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ABSTRACT
Industry has been upgrading its production processes through eco-
innovation combining environmental and economic benefits, thus
reducing some resource burdens which otherwise lie outside economic
accounting. Some companies have shown interest in evaluating
investment options for resource burdens and total value added across a
whole-system value chain. Our EC research project developed a method
for whole-system assessment of eco-innovation with multi-stakeholder
cooperation. In three cases presented here, tensions arise among various
aims, resource burdens, system levels, beneficiaries and timescales, thus
complicating the concept of eco-innovation as a win–win strategy.
Radical eco-innovation would depend on extra functions, value-chain
actors and resource usages which can provide greater overall benefits.
But such investment faces many systemic obstacles. Eco-innovation
remains path dependent, thus limiting the scope to internalise
environmental externalities. The tensions and difficulties cast doubt on
an EC strategy emphasising uptake of eco-innovative technologies as
the means to decouple economic growth from resource burdens.
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1. Introduction

For many years, industry has sought to enhance sustainability through strategies such as lean man-
ufacturing, waste minimisation or reuse, more efficient material or energy yields and substitution of
renewable energy. Such changes have been conceptualised as eco-innovation, combining ecological
and economic benefits as a win–win strategy; this internalises some environmental externalities,
especially through lower pollution. Benefits vary according to the choice of system boundary, as
well as the choice of eco-innovation, so some companies have been taking a broader perspective.

From such a perspective, this paper discusses the following questions:

(1) What tensions arise among various aims and benefits of eco-innovation?
(2) What is the scope to internalise externalities, within what limits?
(3) What are implications for EU policy frameworks?

After surveying literature on eco-innovation and value chains (VCs), this paper links those concepts
through an EC-funded research project which had multi-stakeholder involvement in assessing
improvement options. Each case study analyses the company context and one eco-innovation
option, as a basis to address the above questions, which are answered in the Conclusion section.
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2. Analytical perspectives: path-dependent eco-innovation?

This section surveys perspectives on eco-innovation and value-chain analysis, as a basis for linking
them at the level of a production process, as explained in the subsequent section on Research
Methods.

The term eco-innovation gives ‘eco’ a double meaning. This encompasses various innovations
offering greater economic value and lower resource burdens; the latter category encompasses
resource inputs and pollutants, which degrade resource availability. As a high-profile definition:

Eco-innovation is the introduction of any new or significantly improved product (good or service), process, organ-
isational change or marketing solution that reduces the use of natural resources (including materials, energy,
water and land) and decreases the release of harmful substances across the whole life-cycle. (EIO 2011a, 2)

Eco-innovation has been defined more broadly as ‘a change in economic activities that improves
both the economic performance and the environmental performance of society’ (Huppes et al. 2008,
29). In the 1990s, many discussions emphasised dematerialisation, that is, reducing material inputs
and thus gaining ‘more for less’.

Important distinctions are warranted. Eco-innovation has various forms, for example, incremental
change, or radical change in a production system. Associated with eco-efficiency improvements,
‘Incremental changes refer to gradual and continuous competence-enhancing modifications that
preserve existing production systems and sustain the existing networks, creating added value’. By
contrast, radical innovation offers greater societal benefit but may conflict with previous investment:
they ‘are competence-destroying, discontinuous changes that seek the replacement of existing com-
ponents’ (Carrillo-Hermosilla, del Río, and Könnölä 2010, 1075).

Radical innovation overlaps with industrial symbiosis. This is an interconnected industrial system
where new products evolve out of, or consume, available waste streams, and where processes are in
turn developed to produce usable ‘waste’ (De Simone and Popoff 2000, 52–53). There have been
efforts to identify existing symbioses, leading to more sustainable industrial development
(Chertow 2007).

Incremental change is often conceptualised as a process upgrading which also potentially gener-
ates new functions and resource usages. In particular:

A firm can transform its internal processes by redesigning them on the basis of new environmental standards or
goals. The strategy defined as ‘beyond compliance leadership’ can also refer to the process-upgrading framework,
but it may also induce the firm to develop new functions and play a new role in its VC [value chain], therefore
pointing to a functional upgrading. In the first case, this process will result in improved efficiency; in the
second in a competitive advantage based on differentiation, that is, a better corporate image. (De Marchi, Di
Maria, and Micelli 2013, 66)

Beyond a better overall image, companies have linked eco-innovation with specific products offer-
ing consumer benefits, which could increase the company’s income through greater sales or price.
Such an advantage depends on aligning product characteristics with green consumer behaviour
(Jansson 2011). According to a survey of German companies, process innovations corresponded to
lower profit margins than did product innovations (Rennings and Rammer 2011). Thus, innovation
for process upgrading may have weaker incentives than for ‘green products’, whose sales expand
material consumption and thus resource usage. Indeed ‘ecoefficiency must fit within the growth-
paradigm and, in fact, it is subtly designed to re-enforce it’ (Welford 1998, 4).

