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Towards Automated Artificial Evolution for
Computer-generated Images

SHUMEET BALUJA, DEAN POMERLEAU & TODD JOCHEM

In 1991, Karl Sims presented work on artificial evolution in which he used genetic
algorithms to evolve complex structures for use in computer-generated images and anima-
tions. The evolution of the computer-generated images progressed from simple, randomly
generated shapes to interesting images which the users created interactively. The evolution
advanced under the constant guidance and supervision of the user. This paper describes
attempts to automate the process of image evolution through the use of artificial neural
networks. The central objective of this study is to learn the user’s preferences, and to apply
this knowledge to evolve aesthetically pleasing images which are similar to those evolved
through interactive sessions with the user. This paper presents a detailed performance
analysis of both the successes and shortcomings encountered in the use of five artificial
neural network architectures. Further possibilities for improving the performance of afully
automated system are also discussed.

KEYWORDS: Atrtificial neural networks, computer-generated images, genetic algo-
rithms, genetic programming.

1. Introduction

In automating a system to produce aesthetically pleasing images, two fundamental
components must interact. The first component encompasses the mechanisms to
create images. The second component must evaluate the images and choose the
next move. The system developed here draws from the field of genetic algorithms
and genetic programming for the mechanisms used to create potentially pleasing
images. The tool used to evaluate the images produced by the genetic procedures
is an artificial neural network.

Genetic algorithms were chosen as the method for creating images because they
are general-purpose tools designed to explore irregular, poorly characterized func-
tion spaces. One such function space is the space of possible pixel images. With the
aid of a genetic algorithm, a user can explore the space of images. This exploration,
although dependent upon the user, is aided by the mechanisms inherent to the
genetic algorithm. Karl Sims showed this to be a very effective method of creating
aesthetically pleasing images (Sims, 1991). In viewing genetic algorithms as a search
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tool, perhaps a better explanation of the role of the genetic algorithm is to emphasize
their ability to ‘find’ appealing images rather than to create appealing images. This
distinction will become apparent throughout this paper. The goal of this work is to
automate the process of finding aesthetically pleasing images—to simulate the
constant interaction of the user.

Atrtificial neural networks (ANNs) are the principal tool used in automating the
evaluation of images. There were several reasons for choosing AN N s over other
potential methods for addressing this problem. Perhaps the most important moti-
vation was that the desired computation can be ‘programmed’ into the ANN by
repeatedly presenting examples of the desired behavior. This property allows ANNSs
to perform tasks for which creating explicit rules may either be an overwhelming or
an extremely time-consuming endeavor. This property also maps well to the
requirement of the task. It is often the case that a user will be able to decide whether
or not a particular image is appealing, but will find it difficult to express what
particular characteristic, or set of characteristics, makes it appealing. For many
rule-based systems, this constraint would make the task of automating the user’s
role extremely difficult. However, as ANNs only require examples of desired
behavior, this small amount of information may be enough. This ability must also
be considered in light of the drawbacks it presents. If the ANN is able to perform
the task on which it is trained, in other than the simplest of tasks, it becomes a very
difficult undertaking to determine what the ANN has ‘learned’, and an even harder
task to translate the knowledge embedded in the ANN into understandable rules.

In order to ensure that there is as little bias as possible in the ANN, the raw
two-dimensional image is used as the input into the ANN. This ensures that the
ANN is not limited to the features which the experimenters deem to be important;
rather, the ANN can develop the features necessary for accomplishing the task.

The remainder of this section gives an introduction to image evolution. In
Section 2, image evolution is explored in depth, through the perspective of the
genetic algorithm. Section 3 describes how the user can create images using the
genetic algorithm’s search mechanisms. Section 4 describes several attempts to
automate the user’s role with artificial neural networks. Section 5 compares the
ANN architectures explored in Section 4 on a sample test set. Section 6 describes
how the trained AN Ns can be used to automate image evolution, and presents Six
automatically evolved images. Finally, Section 7 presents methods of improving the
automation of future systems.

1.1. Image Evolution

In 1991, Sims presented a novel approach for combining genetic algorithms with
computer graphics (Sims, 1991). The system which Sims designed allows users to
evolve complex figures without concern for the mathematics used to generate the
images. The interface is simple: given a number of initially random figures, the users
select the two which are the most interesting. These figures are used as “parents’ to
produce a subsequent population of ‘offspring’. The offspring possess some attri-
butes of both parent images. From the new population of images, two parents are
selected, and the cycle continues. Through this iterated process of interactive
selection, the images, which may have started out as simple, uninteresting lines, can
become interesting images which the users have evolved under their guidance.
Sims extended his work beyond the production of figures; he also explored the
evolution of solid textures, three-dimensional plant structures and animations. One
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of the most attractive aspects of this style of interactive graphics development is that
it abstracts many of the cumbersome details of image production away from the
users. The users are not required to know how the graphics are generated, how
offspring are produced from two parent images or how the images are internally
represented.

The power of this method lies in the ability to direct the progress of evolution.
Perhaps the easiest way to describe both how and why this process works is by
analogy. By selecting some images to be the parents of the next generation, and not
selecting others, the users create a bias in the evolution based upon their own likes
and dislikes. The figures which are ‘strong’, with respect to the users’ tastes, are
more likely to be selected as the parents of the next generation. Assuming that the
parent ‘chromosomes’ (the internal representation of the images) have a means to
pass their ‘qualities’to their children, the characteristics found in the parent images
are also found in varying degrees in members of the subsequent populations.
Continuing this analogy, Darwin’s theory of survival of the fittest plays an integral
role in explaining how subsequent populations become closer to the users’ prefer-
ences. The users’ preferences are the basis of the fitness function. Through a
number of generations, the characteristics which the users do not find interesting
will not be selected for recombination. Only the images which contain characteris-
tics which the users find interesting will be selected; therefore, only these will
influence the composition of subsequent populations.

The image evolution employed in this study, and in Sims’ work, uses symbolic
expressions in prefix form to specify images. These expressions specify how to
calculate a color value for each pixel coordinate on a two-dimensional plane. Upon
selection of two parent images, the images are recombined through the use of genetic
cross-over and mutation operators. Details of these operators and the primitives
which comprise the defining expressions are given in Section 2. From the two
parents, a new population of children is produced, and the cycle is continued.

