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Abstract. The artificial life approach to evolutionary robotics is used as a fundamental framework for

the development of a modular neural control of autonomous mobile robots. The applied evolutionary

technique is especially designed to grow different neural structures with complex dynamical properties.

This is due to a modular neurodynamics approach to cognitive systems, stating that cognitive processes

are the result of interacting dynamical neuro-modules. The evolutionary algorithm is described, and a

few examples for the versatility of the procedures are given. Besides solutions for standard tasks like

exploration, obstacle avoidance and tropism, also the sequential evolution of morphology and control

of a biped is demonstrated. A further example describes the co-evolution of different neuro-controllers

co-operating to keep a gravitationally driven art-robot in constant rotation.

Keywords: modular neuro-dynamics, nonlinear robot control, perception–action systems, structure

evolution, evolution of morphology.

1. Introduction
The artificial life approach to evolutionary robotics (Nolfi and Floreano 2000) applies
evolutionary techniques not only to optimize a given system with respect to desired
fixed properties, but also to emphasize the emergence of solutions for a behavioural task
that sometimes may not be anticipated. In particular, if the connectivity structure of
neural control networks is subjected to an evolutionary process without any constraints,
the appearance of feedback loops in networks, together with associated non-trivial dynami-
cal properties, may contribute considerably to an appropriate behaviour of the system.
Applying neural control to autonomous physical robots acting in open and changing
environments will perhaps allow comparison with the behaviour of living systems. It
may be stated that one of the goals of evolutionary robotics is to compare the functions
of biological brains with the functions of artificial neural control mechanisms for
animats. These ideas have already been formulated during the cybernetics area, where
one of the initial postulates was to identify behaviour of living systems by means of
self-regulating technological objects (Walter 1953, Wiener 1962, Ashby 1966).

Furthermore, evolutionary robotics sets up an excellent framework for testing and
applying a modular neuro-dynamics approach to cognitive systems. Like other dynami-
cal approaches to cognitive science (Beer 1995, Kelso 1995, Port and van Gelder 1995),
it tries to understand cognition as a global process unfolding during the interaction with
multiple external and internal processes. Strong arguments for this hypothesis arise,
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besides the findings in biological brains, from the observation that already small
artificial neural networks with recurrent connectivity inherit complex dynamical features
(Pasemann 2002); for example, there is a variety of oscillatory modes including chaos,
and often there exists a set of different modes from which a specific mode can be
accessed depending on the history of the system. But it is still difficult with today’s
knowledge to provide a reasonable theoretical foundation for this dynamical approach
to cognition.

If one thinks about small neural networks as basic building blocks for larger control
systems, i.e. as modules generating specific behaviours, the (recurrent) coupling of
these non-linear subsystems can lead to many undesired or unexpected behaviours of
the composed system; but it is exactly the emergence of these unpredictable attributes
on which the hope of finding neural structures carrying the behaviour-relevant dynamics
rests. This may be difficult to achieve, but many experiments performed in the spirit of an
artificial life approach to evolutionary robotics confirm that the apparent behavioural
complexity of artefacts is not caused primarily by the complexity of their neural
control structures but reflects the complexity of their bodies and of the environment in
which they are acting. Very simple mechanisms, which can lead to interesting life-
like behaviour, have already been suggested by Braitenberg (1984) in his famous
thought experiments.

Here it is presupposed that experiments in the realm of evolutionary robotics can
contribute substantially to a better understanding of the basic principles of behaviour
relevant neural processing. The goal therefore is to find convincing examples pointing
to the realism of the modular neuro-dynamics hypothesis, which calls for the combined
application of nonlinear dynamics analysis, artificial life ideas, and evolutionary com-
putation techniques. To obtain reasonable results, the presented software package,
called Integrated Structure Evolution Environment (ISEE), includes not only techniques
for structure evolution, but also tools for fusion and ‘lesion’ experiments, for co-evolution,
for taking ‘electrode data’, for non-linear analysis of evolved structures, and for linking
different simulators and physical robot platforms to the central evolutionary algorithm.

The following section describes the adopted neural network model with its discrete-
time dynamics and the utilized evolutionary algorithm. Fusion techniques for the
combination of functionally segregated neuro-modules are outlined as well as techniques
for the generation of robust controllers, and for analysis of structure–function relations
of evolved neuro-controllers. Section 3 demonstrates some of the results obtained by the
ISEE package, where emphasis is placed on small analysable neural controllers. The first
example demonstrates how a simple recurrent structure generates an effective obstacle-
avoidance behaviour using hysteresis phenomena. Then an example for module expan-
sion is given, resulting in an additional light tropism. Section 3.3 describes an example
where, after the evolution of the morphology of a passive walker, an evolved neural
network controls a biped with minimal motoric equipment. The last example, in
section 3.4, demonstrates an application of co-evolution to control the gravitational
drive of a rotating ring which is realized by five movable arms. The last section
summarizes the results.