Eco-innovation has been widely seen as ‘enabling win–win synergies’ (OECD 2012), but such
options may be rare, so tensions arise among various objectives. ‘Like any innovator, an eco-innova-
tor must deal with trade-offs. The trade-offs depend on the state of technology and contextual factors
such as prices and infrastructure’ (Kemp and Oltra 2011, 250). Trade-offs encompass diverse environ-
mental harms that could be internalised, alongside the economic aims which generally have driven
eco-innovation. ‘While end-of-pipe technologies only had one environmental goal to fulfill in the
past, and incurred some extra costs, the new generation of integrated environmental technologies
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– known as cleaner production – is a complex innovation activity with more than one aim’ (Horbach,
Rammer, and Rennings 2012, 113).

As a related obstacle to eco-innovation, decision-making responsibilities are often fragmented–
between economic and environmental criteria, between energy and water supplies, and between
value-chain stages, especially across companies. Such fragmentation misses opportunities for eco-
innovation. ‘Establishing framework conditions which foster innovation and transparency and
which allow sharing responsibility among stakeholders will amplify eco-efficiency for the entire
economy and deliver progress toward sustainability’ (WBCSD 2000, 6–7).

Environmental sustainability improvements were once seen mainly as costs. According to a survey
of numerous Europe-based large companies, many have integrated sustainability into their inno-
vation strategies: ‘integration is achieved through formal consideration of sustainability topics with
regard to innovation in pre-development or stage-gate processes and related guidelines’. They
have developed greater capacity for such integration, especially in response to more stringent regu-
lation of resource burdens. Such responses depend on company knowledge-bases which ‘are path
dependent and often determined by irreversible historic processes’ (Wagner and Llerena 2011,
756, 759).

As a general obstacle, industrial interests seek ‘improvement options that only fit into the existing
system and which, as a result, stimulate a “lock-in” situation’ (Kemp and Rotmans 2005, 49). Lock-in
can result from path dependence, whereby previous trajectories constrain later ones (Garud, Kumar-
aswamy, and Karnøe 2010, 768). Path dependence generally favours incremental rather than radical
change.

Eco-efficient innovation can internalise some negative externalities, that is, environmental
burdens which otherwise lie outside economic accounting. But such innovation has limited capacity
to address common-good environmental problems, especially where significant externalities are
inherent to a production chain:

… business institutions are able to conquer win–win markets, thereby internalising negative externalities, if they
are guided by normative decision rules and by a flexible regulatory framework that sets incentives for knowledge
creation… Business institutions can do a good job in internalising externalities, but they surely cannot comple-
tely solve common-good problems… .Governments are responsible for setting the framework conditions and
organising a process by which new knowledge on managing the commons can be gained, while markets are
responsible for finding and managing solutions… (Bleischwitz 2003, 454, 462)

Beyond eco-efficient innovation, comprehensive solutions depend on ‘new system designs which
completely restructure existing production chains’ (Bleischwitz 2003, 453), also known as radical
innovation.

For a radical sustainability transition, environmental innovations generally save input factors
(energy and/or materials) rather than improve quality in ways which could increase consumer
price or sales. Towards reducing greenhouse gas (GHG) emissions, for example, eco-innovation
may depend on environmental regulation forcibly internalising costs of environmental harm by
adopting available technologies (van den Bergh, Truffer, and Kallis 2011, 4). Indeed, the EU’s relatively
more stringent regulation has stimulated some eco-innovation, especially in water-use systems.

But regulatory pressures can have contradictory effects on whether or how companies adopt
water eco-innovation. Specific regulatory criteria may favour currently available technologies and
so hinder more resource-efficient ones. Regulations ‘do not support radical innovation and may unin-
tentionally support the existing technological regime’ (EIO 2011b, 53).

This path dependence is reinforced by narrow evaluations. Eco-innovation improvements have
been generally evaluated at a specific site within a company or at most within its overall internal pro-
cesses (e.g. Van Caneghem et al. 2010). Even when a company carries out a life-cycle analysis of wider
environmental effects, the economic analysis generally focuses on the company only. A wider scope
for both parameters is necessary to evaluate alternative options for supply chains (Michelsen, Fet, and
Dahlsrud 2006).
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Eco-efficiency analyses often neglect wider economic aspects, especially changes in VCs: ‘the
point is to understand how firms may reduce the impact of all the activities performed to realise
their products, including those of suppliers and sub-suppliers, therefore moving the focus from
firm-level strategies to VC-level strategies’ (De Marchi, Di Maria, and Micelli 2013, 64).