1.2. Background Information

One of the most attractive features of the type of evolution described in the previous
section is the simplicity of the users’ role; users only have to select the images which
they find interesting. Although Sims used this basic idea for evolution in a variety
of domains, the scope of this study is limited to two-dimensional images. The ideas
presented here can be extended to the other domains examined by Sims, as the
principles underlying each are very similar.

The central objective of this study is to learn the user’s preferences and to apply
this knowledge to evolve images which are similar to those evolved through
interactive sessions with the user. In the system described to this point, the user
must remain an active participant throughout the entire evolution, continuously
selecting two images to be the parents of the subsequent generation’s population.
To attempt to learn a user’s preferences, the user is asked to rate interest in each
image in a set of collected sample images. These ratings are used to train an artificial
neural network, which receives as training examples an image and the user’s rating
of the image. It is hoped that the artificial neural network will be able to generalize
user preferences to images not in the initial sample, thereby making possible an
automation of the selection process. This has the potential to reduce participation
of a user to only judging a small set of images, rather than supervising the entire
evolution.
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2. Simulating Evolution with Genetic Algorithms
2.1. An Introduction to Genetic Algorithms

The genetic algorithm (GA) is established upon the foundations of natural selection
and genetic recombination. A GA combines the principles of survival of the fittest
with a randomized information exchange (Goldberg, 1989). Although the informa-
tion exchange is randomized, the GA is far different from a simple random walk.
A GA has the ability to recognize trends towards optimal solutions, and to exploit
such information by guiding the search toward them.

A genetic algorithm maintains a population of potential solutions to the objective
function being optimized. The initial group of potential solutions is determined
randomly, These potential solutions, called ‘chromosomes’, are allowed to evolve
over a number of generations. At every generation, the fitness of each chromosome
is calculated. The fitness is a measure of how well the potential solution optimizes
the objective function. The subsequent generation is created by recombining pairs
of chromosomes in the current generation. Recombination between two chromo-
somes is the method through which the populations ‘evolve’ better solutions. The
solutions are probabilistically chosen for recombination based upon their fitness.
Although the chromosomes with high fitness values will have a higher probability
of being selected for recombination than those which do not, they are not guaran-
teed to appear in the next generation. The ’children’ chromosomes produced by
the genetic recombination are not necessarily better than their ‘parent’ chromo-
somes. Nevertheless, because of the selective pressure applied through a number of
generations, the overall trend is towards better chromosomes.

In most applications which employ genetic algorithms, the objective function is
well defined. However, for this application it is not easy to define a clear objective.
Although it is simple to say that the objective is to search for ‘interesting’ shapes
and figures, this leads to further complications. Not only does ‘interesting’ vary from
person to person, it also vanes in an individual from instance to instance. In this
system, the user has an integral role in deciding which images are interesting, and
therefore serves the role of the objective function. This will be explored in greater
detail in Section 2.4. Once the user has supplied the evaluations, the genetic
algorithm can proceed in the same way as a standard genetic algorithm using a
clearly defined objective function.

In order to perform extensive search, genetic diversity must be maintained.
When diversity is lost, it is possible for the GA to settle into a local optimum. The
basic GA uses two fundamental mechanisms to maintain diversity. The first,
mentioned above, is a probabilistic scheme for selecting which chromosomes to
recombine. This ensures that information other than that which is represented in
the best chromosomes appears in the subsequent generation. Recombining only
good chromosomes will cause the population to converge very quickly without
extensive exploration, thereby increasing the possibility of finding only a local
optimum. The second mechanism is mutation, which helps to preserve diversity
and to escape from local optima. Mutations introduce random changes into the
population.

The GA is typically allowed to continue for a fixed number of generations. At
the conclusion of the specified number of generations, the best chromosome in the
final population, or the best chromosome ever found, is returned. Unlike the
majority of other search heuristics, GAs do not work from a single point in the
function space. Many methods which use only a single point to explore the function
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space are very susceptible to local optima. GAs continually maintain a population
of points from which the function space is explored; this aids in finding global
optima (Baluja, 1992).

2.2. The Composition of Chromosomes

In many optimization problems for which GAs are used, the chromosomes are
represented as bit strings. Although such a representation is possible for this task,
a more natural representation is symbolic prefix-order expressions. The set of 19
primitives from which the symbolic expressions are composed is shown below. The
set of primitives used in this study is smaller and simpler than that chosen by Sims.
If interesting images are to evolve, the GA must combine only these simple
primitives in novel ways. The primitives are categorized into two classes, those
which take one argument, and those which take two.

One argument:  reciprocal (1/argument), natural log, log (base 10), exponent,
square, square root, sine, hyperbolic sine, cosine, hyperbolic
cosine.

Two arguments: average, minimum, maximum, addition, subtraction,
multiplication, division, modulo, random (randomly choose
either argument 1 or argument 2).

Using these simple primitives, a sample equation might be

subtract (log(x), avg(sqre(y), log(x)))

where x and y represent coordinates on the pixel plane. One method of increasing
the diversity in the images produced is to add new primitives. For example, with
the primitives which Sims allowed, such as iterative statements, fractal images can
also be evolved. Some of the other primitives which Sims included were noise
generators, blur operators and bandpass convolutions. Several of these primitives
rely upon neighboring pixel values; the primitives chosen for this study do not.
Further, each of the primitives are functions of x and/or » only. For simplicity, no
explicit constants are used in the equations. The next section will show how these
equations are used in genetic recombination.

2.3. Recombination of Chromosomes

The effectiveness of GAs lies in their ability to recombine good solutions to produce
potentially better solutions. As chromosomes are, in many GA tasks, represented
as fixed-size bit strings, cross-over operators are usually straightfonvard: a randomly
chosen section of bits from the two parent chromosomes are swapped, and the two
resulting chromosomes are the offspring. However, as the potential ‘solutions’ used
here are not bit strings, this simple form of cross-over is not appropriate for two
reasons. First, restricting the growth of equations to a fixed size may be detrimental
to the production of interesting images, as larger equations may result in more
interesting images. Simple swapping may not work, as a long expression may not
have corresponding counterparts in shorter expressions. Second, it is not evident
how such a simple cross-over can be implemented, since two equations may have
different structures, as shown in Figure 1.

