relaxed Planning Graph (RPG) and the State Space Search with the following
features.

• The Relaxed Planning Graph is the responsible of computing the heuristic value and
the helpful actions. We propose a technique to compute the heuristic value regarding the
physics-based information of the actions, in contrast to the original FF that computes the
heuristic value based on the number of symbolic actions in the relaxed plan. The module
constructs the RPG considering a cost for the push/pull actions determined by the physi-
cal properties of the obstacles, and extracts the RPG plan. Afterwards, the physics-based
motion planner is called for the push/pull actions of the plan, in order to evaluate their
feasibility as well as their actual cost, that is used to determine the heuristic value of the
cost to reach the goal. Upon failure, the cause is fed back to the current state (if a new ma-
nipulatable obstacle is occluding the connectivity) or to the relaxation planning process
(if there is no enough room for the push/pull action to remove the obstacle), and then the
planning process resumes. Finally, the helpful actions, which are the actions that appear
in the first-level of the RPG plan, are extracted.

• The State Space Search uses the heuristic values to select the next state, in the same way
as the original FF procedure does.

4. Semantic Manipulation Knowledge

The proposed manipulation ontology model, developed with the Protégé editor in terms of
OWL, entails two main classes called ManipulationWorld and ManipulationPlanning2, in or-
der to code Kw and Kp. Class ManipulationWorld, illustrated in Figure 5, is structured in the
following subclasses:

• Obstacles: Class that retains necessary information with respect to all the obstacles in the
world. The information included comprises geometry and physical properties like objects

2OWL files are accessible at: https://sir.upc.edu/projects/ontologies/.
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masses, friction coefficients, etc. The type of obstacles ObstacleType is classified into two
categories: FixedObstacle, for those obstacles with which a robot must avoid collisions,
and ManipulatableObstacle for those with which a robot can interact. Class ObstaclePose
includes information on the obstacle pose coded as a transformation matrix composed of
orientation and translation values for each object.

• Regions: Class used to represent various regions. Subclasses InitialRegion and GoalRe-
gion are used to represent the initial and the goal regions of the robots, respectively. The
subclass ManipulatableRegion is used to represent the region associated to manipulatable
obstacles where the robot must be placed in order to perform the corresponding push/pull
action.

• Robots: Class used to represent the robots and their properties. Geometric parameters of
the robots are stored by the subclass KinematicProperties; differential properties of the
robot such as bounds on forces, torques, velocities, and accelerations (global properties
that condition the maximum capacity of the robot) are stored by the subclass Dynam-
icProperties.

The access to the ontological knowledge can be done using Description Logic (DL). For
instance, the following DL description represents the relations for robot instances Robot
explaining that each robot has dynamics properties which involve force bounds, velocity
bounds, and acceleration bounds.
Class Robots := Robot
∃hasSuperclass(Robot,ManipulationWorld),
∧∃hasDynamicProperties(Robot,DynamicProperties),
∧∃isDynamicProperties(ForceBounds,DynamicProperties),
∧∃isDynamicProperties(V elocityBounds,DynamicProperties),
∧∃isDynamicProperties(AccelerationBounds,DynamicProperties).

where ∧ and ∃ represent conjunction and exist, respectively.
In a similar way, the next DL description illustrates the dimension of each robot, the

response to gravity, the friction, mass, and color values respectively.
Class Robots := Robot
∃hasRadius(Robot, V alue),
∧∃hasHeight(Robot, V alue),
∧∃hasResponseToGravity(Robot, V alue),
∧∃hasFriction(Robot, V alue),
∧∃hasMass(Robot, V alue),
∧∃hasColor(Robot, V alue).

On the other hand, class ManipulationPlanning, illustrated in Figure 5, is structured in the
following subclasses:

• ProblemQueryConditions: Class that uses the information of InitialState and GoalState
classes regarding the locations of the robots at the initial and goal states, respectively.
• ActionProperties: Class used to define the different actions and bind them with their pre-

conditions and side effects.
• Predicates: Class that represents the predicates At, IsCrit, HasAcc, IsManp, as well as

IsManpMRob used to define the actions (only predicate At is shown in Figure 5).
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Figure 5.: Manipulation taxonomy