2. ISEE: an integrated structure evolution environment
The neural networks discussed in the following are evolved as controllers generating
specific behaviours. Working in the context of a modular neurodynamics approach to
cognitive systems, these networks are conceived as basic building blocks for larger
systems and are therefore termed neuro-modules. Their connectivity structure will
be of a general recurrent type, i.e. there may exist closed loops of directed signal
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transmission lines. Fusion of behaviours is assumed to be realizable through the coupling
of these modules. Because they are conceptualized as non-linear dynamical systems,
their coupling may even result in emergent properties, which have not been observable
before for the system under consideration.

A neuro-module with n units is defined as a parameterized discrete-time dynamical
system given by

ai(t þ 1) ¼ ui þ
Xn

j¼1

wij f (aj(t)), i ¼ 1, . . . , n, (1)

where ai [ Rn denotes the activity of neuron i;vij the synaptic strength or weight of the
connection from neuron j to neuron i, and ui ¼ �uui þ Ii denotes the sum of its fixed bias
term �uui and its stationary external input Ii, respectively. The oi ¼ f (ai) of a unit i is given
by an appropriate sigmoidal transfer function, for instance by f :¼ tanh. Thus, a neuro-
module in general has q :¼ n � (1 þ n) parameters, represented by a parameter vector
r :¼ (u,v) [ Rq; and every r defines a particular dynamical system.

2.1. Evolution of neural systems by stochastic synthesis (ENS3)
Like all evolutionary strategies, the ENS3 algorithm is an implementation of a variation–
evaluation–selection loop operating on a population of n neuro-modules pi (i ¼ 1, . . . , n).
Its general functionality is formally described in table 1.

For this algorithm a population is divided into two sets, parents P(t) and offspring
P̂P(t). The parameter t refers to the generation of the population. At the beginning
the evolutionary process is initialized with a set of neuro-modules. This set contains
an arbitrary number of neuro-modules, which have equal numbers of input and output
neurons and the same transfer function. Transfer function and input–output structure
are defined as problem-specific according to the task the neuro-controllers will be
evolved for. There is an additional condition: input neurons are used only as a buffer,
so no backward connections to the input neurons are allowed. Apart from that, nothing
else is determined, not the number of hidden neurons or their connectivity, i.e. self-con-
nections and every kind of recurrences are allowed, as well as excitatory and inhibitory
connections.

The reproduction operator creates mi copies of each individual neuro-module pi in
set P(t). The copies represent the set of offspring P̂P(t) in generation t. The number

Table 1. ENS 3 algorithm (see text for explanation).

Begin
P(0): ¼ set_of_initial_structures; 1

t: ¼ 0 2

Repeat

P̂P(t): ¼ reproduction (P(t)); 3

variation (P̂P(t)); 4

evaluate (P(t) < P̂P(t)); 5

P(t þ 1): ¼ selection (P(t) < P̂P(t)); 6

t: ¼ t þ 1 7

Until stop_criterion; 8

End.
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of offspring mi for each neuro-module pi is calculated by the selection operator.
At the beginning (t ¼ 0) this number is set to one for each module in the set of initial
structures.

The variation or mutation operator is a stochastic operator and is applied to P̂P(t); the
neuro-modules of P(t) remains unchanged. It realizes the combinatorial optimization as
well as real-valued parameter optimization (Beyer 2001). Real-valued optimization
refers to the variation of the bias and weight terms. Combinatorial optimization means
insertion and deletion of hidden neurons and connections. Combinatorial optimization
is determined by per neuron and per connection probabilities. Each structural modifi-
cation is computed according to a given probability q and a uniform distributed
random variable u(0,1). For example, considering the deletion of hidden neurons, a
random variable ui is computed for each existing hidden neuron hi. If ui � qdelNeu the
hidden neuron hi is deleted. Real-valued optimization is computed by using a Gaussian
distributed random variable g(m,s). A weight term w is modified according to this
variable: w þ g(0,s). Such a modification is again determined by a uniform distributed
variable u(0,1) and a given probability qmodWeight.

The evaluation operator is given in terms of a fitness function F. Fitness function F
determines a performance or fitness value vi for each neuro-module pi e P(t) < P̂P(t).
To keep the structure of the evolved neuro-modules during the structure evolution in
certain ranges, the fitness value vi takes into account the number of hidden neurons hi

and connections si of neuro-module pi:

vi :¼ fi � cNeu � hi � cCon � si� (2)

The value fi is the fitness value calculated with respect to the given task. The factors
cNeu, cCon � 0:0 are cost terms for a hidden neuron and a connection, respectively.

In each generation the evaluation operator computes the fitness value vi for all
pi [ P̂P(t) < P̂P(t). Note that, the fittest parents of generation t can have a bad perform-
ance in the next generation t þ 1, because the initial conditions may have changed.

The selection operator is again a stochastic operator. It determines which neuro-
module in the set P(t) < P̂P(t) becomes a member of the parent set of the next generation
P(t þ 1). This is done in the following way: according to the fitness value vi for each
neuro-module pi its number of offspring mi is calculated. A neuro-module pi is passed
to the next generation iff mi . 0. The participation of both parents and offspring in
the selection takes into account the low success probability of combinatorial optimi-
zation problems (Beyer 2001). The progress of a combinatorial optimization can be
attained only through conservation of good neuro-modules, i.e. parent individuals
must not ‘die’ per definition.