In order to provide a general cross-over mechanism, a cross-over operator
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Figure 1. Two unigue chromosomes structures which may be ‘bred’ together to
produce ‘children’ chromosomes.

commonly employed in ‘genetic programming’ tasks is used (Koza, 1992). It
designates one parent to be a ‘receiver’,and the second to be a “‘donator’. Once the

roles have been assigned, the cross-over procedure is as follows.

(1) Randomly choose a node in the donator’s tree structure.

(2) Randomly choose a node in the receiver’s tree structure.

(3) Delete everything at, and below, the chosen node in the receiver’s tree.

(4) Copy everything at and below the donator’s chosen node to the receiver’s
chosen node.

Figure 2 shows five of the possible children of the two equations shown in Figure 1.

2.4. Assessing the Fitness of a Chromosome

The objective of the GA is to find ‘interesting’ shapes and figures. In order to avoid

the complexities_ involved with attempt_ing to rc11uar_1tifsy the quality of being
dnteresting’, the issue Is not addressed directly. In this system, as weéll as Sims

system, the user plays an active role in deciding what is interesting: the user’s
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Figure 2. Five potential children of sin(cos(avg(x,log(>)))) and subtract (Jog(x),
avg(sqrt(yv),log(x)). For these examples, the first equation is defined as the receiver

and the second as donator.
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preferences are the objective function. If an image in the current population satisfies
a user’s objective in evolving images, its chances of being chosen increase above the
others. This not only avoids the problems associated with quantifying interest, it
also does not limit the program to one interpretation of ‘interesting’. The drawback
to this method is that it requires the constant interaction of the user. In Section 4,
methods for automating the interaction are presented.

2.5. The Need for Preserving Diversity in Genetic Search

Maintaining diversity is crucial to performing productive genetic search. If diversity
is not maintained, premature convergence of genetic search can lead to non-optimal
solutions. In the context of GAs used for function optimization, premature conver-
gence can correspond to finding a strong local optima. In the context of image
production, loss of diversity may cause the images produced after convergence to
be very similar to each other. Unless the user is satisfied with the types of images
produced, further attempts at search may be unproductive.

Three mechanisms are used to preserve diversity. The first is the alternating of
roles between the two parents as receiver and donator. The second is inherent to
the system: the users are free to choose images which are to their liking or which
are simply “different’from the other images on the screen. As a brief observation of
users has shown, users will often choose an image because it is different from the
other images on the screen. The third mechanism is mutation, which is described
below.

2.5.1. Mutation. Recombining similar chromosomes over a number of generations
can cause subsequent populations to converge very quickly. Mutation is a mecha-
nism used to avoid stagnation in genetic search. In genetic algorithms which use
chromosomes represented as bit strings, mutation is usually implemented as a
random bit flip. In this system, the mutation operator selects a random node within
the equation, and randomly changes its contents. If the function at the node has
only one parameter, the new function is randomly chosen from the set of one-pa-
rameter functions, and similarly for two-parameter functions. If the node contains
an ‘X’, it is changed to ‘y’, and vice versa. The mutation rate used in this study is
a constant one mutation per chromosome per generation.

3. Interactively Evolving Computer-generated Images

The description of the user interface is not critical in understanding the methods
used to automate the system. It is included to provide a description of the role of
the user, and therefore of the task which will be automated.

3.1. The User Interface

When the program is initialized, nine images are displayed on the screen. These
images correspond to nine randomly generated expression trees (chromosomes),
using the primitives described in Section 2.2. Two of these images are selected by
the user to be the parents of the next generation. From the chosen parents, nine
new children are produced which replace the previous nine images displayed. This
process is repeated until the user has found an image which is satisfactory.
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The images are composed of 256 colors. There were two motivations for using
only 256 colors. The first was that by the use of only a few colors, the emphasis in
the images is shifted away from the colors in the image to the structures produced.
Secondly, and more importantly, 256 colors allowed an easier implementation of
the training phase of the ANN. This will be discussed in greater detail in Section
4.

Unlike Sims’ work, the possible colors were determined before the evolutionary
process was started. However, this could easily be modified to allow the color
selection to also be evolved. The color scheme chosen was 128 shades of grey,
followed by 128 shades of red. We found that this gives pleasing results, partially
because of the simplicity in the color scheme, and partially because it creates an
artificial boundary between the bright white and very dark red colors.

3.1.1. Using the image repository. In addition to the nine images with which the
user is presented, the user may, at any time, also store and recall images from the
image repository. If the user decides that the population has become too homoge-
neous, as in Figure 3, the user has the option to save the image repository to disk
for later use, and to load previously saved images into the repository for immediate
use. With this facility, it is possible to combine images from different sessions (see
Figure 4). Because of the random nature of genetic algorithms, the evolutions at
each session will be different, and unique images will evolve. Using the image
repository as a way to recombine previously stored images with the current images
can be considered analogous to using several subpopulations to evolve chromo-
somes in parallel (Cohoon et al., 1988).

Figure 3. The nine images shown in this figure are children of the same parents.

The images are very similar; heterogeneity in the population is lost. It is likely that

any two parents chosen from this set of nine will lead to children which are very
similar to the images seen here.
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Figure 4. The user interface. The nine large images on the left represent the
children of the previously selected parents. The images on the right are in the image
repository. These images can be used for recombination in subsequent generations.
The top three images in the first column of the repository are smaller copies of three
of the images found in the larger squares. The defining equations for the three
images on the bottom row of the nine large images are shown in the appendix.

3.2. Selected Images

Six images which were produced through several interactive evolution sessions are
shown in Figure 5. Although these images used the red and grey color map
described previously, the color map could have easily been chosen differently. For
printing purposes, the images are presented in grey-scale.

