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A causal system to represent a stream of music into musical events, and to generate further expected events,
is presented. Starting from an auditory front-end which extracts low-level (i.e. MFCC) and mid-level features
such as onsets and beats, an unsupervised clustering process builds and maintains a set of symbols aimed at
representing musical stream events using both timbre and time descriptions. The time events are represented
using inter-onset intervals relative to the beats. These symbols are then processed by an expectation module
using Predictive Partial Match, a multiscale technique based on N-grams. To characterize the ability of the
system to generate an expectation that matches both ground truth and system transcription, we introduce
several measures that take into account the uncertainty associated with the unsupervised encoding of the
musical sequence. The system is evaluated using a subset of the ENST-drums database of annotated drum
recordings. We compare three approaches to combine timing (when) and timbre (what) expectation. In our
experiments, we show that the induced representation is useful for generating expectation patterns in a causal
way.

1. Introduction

Since the last two decades there have been many attempts to build computational architec-
tures of musical sequence learning (Bharucha and Todd 1989, Todd and Loy 1991, Mozer
1994, Lartillot et al. 2001, Tillmann et al. 2000, Assayag and Dubnov 2004, Pearce and
Wiggins 2004, Pachet 2003). Because of the difficulty of finding a suitable computational
representation of musical signals, many of these works have assumed beforehand a par-
ticular representation of the musical sequences to process, mainly in a symbolic form.

Our main focus lies in integrating a learning system which can constantly learn the
structure of audio signals while it listens to musical events, in a way that is inspired by
cognitive principles. We propose a causal and unsupervised system that learns the struc-
ture of an audio stream and predicts its continuation. Our system uses concepts and ap-
proaches from a variety of fields: automatic music transcription, unsupervised learning
and model selection, and symbolic statistical learning. A mid-level representation of the
signal is constructed as a discrete sequence of symbols representing time dependencies
between events and timbre properties. A prediction of the subsequent symbols can then
be provided, from which the system can then predict the nature and the timing of the next
musical event. As such, the system prediction algorithm is symbolic, but the system is
responsible of producing a symbolic representation of the musical stream in an unsuper-
vised manner (i.e. the symbols are grounded on acoustic information).

From a general viewpoint, we assume a musical sequence as being a succession of
musical events with intrinsic properties (e.g. pitch, loudness, timbre) which are heard at a
given time. While the musical sequence is attended, timbre and timing patterns perceived
so far (among other musical information that is not considered in this paper) can be used
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to provide a prediction of the next musical event to be heard. The prediction can be made
over several dimensions, e.g. the timbre properties of the next event to be heard (what) or
temporal location of the next event (when). Distinct strategies may be used by listeners
to combine predictions along these dimensions. Even tough in the case of timbre recent
evidence points to the possibility that timbre dimensions (e.g., attack slope, spectral centre
of gravity, etc.) could be processed separately (Caclin et al. 2006) we will consider timbre
as a nonseparable dimension to be used for predicting events. From the physiological
literature, it seems to be a separation between the circuits dealing with the detection of
violations of musical expectancies or predictions (in the ventrolateral prefrontal cortex),
and the circuits dealing with the processing of perceptual objects and their monitoring
in working memory (in the dorsolateral prefrontal cortex and posterior parietal cortex)
(Sridharan et al. 2007).

In addition, we may assume a functional and physiological separation between sequen-
tial processing (related to musical syntax and grammar) which could take place in Broca’s
area (Maess et al. 2001) and the processing of timing information, which could be happen-
ing at the right temporal auditory cortex and superior temporal gyrus (Peretz and Zatorre
2005)). From these physiological considerations we could address the prediction of what
and when dimensions as two independent processes which may be modeled with two
independent predictors.

However, from the Auditory Scene Analysis (Bregman 1990) point of view, sound
events may be separated into different auditory objects (auditory stream segregation) or
assigned to a single auditory object (auditory stream fusion). This depends on the intrin-
sic properties of the musical events (e.g. timbre, pitch) and the events timing. If auditory
stream integration takes place, each event may be described as how it differs from the
preceding event in terms of timbre and timing. In this sense, the what and when dimen-
sions might be merged into a unique dimension, which would be modeled with a unique
next-event predictor. Finally, if auditory stream segregation takes place, a different rep-
resentation of the events has to be considered. In a perceptual experiment (Creel et al.
2004), while the statistical regularities between nonadjacent tones were hardly learned
when the musical sequence contained events which were similar in pitch or timbre, these
regularities could be acquired when the temporally nonadjacent events differed in pitch
range or timbre. Therefore, if a musical sequence can be perceptually segregated into sep-
arate timbre streams, the temporal dependencies between events might be computed (to a
certain extent) from the separate timbre stream rather than from the temporally adjacent
elements. This could be modeled by considering each segregated stream as a separate di-
mension which would be modeled with a stream-specific timing predictor. The system we
present in this article enables us to implement these three strategies and compare them
empirically using a database of annotated sequences of percussive events.

The rest of the paper is structured as follows. Section 2 introduces work related to our
approach. We present, in Section 3, the details of our system, illustrating the different
steps involved in the encoding and expectation of both time and timbre dimensions. In
Section 4 we present a set of unsupervised and supervised performance statistics and
present an experiment using a database of annotated drum excerpts. We also suggest that
the expectation entropy can be used to detect regularities in the processed audio stream.
We then discuss the results and present work directions in Section 6, and finally present
our conclusions in Section 7.

2. Related work

Because we aim at building an integrated system that is able to learn the mid-level struc-
ture of the incoming audio stream, the work we present in this section is related to distinct
fields. We first review approaches to model sequence learning applied to musical signals,
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with special emphasis in research investigating the relations between timbre and timing in
music perception and learning. Then, we review more applied works from the field of mu-
sic information retrieval aiming at providing a mid-level description of timing and timbre
in musical audio. Finally, as we are interested in investigating the learning dynamics of a
musical system while it listens to a musical stream, we present works which provide an
information-theoretic treatment of expectation in music.