5. Reasoning Process on Symbolic Literals

The reasoning process enables the robotic system to efficiently carry out the evaluation of sym-
bolic literals required in high-level planning. The reasoning is done over the OWL knowledge,
as well as over the graph R representing the connectivity of the configuration space and the
queries answered by the motion planner. The reasoning process comprises an offline step per-
formed before planning, and an online step performed while planning.
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5.1. Offline Reasoning Process

The offline reasoning process primarily constructs the graph R, and requests the query con-
ditions of the problem from Kp, in order to acquire I and G. Furthermore, the process is re-
sponsible to reason on action preconditions according to R and Kw, leading to the assertion of
predicates that hold at the initial state:

• IsCrit is asserted for the obstacles that label the edges ofR.
• IsManp is asserted for the critical obstacles according to the robots capabilities and the

physical properties of the obstacles.
• IsManpMRob is asserted for the critical obstacles according to the joint capability of the

robots and the physical properties of the obstacles.
• At is asserted for each robot regarding the initial regions where they are located.
• HasAcc is asserted for any two regions of the same Ci where the robots are initially lo-

cated, like HasAcc(init1, MRgnC) or HasAcc(init2, MRgnC).

5.2. Online Reasoning Process

The online reasoning process contains a high-level reasoning module and a low-level reasoning
module, as shown in Figure 6, to reason on the effects of actions during the computation of
the heuristics. The modules are responsible of the following. On the one hand, the high-level
reasoning module uses the information in R to assert the effects of push/pull actions while
constructing the RPG. On the other, the low-level reasoning module uses the motion planner
to evaluate the feasibility of push/pull actions selected for the plan extracted form the RPG.
In case a push/pull action is infeasible due to a collision with a fixed obstacle (condition 1 in
Figure 6), then the cost of this action is increased and the search of an alternative relaxation
plan is launched. If otherwise the infeasibility is due to a collision with a manipulatable obstacle
(condition 2 in Figure 6), then the state must be updated by adding this obstacle as a critical
obstacle, the graphRmust be updated accordingly, and the RPG construction must be restarted.
The modules are detailed next.

The high-level module computes the positive effect of the push/pull actions, that consists
in asserting the predicates HasAcc(Ra,Rb) between any two regions such that they belong to
the neighboring disjointed configuration space regions that become connected by the removal
of the critical object that makes them disconnected, i.e.: HasAcc(Ra,Rb) ∀Ra, Rb|Map(Ra)=
Neigh(MObs, 1) and Map(Rb)=Neigh(MObs, 2). For instance, consider two disjointed con-
figuration space regions, Ci and Cj blocked by an obstacle A, and two robots initially lo-
cated at Rinit1 ∈ Map(Ci) and Rinit2 ∈ Map(Ci), respectively, and willing to travel to
Rgoal1 ∈ Map(Cj) and Rgoal2 ∈ Map(Cj). Upon removal of A, the high-level reason-
ing process asserts HasAcc(Rinit1,Rgoal1), HasAcc(Rinit1,Rgoal2), HasAcc(Rinit2,Rgoal1), and
HasAcc(Rinit2,Rgoal2) showing that both robots have access to the goal regions. The same pro-
cess can be applied to any number of robots.

The low-level module evaluates the push/pull actions that appear in the relaxed plan, by calling
the motion planner. Let two disjointed configuration space regions, Ci and Cj , be disjointed due
to the presence of a critical obstacle A, i.e., the graph R has an edge labelled with A between
nodes Ci and Cj . Then, the evaluation of the feasibility of the push/pull action applied over A
is done in two interleaved queries. The first, called Qd, displaces A a given predefined small
distance (with one or two robots depending on the type of push/pull action being analyzed); the
second, called Qtr, appraises whether there is a path for the robot between any two arbitrary
regions Ra and Rb such that Ra ∈ Map(Ci) and Rb ∈ Map(Cj). The two steps are repeated
until a path for the Qtr query is found or a collision occurs between A and another obstacle in

14



line 21line 17

line 13

line 7

line 10

line 26line 25

lines 1-9

Figure 6.: Information flow between the relaxed planning process and the online reasoning pro-
cess, corresponding to the module ‘Relaxed Planning Graph’ in Fig. 4. Indicated lines corre-
spond to Algorithm 2.

the environment, or between the robot and another obstacle in the environment. Then:

• If the collided obstacle is a fixed obstacle, it means that the action is not feasible. There-
fore, the RPG construction must be restarted and an alternative plan has to be searched by
setting the cost of the action at a high value in the RPG in order not to select it.