4., Towards Automation
4.1. Motivation and Overview

T o this point, the mechanisms for interactively evolving computer-generated images
have been described. The users do not need to know any of the underlying
mathematics or the mechanisms used to recombine the equations which the images
represent. Although this provides a simple interface with which to interact, it is quite
a challenging task to automate the user’s decisions. The rest of this paper presents
descriptions and analysis of the attempts to automate the process of parent selection,
and the various successes and failures encountered in the pursuit of this goal.
The mechanism employed to learn the user’s preferences is an ANN. The ANN
is trained to give an evaluation to each image it is presented, without respect to
any other image which may also be on the screen. The evaluation is on the scale
of -1 to +1, with larger numbers representing greater preference. The network is
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Figure 5. Six images, produced through several interactive evolution sessions, are
shown in Figure 5. Although these images used the color map described previously,
the color map could have easily been chosen differently.

trained on a large set of images which the user has previously graded on a similar
scale.

ANNSs were chosen as the learning tool because of their ability to generalize. If
ANNSs are not over-trained and are sufficiently large, they hold the potential for
generalization to images which have not yet been encountered. Unlike many other
non-learning techniques which may fail catastrophically if presented with images
which have not yet been encountered, AN N s show a slower degradation of perfor-
mance. The accuracy of the ANN’s prediction degrades with the presentation of
images which have decreasing similarity with the training images. Therefore, in
training the ANN, it is important to get a diverse enough sample group to give a
good representation of the input space. This is a particularly hard task for this
domain, as the set of all possible functions which can be evolved is infinite.

The attempts to teach the ANN a user’s preferences are conducted with raw
two-dimensional pixels as the inputs to the ANN. The hope is that the ANN wiill
develop the feature detectors and internal representations which are required to
simulate accurately the preferences of the user. Pixel-based inputs have been used
successfully in a variety of other tasks, such as autonomous road following
(Pomerleau, 1992), gaze tracking (Baluja & Pomerleau, 1994) and recognizing
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handwritten ZIP codes (Le Cun et al., 1989). However, in comparison to this task,
the aforementioned applications have had a much more structured input. The
variety of inputs the ANN is likely to encounter in this study is much larger than
in the other domains; therefore, the internal representations needed may be sub-
stantially more complex.

One possible alternative to using only the image pixels is to pre-process the
image with traditional vision-based techniques in order to extract features such as
circles, lines, noise, etc., and use these high-level features as inputs into the ANN.
However, the goal of this study is to perform the task with as little a priori knowledge
of salient image features embedded in the ANN as possible. By building few
assumptions about the basis of the user’s preferences into the network, the system
maintains the maximum amount of flexibility.

4.2. The Training Set

To train the ANN, a set of 400 unique 48 x 48 pixel images was used. The process
used to obtain these images was as follows. Through several interactive evolutions,
the two images the subject chose as parents of the next generation, as well as two
randomly selected images from the selection of nine images present on the screen,
became candidates for the training set. Several hundred images were collected in
total. From this collection, 400 images were randomly chosen for the final training
set. The subject was asked to rank these images individually on a scale of 0.1 to
10, in increments of 0.1, to gauge preference towards each image. T o train the
ANN, the subject’s ranking was scaled to the range —1to +1. Although collecting
only randomly generated images would have been easier than selecting images from
interactive evolutions, randomly created images are generally not very interesting
or pleasing. Therefore, in order to provide the ANN with examples of images which
were ranked high as well as low, images which were selected by the user further
into the interactive evolution were required.

The training set was developed using the above method to ensure that the
included images uniformly spanned the set of possible rankings. The measures taken
only partially accomplished this task. One of the difficulties inherent to the task of
automation is that the relative availability of images which the user is likely to find
uninteresting is very high in comparison to the images which the user is likely to
find interesting. In order to show the distribution of the rankings of images obtained
in a readily accessible format, the evaluations are divided into three categories, ‘low’,
‘medium’ and ‘high’. The range of these categories is shown below. One of the
peculiarities about this division is that although the ‘low’ region begins at 0.0, the
users only graded images between 0.1 and 1.0, in increments of 0.1.

0.0<Low 10.4
0.4 <Medium 10.7
0.7 <High< 1.0

Given this ranking, the distribution of the images into these three categories in the
training and testing set is given in Table I. The majority of the images are classified
by the user into the ‘low’ region. As will be seen in the next section, the skewed
distribution of the images is a potential cause of degraded performance in classifying
images in the ‘medium’ and ‘high’ ranges. In order to eliminate the effects of a
training set with a skewed distribution of training points, the performance of ANNSs
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Table |. User classification of training and testing images

Number of Percentage of Percentage of Percentage of
Image set images in ‘low’ ‘medium’ “high’
set images images images
Training 2000 64 19 17
Testing 1200 61 22 17

trained on uniformly distributed training sets was also measured. In several of the
tests performed, a large number of the images ranked in the ‘low’ region were
removed from the training set in order to make the number of images in each region
more uniform. These tests will be described in greater detail throughout the
remainder of this section.

A simplifyingassumption made in the process of automation was that the user’s
preference of an image was based upon the structures present in the image. Further,
it was assumed that the user would like the same structures in any degree of rotation.
T o achieve a small amount of rotation tolerance, each image in the training set was
rotated three times by 90°. As the role of color was de-emphasized, while the role
of shape was given more importance, the inverses of the original and each of the
three rotated images were also captured. Because the color scheme only used 256
colors, the inverse of each image was calculated by subtracting the pixel’svalue from
256. This resulted in seven additional images for each original image; these
additional images were assigned the same rating as the original image. Each image
was composed of pixels with values in the range of 0-255, linearly scaled to values
between -1 to +1. A total of 3200 images were produced in this manner. From the
3200 images, 2000 images were randomly chosen for use in training the ANN; the
remaining 1200 images were used in the test set. It should be noted that the images
within the training set and the testing set are correlated as they may be rotations or
inverses of each other. No duplicate chromosomes (the equations which the image
represent) were allowed in the set of 400 original chromosomes. However, because
many images are taken from each sequence of evolutions, it is possible that different
chromosomes may represent similar images. The ramifications of these limitations
on the test set will be discussed in greater detail in Section 5.