2.1. Models of sequence learning and musical expectation

Sequence learning and structure acquisition have been modeled in a range of compu-
tational architectures, mostly using a symbolic encoding. One way to investigate se-
quence learning models lies in using connectionist architectures (Rumelhart and McLel-
land 1986). Early connectionist approaches to music modeling are presented by Bharucha
and Todd (1989) and Todd and Loy (1991). Among these methods, recurrent neural net-
works such as simple recurrent networks (SRN) proposed by Elman (1990) or the long
short-term memory architecture (LSTM) by Hochreiter and Schmidhuber (1997) can suc-
cessfully deal with sequences of symbols because of their ability to encode the events’
context and the fact that the size of the context is not fixed. Recurrent neural networks
have been applied to musical tasks. For instance, Mozer (1994) applies recurrent neural
networks to melody and chord expectation tasks and shows how to learn musical struc-
tures in an invariant form. More recently, Eck and Schmidhuber (2002) use the LSTM to
learn Blues improvisations. Self-Organizing maps can also be used to model music se-
quence perception (Tillmann et al. 2000). Alternatively, Markov-chain models such as N-
grams can be considered, because they provide a simple and efficient way of learning the
structure of sequences of events from a probabilistic point of view. Such techniques have
been long considered in musical applications from machine improvisation (Lartillot et al.
2001) to cognitive modeling of music perception such as Ferrand et al. (2002). We refer to
Pearce and Wiggins (2004) for a detailed review of monophonic musical sequence mod-
eling, in which several N-gram implementations are compared. Other approaches make
use of Markovian modeling to learn the structure of musical sequences in an interaction
setting, the best known being Pachet’s Continuator (Pachet 2003). Assayag and Dubnov
(2004) use the oracle factor (Allauzen et al. 1999) to encode hierarchically the presented
sequences. This latter work has been applied to audio signals by using an acoustic front
end. Jehan (2005) considers learning and prediction applied to a wider range of musi-
cal audio signals. The author suggests several computational approaches to the prediction
of musical features (e.g. downbeat prediction), but does not consider the prediction of a
representation of the musical sequence, which involves several dimensions.

2.2. Mid-level description of audio signals

In the last two decades, there has been a substantial amount of work aimed at providing a
mid-level description of musical audio. Here, we narrow our presentation to works aimed
at producing a mid-level description of musical signals in terms of timing and timbre.

2.2.1. Time description: when

First, the incoming audio stream can be described in terms of onsets, that is, the begin-
ning of a musical note or sound. This can be done, for instance, using psychoacoustical
knowledge (Klapuri 1999), deriving a detection function from spectral features (Brossier
et al. 2004, Collins 2004) or using supervised learning approaches (Lacoste and Eck
2007). The musical stream can also be described in terms of beats which characterize the
stream periodicity even in the absence of clear perceptual attacks (Scheirer 2000, Dixon
2001, Goto 2001, Gouyon and Herrera 2003, Davies et al. 2005, Desain and Honing 1999,
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Smith 1996)

2.2.2.  Timbre description: what

Apart from the time dimension, another mid-level description we are interested in is
the nature of the sounds whose attack is detected. Applied to a melody this would cor-
respond to pitch detection, but from a broader point of view this corresponds to timbre
categorization. In music information retrieval, classification of unpitched sounds has been
addressed by Herrera et al. (2002) and was followed by works focusing on the transcrip-
tion of percussive excerpts such as drums (Gillet and Richard 2004, Tanghe et al. 2005,
Yoshii et al. 2005) or beat-box (Kapur et al. 2004, Hazan 2005). While these approaches
are essentially supervised, other works have proposed unsupervised approaches to tim-
bre categorization (Paulus and Klapuri 2003, Schwarz 2004, Hazan 2005), assuming a
fixed number of timbre categories. This was followed by attempts to estimate the opti-
mal number of categories (Gao et al. 2004, Hazan et al. 2007) or to incrementally derive
hierarchies of categories (Marxer et al. 2007).

2.3. Information-Theoretic Approaches

Abdallah (2002) has considered redundancy reduction and unsupervised learning applied
to musical and spoken audio (either waveform or spectral distribution) and has defined
a measure of suprisingness rooted in perception and information theory. In this context,
music sequence models evolve as new musical event are presented. At each point in time,
the models can produce a probabilistic expectation about the structure of the musical se-
quence observed so far. Information-theoretic measures can be applied to characterize this
random process. Abdallah and Plumbey (2007) state that “the general thesis is that per-
ceptible qualities and subjective states like uncertainty, surprise, complexity, tension, and
interestingness are closely related to information-theoretic quantities like entropy, rela-
tive entropy, and mutual information.” Pearce and Wiggins (2004) use entropy and cross-
entropy to evaluate whether statistical models can learn symbolic monophonic melodies.
The entropy rate, denoted H (X |Z), reflects the instantaneous certainty of statistical mod-
els to characterize the current observations X given past observations Z, while cross-
entropy applied to test melodies informs about the generalization accuracy of a learned
statistical model. Abdallah and Plumbey (2007) extend these ideas and propose to com-
pute the average predictive information rate, noted I(X,Y|Z) which may be seen as the
average rate at which new information arrives about the present and future observations
X and Y, given past observations Z. In an experiment using a very simple Markov-chain
model applied to two Philip Glass minimalistic music pieces, the mentioned authors show
that these measures reveal the structure of the pieces in agreement with the judgment of
a human expert listener. Also, Dubnov et al. (2007) have proposed an algorithm to build
causally Prediction Suffix Trees so as to describe the redundancies of attended audio sig-
nal.

We take an intermediate approach in which we focus on the symbolic expectation of
musical audio signals through the encoding of beat-relative timing and timbre features
using a causal approach. A proof of concept for these ideas has been implemented by
Hazan et al. (2007), in which the expectation of an attended stream can be sonified using
concatenative synthesis. In this paper, we extend and refine this framework by introducing
several alternatives to timbre and timing description, cluster estimation and assignments.
Furthermore, we propose and compare three ways of combining time and timbre dimen-
sions regarding the prediction of the next event. In addition, we define a set of performance
measurements which enable us to characterize quantitatively the behavior of the resulting
system in a loop-following experimental setting.
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3. Approach

The system has the following modules: feature extraction, dimensionality reduction, and
next event prediction. These components, all of which run simultaneously when the sys-
tem is following a musical stream, are shown in Figure 1. First, the feature extraction
module is the audio front-end, which extracts timbre descriptors, onsets and beats from
the incoming signal. This module is based on the aubio library (Brossier 2006). Each
extracted hit is encoded in the dimensionality reduction and quantization module based
on both time and timbre description, following an unsupervised scheme. Therefore, we
obtain a symbolic representation of the incoming events, to be used by the next event
prediction module.

Audio to Symbolic

Feature Dimensionality Next Event
Extraction Reduction Prediction
timbre > t timb > " "
descriptors event timbre I.'16X even
class timbre class
onsets
¢ evegltasBsRIOI < nettlaBSl;\IOI
beats

Symbolic to Audio

Figure 1. System diagram. Feedforward connections (left to right) create a stream of symbols to be learned. Feedback
connections (right to left) enable symbolic predictions to be mapped back into absolute time.

3.1. Low and Mid-level Feature Extraction

3.1.1. Analysis Settings

We use a window size of 1024 samples (23 ms using a sampling rate of 44 KHz) with
50 percent overlap. We apply a Hamming window before computing the Fast Fourier
Transform to perform spectral analysis.