The computation of the number of offspring mi is rank based. That means, according
to a given set of neuro-modules pi and their fitness values vi the number of offspring mi is
proportional to its rank in this set, not to its actual fitness value. The number mi is derived
from a Poisson distribution with parameter li and this parameter is calculated as follows.
Assume a population P of n neuro-modules pi with their corresponding fitness value vi

then a function h(x) is defined as:

h(x) :¼ e�g=s2�(vmax�x), (3)

where vmax denotes the maximal fitness value within the current generation, s 2

the standard deviation of the fitness values i and g a non-negative real value. Then the
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parameter li for neuro-module pi is calculated as follows:

li :¼
zPn

j¼0 h(vi)
� h(vi)� (4)

The first factor is simply for normalization, where z can be interpreted as the average
population size. The introduced parameter g [ ½0, þ1� represents the pressure of
selection. The larger the g, the greater the number of offspring of the best neuro-
modules, while the sum of all offspring remains constant in certain ranges. Therefore
we can say the larger the g, the more elite selection is forced (Dieckmann 1995).

The evolutionary process takes place in a repeat-until loop as long as a special
stop criterion is not fulfilled. Up to now there has been no formal stop criterion
implemented. The user has to decide when the evolution can or has to stop manually.
Therefore, the user needs online monitoring of all essential process parameters, such
as fitness values.

2.2. Combination of different behaviours by structure evolution
Assume A and B are two behavioural tasks, which should be solved by a neuro-module
MA,B. Within our approach to structure evolution we distinguish two fundamental
methods to create such a module MA,B. We call them module expansion and module
fusion. Module expansion starts with a neuro-module MA, which solves task A. Then
the desired neuro-module MA,B is developed by a ‘growing-up’ process via structure
evolution on module MA. Module fusion starts with two neuro-modules MA and MB.
Then the neuro-module MA,B is developed by the evolution of a connectivity structure
between the modules MA and MB, which may include additional neurons. These two
methods can easily be applied to the ENS3 algorithm, since the set of initial structures
can contain neuro-modules of arbitrary type as long as they have the same type of
neurons and the same number of inputs and outputs.

Additionally, both methods can be differentiated by the definition of the initial
structures that the evolutionary process is started with. In general, there are three
kinds of initialization that bring us to three module combination techniques (Pasemann
et al. 2001):

(1) Restrictive: The structure and parameters of the neuro-modules in the initial popu-
lations stay fixed during evolution. Evolved neuro-modules will have additional
connections and hidden neurons.

(2) Semi-restrictive: Same as restricted module combination, but now only the struc-
ture of the initial neuro-modules is fixed. Parameter values such as weights and
bias terms may be modified.

(3) Free: Neither the initial structure nor its parameters are fixed during the evolution.

Note that, within this framework, incremental evolution (Nolfi and Floreano 2000)
becomes a type of free module expansion.

2.3. Evolving minimal and robust control structures
Since robustness of control is one of the most important qualities we want to achieve by
our approach to evolutionary robotics, we already try to enforce a robust behaviour
during the process of evolution. Therefore, the boundary and environmental conditions
are varied for each generation. As an indicator of robustness we chose the age of a
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neuro-module, meaning the number of generations that an unvaried neuro-module sur-
vived. A high age is an indication for a so-called generalist, whereas a low age indicates
a specialist.

To clarify the correlation of structure, dynamical effects and behaviour there is a need
for neuro-modules with a sufficiently small number of hidden neurons and connections.
To derive such modules we proceed as follows. At the beginning of an evolutionary
process the fitness of an individual is determined only by the success of solving the
given task. Thus, neural structures can grow as long as they lead to an improved
success. If the behaviour seems to be sufficient we increase the probability for deletion
of neurons and connections and at the same time we introduce costs for neurons and con-
nections. By this means we promote neuro-modules of smaller size having the same
fitness.

To encourage the development of minimalism and robustness we are able to monitor
all relevant statistical data during the evolutionary process, such as fitness values, ages,
number of neurons and connections, population size, etc. The evolutionary environment
also allows online modification of all process parameters that were introduced in the
previous section. Examining age, size, fitness and observed behaviour, we stop the evol-
utionary process of neuro-modules if all of the mentioned criteria are matched.

2.4. Analysing structure–function relations
The investigation of the structure–function relation of evolved neuro-modules is
supported by four main software components: (1) visualization by graphs of neuro-
modules with arbitrary recurrent connectivity structure; (2) analysis of neuro-modules
as dynamical systems; (3) plotting of neuron activities during the robot–environment
interaction; and (4) modification of the inner structure of modules, i.e. lesion exper-
iments. These software tools somehow reflect our approach to the clarification of the
relation between neural connectivity structure, dynamical effects and robot behaviour.

Besides the analysis tool for modular neurodynamics, all components are integrated in
one software package. Therefore, hypotheses about the relation between neural structure
and resulting robot behaviour can be developed fast and tested.