4.3. Preliminary Trials and Improvements

The first ANN architecture explored was a simple one hidden-layer network, as
shown in Figure 6. The input layer is arranged as a 48 X 48 grid, each coordinate
corresponding to a pixel in the image. The input layer is fully connected to the
hidden unit layer, which contains nine units. The hidden layer is fully connected
to the output layer, which consists of a single output neuron. The output is a single
value, which corresponded to the ‘estimated preference value’ of the image. The
output neuron yields a value between -1 and +1,where -1 indicates a poor image
according to its training set, and +1 indicates a good image. Although not shown,
a bias input unit, a unit with its value permanently clamped to 1, is also present.
The bias unit is connected to the hidden and output layers (Hertz et a/., 1991).
The single hidden-layer ANN, as well as all of the other ANNs mentioned
throughout this paper, was trained using the standard error back-propagation
algorithm. Although this network’s error decreased rapidly through the training
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Input Layer Hidden Layer Output Layer

Figure 6. The first ANN architecture attempted. In this model, there are a total
of ((48x 48 + 1) x 9 + 9 x 1+ 1) =20 755 connections, including the bias unit’s
connections.

process, the network was unable to make reasonable selections on the training or
test sets. For example, the network sometimes chose almost blank images to be
parent chromosomes. Although this sometimes led to interesting “children’, as blank
images may be the result of complex equations, the choices did not correspond to
the choices a human user would be likely to make. T o improve the performance on
subsequent attempts, both the network architecture and the presentation of the
training and testing images was modified. The modifications are described below.

The first modification was to alter the red features to appear as grey. One
difficulty with using pixel values as inputs into the ANN is that although the user
sees a great distinction between the pixel values of 127 (white) and 128 (very dark
red), the neural network cannot place the correct emphasis on this “‘colorcliff. The
values which are given to train the neural network (127 and 128) are very close to
each other, yet form a much more pronounced visual jump than the values from
126 to 127 or 128 to 129. The relative closeness of the color values does not
adequately represent the great difference in actual appearance. T o address this, all
of the images were pre-processed to reduce both of the red and grey scales to only
grey scale. This was accomplished by subtracting 128 from all pixels with a value
greater than 127. Many of the important features of the image were still kept,
although sudden discontinuities between bright red and bright grey in the original
pictures were sometimes lost. However, the discontinuities which occurred between
white and dark red were still prominent in the pre-processed image. This modifi-
cation placed a larger emphasis on features rather than colors, and effectively
reduced the color space to 128 shades of gray. Each pixel was again scaled to the
range -1 to +1.

The second modification was the introduction of weight yoking, or weight
sharing, in the ANN, to achieve some degree of shift invariance. Shift invariance is
necessary, as a user who finds an interesting feature in one portion of the image may
also find the same feature interesting in a different region of the image. Weight yoking
is a technique used to find features regardless of where they appear in the image.
LeCun et al. (1989) have used it successfully in their attempts to recognize hand-
written Zip Codes. The technigue of weight yoking in a spatial dimension is also
commonly used outside of the visual domain. For example, similar techniques are
frequently used in speech-recognition tasks (Waibel, 1990). As speech is fundamen-
tally a process which occurs through time, one way of designing an ANN to learn
patterns over time is to map the patterns into an ordered spatial dimension. As Todd
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points out, by performing this mapping, the problem of learning patterns over time
becomes one of learning spatial patterns (Todd, 1989). Although Todd opts for a
different technique for using connectionist architecturesto learn structures in music,
he also points out that the problem is decomposable in a similar manner.

Training a standard ANN on pixel images will not encourage the recognition of
features in locations other than those in which they appeared in the images of the
training set. With weight yoking, groups of weights work as templates, or feature
detectors, which are uniformly used in many locations throughout the input array.
In networks that do not use weight sharing, when feature detectors are developed
through training, they are only sensitive to locating features in the regions in which
they occurred in the images of the training set. Weight sharing allows the developed
feature detectors to be applied in many other locations. A more detailed description
of weight yoking is given in LeCun et al. (1989).

Figure 7 provides a pictorial description of weight yoking. For this large
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Figure 7. Only a small portion of the input layer is shown. There are a total of
9 x 9 (81) 6 x 6 input groups and a total of 4 x 4 (16) 12 x 12 input groups. Each
6 x 6 group is connected to three units in hidden layer 1. Each 12 x 12 group is
also connected to three units in hidden layer 1. Only the 12 x 12 feature detectors
are shown. The bias unit (not shown) is connected to each of the hidden units (in
hidden layer 1 and in hidden layer 2) and the output layer. The total number
of connectionsis (81x (36 + 1) x 3) + (16 x (144 + 1) x 3) + ((291 + 1) x 10) +
(10+ 1) =18 822.
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architecture, there were a total of six yoked groups, three which covered an area of
the image 6 x 6 pixels in area, and three which were 12 x 12 pixels. Each yoked
group has the same weight templates, which were applied to many regions across
the image. For the tests presented here, the spacing between applications of the
weight template was 5 x 5 pixels for the 6 x 6 groups, and 10 x 10 pixels for the
12x 12 groups; the templates overlapped each other. The second hidden layer
consisted of 10 fully connected neurons. The final output was a single unit.

4.4, Gauging Network Performance

The network was trained with the 2000-image training set previously described. In
order to gauge the ability of the system to classify images as the user would classify
them, a set of 1200 test images was used. Table II gives the total error in classifying
the images. The error is computed as follows:

1200
Sum of Errors = Z | (UserPreference, — NerworkEstimatedPreference;) |
=0
User Preference and NetworkEstimatedPreference are normalized between 0 and 1.

The error in classifying the images decreases through the training period. Each
epoch represents a presentation of the 2000 training images to the ANN. In order
to create a point of reference from which to compare the performance of the ANN,
four other simple measurements are given. Three of the measurements output
constant values of 0.3, 0.5 and 0.7 for the evaluation of each image. The fourth
measurement randomly selects a value between 0.0 and 1.0. Of these four measure-
ments, the constant value of 0.3 should perform the best as the majority of the
images were placed into the ‘low’ region by the user. Although the ANN
classification’s were better than these four simple measurements, consistently
producing an output of 0.3 does comparably well with the ANN outputs between
75 and 300 epochs.