3.1.2. Temporal detection

Onsets and beat locations are extracted as events are presented. We present the methods
used for achieving both tasks and show how onsets and beats locations are combined to
produce a tempo-independent timing characterization between successive events.

Onset detection We compare different onset detection techniques that are available in the
aubio library. The methods we compare are the following:

e High-Frequency Content (HFC, Masri (1996)), obtained by summing the linearly-
weighted values of the spectral magnitudes

e Complex domain (Duxbury et al. 2003), obtained by observing the fluctuation of the
spectrum in the complex domain, thus taking advantage of both phase and magnitude.

e Dual: a hybrid function which combines the complex domain function with a func-
tion based on the KL-divergence.

Details and evaluation for these algorithms are available in Brossier (2006).

Beat tracking The tempo detection algorithm is based on Davies et al. (2005). This al-
gorithm is based on the autocorrelation of the onset detection function. A comb filter is
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applied to the resulting autocorrelation function, leading to an histogram of the period can-
didates. The histogram peak is then selected as the detected period, denoted Period(t).

3.1.3. Inter Onset Intervals Characterization

We propose here alternatives to characterize timing relations between events. As an
outcome of the temporal detection, the duration between successive events can be mea-
sured. These intervals can be seen as an absolute difference of onset times, or beat-relative
difference.

Inter Onset Interval If an onset occurs at time %, and the previous onset has occurred
at time ¢, we can derive the absolute Inter Onset Interval (IOI) as:

IOI(t) = teurr — tprev (l)

Beat-Relative Inter Onset Interval Based on this, for each new event, the beat-relative inter-
onset interval (BRIOI) is computed as follows:

_IOI(t)
BRIOI(t) = Period(®) 2)

where JOI(t) refers to the inter-onset interval between the current event onset and the
previous onset, and Period(t) refers to the current extracted beat period.

Cluster-wise Inter Onset Intervals Each incoming event belongs to a timbre class. In Sec-
tion 3.2 we propose an unsupervised approach to assign a timbre symbol to incoming
events. This makes it possible to compute IOI between events that belong to the same
timbre category, instead of characterizing IOl between successive events of distinct tim-
bre classes.

3.1.4. Timbre Description

We use 13 Mel-Frequency Cepstrum Coefficients (Davis and Mermelstein 1980). We
have implemented the MFCC in the aubio library (Brossier 2006) following Slaney’s
MATLAB implementation. To provide a one-dimensional description of a detected onset,
we compute the median of each coefficient over a 100 ms window starting from the onset
frame.

3.2. Dimensionality reduction and quantization

3.2.1. Bootstrap step

Before starting to effectively encode and expect musical events, the system accumulates
observations and therefore acts as a short-term memory buffer to gather statistics based on
the incoming hits. During this accumulation period, which is fixed to 40 detected events,
the system does not provide any prediction regarding the future events. The processes
involved here are (a) feature normalization, (b) Principal Component Analysis (PCA) for
dimensionality reduction and (c) estimation of the number of clusters, for both timbre
features and BRIOI. While (a) and (c) are always performed, (b) is only applied to the
timbre features, and it is optional.
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Bootstrap feature preprocessing

e Feature normalization: we normalize the accumulated timbre descriptors and
BRIOI so that they have zero-mean and unit variance. The initial distribution param-
eters are stored so that any normalized instance can be mapped back into its initial
feature space.

e PCA: A PCA can be trained on the bootstrap normalized timbre features. In this
case, instead of choosing the target dimensionality, we choose the desired amount of
explained variance of the projected set compared to the original set.

This information is stored as it enables to subsequently perform normalization and di-
mensionality reduction on new data (Figure 1, left to right connection), or the expand and
apply inverse normalization the projected data (Figure 1, right to left connection). Addi-
tionally, we also store the normalized and projected short-term history, which is used to
estimate the number of clusters to work with. This step is presented in next paragraph.

Evaluating the number of symbols The number of clusters to represent both BRIOI and tim-
bre events influences the performance of the system and has to be chosen carefully during
the bootstrap step. We perform a first cluster estimation using a grid of Gaussian Mix-
ture Models with diagonal covariance matrix, trained with the Expectation-Maximization
(EM) (Dempster et al. 1977) algorithm, following a voting procedure derived from Cour-
napeau (2006). The grid has size R * M, where M is the maximum number of clusters
we allow, and R is the number of independent runs. Each column of the grid represents R
models with an increasing number of clusters, from one to M. We train each grid model
with EM, using 20 iterations. Once the grids are trained we proceed to the model selection
step, as explained below.

Information criteria for model selection. Each grid model can be described with the
following parameters. First, the maximized likelihood, denoted by L, is a quantitative
measure of how the trained model fits the data. The number of free parameters &/, mea-
sures how complex the model is. The number of samples N is the number of instances
present in the short-term history (see previous paragraph). From this, different information
criteria (IC) have been used in the model selection literature, which are described below.
First, the Bayesian Information Criterion (BIC) (Schwarz 1978) is defined as follows:

BIC = —2In(L) + K/ In(N) (3)

The BIC strongly penalizes complex models. Models with few parameters and which
maximize the data likelihood minimize the BIC. Akaike (1974) proposes another infor-
mation criterion which penalizes less the model complexity, but does not take into account
the amount of available data.

AIC = 2K - 2In(L). @)

In Section 4, we will compare the performance of the system when either BIC or AIC
are used to determine the number of clusters in the data. To decide the final number of
clusters we compute the median over the cross-runs:

K = median; <;<g(argmin; < ;< (1C)) 5)
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As an outcome, the estimated number of timbre (respectively 10I) clusters is noted
Krimbpre (reSPeCtiVely Kiop).

3.2.2.  Running state

Once the clusters have been estimated for timbre features and BRIOI, we have to gener-
ate cluster assignments for incoming instances and update the clusters to take into account
these new instances. To achieve this, we use an on-line k-means algorithm, with each clus-
ter mean vector being initialized by the GMM model selected at the end of the bootstrap
step. A cluster is assigned to each instance x following:

ke = argming <o || — pu| (6)

where py, is the k-th cluster mean. Then the mean of the assigned cluster is updated fol-
lowing:

Apg, =n(r — py,) (7

Here 7 is the learning rate, which controls how much each new instance influences the
mean update of its assigned cluster. Values near zero have the effect of quantizing the in-
coming instance to the cluster mean, while values near one tend to shift the cluster mean
towards the instance assigned to it. We have experimented with values comprised between
0.1 and 0.9, and have also implemented an optimal learning rate schedule, following Bot-
tou (2004). In this latter case, the learning rate depends on how many instances a given
cluster centroid represents.

Then the optimal learning rate can be computed as:

1

' = o )

where nj, represents the current number of data points in cluster k.

We illustrate the overall timbre encoding process in Figure 2 using a commercial drum’n
bass pattern. The normalized distance involved in the cluster assignment step is obtained
at the end of the bootstrap step. A principal component analysis has been used to project
the internal timbre description into two dimensions.