Such a perspective can consider broader externalities to be internalised.

3. EcoWater project: research methods and focus

Our EU-funded research project, EcoWater, developed a methodology and framework for assessing
eco-efficiency on the meso-level, also known as the whole system. This is defined as interactions and
interdependencies among heterogeneous actors in a production process (Schenk, Moll, and Uiter-
kamp 2007). This level encompasses all inputs, valuable products, waste, its treatment, etc. According
to one study, ‘the meso level is the most challenging from the point of view of gathering evidence, as
it requires information from many agents’ (Reid and Miedzinski 2008, 22).

In the project, assessments followed resource burdens and total value added (TVA) across a pro-
duct’s VC, for example, among water suppliers, water users and wastewater treatment (WWT) provi-
ders. The project compared options for innovative practices within a specific water-service system;
this includes the entire range of water services required to render water suitable for a specific
water-use purpose, and safely discharging it to the water environment.

By operationalising those concepts, the EcoWater project aimed: to assess the meso-level eco-effi-
ciency of various options for innovative practices (including technologies), to compare their relative
benefits, to analyse factors influencing decisions to adopt such practices, to inform better decision-
making and to inform policy frameworks which could promote such decisions. The project attracted
cooperation from companies which already had invested in process eco-innovation; they seek a
public reputation for environmental sustainability through resource-efficiency measures (e.g. Arla
2011; Volvo 2011; NUON 2014).

Within a meso-level VC, innovative practices can have several sites and roles:

. Water or production chain, as shown in Figure 1: An innovation can upgrade the water-supply
chain (e.g. water inputs or WWT, as in the horizontal axis), or else the production chain (e.g. less

Figure 1. Whole-system (meso-level)VC. Credit: EcoWater project.
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resource inputs, lower emissions or reuse of wastes, as in the vertical axis). In the diagram, ‘tech-
nologies’ is short-hand for innovative practices which depend on more than technologies.

. Process or product: Within the production chain, process upgrading uses resources in more effi-
cient ways, while production-chain upgrading increases the market value of products.

Such roles can have synergies. For example, process upgrading can reduce emissions in waste-
water, in turn facilitating improvements in the water-supply chain, for example, through in-house
WWT, reuse, recycling, etc.

Eco-efficiency is assessed as a ratio: TVA (income minus costs) is divided by resource burdens, that
is, resource inputs and emissions. The assessments adapted mid-point environmental indicators (JRC
2011). A baseline eco-efficiency assessment identified the processes or sites which have the greatest
resource burdens and water-based emissions in each case study, for example, in a production plant.
These sites became the focus for comparing improvement options with the baseline situation and
with each other.

Each case study considered many options for process upgrading and then emphasised one in a
multi-stakeholder workshop, as indicated in the subheadings and summarised in Table 1. In the
next three sections, each case study starts from the industry-wide context and then focuses on
one option. This becomes an entry point to identify tensions and trade-offs within a whole-system
production process.

4. Milk-powder production: wastewater pre-treatment option

Dairies have many opportunities for linking economic value with environmental benefits. Initial
energy savings have been made with minimal capital investment. Dairies have reduced energy
usage for membrane filtration, heating and cooling of products, and spray drying. Some dairies
have been ‘reducing the amount of milk that is lost to the effluent stream and reducing the
amount of water used for cleaning’, as well as reducing chemical usage (COWI 2000). The UK dairy
industry also has been exploring ‘production strategies, processes and equipment to identify and
implement innovative and novel technologies in dairy processing’ (Dairy Supply Chain Forum
2011, 18).

Table 1. Resource efficiency through eco-innovation in three case studies.

Resource burdens and
potential improvement

Energy input in production
process

Energy necessary to reduce
hazards in WW Eco-innovation option

Water-service roles in each
case study

In main company In main and/or WWT company In main company

Dairy: Milk-powder
production extracts milky
water needing WWT

Water removal from milk Treating WW residues to avoid
eutrophication

In-house anaerobic WWT slightly
reduces overall energy use, while
shifting biogas benefits from the
outside to dairy company

Trucks: Corrosion-protection
needs water to carry inputs,
to heat the process baths and
to remove wastes

Water abstraction,
purification and circulation.
Hot water for high-
temperature chemical
process

Treating pollutants which
would cause eutrophication.
Removing heavy metals

Silane-based room-temperature
process greatly reduces water
and energy use; also replaces
heavy metals and so avoids
hazardous sludge. Lower-volume
WW lowers the value added for
WWT plant

Cogeneration/CHP (electricity
+ heat): Plant cooling
requires water to remove
heat

Water abstraction to cool
electricity-condensing
point

(Hot cooling-water causes
eutrophication, harming
aquatic organisms, so it
should be minimised.)