The main reason to apply analysis of formal dynamics, neural activity data and lesion
experiments is to find specific neural connectivity structures that can be understood as
realizations of general control techniques which become applicable to other tasks and
robot platforms.

The visualization gives a first impression of module structure. It plots the connectivity
structure as a directed graph showing which input neurons and therefore which sensor
qualities are required to perform the task. Additionally, it gives an overview of substruc-
tures and their connectivity. They can also help us to find well-known configurations
such as super-critical self-connections and loops, which can generate non-trivial
dynamical effects (Pasemann 2002) and may have relevant influence on the resulting
behaviour.

The potential dynamical effects of a neuro-module as an isolated dynamical system
are studied by considering the sensor inputs as parameter inputs. In particular, the
parameter dependence of attractor structures is examined, i.e. relevant parameter
domains for stationary, periodic or chaotic attractors are identified. Correlating these
results to the observed behaviour of the controlled robot gives a first hypothesis con-
cerning the structure–function relation for the evolved neuro-module.

Such a hypothesis can substantiated by the online plot of specific neuron activities
during the robot–environment interaction. Additionally, we can fix each neuron output
with an arbitrary value. This enables us to correlate neural activity to environmental
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properties, as they are reflected in the sensor signals, to observe special signal flow in the
neuro-module, and to verify the relevance for and influence on specific neuron
activities with respect to the behaviour. This somehow corresponds to the usage of
electrode data taken from biological brains in animal experiments.

For final investigations of this hypothesis, ‘lesion experiments’ can be executed.
Selected hidden neurons and connections are deleted online and parameters of all
neurons can be modified while the performance of the remaining neural structure is studied.

3. Applications
3.1. Formalizing a non-linear control technique
In this section, we demonstrate the formalization of a control technique, which was
derived from investigations on a neuro-module for obstacle avoidance. The experiments
were performed on the Khepera robot (Mondada et al. 1993). For simulation and beha-
viour evaluation a two dimensional simulator (Michel 1997) was applied. We evolved
control structures using only two input and two output neurons.

Input neuron I1 has the average value of the three left proximity sensors. They are
mapped linearly on to the interval [21, þ1], where 21.0 presents the free space and
þ1.0 a very short distance to an obstacle or even a collision. Input neuron I2 processes
the three right proximity sensors in the same way.

Two output neurons O1 and O2 were used to drive the motors of the left and right
wheel, respectively. We applied tanh as transfer function for the neuro-module to get
directly positive and negative control signals as output values. A positive control
signal drives the wheel forward and a negative backward.

In figure 1 one resulting module is shown, which we have selected for investigations
of structure–function relations. This module is called MRC, for minimal recurrent con-
troller. Although we started the evolutionary process with an empty initial structure this
controller is fully connected, but does not use any hidden neurons. The most interesting
structure elements of the MRC are the super-critical self-connections (.1.0) of
both output neurons and the loop between them. Based on analytical investigations
(Pasemann 1997, 2002) we know that such elements can produce hysteresis effects. The
resulting obstacle avoidance behaviour is very robust. The robot does not collide with
objects in its environment and is able to escape even from sharp corners and dead-ends.

If we plot the neuron activities of this neuro-module while the robot is running we can
observe the robust switching of the output neurons despite the noisy input signals
(figure 2). The neuro-module is working as a filter mainly generating two defined
output values �þ1.0 to drive as fast as possible forward and �21.0 to turn away
from appearing objects.

The realization of several lesion experiments has shown which structural elements of
the MRC are responsible for the observed filter effects. Figure 3 gives an impression of

Figure 1. (a) Scheme of the Khepera robot; (b) the MRC neuro-module; (c) behaviour of the

robot controlled by the MRC.
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how these experiments were performed. It is demonstrated that the interplay of three
different hysteresis effects corresponding to the three loops is responsible for the
robust robot behaviour (Hülse and Pasemann 2002). Each effect becomes active in
special situations, which are: (1) obstacle on the left; (2) on the right; and (3) sharp
corners or dead-ends. They produce a turning of the robot, where the turning angle is
proportional to the self-weights and the two-loop strength, respectively, i.e. to the
active hysteresis domains (Hülse et al. 2003).

The investigations on the MRC summarize a formalization which we call the dynami-
cal neural Schmitt trigger (Hülse and Pasemann 2002). The dynamical neural Schmitt
trigger is a single neuron with a positive self-connection ws . 1, an input E, and
slowly varying bias value B, described as follows (see figure 4 for notation):

A(t þ 1) ¼ tanh(B þ E � wd þ A(t) � ws), ws . 1: (5)

The two transition points E1 and E2 for external inputs are then given by:

E1,2 ¼
Q1,2 � B

wd

, (6)

Figure 2. Neuron activities of input and output neurons while the robot moves forward and

turns away from obstacle on the left and right. (a) A small increase of input signal I2 does not

influence the output signal between time step 100 and 200); but large input values of I2,

produce a defined switch to output signal �21.0 on output neuron O2, which produce a

turn to the left. (b) The same holds for the output neuron O1 corresponding to input

neuron I2. In this case, the switch to �21.0 produce a turn to the right.