Finally, we show in Figure 3, the BRIOI cluster assignments when processing the same
excerpt. The figure shows the unclustered BRIOI histogram (bottom), and the histogram
of clustered BRIOI (top), i.e. in which each BRIOI event has been substituted by the
current mean of its assigned cluster.

3.3. Next Event Prediction

The prediction module has to deduce the most likely future events based on the sequence
observed so far. We treat the incoming encoded signal as a sequence of symbols and use
a symbolic expectation algorithm. In this work, we use the Prediction by Partial Match
(PPM) (Cleary and Witten 1984) algorithm. In N-gram modeling, the probability distri-
bution of the next symbol is computed based on the count of the sub-sequences preceding
each possible symbol. PPM is a multiscale prediction technique based on N-grams, which
has been applied to lossless compression and to the statistical modeling of symbolic pitch
sequences (Pearce and Wiggins 2004). The probability distribution of the next symbol e;,
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Figure 2. Timbre clusters assigned to each event after exposure to a commercial drum’n bass pattern. The timbre descrip-
tors are MFCC. Crosses, squares and triangle represent points assigned to a specific timbre cluster.
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Figure 3. Unclustered and clustered BRIOI histograms after exposure to a commercial drum’n bass pattern

i—1

where 1 <7 < K, given the context sequence €(imn)11 18

i—1 -1
P(eile("— 1) = 04(6;|6(i_n)+1) 1) > 0

if c(ei|eé
’y(e(i__ln)+1)p(ei|e’(i__1n)+2) if C(€i|ezi__1n)+1) =0
-1
i—n)—f—l)
The symbol counts, given each possible subsequence of size n, are stored in a

where c(e;] eé is the number of counts of each symbol e; following the subsequence

oil
(i—n)+1°

transition table containing K™ rows and K columns. When a symbol has not appeared

after eé;_ln) 1 the model performs a recursive backoff to a lower-order context. Here

we use a PPM model with escape method C (Moffat 1990) and update exclusion, which
provides a reasonable tradeoff between accuracy and complexity.

tlet )

i (i—n)+1

’Y(ei|€ Z,In ) = i— i )
=l S c(e(ijn)+1) - t(e(i—ln)Jrl)
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. c(ei|€éi__1n)+1) (10)
ZK C(€|€Ei__1n)+1) + t(ezi—_ln)+1)

(e |€é;—1n)+1)

In Equations 10 and 9, the quantity t(eg ) is the number of different symbols which have
appeared in the subsequence €], j > i.

3.3.1.  Expectation Schemes

The PPM predictor presented above produces an expectation of the next symbol to
be observed given the observed context. We are interested in providing two predictions,
namely next IOI symbol and next timbre symbol. We propose to compare three expecta-
tion schemes whose graphical models are illustrated in Figure 4.

1. independent scheme 3. when|what scheme

T

L X N} . [ XX )
- . . timbre 1 timbre 1 timbre 1
Timbre el Tlmbret Timbre 1 101 Entl IOIt 101 4l
[ X N ] .
timbre 2 timbre 2 timbre 2
101 el 101 t 101 1 101 tntl 101 t 101 41
[ )
2. joint scheme L]
[ )
[ X N} [ X N ) .
X s . timbre N timbre N timbre N
Timbre® 101 ., Timbre® 101 Timbre® 101, | 101 il 101 ¢ 101 41

Figure 4. Graphical models of three schemes for combining what and when prediction

Independent what/when prediction scheme Two independent PPM symbolic predictors are
used. The random variables Timbre and IOI are thus considered independent.

Joint prediction scheme After the bootstrap step, the number of timbre (respectively 10I)
symbols K7;mpre (respectively Kror) has been determined. From this, a new set of sym-
bols denoted Timbre®IOI is created. This set contains exhaustive combinations of timbre
and IOl symbols, therefore it has Kr7jpre * Ko elements. This approach can lead to
high memory requirements if Kr;m,pre * K105 becomes high. In this case, a unique PPM
predictor is used to predict the symbol Timbre ® 1014 1.

When|what prediction scheme Each timbre cluster is associated with a specific cluster-wise
I0I symbol predictor (see Section 3.1.3). This means that for each timbre cluster, there is
a predictor which provides a guess of when an event belonging to the same timbre cluster
will appear.

3.3.2.  Unfolding time expectation

Based on the symbolic expectation generated, we can produce a timbre and BRIOI
symbol expectation. From this, we apply an inverse normalization of the mean of the
chosen BRIOI cluster and scale it to the current extracted tempo to obtain the absolute
time position of the expected onset for the expected timbre cluster. Following we show
in Figure 5 both transcription and expectation timelines obtained during exposure to a
drum example. Here K75 equals 3. While the beginning of the expectation timeline
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only contains events of timbre cluster #1 with random inter onset intervals, after a few
seconds events from timbre cluster #3 start to be predicted following the transcription
pattern. Then, the 10I pattern involving timbre cluster #1 events is learned, progressively
followed by the timbre cluster #2 pattern.

26 2

20 24
Figure 5. Comparison of transcription (top) and expectation (bottom) during exposure to an artificial drum pattern

Transcription

Expectation

] 12 14

1 16 18 22 8

4. System evaluation

In this section we present an evaluation of the system using a database of drum patterns.
We first introduce a range of performance metrics for this task. We then present an exper-
iment involving predictive learning of drum patterns.

4.1. Performance metrics

Our system produces an on-line transcription of the incoming audio stream and estimates,
for each run, the optimal number of clusters to be used to produce a transcription. The
transcription is used in turn to produce an expectation timeline which contains the same
number of clusters than the transcription. Consequently, by using a database of annotated
audio excerpts, several comparisons can be made. First, the transcription accuracy can
be computed. Then, the transcription and the expectation produced by the system can be
compared, without taking into account the annotations. To this respect, it would be desir-
able to know about violations of expectancies when human listeners learn these patterns.
Unfortunately such experiments have not yet been performed. Finally the expectation
timeline can be compared to the ground truth annotations. In this section, we present the
performance metrics we use to achieve all these steps.

4.1.1. Comparison with the ground truth

Precision and recall applied to unsupervised transcription 1f the sequence transcribed is la-
beled we can evaluate the analysis derived from the event detection and unsupervised
clustering processes. We use a measure introduced in Marxer et al. (2007) and Marxer
et al. (2008) that is designed to evaluate clustering when the mapping between the refer-
ence classes and estimated clusters is unknown. The confusion matrix is first constructed
by using the onset matching technique presented in Brossier (2006) adapted to multiple
classes of onsets. Let us consider C' ground truth classes and K clusters. We write n, j,
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the number of co-occurrences of class ¢ and cluster &, n. the total number of occurrences
of class c. Then we can express the precision and recall as:

P(c, k) = 1 S cico T ifC >1 i

1 otherwise.

nc,kfl

R(c, k) = { frl

if n. >' 1 (12)
otherwise.