In order to ensure that the ANN is learning more than the simple probability
distribution of the user’s responses, the performance of a biased random number
generator is examined. The random number generator was tested with two settings,
the first which generates numbers with the distribution the ANN predicts at epoch
600, and the second in which the random numbers are generated in the actual
distribution of the testing data. The results of this simulation revealed that the errors

Table 11. Performance measurements—sum of
errors (1200-image test set)

Average error

Method of classification Sum of errors per image
ANN output (epoch 0) 371.71 0.31
ANN output (epoch 75) 298.00 0.25
ANN output (epoch 150) 288.74 0.24
ANN output (epoch 300) 287.50 0.24
ANN output (epoch 450) 271.58 0.23
ANN output (epoch 600) 269.78 0.22
Constant output of 0.30 292.90 0.24
Constant output of 0.50 324.50 0.27
Constant output of 0.70 443.90 0.37

Random output 402.94 0.34




340 S. Baluja et al.

Table 111 Error per region—‘Large’ ANN
architecture (1200-image test set)

Error from classifying each region’s
images (% of total error)

Description Low Medium High
Random 64 17 19
Epoch 0 78 05 17
Epoch 75 49 16 35
Epoch 150 50 15 35
Epoch 300 50 18 32
Epoch 450 48 22 30
Epoch 600 48 22 30

of using a biased random number output to be close to those of the ANN between
epochs 0 and 75 (Baluja et al., 1993).

In order to improve the performance of the ANN, it is firstimportant to discover
where the errors are occurring. Table III provides a breakdown of the occurrences
of errors by region. During the beginning of training, at epoch 0, although the
classificationsare essentially random, they are largely within the medium range, as
the network is initialized with intermediate range weights. As almost all of the
images are classified within the “medium’range, the images actually in the ‘medium’
range contribute very little to the total error. As training progresses, the performance
on the ‘low’ range images continues to improve at the expense of correct classifica-
tion of both the ‘medium’and ‘high’ range images. Because of the disproportionate
number of images placed in the ‘low’ region by the user, the degradation in
performance of two of the three regions still allows the overall classification error
to be reduced. By epoch 600, the total error contributions of the ‘low’ region is
48%, and the *high’ region is 30%. However, the images ranked into the ‘low’ region
by the user comprise 61% of the total number of images in the testing set, while
the images in the ‘high’ region comprise only 17%.

Because of the skewed distribution of images in each region, correct classifica-
tion of images in the ‘low’ region has the potential for greater error reduction than
the correct classification of images in the ‘high’ range. During the early stages of
training, the ANN reduces the total error by improving the classification of ‘low’
region images. After epoch 75, the errors in classifying the images in the ‘high’
region are also reduced. As the initial classification placed all of the images into the
‘medium’ range, adding further discrimination decreases the tendency to classify
images into this range, and thereby increases the errors associated with classifying
‘medium’ range images. Figure 8 shows graphically the average error of the three
regions as a function of epochs.

In analyzing the distribution of correctly classified images, it was found that by
epoch 600, 35% of all the images are classified within an error of 0.1. Only 26%
of the images in the “medium’ range and 9%b of the images in the ‘high’ range fall
into this category. The remaining images in this category constitute 45% of the
images in the ‘low’ range. It is evident, therefore, that if the test set included no
‘low’ images, the ANN would not perform well; the errors of the “medium’ and
‘high’ ranges would not be offsetby the effects of correctly classifying ‘low’” images.
As it is usually assumed that the training and testing sets have similar distributions,
perhaps this result is expected.
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Auverage Error By Region and Epoch
Large Architecture, 2000 Image Training Set
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Figure 8. The average errors with classifying each region’s images are shown as a
function of epochs. The results for the ‘Large’ ANN, trained with the 2000-image
training set, are shown. The performance is measured on the 1200-image test set.

The results given in this section accord very well with our intuitive expectations:
training with a non-uniformly distributed training set will hurt performance in the
classes which are not represented well. The question arises of what the ANN can
learn from a uniformly distributed training set; one which contains approximately
equal numbers of ‘low’, “‘medium’ and ‘high’ images. The first motivation for this
test is determining whether the large number of training examples in the ‘low’ region
made it possible to do well in classifying images in the ‘low’ region, or whether it
was the features inherent to the images classified within the ‘low’ region. The second
motivation is the hope that once the ANN is trained on a uniformly distributed
training set, there will be less reliance on the distribution of images, and the ANN
will be able to perform well on uniformly distributed test sets, as well as non-uni-
formly distributed test sets, which are likely to be generated by human users.

In order to rectify the problems associated with a skewed distribution of images
in the training set, a smaller, uniformly distributed training set was created. This
smaller training set comprised 1120 images. Of the 2000 images which were present
in the previous training set, 880 randomly selected ‘low’ ranked images were
removed. After removal of these images, the distribution of the smaller training set
was ‘low’: 36%, ‘medium’: 33%, ‘high’: 31%. In order to gauge performance to the
previous results, the same test set, of 1200 images, was used.

The first problem encountered with a reduced-size training set was that the
ANN described in the previous section was able to memorize a large portion of the
training data, thereby making generalization impossible. T o reduce the probability
of memorization, three variations of reduced-size AN N s were tested. Each is based
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Table IV. Original and three smaller ANN architectures

12x 12 6x6 Total
Architecture retina retina hidden Total
grids grids units connections
Original, Large ANN 3 3 301 18882
Small ANN 1 3 0 58 7461
Small ANN 2 1 1 107 6308
Small ANN 3 0 2 172 7635

upon the yoked-weight architecture described previously, and shown in Figure 7.
The primary difference between these architectures and the previously described
‘Large® ANN is a reduction in the number of feature detectors. The difference
between the three smaller architectures is the number and types of feature detectors
each contains. As only the size and number of feature detectors vary in the three
small ANNs, the performance of each architecture will reflect the usefulness of its
feature detectors in this domain. The number of connections was kept approxi-
mately equal in each of three smaller architectures. Table IV gives a brief description
of the three smaller ANN architectures.