Figure 3. Some observations of the ‘lesion’ experiments performed with the MRC. (a) Left:

resulting robot behaviour with different self-connections on O1. (a) Right: behaviour with

different self-connections of O2. (b) Left: the connection from I2 to O1 is modified. (b) Right:

resulting behaviour with different weight parameter for the connection from I1 to O2.
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where B denotes an additional stationary (or slow) external input to the neuron (Hülse
and Pasemann 2002). The calculation of the end points Q1,2 of the hysteresis interval
shows that its width depends on the self-connection ws:

Q1,2 ¼ + ln
1 þ a

1 � a

� �
� 2wsa

����
����, a :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

1

ws

r
, ws . 1: (7)

Figure 4(b) shows one application of the dynamical neural Schmitt trigger. This sym-
metric and reduced neuro-module contains the essential structural elements to produce
the same robust obstacle avoidance behaviour as the MRC. The advantage of this
module is that turning angles can be changed by manual modification of the connection
parameters. In this way, the specific properties of the different robot platforms (noise
intensity, sensor qualities and quantities, actor signal processing, body) can be directly
taken into account. This was successfully tested and applied for various wheel-driven
robot platforms, e.g. for the diverse robot platforms of the Fraunhofer Institute AIS:
VolksBot, Kurt2, etc. (see http://www.ais.fraunhofer.de).

3.2. Behaviour expansion by structure evolution
In this experiment, the symmetric obstacle avoidance module (figure 4 (b)) is function-
ally enhanced to solve a light-seeking task. This is done by the restricted module expan-
sion technique (see section 2.2). Four additional input neurons I3,. . ., I6 are added to the
original input structure. The values of these input neurons are the mean values of the two
light sensors at the left (I3), the front (I4), the right (I5) and the rear (I6) of the Khepera
robot (compare figure 1(a)). In contrast to the proximity sensors, the light sensor values
are mapped on to the interval [0,1], where 1.0 represents darkness and 0.0 brightness.

The structure of the expanded module and the resulting behaviour are indicated in
figure 5. For detail we give the weight matrix W of the inner structure.

W ¼

0:0 0:0 . . . . . . . . . . . . . . . . . . 0:0

..

. ..
. ..

.

0:0 0:0 . . . . . . . . . . . . . . . . . . 0:0
5:1 �7:0 �2:1 �4:2 6:7 0:4 1:8 �2:5 �3:0

�7:0 2:3 �1:3 �8:1 3:9 5:1 �2:5 1:8 4:9
�3:4 1:0 9:8 �8:5 �2:5 5:3 0:0 �4:4 �1:9

0
BBBBBBB@

1
CCCCCCCA

Figure 4. (a) Connectivity structure of the dynamical neural Schmitt trigger; (b) manually

designed neuro-module for obstacle avoidance driven by the interplay of three hysteresis effects.
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The plotted paths show the robot’s capabilities of searching and approaching a light
source, and the coming to a halt in front of it while it avoids collisions with other
objects. Applying the module to the physical robot, the observed behaviour is qualita-
tively the same.

The two-neuron configuration of the additional hidden neuron H1 and O2 is denoted as
chaotic 2-module (Pasemann 2002) because it allows complex dynamics such as oscil-
lations and chaos. In the diagrams of figure 6 the plotted neuron output signals give an
impression of how different oscillations become active in different situations (Hülse and
Pasemann 2004). For example, figure 6(a) reflect the situation where the robot does not
detect any light or obstacles. In this case, a period-five oscillation is active, which pro-
duces an average output of 0.6 on O1 and 0.7 on O2 (see also table 2). This configurations
is related to a slightly curved movement, as shown by the robot paths. In contrast, a light
source in front of the robot forces the neuro-module to generate a period-five oscillation,
which produces an average output of zero on both output neurons resulting in a quasi-
halt of the robot. In addition, although sensor values remain constant (except for
noise), the apparent period-five oscillations produce varying amplitudes on O1 and O2.
This causes randomly varying turning angles of the curved robot movement.

3.3. Evolving morphology and control
This section demonstrates that our evolutionary environment is not limited to the
development of control architectures for autonomous agents. In this application we
optimized the morphology of a bipedal walking device as well as the control structure.

The possibility of creating complex behaviours such as bipedal walking without any
control mechanism is demonstrated in McGeer (1990) and Collins et al. (2001). There,
rigid body dynamics were used for generating stable walking pattern. As a drawback,
their gravity-driven machines were limited to walking on shallow slopes. We were
inspired firstly to evolve the morphology of similar machines and, secondly, to enable
them to walk on flat surface by evolving a suitable neuro-controller. The resulting
walking device should use a minimal sensorimotor system and avail itself of the
passive rigid body dynamics to produce energy-efficient walking.