The pairs of precision and recall of each cluster are integrated to achieve precision and
recall measures per class. The integration is performed by doing a weighted average of
the precision and recall values of the co-occurrences, among all occurrences of class c.
The total precision and recall measures are the weighted sums of the per-class measures.

We will use P and R to evaluate the transcription and prediction accuracy of our system.
When comparing the transcription timeline with the ground truth we will call the precision
measure P Transcription Incremental Precision (T1P) and R Transcription Incremental
Recall (T1R), and derive from these measures the Transcription Incremental F-Measure
(T'IFM). When comparing the expectation timeline with the ground truth we will use
the terms Expectation Incremental Precision (E1P) for P and Expectation Incremental
Recall (EIR) for R, and derive from these measures the Expectation Incremental F-
Measure (E1F M)

Other useful metrics In addition to the measures defined above, we also consider a simple
metric which compares the complexity of the system representation with the timbre com-
plexity of the attended signal. This can be done straightforwardly by computing the class
to cluster ratio as follows:

CCR — KTimbre (13)
CTimbre

where Crimpre 1S the number of different annotated timbre labels for this excerpt, and
Krimpre has been estimated at the end of the bootstrap step (see Equation 5).

Finally, it may happen, if the sensitivity of the system is low, that the bootstrap step leads
to an estimate of timbre clusters equal to one. This is clearly not desirable in the context
of evaluating a system which combines time and timbre dimension. For this reason, we
introduce another statistic, which we write P1, and define as the percentage of runs in
which the estimate of clusters led to one timbre cluster.

4.1.2. Comparing expectation and transcription

Comparing expectation and transcription timelines is an easier task than a comparison
against the ground truth, mainly because both timelines share the same cluster represen-
tation. That is, the list of transcribed event onsets indexed by cluster n can be compared
directly to the the list of expected event onsets indexed by cluster n by using onset detec-
tion related measures. We could compute the average F-measure by comparing both tran-
scribed and expected timbre cluster onset times for each of the timbre clusters. However,
such metrics cannot be considered here because of the inaccuracy of the unsupervised
encoding we use. That is, the encoder provides an approximate estimation of the number
of clusters (e.g. the encoder returns an estimate of five timbre clusters for an excerpt con-
taining three instruments). Consequently, during the running state few of these clusters are
indeed used, because a vast majority of the incoming instances are assigned to a subset of
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the estimated clusters (in the example, three of the five estimated clusters). Consequently,
the underrepresented clusters are likely to return very low F-measures, which may in turn
affect the average computed F-measure.

In Hazan et al. (2007) we have proposed to use the weighted average F-measure, which
is defined as follows:

K,
WFM = Z w; F (14)
=1

where K is the number of timbre clusters, each w; is obtained by dividing the number of
onsets assigned to cluster ¢ by the total number of onsets, and Fj is the standard F-measure
(with +/-50ms tolerance windows) between onsets assigned to cluster i. The individual
cluster-wise F-measures involved in the resulting average computation are weighted by
the proportion of events appearing in that cluster. This enables us to reduce the contribu-
tion of unused or scarcely used timbre clusters.

4.1.3. Information-theoretic viewpoint: expectation entropy

For each incoming event, the entropy of each expectation can provide information about
the certainty of the returned prediction. For each predictor, the entropy can be computed
as follows:

H(p)=— Y plelogap(e:) (15)

1<i<K

where p(e;) is the next event estimated probability distribution over the set of possible
symbols K.

In Figure 6, we show the entropy (Equation 15) of both BRIOI and timbre predictors
for the commercial drum’n bass excerpt we used as a running example. The basic loop
boundaries, which are unknown by the system, are shown using vertical lines. We ob-
serve an overall decreasing trend in the entropy curve. The basic loop consists itself of
four variations of the same rhythmic pattern, and this internal structure appears plotted in
the figure. Although we will not use the expectation entropy statistics in the experiment
presented below, the expectation entropy signal may then be used to mark temporal cues
and perform some segmentation, meter detection and accent detection tasks. This will be
investigated in future work.

>

Q. e

1.4 .

S

S .

ol AR

Do.g

Sod

g0.2-

Soo | . . . . ,

= 10 20 30 40 50 0 70 80
Time (s)

525 .

8‘2,0* | W ) A M

= a Vi AP ANV

S 1.9 NIVRRYV A VWV

FS . A Y V

oo

= 0.0! 1 1 L L L L

- 10 20 0 40 50 60 70 80

Time (s)

Figure 6. Instantaneous Entropy of timbre (top) and BRIOI (bottom) predictors for a commercial drum’n bass excerpt.
Globally, the entropy displays a decreasing trend that corresponds to the learning of the excerpt. Locally, we can see
repeating patterns reflecting the loop structure.
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Table 1. System default parameters

Parameter Value
Descriptor set MFCC
Onset detection threshold 0.6
Onset detection Method Dual
PCA explained variance 0.6
# Bootstrap events 40
Maximum N-gram order 2
Model Selection Criterion AIC
On-line K-means 7 nopt

4.2. Experiment: Loop following

Based on the performance metrics introduced above, we present an empirical evaluation
based on a database of drum loops. The task, material and system settings are presented,
then we present and discuss the results. The task we propose to simulate is the following:
the system is initialized and it does not access any previously trained model; it is exposed
to a drum loop repeated several times; once the system has accumulated enough infor-
mation to perform the bootstrap step and both timbre and IOI symbols are defined, the
transcription and expectation timelines are produced. From this, we can compute, at each
loop repetition, the statistics presented in previous section.

4.2.1. Material

We have selected a subset of audio recordings from the ENST-Drums database (Gillet
and Richard 2006). We use polyphonic drum loops played by one drummer, namely drum-
mer #2 in the database. The database consists of 49 drum excerpts (called phrases in the
database) of 9 different styles, for a total of 5627 events. Most of the database patterns
have a duration of approximately 10 seconds, that is, slightly more than the time needed
to perform the bootstrap computation. In order to observe the learning dynamics of the
system, we need to work with longer excerpts. We therefore have edited and looped the
original signals 2, 4, 8 and 10 times, depending on the experiment.

Annotations preprocessing As stated by Gillet and Richard (2006), each drum excerpt was
annotated following a semi-automatic process. For instance, each cymbal has a distinct
label and there is a distinction made between open hi-hat and closed hi-hat. Because each
drum excerpt was recorded using 8 microphones, simultaneous strokes were also precisely
annotated. The average number of timbre labels present in each excerpt included in our
subset is 5.5.