• If the collided obstacle is a manipulatable obstacle, e.g. B, it means that it should be
removed before trying to move A. Therefore:

(1) The state that was being explored must be updated by asserting B as a critical obsta-
cle.

(2) The graph R must be updated by modifying the edge labelled with A with a label
including both A and B, which expresses the fact that in order to make Ci and Cj

connected, it is necessary to remove first B and then A.
(3) The RPG construction must be restarted.

For the feasible actions, the motion solutions returned by Qd as well as their associated cost,
computed as follows, are stored to be retrieved if these actions appear in the final plan. The cost
for any transit or any push/pull action solved by the motion planner is computed according to the
power consumed. The motion planner returns a trajectory as a sequence of controls, where each
control is a force to be applied during a time interval. Then, the power consumed for a robot is:

C =

n∑
j

fj · dj

∆tj
, (1)

where n is the number of controls of the trajectory, fj and ∆tj the force and time interval
corresponding to the j-th control, and dj the resultant displacement. If the action involves more
than one robot, the power consumed is the sum of the individual values for each one.
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6. Knowledge-based Task and Motion Planning

The κ-TMP approach integrates the components of reasoning process and the ontological knowl-
edge, altogether, with the modified version of FF. This section details the algorithms for the state
space search module and of the relaxed planning graph module, as graphically introduced in Fig-
ure 4.

6.1. State Space Search

Algorithm 1 outlines the procedure to obtain the final manipulation plan. The first step is the
offline reasoning process, performed in function offlineProcess [line 3], that provides the initial
state of the manipulation world S0, the goal condition G, and the connectivity graphR. Then, the
standard Enhanced Hill Climbing (EHC) technique proposed in FF is used to find the successor
state in the plan [lines 4-13]: At each iteration, the RPG function is first called to obtain the
helpful actions H(Si) and the heuristic value h(Si) that predicts the cost distance from the state
Si to the goal state [line 5] (this function is detailed in the next subsection). Then, using the
helpful actions, the selectHAction usingEHC function [line 6] performs a search based on EHC for a
successor state Sj such that h(Sj) < h(Si) (successor states are also evaluated using the RPG

function). If such helpful action is not found [line 7], the algorithm fails and the search stops
[line 8]. Otherwise, the helpful action leading to Sj is added to the plan π [line 10] and Sj is
added as the next state in the plan, Si+1 [line 11]. The loop continues until G is satisfied and
the plan π is returned, which is a sequence of push/pull and transit actions. If the EHC search
fails, the Best-First Search (BFS) is considered as the original FF planner does. The motions
corresponding to the push/pull actions are already known because the motion planner has been
called to evaluate their feasibility. Nevertheless, the motions corresponding to the transit actions
have to be found by calling now the motion planner (no feasibility problems may arise since for
these actions the satisfaction of the preconditions assures it).

Algorithm 1 κ-TMP
Input: Kp, Kw

Output: The feasible plan π
1: i← 0
2: π ← ∅
3: {S0,G,R} ← offlineProcess(Kp,Kw)
4: while G 6⊆ Si do
5: {h(Si), H(Si})← RPG(Si,G,Kp,Kw,R)
6: {H ′(Si))} ← selectHAction usingEHC(H(Si), h(Si))
7: if H ′(Si).empty() then
8: return fail
9: else

10: π.append(H ′(Si))
11: Si+1 ← Succ(Si, H

′(Si))
12: end if
13: end while
14: return π

6.2. The Relaxed Planning Graph Process

The RPG is used to compute the heuristic value that estimates the cost to reach the goal state
from the state being explored. The standard FF procedure does it in terms of number of actions.
The κ-TMP, however, proposes to take into account the different costs of actions:
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• Regarding the RPG construction and the extraction of the relaxed plan, κ-TMP proposes
to consider, for the push/pull actions, an approximate cost according to the physical prop-
erties of the obstacles, and the unitary cost for the transit actions (the cost of maintenance
actions that keep literals unchanged in the next state-level is set to zero). In this way, the
RPG takes into account that the costs of actions may be different, but without the need of
calling the motion planner to compute their actual cost. In particular, any push and pull
action cost is set greater that the transit actions cost, and with a value that depends on the
object mass:

cost(transit) = 1 (2)
cost(push/pull) = mi/mj (3)

where mi is the mass of the critical object being pushed/pulled and mj is the mass of the
lightest one.