District-heating system could use
large amounts of waste heat but
depends on a large investment,
with uncertain long-term return
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Relative to the overall dairy sector, Arla Foods has gone further in adopting and assessing funda-
mental improvements in water-based processes, which also change a plant’s relation with the WWT
provider. Arla’s plants have already adopted many resource-efficiency measures in plants producing
milk powder. The cleaning-in-place systems have been optimised for ensuring milk-powder quality,
while also reducing water use and effluent.

There is a substantial transfer of milk ingredients, including large amounts of water, among dairies
by lorry. Water extracted from milk is reused in several processes by combining water-storage
systems and UV treatment prior to water reuse. Its milk-powder plants also obtain electricity from
biogas produced from the company’s wastewater sludge as well as from local manure in a local
biogas plant. Going further, Arla has taken the lead in water-process improvements, for example,
in-house anaerobic digestion of wastewater at some Danish and UK plants (Dairy Roadmap 2013, 49).

Such innovations have been driven by several factors – the company’s environmental policy, the
company’s reputation among consumers, cost-savings and environmental taxes. As extra incentives,
the company anticipates higher future costs, restrictions on wastewater discharge due to its salt
content and a limited treatment capacity of WW treatment plants. Such drivers have converged in
the company’s decisions on innovation investment (Nørgaard 2013). Owned by farmers and accoun-
table to their representatives, the company aims to counter the recent trend towards lower farm-gate
milk prices (Arla Foods 2013, 3).

Since at least 2008 the company has promoted its overall policy direction as ‘Closer to Nature’,
emphasising its commitment to environmentally sustainable methods. Its Environmental Strategy
2020 includes various targets for resource conservation, for example, reducing GHG emissions by
25% in production and transport, and reducing energy and water consumption in production by
3% every year (Arla Foods 2011). It aims to reduce energy, water and chemicals usage, as well as
the amount of waste water by 25% per kg powder (2011–2014), through process optimisation (Han-
sesgaard 2013).

Arla Foods own approx. 40% of dairies in Denmark and many abroad, especially resulting from an
expansion policy (Arla Foods 2013, 2). EU milk quotas may be relaxed, thus increasing the supply, yet
extra milk products cannot be sold on a static European market. Given those limits, Arla’s expansion
aims to export high-quality or specialty milk powder. But its production requires enormous energy to
extract water from milk.

In such ways, Arla Foods have been undergoing a restructuring, which may result in fewer and
larger dairies. Greater concentration poses the issue of cleaner production: whether or how the
process design should internalise and/or recycle resource flows among production units. The
company has been adopting or considering major changes in the production process.

Turning wastewater sludge into biofertiliser would be more eco-efficient than conversion to
biogas. This innovation would need to expand the meso-level through farmers as users of the biofer-
tiliser. But the company has not pursued this prospect; instead, it has focused on options to bring
functions in-house.

Arla Foods’ potential future changes interested all stakeholders in the EcoWater assessment of
meso-level eco-efficiency. The EcoWater case study initially focused on Arla’s Holstebro HOCO
plant, which processes milk into various protein-specific powders. It has been paying a WWT
company which anaerobically extracts biogas, substituting for fossil fuels in district heating. HOCO
is considering several in-house options to reduce demand for water and energy, especially in-
house anaerobic pre-treatment of wastewater. This option would change the resource burdens as
follows:

. Production of biogas to substitute natural gas → reduced fossil-fuel depletion and CO2 emissions.

. Reduced load on WWT plant → reduced power consumption and CO2 emissions.

. Reduced biogas production→ reduced downstream power and heat production (Andersen 2013).

. So the downstream system would need more fossil fuels than before, thus counteracting the
upstream gains.
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From a whole-system perspective on resource efficiency, the in-house WWT option offers an
approx. 11% reduction in the mid-point indicator for climate change, with no other improvement
(see Table 2). By contrast to this modest reduction, a micro-level focus on the company’s internal pro-
cesses would imply a greater improvement towards the company’s environmental targets. Thus, this
analysis reveals a tension between micro-level (company) versus macro-level (whole-system)
improvement in resource efficiency.