Because our system is processing the input stream with a fixed frame rate (the time
precision is 11.6 ms) and performs timbre clustering as if the input was monophonic, we
decide to apply the following ground truth preprocessing. If consecutive onsets follow one
after the other so that they lie into the same analysis frame, we merge the annotated labels
into one joint label and keep as onset time the first onset of the consecutive attacks.

4.2.2. Experimental setting

The system is designed to learn in a causal way, therefore it may learn more accurately
when being exposed to the excerpts several times: this is why we have experimented with
a number of repetitions of the basic loop of 2, 4, 6, and 8. The other parameters (e.g. onset
detection threshold, model selection information criterion, timbre PCA explained vari-
ance, next event predictor context size) are varied for comparison purposes as explained
below. Unless explicitly notified, the default parameters we use are listed in Table 1.
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Table 2. Onset detection F-measure, depending of the
method used and the peak-picking threshold.

threshold/method  complex  dual hfc

0.1 0.587 0.740  0.622
0.2 0.601 0.755 0.636
0.3 0.614 0.752  0.647
0.4 0.625 0.760  0.654
0.5 0.634 0.763  0.661
0.6 0.644 0.764  0.667
0.7 0.650 0.763  0.671
0.8 0.659 0.763  0.675
0.9 0.664 0.762  0.678

4.3. Implementation

Our current implementation is named billabio, as it uses concepts from both aubio
(Brossier et al. 2004) and billaboop (Hazan 2005) projects. The components of billabio
are written in the Python programming language, which the exception of the audio analy-
sis processes, which are implemented in C. Both dimensionality reduction and next event
prediction modules, constituting the machine learning algorithms, are implemented us-
ing numpy?. Additionally, we use the em package (Cournapeau 2006) for applying the
Expectation Maximization Algorithm, and the mdp package (Berkes and Zito 2007) for
performing the Principal Component Analysis.

4.4. Results

This section presents the results of the evaluation whose details are presented in previous
section. Because our expectation system is made of several components, we first present
the evaluation of these components in isolation. Then, we provide an overall system eval-
uation based on the system transcription and expectation accuracies.

4.5. Evaluation of system components

It is possible to evaluate some of the system components by providing them as input the
data which can be extracted from the ground truth. Given the ground truth annotations
(i.e. onset times and labels), we can evaluate some processing stages of the system, such
as onset detection and timbre clustering, in isolation. Other stages cannot be directly eval-
uated with the annotations. The ENST-Drum data is not beat-marked, consequently we
have not performed an evaluation of the beat tracking component, and refer to Brossier
(2006) for an evaluation of this component. Also, some components rely on a symbolic
representation of time. This is the case of the IOI clustering component which provides
IOI cluster labels as output, and the next-event prediction component, which uses 101
cluster labels as input and output. We refer to Pearce and Wiggins (2004) for an evalua-
tion of the symbolic expectation component. Consequently, we present here the results of
the onset detection and timbre clustering processes.

4.5.1. Onset Detection

The evaluation of the onset detection stage is provided in Table. 2. We compare the
onsets extracted by the onset detector component with the onset times provided by the
ENST ground truth.

Table. 2 shows that the F-measure is maximized using the dual detection method. In
this case, the threshold setting which leads to the best F-measure is 0.6. In subsequent

lhttp://aubio.org
2http://numpy.scipy.org
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experiments, we will set the parameters of the onset detection component to method dual
with threshold 0.6.

4.5.2.  Timbre Clustering

We report here the results obtained when evaluating the timbre clustering component.
We propose two evaluation settings in which the inter-onset regions processed by the
timbre clustering component are obtained differently. In the first configuration, the regions
correspond to the onsets provided by the ground truth of the ENST-drums database. Thus
we evaluate the timbre clustering component in isolation. In the second configuration,
the audio regions correspond to the onsets computed by the onset detection component,
consequently we evaluate the overall accuracy of the combination of onset detection and
timbre clustering components.

The timbre clustering accuracy is largely influenced by the outcome of the bootstrap
process, in which a PCA can be trained on the bootstrap data, and the estimation of the
optimal number of clusters is performed. For this reason, we vary the PCA desired ex-
plained variance between 0.1 and 0.8 (or do not perform PCA at all), and the information
criterion to be used (either BIC or AIC).

In Table 3 we present the mean transcription statistics obtained when varying these pa-
rameters. For each run, we report the Transcription Incremental F-measure (TIFM), the
class to cluster ratio (CCR) and percentage of estimates, and the percentage of estimates
leading to one timbre cluster (P1). The second and third columns present the results ob-
tained using the ground truth onsets, while the forth and fifth columns present the results
using detected onsets.

On the one hand, the results corresponding to ground truth onsets show that the combi-
nation of the amount of data compression (controlled by the PCA desired variance) and
the information criterion play an important role in the out-coming timbre representation.
In all cases, the TIFM lies between 0.509 and 0.572. The TIFM average for runs based
on AIC (respectively BIC) is 0.551 (respectively 0.536). However we see that AIC-based
estimation leads to a better estimation (mean CCR 0.753) than the BIC-based estimation
(mean CCR: 0.514). If both criteria tend to estimate less clusters than the ones available
in the ground truth, the AIC estimation tends to produce a higher number of timbre clus-
ters. This is reflected in the P1 measure: AIC-based runs estimate a single cluster less
frequently than BIC-based runs. Overall, the AIC criterion can be seen as more sensitive
than the BIC. From this, the choice of the PCA explained variance is a tradeoff between
higher TIFM (low PCA explained variance) or higher CCR (high PCA explained vari-
ance). Situations resulting in one single cluster render the clustering process useless, since
there is no information gain. The P1 statistic shows that the BIC-based estimation leads to
a unique timbre cluster in 20.21% of the runs in average, while the P1 of AIC-based runs
has a mean of 0.6%. For the subsequent experiments, we choose to perform the bootstrap
estimation with the AIC criterion and a PCA explained variance of 0.6, as a tradeoff to
maximize both TIFM and CCR.

4.6. Expectation

After the system has completed the bootstrap step it generates expectations. From this
moment, we can evaluate how generated expectations match both transcription and ground
truth. We now present the distribution of the expectation statistics obtained when attending
each excerpt of the ENST subset as described in previous section.

4.6.1. Influence of exposure

In this experiment, we aim to show the impact of exposure in the system predictive
accuracy. Our initial guess is that the system is sensitive to exposure, but we aim at quan-
tifying how each expectation scheme is sensitive to repeated patterns. For each expectation
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Table 3. Timbre clustering statistics for different bootstrap settings depending on the PCA desired explained variance (“No” means no PCA
is applied during bootstrap). The columns show the information criterion used. AICgr and BIC g7 corresponds to runs that use the
ground truth onsets. AIC g and BIC't r correspond to runs using the detected onsets. For each run, the measures presented are, from left
to right, Transcription Incremental F-measure, Class to Cluster Ratio, and Percentage of estimates leading to one timbre cluster.