Here, only a general survey of the experiments is given. A detailed description of the
methods and results can be found elsewhere (Wischmann and Pasemann 2004). To

Figure 5. An effective controller for obstacle avoidance and light-seeking behaviour.
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Table 2. Average value of neuron outputs for specific input configurations. These input

value configurations refer to specific situations in the environment. The resulting behaviour

can be derived by the average output values, e.g. O1 ¼ 1.0 and O2 ¼ 21.0 refers to a turn to

the right.

Neuron

Average output

Empty space

Obstacle Light

Right Left Both In front Left Right Back

I1 21.0 20.9 0.2 0.1 21.0 21.0 1.0 21.0

I2 21.0 0.7 20.9 0.0 20.9 21.0 21.0 21.0

I3 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.0

I4 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0

I5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0

I6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6

O1 0.6 21.0 1.0 0.0 0.0 1.0 0.7 1.0

O2 0.7 1.0 21.0 0.0 0.0 21.0 1.0 20.6

H1 20.4 20.1 0.9 0.0 0.0 0.6 20.4 0.2

Figure 6. Output signals of neuron O1 and O2 (left) and the hidden neuron H1 (right). (a) All

sensor input values are minimal, e.g. no light source and no obstacle is detected. (b) The

robot moves in the dark, while it detects an obstacle on the right and avoids it by a left

turn. The appearing obstacle is indicated by an increasing input value I2 (fine line). (c) The

robot moves in the dark, while it detects an obstacle on the left (high input value I1, thick

line). (d) The robot stands in front of a light source (I4 � 0.55); other input values are at

their minimum. In this case, the average output of O1 and O2 is zero, which produces the

quasi ‘standing’ in front of a light.
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realize passive dynamic walking devices, first, models with one and three degrees of
freedom were implemented within the physical simulation environment Open Dynamics
Engine (2004). These models are illustrated in figure 7 (left).

Evolvable parameters are the dimensions and mass distributions of the single body
parts and additional initial conditions, e.g. the initial impulse. We hand-crafted a
neuro-module consisting of as many connections as parameters which should be
optimized. In contrast to the development of neuro-controllers, aiming for a certain
behaviour, the inner dynamics of the neuro-module are irrelevant for these experiments.
During evolution no variation of the structure is allowed; only the weights of the given
connections could be varied. These weights are mapped to the parameters of the walking
device. Evaluation, reproduction and selection are processed as described in section 2.1.
The fitness function takes the distance covered and the number of successful steps into
account. The behaviour of the resulting morphology for both kinds of passive dynamic
walking devices is sketched in figure 7 (middle and right).

Since there is no actuation at all, the gait patterns of the walking devices are generated
only by their rigid body dynamics with gravity as power supply. Because these passive
walker models are still limited to a very specific environment, the shallow slope, the next
step was to create a sensor motor system and a controller for enabling adaptation to flat
surface. The one-degree-of-freedom model was equipped with minimal actuators (three
motors) and sensors (three internal, one external). Controlled by a neuro-module, it
should now be able to walk on a level surface with minimal energy consumption. As
demonstrated in Wischmann and Pasemann (2004), we successfully evolved a neuro-
module that is able to perform this task. The presented recurrent neuro-module is
again small enough for empirical analysis of its behaviour-relevant inner dynamics.
This enabled us to demonstrate how closely morphology and control are related. It
was shown that the gait pattern is mainly determined by the passive dynamics of the
robot’s body. The controller only compensates the energy loss that occurs during
walking on a level surface, e.g. at heel strike, whereas, for example, the swing periods
of the legs are purely passive.

Figure 7. Passive dynamic walking without (top) and with knees (bottom). Right: the

simulated model. Middle: joint angles within one step period. Left: swing and stance phases.
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3.4. Co-evolution
To demonstrate that our evolutionary environment is also able to perform co-evolution
strategies we used the art-robot micro.eva developed by Julius Popp (2003). As can be
seen in figure 8, this gravity-driven robot consists of five arms that are connected to a ring
by four hinge joints. Each arm can translate its centre of mass by a servo motor which is
connected to one joint within the arm. The motors and therefore the main mass distri-
butions are located in the arms, so the robot is able to rotate the ring by moving its
masses, respectively. Owing to the simplicity of the task, just rotating as fast as possible
at a constant speed, it is promising to use this robot as a benchmark system for diverse
control techniques.

In our control approach we consider each arm as an autonomous agent. Agents can
indirectly communicate to each other with sensors located inside the ring. The angular
velocity of the ring is provided by a gyroscope, and five hall sensors are placed inside
the ring. These sensors are binary switches that emit a peak if they come to pass a
magnet near the bottom of the ring. A built-in potentiometer in each servo motor
provides information about the actual motor position.

The ring velocity is supposed to be maximal at 0.25 rounds per second. It becomes
positive for counterclockwise and negative for clockwise rotation. The five hall
sensors were integrated to one sensor input, which can have five discrete values accor-
ding to the different position areas. Hence, each agent is able to distinguish its position
relative to these five different areas. The motor position sensor gives the actual difference
angle of the servo motor to its zero position. The motor output represents the
desired angle of the servo motor. All input and output signals were linearly mapped
on to [21.0, 1.0] due to the use of tanh as a transfer function. Thus, the initial neuro-
module structure of each agent consists of three sensor inputs (ring velocity I1, motor
position I2, integrated hall sensor I3) and one motor output (desired angle Ol).