Having provided essential information for the assessment, stakeholder companies attended a
workshop to discuss the implications. The whole-system perspective raised doubts about the specific
option for WW pre-treatment. The perspective attracted stakeholders’ interest for assessing other
options in order to evaluate their relative benefits (EcoWater 2015a).

5. Truck-body corrosion-resistance: silane-based option

The automobile sector has generally directed eco-innovation at vehicle use and users, especially for
greater fuel efficiency as a competitive advantage, as well as CO2 reductions as a regulatory criterion
(e.g. Oltra and Maïder 2009). The sector has incrementally improved the energy efficiency of the
internal combustion engine. Since the 1990s, some manufacturers have also developed alterna-
tive-fuel vehicles (Sierzchula et al. 2012; Köhler et al. 2013).

Such redesign has responded partly to market competition; vehicles can generally gain a higher
price or sales through fuel efficiency, but not through improvements in the production process. In the
European context, greater fuel efficiency has been stimulated by legislation requiring that by 2015
CO2 emissions from all new EU-registered cars should not exceed an average of 130 g CO2/km
across the range of each manufacturer; this limit was around one-fifth below 2007 levels (EC
2009). Moreover, car manufacturers receive official recognition and carbon credits if they fit their
new cars with approved ‘eco-innovations’ (EC 2011).

As an atypical priority within the industry, Volvo’s agenda for resource efficiency has driven
improvements within the production process. According to the Volvo Group’s sustainability report,
‘a resource-efficiency approach is well integrated in our culture and is an important priority ahead’
(Volvo 2011, 38). Operations attempt to minimise energy use and recycle materials, especially by
installing closed-process water systems (Volvo 2011, 58).

At each Volvo site, different units have responsibility for economic and environmental evaluation,
with some discussion between them. There has been no systematic discussion between Volvo and
WWT companies about improvement options. So fragmented responsibilities impede or complicate
whole-system improvements.

In the corrosion-protection process, Volvo Trucks has already made an environmental improve-
ment by replacing a hazardous chromium process with zinc-phosphating technology. But the
latter still has several environmental disadvantages: it requires heating of process baths, uses
heavy metals (Zn, Ni and Mn) which end up in wastewater, and produces hazardous sludge (e.g.

Table 2. Comparing baseline with anaerobic digestion: difference in meso-level environmental impacts (EcoWater 2015a, Tables 4
and 5, 78).

Mid-point impact Category
Baseline environmental

performance
Anaerobic digestion
pre-treatment option

Climate change (kgCO2eq/kg milk) 58 52
Freshwater resource depletion (m3/kg) 0.008 0.008
Eutrophication (kgPO3

4−,eq/kg) 1.7 1.7
Human toxicity (kg1,4DCB,eq/kg) 0.06 0.06
Acidification (kgSO2-

,eq/kg) 0.56 0.56
Aquatic ecotoxicity (kg1,4DCB,eq/kg) 0.002 0.002
Terrestrial ecotoxicity (kg1,4DCB,eq/kg) 0.003 0.003
Photochemical ozone formation (kg C2H4,eq/kg) 0.0005 0.0005
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metal hydroxides). Relative to those problems, a new silane-based polymer has several advantages
illustrating less ‘energy for water’. It features: process at room temperature; total energy use ∼40%
less than the Business As Usual (BAU) process; water use 50–90% less than BAU; no use of heavy
metals or P; no hazardous sludge and very little other sludge. Wastewater pollutants (Zr, silane
and fluoride) can be reduced to ∼0 mg/l by ion exchange.

Looking beyond the site, silane-based technology was evaluated at the meso-level by linking the
company’s process with the water supplier and Stena Recycling, which charges Volvo for WWT ser-
vices. The silane-based option would reduce water use, as well as the wastewater quantity and
emissions content. Improvements in mid-point indicators would be modest – as the most signifi-
cant, aquatic ecotoxicity would have an 11% improvement. The next greatest improvements
(photochemical ozone formation, acidification and eutrophication) would be only 5–6% each
(Table 3).

As regards the TVA, the total costs of water-related inputs would be somewhat reduced for all
three companies (Volvo, its water supplier and WWT) because the lower quantity of both water
use and WWT mean a lower electricity demand for pumps and less use of chemicals. So, the TVA
slightly rises through lower costs for water input. More significantly, the TVA would be redistributed
across the meso-level VC: the WWT company would lose value added. So, the silane-based option
involves a financial trade-off among actors.