The cost of each literal l in a state-level is set from the cost of the action ai that generates
it plus the cost of the action preconditions pre(ai). Since several actions can generate the
same literal, the minimum cost is selected:

cost(l) = min∀ai | l∈effect+(ai){cost(ai) +
∑

cost(pre(ai))} (4)

Note that ai is any of the actions introduced in Sec.3.2.4 and therefore may refer to either
one or two robots.
• Regarding the computation of the heuristic value, a more exact cost of actions is used by

applying Eq. (1): The cost of the push/pull actions is already known because, as detailed
in the previous section, the motion planner has been called to evaluate the feasibility of the
push/pull actions appearing in the relaxed plan. This is not the case for the transit actions,
and the proposal is to estimate it by approximating the travelled distance by the Euclidean
distance and assuming the use of the minimum force all along the path. The heuristic value
of a RPG plan with n actions will be computed as:

h =

n∑
i

Ci (5)

The RPG construction procedure of the standard FF is terminated at the first state-level where
G is satisfied. In the current proposal, however, the procedure keeps growing the relaxed planning
graph some levels further (within a predefined maximum number of levels) until the cost of goal
literals remains stable. By not stopping the growing procedure at the first state-level where the
goal conditions are met, a lower cost value of goal literals can be possibly obtained. Then, the
backward search for the relaxed plan is eventually performed from these conditions, yielding to
the cheapest actions sequence.

Algorithm 2 sketches the computation of the modified RPG integrated with the online reason-
ing process, used to obtain the physics-based heuristic value and the feasible helpful actions. Its
key points are as follows:

• Computing action-levels and state-levels [lines 1-8]: The initial state-level S0 is created
with respect to the information of the state S from where the RPG is to be computed
[line 1]. Afterwards, action-levels Ai and state-level Si are iteratively computed [lines
4-7]. At each level i, for the construction of Ai, a is added if the preconditions appear
in the level i − 1 [line 5]; and any maintenance action is added too [line 6]. Then, the
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Algorithm 2 RPG(S,G,Kp,Kw,R)

1: S0 ← S
2: i← 0
3: while i <MaxLevels do
4: i← i+ 1
5: Ai ← {a ∈ Kp.A | pre(a) ⊆ Si-1}
6: Ai ← append(maintActions(Si-1))
7: Si ← {l | l ∈ effect+(Ai)}
8: compCost(Si)
9: if G ⊆ Si AND checkCost() then

10: π′ ←RPGPlan()
11: h← 0
12: for each {a ∈ π′ | a.name 6= Transit} do
13: {f.response, ColObj} ← feasibilityChecker(a,Kw)
14: if f.response = infeasible then
15: if ColObj 6= MObs then
16: setHighCost(a)
17: GOTO 4 //Cond. 1 in Figure 6
18: else
19: updateR()
20: updateState()
21: GOTO 1 //Cond. 2 in Figure 6
22: end if
23: end if
24: end for
25: h← heuristicValue()
26: H(S)← helpfulActions()
27: return {h,H(S)}
28: end if
29: end while
30: return {∞, ∅}

state-level Si is constructed according to the effect+ added by any action appearing in Ai

[line 7] (negative effects are neglected since the relaxed version of the planning graph is
being computed). Finally, the cost of literals is computed in compCost function based on
equation (4) [line 8].

• Terminating condition [lines 3, 9]: The RPG construction ends and the plan extraction
starts when both a state-level satisfies G and the function checkCost returns true (this latter
condition happens when at the previous state-level the goal conditions were also satisfied
and the cost value of goal literals has not changed up to some more levels). The extracted
plan is used to compute the heuristic value and the helpful actions that are returned by the
algorithm, if the RPG reaches a given maximum number of levels (MaxLevels) without
satisfying G, the algorithm terminates and returns the infinity heuristic value and the empty
set of helpful action.