The neuro-modules of the different arms are evolved in separate populations. The
evolutionary process for each population is processed in the same way as described in
section 2.1; but, differently, all populations are evolved simultaneously, and for the
evaluation process one agent from each population has to be chosen. This choice is
rank-based and determined by the fitness values. Note that here an equal population
size is necessary because each neuro-module of every population has to be evaluated
exactly once in each generation. The selection process for a single population is identical
to the description in section 2.1. After the selection, different population sizes can occur.

Figure 8. Art-bot micro.eva. Left: real robot and the location of the hall sensors. Middle:

connections of a single arm to the ring. Right: physical simulation.
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The maximum population size is taken and populations with a smaller number of
individuals are filled with additional offspring of the parent with the highest fitness
value of the according population. Since the fitness values of the offspring are not deter-
mined, this simple procedure at least assures that the fittest individuals of the previous
evaluation are within the same group of individuals for the following evaluation cycle.

Owing to the fact that the five agents have to fulfil a co-operative task, the fitness func-
tion takes into account the group performance. The angular velocity I1(t) of the common
body, the ring, together with its equability I(t) 2 I1(t 2 1) are evaluated and the resulting
fitness value (jI1(t)j � jI1(t) � I1(t � 1)j) is assigned to each single agent. Therefore,
every agent of a group has the same fitness value, which can differ within the agents
of a group if we introduce costs for hidden neurons and connections that are subtracted
from the performance value. For the evaluation we modelled the robot within the physi-
cal simulation environment Open Dynamics Engine (figure 9, right).

The results of this co-evolution strategy for micro.eva can be seen in figure 9. Starting
from generation 13 (performance was close to its maximum, fi ¼ 100.0), costs for hidden
neurons and connections were introduced (see section 2.1) to minimize the structure of
the neuro-modules. The resulting effect on the average number of hidden neurons and
connections can be seen clearly. For four of the five populations a strong decrease
was observed. After 25 generations no performance increase and structure decrease
was noticed. For this reason, we stopped the evolutionary process manually and
applied the fittest individual of each population to the simulated model of micro.eva.

By observing the behaviour of the robot generated by the five independent controllers,
we could see that module 3 is important for initializing the rotation. If the ring stands
still, arms 1, 2, 4 and 5 move to a position according to the initial orientation of the

Figure 9. Left: evolution of the average fitness of all populations (top), average number of

hidden neurons (middle) and synapses (bottom) for each population. Right: neuro-modules

with the best performance after 25 generations.
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ring and hold this position. The arm controlled by module 3 starts oscillating and thus
initializes a rotation. When the ring starts to rotate the activation of input neuron I3,
which provides information about the hall sensors, changes according to the rotation.
Modules 1, 4 and 5 are only driven by this sensor input and, as can be observed, they
only move their arms at distinct position changes to maintain a constant angular velocity.
A completely different behaviour shows module 2 by holding its arm position if the
speed is nearly constant due its connections from I1 and I2. Therefore, it has only a
passive influence to the overall performance. This experiment demonstrates that diffe-
rent modules with different functions are able to solve co-operatively a given task.

4. Conclusions
We have described an implementation of the ENS 3 algorithm and its applicability
to various optimization and control problems in robotics. By means of four selected
applications, we have demonstrated robustness and minimalism of control structures
as the main qualities achieved by our artificial life approach to evolutionary robotics.

Considering embodiment as the interdependence of morphology and control (Mautner
and Belew 1999, Nolfi and Floreano 2000, Pfeifer 2002), the ENS 3 was applied to
optimize the morphology of a bipedal passive dynamic walking device. The optimized
morphology was directly used as a platform for the development of control architec-
tures leading to active dynamic walking. This experiment has shown that effective
neuro-modules can be surprisingly small and simultaneously optimally adapted to the
morphological properties of the passive dynamic walker (Wischmann and Pasemann
2004), which is also stated elsewhere for other kinds of autonomous robots (Mautner
and Belew 1999, Pfeifer 2000, Bongard and Paul 2001).

The co-evolution experiments demonstrated the parallel evolution of several popu-
lations. Despite the simple evaluation method, specialization effects and co-operative
behaviour of the controllers emerged. The resulting structures were intensively con-
densed during the evolutionary process, therefore we were able to classify three speciali-
zed behaviours and their relationship to the inner structure of the different
neuro-modules. The results of this experiment imply that morphology and control can
be simultaneously evolved in the same way, since morphology and control have to
co-operate optimally to solve a given task.