The multi-stakeholder workshop discussed benefits, drivers and barriers for the silane-based
option. Participants agreed: ‘If Volvo improved its environmental performance and generated efflu-
ents of better quality, it would be easier for Stena Recycling to comply with the regulations’ (EcoWater
2013, 35). More generally, participants agreed, Volvo should avoid sub-optimal solutions:

Sub-optimisation can be more easily avoided through stakeholder cooperation in evaluating the overall system.
Organization of the different ‘players’ towards a common goal can increase cooperation among actors that
perhaps unknowingly share a mutual interest in environmental protection. (EcoWater 2013, 37–38)

Although optimal meso-level solutions can result from cooperation among stakeholders, their
economic interests may conflict. In the example here, such tensions arise from a change which
clearly enhances eco-efficiency within the company. Moreover, this option offers only a modest
improvement through incremental eco-innovation, continuing a path dependence within road
transport.

6. Cogeneration: district-heating option

Energy cogeneration, also known as CHP (Combined Heat and Power), has higher energy efficiency
than separate production of each component, provided that there is adequate demand for both
power and heat. CHP plants have been established mainly in markets with large heat demand,
especially in energy-intensive industries, greenhouse horticulture, services in large buildings and

Table 3. Comparing baseline with silane-based treatment: difference between meso-level environmental impacts (EcoWater
2015a, Tables 5–13, 104).

Mid-point impact category Baseline environmental performance Silane-based option at Tuve plant

Climate change (tCO2eq) 652 642
Freshwater resource depletion (m3) 1659 1640
Eutrophication (kgPO4eq) 691 662
Human toxicity (kg1,4-DBeq) 14,467 14,136
Acidification (kgSO2eq) 1913 1799
Abiotic resource depletion (kgSbeq) 1008 995
Aquatic ecotoxicity (kg1,4-DBeq) 16,404 14,677
Stratospheric ozone depletion (kgCFC-11eq) 0.62 0.61
Terrestrial ecotoxicity (kg1,4-DBeq) 228 225
Photochemical ozone formation (kgC2H4,eq) 129 121
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residential areas. The latter use depends on a large-scale, long-term expensive investment in district-
heating systems.

A key factor in useable heat is the use time, that is, the time-period when thermal energy is con-
sumed. Domestic heat demand varies over the day and with the seasons; demand exists only during
30–50% of the year, and peak demand occurs only a few days per year. During the rest of the year,
most of the produced heat remains waste heat, typically discharged to surface water. Given this con-
straint, greater resource efficiency depends on a flexible distribution network and/or peak-shaving
capacity to lower the maximum demand.

Another key factor in useable heat is its temperature. Industrial purposes, which are often year-
round businesses, require very high temperatures. District heating typically uses distribution temp-
eratures of about 100–120°C, while some developments use a lower temperature, such as green-
house farming.

Cogeneration involves trade-offs between electricity and heat: Maximising power production
requires the lowest possible temperature at the condensing site of the generator, but this
depends on greater water-tapping (cooling), thus generating more excess heat (Verbruggen et al.
2013, 578). Conversely, tapping water at higher temperatures yields hotter heat and reduces heat
in cooling water, though it somewhat reduces the useful electrical power and thus the related
income (Figure 2). The latter option has extra disadvantages: investment in different equipment
would be necessary to tap electricity at a higher temperature, as well as to transmit the hotter heat.

From a micro-level perspective, for example, an energy plant per se, the priority is to maximise
income (or profit), which comes mainly from electricity as the most lucrative product. From a
meso-level (whole-system) eco-efficiency perspective, by contrast, priorities are to maximise usable
energy and consequent income while also minimising resource burdens, especially fossil-fuel
demand, GHG emissions, cooling-water emissions, etc. Any mismatch between heat demand and
production can be mitigated by various strategies, for example: buffer basins and additional heat-
only boilers can shave daily peaks, and the system can include other heat users with a more constant
demand.

Figure 2. Effects of thermal energy distribution at different temperatures on power-generation efficiency and useful thermal
energy. Credit: Deltares, Amsterdam/EcoWater.
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In the Netherlands the main cogeneration company plans to expand heat supply to district
heating, alongside heat-storage facilities to provide peak-shaving amidst intermittent demand:

Expanding further in district heating projects also provides valuable opportunities to expand further in renewable
energy, as district heating provides a significant reduction of CO2 emissions in comparison with conventional gas-
heated boilers… District heating fits well with Nuon’s strategy, since it offers a 50% to 80% reduction of CO2 emis-
sions compared to conventional gas-heated boilers, depending on the source of the heat. (NUON 2014, 7, 11)

The EcoWater study focused on a cogeneration plant supplying mainly residential areas in Amster-
dam and Almere. Amsterdam municipality has made a commitment to increase district heating
(Gemeente Amsterdam 2013), though specific support measures remain unclear. A thermal
network for district heating offers advantages in resource efficiency, for example, by substituting
the waste heat for fossil fuels, but incurs extra investment costs of retrofitting houses (EcoWater
2015a, 70–72).