• Relaxed plan computation and feasibility evaluation [lines 10-23]: The RPGPlan function
extracts the potential relaxed plan π′ [line 10], and the included push/pull actions are
forwarded to feasibilityChecker for the feasibility check [lines 12-13] (upon equal costs, pull
actions are selected during the extraction of π′). This function calls the motion planner
and returns whether the action is feasible or not, and in this latter case the obstacle that
precluded it to be feasible. Infeasibility may be due to a collision with a fixed obstacle
[lines 15-17] or with a MObs [lines 18-22]. In the first case, the cost of the action is set to
high by setHighCost and the RPG construction is restarted in order to extract an alternative
relaxed plan. In the second case, R and the current state are updated by the updateR and
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updateState functions, respectively, and the RPG construction is restarted. In this way dead-
end plans are avoided.

• The computation of heuristic value and helpful actions [lines 25-26]: When all evaluated
actions are feasible, the heuristic value h is extracted by the heuristicValue function that
computes the costs of the actions appearing in the relaxed plan as detailed above using
Eq. (5). The helpful actions are extracted by helpfulActions.

7. Implementation and Results

7.1. Implementation

The proposed framework implementation consists of three major layers as depicted in Figure 7:
ontological knowledge, task-level and motion-level layers. The knowledge layer is coded in the
form of an OWL ontology as detailed in Section 4. The task-level layer embraces the Heuristic
task planner which is a modified version of the FF planner implemented using the Prolog lan-
guage, and the Action reasoning process whose purpose is to determine actions conditions by
calling online along offline reasoning processes. The motion-level layer comprises The Kautham
Project (Rosell et al., 2014) (https://sir.upc.edu/projects/kautham/) that en-
ables to plan under kinodynamic and physics-based constraints. It uses the Open Motion Plan-
ning Library (OMPL) (Sucan, Moll, & Kavraki, 2012) as its core of planning algorithms, and
is integrated with the Open Dynamic Engine (ODE) for the dynamic simulations. Although any
kinodynamic motion planner can be selected, KPIECE (Şucan & Kavraki, 2010) has been used
in the experiments because in a comparative study (Gillani, Akbari, & Rosell, 2016) it showed
the highest success rate and the best time-optimal solution as compared to other state-of-the-
art kinodynamic planners. This planner does not minimize the distance and therefore the paths
found will not be the shortest ones.

The task-level layer accesses the OWL knowledge using the KnowRob software (Tenorth
& Beetz, 2009), a potent knowledge processing tool that enables a flexible access to OWL
knowledge. It is mainly developed in the Prolog language and provides fundamental predi-
cates to fetch knowledge, e.g., the query owl subclass of(?SubClass, ?Class) explores all avail-
able subclasses of a class, owl individual of(?Indv, ?Class) seeks to list all individuals of a
class, and class properties(?Class, ?Properties, ?Value) determines the value of a class under
particular properties. The communication between the task and motion layers is done using
Robot Operation System (ROS, http://www.ros.org/, (Quigley et al., 2009)). The motion plan-
ner is encapsulated as a ROS service and the task planner as a ROS client (using the SWI-Prolog
library (Wielemaker, Schrijvers, Triska, & Lager, 2012)).

7.2. Results and discussion

The problem posed in Figure 2 where two robots are required to share a task and collaborate
with each other for obtaining a global manipulation plan, has been solved using the κ-TMP
approach. The example illustrates the challenges that appear in the navigation of robots among
movable obstacles, that can be handled by the inclusion of a reasoning process (counting motion
planning) within the computation of the heuristic that guides the state-space search of the FF task
planner. This guiding allows to find a feasible sequence of actions, i.e. a sequence of actions that
can be executed without colliding with the environment and taking into account the capability of
the robots. Moreover, the problem posed makes it evident that the cooperation between robots is
necessary.

The solution sequence of executive actions for the final plan, illustrated in Figure 8, is:
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Figure 7.: The proposed framework

a1: Rob1 transits from Init to MRgn of MObs C.
a2: Rob2 transits from Init to MRgn of MObs I.
a3: Rob2 pulls MObs I.
a4: Rob2 transits to MRgn of MObs H.
a5: Rob2 pulls MObs H.
a6: Rob1 pulls MObs C.
a7: Rob1 transits to MRgn of MObs D.
a8: Rob1 pushes MObs D.
a9: Rob1 transits to MRgn of MObs G.

a10: Rob1 pulls MObs G.
a11: Rob1 transits to MRgn of MObs E.
a12: Rob1 pushes MObs E.
a13: Rob1 transits to MRgn of MObs F.
a14: Rob1 pushes MObs F.
a15: Rob2 transits to MRgn of MObs L.
a16: Rob1 transits to MRgn of MObs L.
a17: Rob1 and Rob2 pull MObs L.
a18: Rob2 transits to Goal.
a19: Rob1 transits to Goal.