It is mentioned in Beer (1995) that the performance of evolutionary design does not
scale with the size of search space. However, more complex robot platforms and tasks
may need larger neuro-modules or, in general, control structures with a larger number
of parameters, i.e. a much larger search space has to be explored by evolutionary pro-
cesses. Within our framework of structure evolution we address this problem with the
two introduced neuro-module combination methods, fusion and expansion. Both
methods keep the search space as small as possible due to two facts: (1) they start
with at least one already existing neuro-module and make use of already established
behavioural capabilities; and (2) the ENS 3—algorithm enforces development of small
structures. Furthermore, one module can be fused with different neuro-modules or can
be expanded by adding arbitrary sensor inputs to solve more complex behaviour tasks.
In this way, the two methods give the opportunity to generate complex behaviour
control in a fast and effective way, in contrast to evolutionary processes that always
have to start from scratch.

Module fusion and expansion can be applied using three different techniques to
achieve effective combination of several and sometimes contradictory behaviour
tasks, which are introduced as restricted, semi-restricted and free combination tech-
niques. The three techniques allow different modes of structure fixation corresponding
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to different degrees of retention and adaptation of already available behavioural capabili-
ties. Here, the restricted expansion technique was used to extent the MRC, a controller
for obstacle avoidance, to a light-seeking module. Although obstacle avoidance and
light-seeking are well-studied tasks in robotics, this example is presented as a demon-
stration of a method. In this case it demonstrates that a neuro-module can extend its beha-
vioural capabilities by plugging in a new structure without any calibration process. From
the engineering point of view, this is interesting because complex neuro-modules and
robot behaviour can possibly be constructed by directly linking existing neuro-modules.

Furthermore, the results on module expansion show effects of refining capabilities of
an original system, instead of simply adding new functionality. Such effects have also
been described for biological systems (Arbib and Liaw 1995, Arbib et al. 1998). In
Arbib and Liaw (1995), investigations on structure and function of biological systems
led to general design principles. One of these principles declares that new behavioural
features ‘often arise as modulators’ of existing behavioural capabilities rather than as
new independent features. In this way, a successive increase of complex behaviour
can be realized by integration of simple sensor qualities. Since the described module
fusion and expansion methods effectively utilize those design principles, one may
argue that they provide a promising approach to behaviour control. We finally see the
presented results as a contribution supporting the view expressed, for example, in
Ruppin (2004), that the study of evolved neuro-control for autonomous agents can comp-
lement biological findings of neuroscience research.

The benefits of graphical visualization and of plotting neuron activity during robot–
environment interaction are demonstrated for each introduced experiment. The data of
neuro-modules in action provide first ideas about structure–function relations. In the
example of the MRC and its expansion to a light-seeking controller (section 3.1 and
3.2), super-critical self-connections and loops are easily found by the graphical represen-
tation of the network. For instance, the odd loop between neuron H1 and O2 in the light-
seeking controller points to oscillations as applied control technique. The positive
self-connections on both output neurons indicate hysteresis effects of the MRC
leading to robust obstacle-avoidance behaviour. The relation of neural hysteresis
domains and turning angles is demonstrated, likewise the usage of specific period-four
attractors for a quasi-halt in front of a light source. Both behaviours can be verified
by plotting the neural activities. In addition, in the co-evolution experiment the three
specialized behaviours within the five populations are indicated by differences and
similarities of the individual neuro-module structures.

Formalization of non-linear control architectures like the MRC demonstrates
the advantage of a fast and efficient realization of lesion experiments during robot–
environment interaction. Although lesion experiments leading to the MRC were
performed on a small structure and rested upon profound knowledge of dynamical
systems theory, more efforts have to be undertaken to apply this technique efficiently
to larger neuro-modules where complex phenomena are provided by an interplay of
many elements. In Husbands et al. (1995), an example is given of where a large artificial
neural system can be successfully analysed if dynamical features of substructures are
clarified. Hence, according to the usage of expansion and fusion methods, large
network structures can be understood if the underlying neuro-modules are carefully
investigated. Another approach that may give additional guidance to this problem is the
functional contribution analysis introduced by Aharonov et al. (2003). In this work, the
parameters of a fully connected neural network with continuous-time dynamics used
for behaviour control are optimized. After optimization these networks undergo a sys-
tematically multi-lesion analysis to delineate the ‘main functional backbone’. With
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respect to our lesion tools, those solidified structures may support sufficient formalization
of underlying basic control principles.

There is a wide field for applications of formalized neural signal processing principles.
For instance, in Manoonpong et al. (2004) the neural dynamical Schmitt trigger is used
as a filter for auditory signals. An effective neuro-module for the control of a walking
machine is presented in Klaassen et al. (2004). It is based on non-trivial features of
the so-called SO(2) network (Pasemann et al. 2003).

The results presented demonstrate that the artificial life approach to evolutionary
robotics provides new techniques for a better understanding of the basic mechanisms
underlying a behaviour-relevant neural signal processing. Its concentration on the
control of systems acting in a sensorimotor loop allows us to find correlations
between neural structures with complex dynamical properties and the resulting
behaviour of animats acting in a physical or simulated world. Indicating fundamental
structures responsible for specific functions may allow us later on to construct relevant
control structures by hand. Furthermore, using additional techniques such as lesions of
artificial ‘brains’ and ‘electrode’ data for the active system may also allow a comparison
with neuro-biological findings.
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