PCA var./Information Criterion AlICqr BICgT AICTR BICrgr

0.1 0.5720.521 6.382  0.5390.369 19.178  0.5720.521 2.127  0.539 0.369 29.787
0.2 0.5650.5198.510 0.5250.35319.148  0.5650.5192.127  0.525 0.353 34.042
0.3 0.5700.4954.255 0.5390.36621.276  0.570 0.495 2.127  0.539 0.366 31.914
0.4 0.549 0.654 2.127  0.556 0.468 14.891  0.542 0.659 0.000  0.539 0.441 21.276
0.5 0.559 0.847 0.000  0.551 0.550 10.631  0.519 0.819 0.000  0.5500.579 19.148
0.6 0.5220.896 0.000  0.548 0.6358.512  0.526 0.904 0.000  0.557 0.590 17.021
0.7 0.536 0.958 0.000  0.5450.649 8.512  0.516 0.899 0.000  0.553 0.569 23.404
0.8 0.5450.956 0.000  0.5150.620 19.143  0.5220.883 0.000  0.558 0.475 25.531
No 0.5450.933 0.000  0.509 0.624 19.571  0.502 0.891 0.000  0.556 0.469 26.341

scheme, we report in Figure 7 four independent runs in which we present to the system
each drum pattern repeated 2, 4, 6 and 8 times. All schemes are characterized by a high
EIP (greater than 0.65 in all cases) and a lower EIR (lower than 0.42 in all cases).

As expected, when the number of repetitions increases we observe an increase of all
expectation statistics. In the case of the joint and independent schemes, the WFM has the
biggest increase, which means the PPM expectator can take advantage of the repetitions
to learn to provide a prediction which fits its transcription. The other expectation statistics,
which are related to the ground truth, also increase -to a lesser extent- with an increasing
number of repetitions. The when|what scheme expectation statistics are less affected by
an increase in the number of repetitions. For this scheme, the EIFM decreases when the
number of repetitions goes from 6 to 8.

joint indep
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whenwhat
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Figure 7. Comparison of expectation statistics (EIP, EIR, EIFM, WFM) as a function of the number of repetitions of a
given loop. The three expectation schemes are compared. Left: joint scheme, middle: independent scheme, right: when|what
scheme.

4.6.2. Influence of context size

As the PPM predictor we use to provide a prediction of the next event is based on the
observation of a context of fixed size N (see Section 3.3), we are interested in measuring
the impact of the prediction context size. Indeed, the number of past items involved in the
posterior probability computation may affect the behavior of the learner by biasing it with
predictions which are too general (low N), or by overfitting the prediction (high N). In
Figure 8 we show the average expectation statistics (EIP, EIR, EIFM and WFM) plotted
against the size of the context length N, which is varied from 1 to 6.

Overall, the joint scheme leads to the highest EIR and EIFM while the independent
scheme leads to the highest EIP. Both independent and joint schemes exhibit a similar
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Table 4. Expectation Onset detec-
tion statistics (F-measure, Precision,
Recall) compared to the ground
truth.

joint  indep  when|what
0.613  0.619 0.424

dependency to context size. Both models exhibit an increase of the WFM when the context
size varies from 2 to 4, and the independent scheme WFM grows along the context size.
This is not the case of the when|what scheme, in which the expectation statistics exhibit
almost no variation with an increasing context size.
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Figure 8. Comparison of expectation statistics (EIP, EIR, EIFM, WEM) as a function of the number of repetitions order
used used to provide a prediction of the next event. The three expectation schemes are compared. Left: joint scheme, middle:
independent scheme, right: when|what scheme.

4.7. Expected onset detection

Finally, we report in Table 4 the results of comparing the train of expected onsets, with the
ground truth onsets. The parameters we use are the default values presented in Table 1.
These figures can be compared with the results obtained in the onset detection evaluation
in Table 2. The joint and independent schemes lead to an expected F-measure which is
above 0.6. The when|what scheme leads to poorer onset expectation results.

Overall, the evaluation reported here shows that the expectation schemes have distinct
behavior with respect to the variations of the expectation statistics depending of exposure
and context size. While the joint and independent schemes have a similar behavior (the
joint scheme slightly outperforms the independent scheme in most of the cases) and de-
pendency to exposure and context size, the when|what scheme exhibit worse performance
and a smaller dependency on exposure and context size. These findings will be addressed
in the discussion.

5. Examples

Let us now explore our system in more detail with two examples from the ENST data
base. The two drum patterns have contrasting degrees of complexity: phrase_ disco_ sim-
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ple_ slow_ sticks (simple disco) and phrase_ funk_ complex_ fast_ sticks (complex funk)
(Figure 9). No source separation is performed as a preprocessing step. Therefore, it should
be considered how many different percussion sounds appear in the drum samples and how
many different combinations appear (Table 5), since each sound combination may lead to
a different cluster. We have calculated the matching matrix between the annotated onset
events (’score’) of a class (e.g. chh_bd=closed hi-hat and bass drum played synchronously)
and the detected onsets of a cluster that has emerged in our system. In this matching matrix
we can iteratively yield the maximal entry thereby establishing a connection between a
row (class) and a column (cluster). After elimination the row and column of the maximal
entry we determine the maximal entry again until the matrix vanishes. This procedure
endows us with an optimal mapping between the classes and the clusters. In Figure 9,
we display sequences of classes and clusters on the same line if they are interconnected
through this mapping. For the simple disco pattern (Figure 9 c), it can be seen that frag-
ments of the basic pattern bass/open hi-hat/snare/closed hi-hat are captured. The single
cymbal instance is not captured. However, one cluster (second highest row) can be inter-
preted as detecting the sustain phase of the cymbal (three hits). The first half of the looped
complex funk pattern is shown in Figure 9 (b) and (d). The number of extracted clusters
(six) is less than the order of occurring combinations of percussion sounds (twelve). Sev-
eral sound combinations occur sparsely. The mapping between sounds and clusters is not
clear. The expectations cannot capture the complexity of the pattern well.
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Figure 9. Clustering, score (’x’), extracted cluster sequence ('0’) and expected events (*>’) according to the independent
scheme for a simple and a complex drum pattern. (bd=base drum, sd=snare drum, chh/ohh=closed/open hi hat,crl=crash
cymbal) (a) The first two principal components of the simple disco pattern. (b) The score of a simple disco pattern with
alternating bass, hi-hat, snare, hi-hat. We show the 3rd run of the repeated drum pattern. The expectation is learned well.
(c) Score of the highly irregular Funk percussion pattern. (d) For the highly irregular Funk pattern the system reaches its
limits (cf. text).
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Table 5. Numbers of percussion sound classes
(perc.) and of used combinations of percussion
sound classes (comb. perc.) in the two examined
drum patterns.