Several challenges arise due to the following constraints regarding the geometry of the problem
and the physical properties of the objects:

(1) Robot 2 can transit towards the goal region only if robot 1 displaces the MObs G away.

20



(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 8.: Snapshots of the task execution: 1) actions a1, a2 and a3; 2) actions a4 and
a5; 3) action a6; 4) action a7 and a8; 5) actions a9 and a10; 6) actions a11 and a12;
7) actions a13 and a14; 8) actions a15, a16 and a17; 9) actions a18 and a19. Video:
https://sir.upc.edu/projects/kautham/videos/k-TMP.mp4

(2) Due to the presence of fixed obstacles (walls), there is not enough room to push/pull
MObs B, or to pull MObs E, or to push MObs H and I.

(3) Due to the presence of MObs I the MObs H cannot be pulled.
(4) MObs M is too heavy to be moved, and MObs L can only be moved if both robots push/pull

it simultaneously.

These constraints make the combination of task and motion levels a must, e.g., a plan that
includes interactions with MObs M or B is not physically executable. The proposed κ-TMP
planner is able to find a power-optimal solution in a computationally efficient way due to the
following features:

a) κ-TMP is able to identify infeasible actions like those of item 2 above by calling the
motion planner during the computation of the heuristic and remove them, thus avoiding
any dead-end plan.

b) κ-TMP is also able to identify infeasible actions like that of item 3 and set as critical object
the one whose removal can make the action feasible.

c) During the computation of the heuristic, κ-TMP calls the motion planner only for the
push/pull actions (those that may change the connectivity of the configuration space), thus
avoiding unnecessary calls to the motion planner.

d) The construction of the RPG plan while computing the heuristic does not stop at the first
level where the goal conditions appear but some levels further, thus allowing the possible
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extraction of plans with lower cost.
e) κ-TMP is able to cope with multi-robot problems, since one of the effects of any push/pull

action is to update the connectivity of the regions, thus potentially allowing the satisfac-
tion of the preconditions of transit actions of other robots. Moreover, by managing the
preconditions of the actions, collaborative tasks naturally arise if needed.

To compare the performance of the present proposal we have extended the approach in Akbari
et al. (2016) (here called A-TMP) by adding features b and e from κ-TMP to allow A-TMP to
find a feasible plan (A-TMP already shared the feature a), otherwise it could not find a solution.
The results show that κ-TMP with respect to A-TMP is computationally more efficient due to
feature c (A-TMP calls the motion planner for all the action in the RPG plan), and it is able to
find a better path in terms of power consumption due to feature d (A-TMP finds a shorter plan
in terms of number of actions by removing MObs K instead of both MObs E and F, but with a
higher cost due to the heavy weight of MObs K).

The simulation was run on an Intel Core i7 2.50 GHz CPU with 16 GB memory for each
planner. The performance of each manipulation planner is represented by Figure 9. Figure 9 (a)
shows the number of calls to the motion planner. Accordingly, in the case of A-TMP, planning
time has more than two fold increase as shown in Figure 9 (b), but the execution time is less
because it follows a shorter plan in terms of number of actions. Finally, κ-TMP finds the ma-
nipulation plan with less power consumed, approximately 36 (KJ/s), as compared with the other
planner which obtains the plan with the cost approximately 42 (KJ/s).

The approach has been validated with different number of robots and obstacles, although the
action space has not been changed, i.e., actions are performed by only one or two robots (as an
example, Figure 10 shows a scenario with five robots). Figure 11 shows the results in terms of
planning time, where a linear increases is detected according to both the number of robots and
the number of obstacles.

It is worth noting that the approach uses a probabilistic complete motion planer (i.e. one that
finds a solution if one exists provided enough time is left to the planner). Then, to evaluate the
feasibility of the push/pull actions, if the motion planner times-out, the action is not pruned
but its cost increased in the heuristic phase and the same action can later be tried again by
providing more motion planning time. As a consequence, the proposed task and motion planner
is probabilistic complete.