Each architecture was trained on the 1120-imageset multiple times, with slightly
different parameter settings. The performance of Small ANIN 3 on both the training
and testing sets was much worse than that of Small ANN 1 and 2. The failure of
Small ANN 3 lends support to the hypothesis that the 6 x 6 retina grids are too
small to pick up important features. It should also be considered that when the 6
x 6 retina grid is used in conjunction to the 12 x 12 retina grids (Small ANN 2),
the performance of the network was comparable to using additional 12 x 12 grids
(Small ANN 1). Due to Small ANN 3’s inability to match the performance of the
other ANNs, this architecture is not explored further in this paper.

The performances of Small ANN 1and 2, trained with the 1120-image set, were
comparable. A detailed examination of Small ANN 1 is presented in the next
section. In the interest of space, the same detail is not devoted to Small ANN 2;
however, it should be noted that the behaviors of both networks were very similar.
The performance of Small ANN 2 is briefly returned to in Section 5; more details
on this architecture can be found in Baluja et al. (1993).

4.5. Using a Smaller Architecture: Small ANN 1

This ANN architecture consisted of three 12 x 12 yoked groups. The performance
of this ANN, trained on the 1120-image set, is measured on the 1200-image test

Table V. Distribution of error—Small ANN 1
(1200-image test set)

Error from classifyingeach region’s

Summed images (% of total error)
Epoch error Low Medium High
0 340.52 73 14 13
75 343.28 73 05 22
150 298.58 67 14 20
300 279.69 64 19 17
600 287.83 62 21 17

1200 297.67 61 22 17
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Auverage Error by Region & Epoch
Small Architecture#1, 1120Image Training Set
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Figure 9. The average errors with classifyingeach region’s images are shown as a
function of epochs. The results for Small ANN 1, trained with the 1120-image
training set, are shown. The performance is measured on the 1200-image test set.

set. Table V shows the distribution of errors at six points during training. By epoch
300, the error contribution from each region closely matches the percentage of
images actually in each region of the test set. Unlike the original architecture
examined, there is no bias towards better classification of ‘low’ images. Figure 9
shoes graphically the average errors for the three regions as a function of epochs.

In order to complete the comparison between the smaller architectures described
above with that of the original ‘Large’ ANN described earlier in this section, one
additional test needs to be performed. In the original test performed with the ‘Large’
ANN, there were more feature detectors and a larger training set than in the tests
performed with Small ANN 1. In order to discern which of these two differences
accounts for the difference in performances, Small ANN 1 needs to be trained with
the larger, 2000 image, training set. It should be noted that the difference in
performance was small, the ‘Large’ ANN was able to decrease the error to 269.78
(Table II), and the Small ANN 1to 279.69 (Table V).

In this test, the 2000-image training set used was the same biased one used to
train the large network. The testing set used is the same 1200images used for testing
the previous architectures. The lowest error reached with Small ANN 1 was at
epoch 600. The summed error was 224.30, considerably lower than the lowest
error, 269.78, achieved by the large network (Table 11). This error is also smaller
than the lowest errors achieved by any of the smaller architectures using a uniformly
distributed training set.

The distribution of the errors among the three regions was most similar to the
original, large, architecture. The distribution of errors across the regions was: ‘low’:
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Average Error by Region & Epoch
Small Architecture #1, 2000 Image Training Set
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Figure 10. The average errors with classifying each region’s images are shown as
a function of epochs. The results for Small ANN 1, trained with the 2000-image
training set, are shown. The performance is measured on the 1200-image test set.

47%, ‘medium’:29%, ‘high’: 26%. The skewed distribution of training images had
the same effect on this architecture as the original ‘Large’ ANN; the images in the
‘low’ region were classified more accurately than those in the other regions. Figure
10 shows the average error of the three regions, using the Small ANN 1 and the
full 2000-image training set, as a function of epochs. The average errors in
classificationsfor Small ANN 1 were slightly higher with the larger training set than
with the small training set for the ‘medium” and ‘high’ range images (Figure 9,
epoch 300 & Figure 10, epoch 600). However, the classification of ‘low’ images
was more accurate using the larger training set. In comparison with the ‘Large’
ANN, which was also trained with the 2000-image set, this architecture classified
the images more accurately. This indicates that this architecture may be more suited
to this task than the original ‘Large’ ANN.

Figure 11 shows the distribution of the ANN’s predicted classification and the
human user’s actual classification for the 1200-image test set. While the network
underestimates the number of images in the lowest bin, the overall distribution
matches the human’s fairly closely.

There are at least three potential reasons why the presentation of the 2000-image
training set leads to improved performance in comparison to the 1120-image
training set. The first is the most intuitive—by giving an ANN more examples to
train with, the ANN will be able to provide more accurate classifications. The
second is that the correlation between the training and testing sets has increased.
By examining the overlap between the 2000-image training set with the 1200-image
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Figure 11. A histogram showing the distribution of responses from the user and
the network on the 1200-image test set. The network’s responses are taken from
epoch 600.

testing set, 3.4%of the images were found in both the test set and the training set.
In the smaller training set, consisting of 1120 images, 3.0% of the images in the
test set were in the training set. Although there is an increase in the number of
identical images in the larger training set, the increase is very small. The overlap in
the training and testing sets occurs because different defining equations for the
images may represent the same pixel image. In addition, because the images in the
training and testing sets may be rotations or inverses of each other, the extra 880
images in the larger training set provide a much fuller, and more correlated, training
set for the test set used. The third contributing factor is that by providing the
network with many more ‘low’ images, the relative importance of correctly classify
images in the ‘low’ region increases above the correct classification of images in the
other two regions. In order to determine which of these factors contributed to the
improved performance, an additional test was conducted with a new test set. The
results are reported in the next section.

5. A Comparison of Architectures

In order to eliminate some of the biases in the training and testing sets mentioned
in the previous section, an entirely new test set was gathered. It was chosen in a
similar manner to the previous set, through several interactive evolution sessions.
The new test set comprised a total of 100 images. From the set of 100 images, the
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Table VI. Performance of ANNs on test set 2 (100-image test set)

Number of Distribution of error (% of total)

ANN image in Summed

architecture training set error Low Medium High
Large ANN 2000 34.05 63.3 32.2 4.4
Small ANN 1 1120 23.09 49.5 415 9.0
Small ANN 2 1120 20.99 47.8 43.9 8.2
Small ANN 1 2000 20.50 475 47.2 5.3
Random N/A 31.64 68.8 28.8 2.3
Biased N/A 24.28 53.7 42.0 4.2

Random

user ranked 64 in the ‘low’ region, 32 in the ‘medium’ region and 4 in the ‘high
region. The performance of the architectures which have performed well on the
1200-image test was measured at the epoch in which their error was minimized for
the 1200-image test set. The performance of these architectures on the 100-image
test set is shown in Table VI. Also shown is the performance of random classifica-
tions and biased random classifications. The biased random classifier outputs a
classification in the ‘low’, “medium’ and ‘high’ regions with probabilities 0.64, 0.32
and 0.04, respectively. Although the results of the biased random classifier are
included for comparison, the exact distribution of images would, of course, not be
available when using the ANN to simulate the human user.