The EcoWater study’s multi-stakeholder workshop discussed the necessary conditions for estab-
lishing a thermal network in the local context. District-heating systems had been installed in a
newly built neighbourhoods in the Netherlands (and elsewhere), but there was little residential build-
ing activity near the plant; so this solution would replace and/or jeopardise previous investment in
heating systems.

The workshop also discussed drivers and barriers of various improvement options. Some key
points from the discussion: The company’s commitment to extend district heating would need pol-
itical confidence in future favourable conditions, especially through ‘consistent governance for a 30–
50 year period’. Amongst such conditions for such investment: a thermal network needs a price equal
to gas-based heat; and CO2 emission credits need to be made more expensive, so that low-carbon
energy becomes more competitive (Goossens and Meijer 2014).

Under foreseeable circumstances, the company will not make a priority of reducing the electricity–
heat ratio to yield higher temperature heat, nor of linking the plant with a district-heating system.
More modest options have been pursued. Year-round demand for heat would help, especially
from industrial users, so these have been sought. Peak shaving of daily peaks (via a heat buffer or
storage facility) would reduce the temporal mismatch between demand and supply of electricity.
This small investment offers a relatively modest improvement in resource efficiency and GHG
savings, while also significantly lowering costs. When it becomes operational at the Diemen 33
plant, the peak-shaving facility will reduce use of the combined cycle combustion turbine or heat-
only boilers during the daily peak demand for heat.

The above comparisons reveal tensions between resource efficiency at the micro-level (company)
and meso-level (whole system). From the latter perspective, resource efficiency would be greatly
improved by a thermal network using all the waste heat; but this would depend on expensive
long-term investment and elusive heat users, as well as less income from electricity production.
This helps to explain why the EC Cogeneration Directive ‘failed to fully tap the energy-saving poten-
tial’ of CHP (CEC 2011c), as acknowledged by the European Commission. These obstacles warrant
attention in order to fulfil EU policy on expanding district heating (EC 2012, 6).

7. Conclusion: tensions in whole-system value-chain assessments

Many companies have invested in eco-innovation, combining environmental and economic benefits.
Production processes have been upgraded in ways that enhance a company’s environmental repu-
tation. Such change has been generally evaluated within a company’s internal process, thus neglect-
ing value-chain changes which may affect other companies’ income and wider resource burdens.
Looking more broadly, some companies have shown interest in assessment at the whole-system
(meso) level of a production process. A meso-level assessment can inform efforts to internalise
more environmental externalities through eco-innovation. From such a perspective, this Conclusion
answers the original three questions in turn.
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7.1. Whole-system tensions in process upgrading

What tensions arise among various aims and benefits of eco-innovation? Our EC research project
operationalised the meso-level through comparative eco-efficiency assessments. The project
gained cooperation from case-study companies (motor vehicle, dairy and cogeneration) which
already had invested in process eco-innovation. They have strong prospects for upgrading the pro-
duction process, relative to their respective industrial sector. Such investment has multiple incentives
– environmental objectives, ‘green’ reputation, lower energy costs and future regulatory
requirements.

Relevant stakeholders provided essential information on the baseline context and on eco-inno-
vation options that they were considering for investment, so that the case-study team could
assess their whole-system eco-efficiency. The method assessed changes in resource burdens and
TVA across a meso-level VC, for example, encompassing water suppliers, water users and wastewater
treatment (WWT) providers. Comparative assessments informed multi-stakeholder workshop discus-
sions of options, drivers and barriers.

Focusing on specific options, the assessments identified many tensions – among various aims,
resource burdens, process stages, system levels, economic beneficiaries and timescales. For a
project-wide overview of ‘Eco-innovation win–win or trade-offs?’, see the cross-case comparative
report (EcoWater 2015b, 21). Such tensions complicate the concept of eco-innovation as ‘enabling
win–win synergies’ (OECD 2012; cf. Kemp and Oltra 2011; Horbach, Rammer, and Rennings 2012,
113).

7.2. Internalising externalities within limits

What is the scope to internalise externalities, within what limits? The three case studies (Table 1) illus-
trate the above tensions, especially the systemic limits of internalising externalities.