drum loop #perc. #comb. perc.
simple disco 5 5
complex funk 5 12

6. Discussion and future work

We have presented a system that addresses simultaneously the detection of temporal and
timbre events, their categorization, and the prediction of forthcoming ones. The idea of
describing the what/when musical stream through the formation of a set of time and tim-
bre categories is rooted in experimental findings. For instance, Srinivasan et al. (2002)
study how humans can create instrument categories when exposed to acoustic cues, while
the formation of rhythmic categories is investigated in (Desain and Honing 2003). Fur-
thermore, we have discussed 3 different architectures, some of them having more physio-
logical and cognitive plausibility than others. Independently of the architecture used, we
have defined two main processing constraints, namely unsupervised learning and causal
processing. In our approach, we do not cope with an incremental learning approach which
is capable of constantly modifying itself by adding or removing clusters representing cat-
egories of timbre or durations. Instead, during a bootstrap phase of the system, the number
of clusters is estimated and they are initialized, before generating expectations. However,
the constraints make our approach distinct to engineering approaches to timbre transcrip-
tion, in which the target timbre categories are known in advance, and this has motivated
us to define new measures to evaluate both unsupervised transcription and unsupervised
expectation tasks.

We have run an evaluation of two system components (onset detection and timbre clus-
tering) and the combination of those two, which represent the unsupervised transcription.
These experiment have shown that the way the information is represented (e.g. by varying
the PCA explained variance) and the information criterion we use influence the timbre
events representation. The Incremental F-measure proposed by Marxer et al. (2008) is a
means of evaluating how close the set of symbols is to the ground truth labels. However,
additional measures are needed to assess the sensitivity of the system. The Akaike infor-
mation criterion does not penalize the complexity as much as the Bayesian information
criterion does. We find that the Akaike criterion coupled with a moderate compression of
the timbre features (i.e. PCA explained variance of 0.6) leads to the best tradeoff between
complexity and similarity with the ground truth.

In a way, our approach of calculating expectations from duration sequences is comple-
mentary to generating expectations from the the extracted beat, beat weight, or metrical
hierarchy, e.g. based on autocorrelation and wavelet analysis (Smith 1996). Although beat
based expectation schemes are not considered here, especially the phase of an onset rela-
tive to the beat or some rhythmical cycle/bar are important in the investigated drum loops.

However, in none of the evaluated configurations we have been able to reach an Incre-
mental F-measure higher than 0.572. This figure can be compared to the best performing
MIREX 2005 entry Yoshii et al. (2005), with an average F-measure of 0.659. But in this
latter work the task was to generate the transcription using three predefined timbre classes.
Consequently, the evaluation measures differ.

To increase the transcription accuracy, we aim at investigating how to combine a short-
term representation of timbre and time (e.g. bootstrap estimation) with a longer-term rep-
resentation which may involve a database of predefined timbre categories.

Concerning the performance of the whole expectation system, we can make a distinc-
tion between the independent and joint schemes, for which expectation performs in the
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same order of magnitude and depends on repetitions and context size, and the when|what
scheme, for which expectation performs worse and depends less on training duration and
context size. To explain this, we assume that the accuracy of the when|what scheme is
more crucially altered by errors in the transcription, because these errors generate in turn
errors in the representation of timing events by creating erroneous clusters of inter-onset
intervals. From a computational point of view, these architectures may be seen as parallel
processing paths. The independent and joint schemes need more information to be stored
(because transitions between timbre events are also encoded). The joint scheme space
requirements are higher because the transitions between all combinations of timbre and
time symbols are stored. From a musical point of view, the independent and joint schemes
would be able to code information about the musical surface, such as melodies or drum
solos.

Contrastingly, the transitions between timbre events are implicitly coded in the
when|what scheme. This makes its space requirements low when representing rhythms
(e.g. the time dependencies between onsets with same timbre are simple, even if the sum
of onsets over timbre forms a more complex structure). However, to be properly applied to
musical audio signal, this scheme requires the transcription component to perform source
separation (e.g. via independent component analysis or non-negative matrix/tensor fac-
torization) instead of merging together simultaneous attacks and to provide more reliable
results.

Whereas the independent scheme of inter-onsets captures rhythmical aspects encoded
as durations between onsets, the independent scheme of timbres encodes the regularities
in the pure order of the events abstracting from specific durations. The plausibility of
the when/what scheme versus the independent schemes depends on the degree of stream-
ing. If a strong tendency towards streaming yields the perception of separate synchronous
rhythms (for each particular percussion sounds, e.g. the hi-hat or bass drum rhythm in
isolation), the when/what scheme is preferred over the independent scheme. The more
interdependent the sound classes and their durations (more precisely: 10Is) the more ap-
propriate the joint scheme. Overall our system could take advantage of combining these
three schemes, which represent different statistical and musical viewpoints for pattern
matching and expectation tasks.

The work presented here emphasizes the expectation as being a central process in-
volved in music listening. We can use expectation as a measure for musical complexity.
Expectation describes structure by inducing a segmentation through points of high or low
expectation. Finally, in the context of causal modeling, we can see the expectation as
a dynamic top-down control which may modulate lower-level processes such as onset
detection. In our what/when prediction framework, the expectation feedback can be pro-
vided to timbre-specific event detectors. In the context of musical audio analysis, we view
models of music expectation as general components able to dynamically accumulate the
structure of the musical environment, and where the expectation signal may help to solve
more specific musical tasks.

7. Conclusion

We have presented an unsupervised and causal approach to transcribe, encode and gener-
ate what and when expectations based on constant-tempo musical audio, using both timbre
and timing dimensions. Alternatives to combining these two dimensions have been pre-
sented and evaluated. We have illustrated the steps involved in the feature extraction, di-
mensionality reduction and expectation processes and we have compared these steps when
the system processes percussive material. A set of statistics, either supervised or unsuper-
vised, has been presented to characterize the system’s learning abilities. An evaluation of
the system components has been performed. This enabled us to find the most suitable pa-
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rameters for the transcription component. From this, three expectation schemes, namely
independent, joint, and when|what schemes have been compared. Our current results show
that the joint scheme leads to the highest expectation statistics, and is slightly followed
by the independent scheme. Both schemes exhibits a greater dependency to number of
repetitions and context size than the when|what scheme. For this latter scheme, the lower
expectation accuracy may be explained by the transcription errors which directly affect
the architecture. Then, we have discussed our approach and main assumptions. We have
suggested that the expectation signal (e.g. expectation entropy) may describe the structure
of musical patterns in a causal manner, Finally, we mentioned future directions to improve
the existing system. The contribution presented here can serve as a basis for designing an
unsupervised interactive music system driven by cognitive principles, pattern recognition
and predictive learning.
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