An interesting extension of the current work is to consider moving obstacles, like done in (da
Silva et al., 2016; Saha et al., 2014) that solve mobile robot problems using different versions
of task planners, focusing the reasoning in low-level planning problems where avoidance with
moving obstacles is a critical issue. Also, we plan to consider mobile robots equipped with
a manipulator to enhance the manipulation capabilities. In this line, the physics-based motion
planner has already been tested for fixed robot manipulators in (Muhayyuddin et al., 2017a;
Muhayyuddin, Akbari, & Rosell, 2017b).

8. Conclusions

An approach, called κ-TMP, has been presented to interweave task and motion planning for
mobile manipulation problems, where multiple mobile robots are required to collaborate in or-
der to navigate among movable obstacles. The framework is based on the Fast Forward (FF)
task planner, on a physics-based motion planner, and on the use of knowledge represented with
ontologies, which provide the capabilities required to face the challenges set at different levels.

The main challenge at task planning level is how to incorporate low-level geometric infor-
mation. The proposal uses the FF task planner that does an heuristic search in state space, and
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(a) Histogram of actions evaluated by the motion planner: the
total number of actions, feasible, infeasible, and selected actions.

(b) Histogram of planning and executive time.

Figure 9.: Performance of each manipulation planner.

(a) The initial state of the manipulation problem. (b) The goal state of the manipulation problem.

Figure 10.: The manipulation problem where five robots collaborate between them to solve the
task and reach their target regions. Video: https://sir.upc.edu/projects/kautham/videos/k-TMP-
5.mp4

naturally allows the inclusion of geometric reasoning in the heuristic computation. The main
challenge at motion planning level is the capability to plan both collision-free motions and mo-
tions in contact with movable obstacles in order to pull or push them. In the current proposal,
these capabilities are provided by a physics-based motion planner based on the ODE dynamic
engine as state propagator and the KPIECE kinodynamic planner as a search algorithm. The
physics-based motion planner has been mainly interleaved within the heuristic phase of the
planner. Moreover, to provide the robots with the capacity to take good decisions at both task
and motion levels is also a key challenge. This can be faced using knowledge coded in terms
of ontologies, that allow to well organize the knowledge and get access to it. The ontological
knowledge has been integrated as a plug-in to both task and motion planning levels. Finally, it
is important to highlight that the proposal is able to handle multi-robot systems in a very simple
and direct way. On the one hand, solution plans may include cooperative actions since push/pull
actions have been defined to be carried out simultaneously by two robots. On the other hand, the
actions carried out by different robots are naturally coordinated in the plan because the heuris-
tic guides the search towards the least cost plan and selects the actions only depending on the
satisfaction of pre-conditions, irrespective of the robot that executes them.

The main contributions of the approach are: a) the integration of high- along low-level rea-

23



Figure 11.: Experiments with different number of robots and obstacles including 5 obstacles
(Obs-5), 9 obstacles(Obs-9), and 13 obstacles(Obs-13). Some details of problems can be found
in https://sir.upc.es/projects/ontologies/.

soning modules in the relaxed planning process of FF that computes the heuristic that guides
the search; b) the use of a physics-based motion planner as a low level reasoning module; c)
the use of physics-based information in the computation of costs, thus leading to power efficient
solutions; d) the use of knowledge to set the problem and in the high-level reasoning module,
that facilitates the collaboration between robots.

The approach has been implemented and validated for manipulation problems involving sev-
eral robots required to perform collaborative manipulation tasks. The results demonstrate the
efficiency in the number of calls to the motion planner, the planning time, and the cost of the
final plan.

Currently, the approach is being extended to consider manipulation planning for pick and place
problems for bi-manual robots. To deal with that, the reasoning process has been augmented to
consider collaboration between robotic arms and to reason about various task constraints, like
finding appropriate grasps, inverse kinematic solutions, and objects placement. The proposal
focuses on the use a sampling-based mechanism inside task and motion planning, i.e., manip-
ulatable objects blocking the connectivity of configuration space are detected while planning.
This way makes the planner efficient in solving high dimension manipulation problems by skip-
ping the precomputation of the configuration space connectivity. The proposal will also focus
in including the handling of uncertainty which may arise from the motion level to the task level
using a contingency-based task planner.
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