(i) A dairy company plans to expand European milk-powder production for global export. It has set
ambitious targets to lower resource burdens annually, thus facing contradictory objectives for
eco-innovation. A shift to in-house WWT treatment would substitute some renewable energy
for fossil fuels and so enhance the dairy’s internal resource efficiency, but such benefits
would be largely shifted from the outside to the inside the dairy, offering only modest meso-
level benefits. Turning wastewater sludge into biofertiliser would be a more eco-efficient way
to use WW but has not been explored.

(ii) For truck-body corrosion-resistance, a novel technological process would lower resource
burdens and enhance the company’s sustainability reputation. In the overall VC, the WWT
company would lose income, thus creating conflict over the distribution of benefits. The
environmental improvement would be modest (at most 6%, with one exception), for an incre-
mental change within the incumbent road-transport regime.

(iii) A cogeneration plant seeks ways to turn its excess-heat problem into an environmental and
economic benefit. A change in the production process could supply hotter heat to industrial
users, but the change brings financial disadvantages. A district-heating system would have
greater benefits in resource efficiency, but such investment faces obstacles from institutional
fragmentation and long-term policy uncertainty. And the cogeneration plant faces a financial
trade-off between generating more flexibly usable heat versus the more lucrative electricity.
At present the company is adopting a heat-storage facility alone to avoid electricity and heat
generation during periods of low electricity prices, offering only a modest improvement in
resource efficiency.

As those cases illustrate, the institutionally most feasible or attractive eco-innovations are incre-
mental, offering modest improvement within an industrial path dependence. By contrast, radical
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eco-innovation needs path creation through extra value-chain actors, functions and resource usages
which can provide greater overall benefits (Carrillo-Hermosilla, del Río, and Könnölä 2010; De Marchi,
Di Maria, and Micelli 2013). As in examples above, extra functions need industrial symbiosis (De
Simone and Popoff 2000; Chertow 2007).

Such a systemic change faces many obstacles. More generally, improvement options entail ten-
sions and trade-offs – among various aims, resource burdens, process stages, system levels, economic
beneficiaries and timescales. These tensions may limit the scope to internalise environmental extern-
alities for the common good through radical innovation (cf. Bleischwitz 2003).

7.3. EU policy implications for lower resource burdens

What are implications for EU policy frameworks? The EU has had a commitment to technoscientific
eco-innovation as the primary means to lower resource burdens. Various financial incentives and
regulations have aimed to stimulate such technological innovation and adoption. In particular, the
Lisbon agenda sought greater R&D investment to make Europe ‘the globally most competitive knowl-
edge-based economy by 2010’ (EU Council 2000).

The Europe 2020 strategy promotes ‘resource efficient technologies’ to decouple economic
growth from the use of resources (CEC 2010, 4; also CEC 2011a, 2011b). For the current decade,
the shift towards a resource-efficient and low-carbon economy ‘will help us to boost economic per-
formance while reducing resource use’. In particular, ‘stricter environmental targets and standards
which establish challenging objectives and ensure long-term predictability, provide a major boost
for eco-innovation’ (CEC 2011a, 2, 6).

During the Lisbon Agenda decade, however, Europe increased its per capita materials consump-
tion, even apart from indirect consumption through imports:

The European economy grew by 35% between 2000 and 2007, but also material consumption increased in absol-
ute terms (7.8%), almost three times the growth in European population (2.6%). The absolute growth in material
consumption indicates that the EU did not achieve an absolute decoupling, but only a relative decoupling. (EIO
2011a, 14)

The consumption increase has had many drivers, for example, resource efficiency generating a
rebound effect, and a financialisation agenda diverting investment from process improvements
(e.g. Jackson 2009; Birch and Mykhenko 2014).

Apparently eco-innovation has had a weak role in counteracting the EU’s increase in resource
burdens. As highlighted by the earlier literature survey, some limitations are also illustrated by our
case studies of prospective eco-innovation: the most institutionally attractive forms are incremental,
remaining within a path dependence. The tensions and difficulties cast doubt on an EC strategy
emphasising uptake of eco-innovative technologies as the means to decouple economic growth
from resource burdens. Under forseeable circumstances, there seems an elusive prospect for eco-
innovation alone to provide a significant increase in resource efficiency, much less an absolute decou-
pling of economic growth from resource burdens.

As a way forward, appropriate policy frameworks could incentivise radical innovations, especially
through industrial symbiosis. For prioritising policy support amidst multiple options, whole-system
assessments could help to identify relative benefits and potential trade-offs of radical innovations.
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