The results in Table VI are somewhat disappointing. The ‘Large” ANN, which
had delivered good results on the original 1200-image test set, did significantly
worse than all the smaller ANN architectures. Further, it did worse than both the
random and biased random outputs. Due to the correlation between training and
testing sets, perhaps the most likely explanation of the success of the ‘Large’ ANN
on the original testing set may be its greater potential for memorization of features
required to do well in both the training and testing sets.

The best result came from Small ANN 1 and 2. Small ANN 1, with the large
training set, and Small ANN 2, with the small training set, performed comparably.
It is suspected that a larger training set could have also improved the performance
of Small ANN 2. On the 100-image test set, both smaller architectures were able
to classify images within the ‘low’ region much more accurately than the other
regions, whether trained with the original training set or with the smaller, uniformly
distributed training set.

In the previous section, it was shown that training Small ANN 1 with the larger
set resulted in improved performance when tested on the 1200-image test set. This
trend is again seen here with the 100-image test set. However, the results reported
also suggest that the disproportionately large number of ‘low’ images in the training
set may not be the only reason which makes them easier to classify (Table VI).
Perhaps another reason for the more accurate classification of images in the ‘low’
range is that a large portion of the ‘low’ region’s images may be similar. These
images may be blank, or very simple horizontal or vertical lines. The possible
uniformity and simplicity of the features contained in images which are classified
by the user as ‘low’ may make them easier for the ANN to identify accurately. In
contrast, attempting to classify images in the ‘medium’ and ‘high’ ranges is much
more difficult as this requires a much deeper knowledge of the preferences of the
user.
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6. Discussion and Pictorial Results

Many factors make the process of automation difficult. First, there is the large task
of collecting a diverse set of images from all the regions on the evaluation scale.
This is an inherent difficulty for this task, as most images produced will probably
not be interesting. It is only through the process of evolution that interesting images
are found. A possible solution, which was explored in this paper, is to collect images
while repeatedly simulating the process of manual evolution. The importance of
using images from several evolution sessions is two-fold. First, using evolutions,
rather than randomly generated images, increases the chances of obtaining a larger
range in the user’s rankings of images. Second, using several sessions ensures that
the images produced will be diverse, as each simulation evolves unique images.

Another factor which makes this problem difficult is the desire to accomplish
the task while embedding as little a priori knowledge as possible of the features which
contribute to a user’s preferences. Although some knowledge is inherent in an ANN
architecture which implements weight sharing, the amount of knowledge is kept
relatively small. The space in which this work was done, that of two-dimensional
pixel images, was certainly not the easiest with which to train an ANN. Using
two-dimensional pixels made the size of the networks very large, as multiple
connections are constructed for each input pixel. Further, as the ‘image space’
defined by pixels is very large in comparison to the number of samples obtainable,
generalization based upon the pixel representation is difficult. Other feature spaces
could have been chosen, in which the input to the network is not the pixel values,
but a more abstract representation of the image. Perhaps these inputs could be based
on more traditional image features, as described before.

Other applications such as road following (Pomerleau, 1992) and gaze tracking
(Baluja & Pomerleau, 1994) have had success with pixel input representations, and
one reason for this is that spatial location and variation play an important role in
determining the final outcome. In this application, both rotation and spatial
invariance must be achieved, which is a much harder task. Additionally, as men-
tioned before, the range of images which are likely to be encountered in this task is
much larger than in other tasks using pixel input representations.

Other factors which make this problem difficult arise not only in the ANN
techniques for classification but also in the user’s ranking of images. In the set of
400 images originally collected, several images which were exactly the same were
ranked differently when given to the user to rank twice, indicating inconsistencies
in the user’s rankings. T o make the problem harder, the user’s preferences may be
based upon small features in the image. For example, the image in Figure 5(e)
would very rarely be picked for recombination by a fully trained ANN, as it is very
similar to a simple blank screen.

All of the exploration of architectures and training sets described in the previous
sections was done to develop an ANN to simulate a human user’s behavior and
preferences with respect to a genetic image generation system. In the automated
system, the ANN is allowed to direct the genetic search. Several methods of
implementing the automation were considered. The first method simply chose the
two images to which the ANN gave the highest evaluation to be the parents of the
next generation. However, the need for maintaining diversity in subsequent popu-
lations weighed heavily against this idea. As discussed previously, GAs need to
preserve diversity in order to perform extensive exploration. If only the best
candidate chromosomes are selected for recombination, the chromosomes pro-
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duced rapidly become very homogenous; this can severely limit the potential for
further genetic search. In order to avoid stagnation, an alternative method was
adopted. In this implementation, the value the ANN returned for each image was
used as a ‘fitness” value. This fitness value was used to determine the image’s
probability for recombination. Images classified with higher fitness values had a
higher probability of being chosen for recombination than those classifiedwith lower
ones. However, the best are not guaranteed to be chosen. Standard GAs also use
similar probabilistic methods of selection.

Although the probabilistic method yielded good results, the automated system
did not as yet incorporate the image repository. In order to provide a small
mechanism to escape from very homogenous populations, the automated system
selected images from the repository randomly, with a small probability, every
generation. The repository was initialized with random images during system
start-up. Using the repository allowed for more exploration to be conducted and
provided an escape from too homogenous populations. The image repository has
not yet been used to store images in the automated system.

The success of this project must finally be judged by the system’s ability to create
aesthetically pleasing images with minimal interaction of the user. Given this
criterion, the results achieved are mixed and very difficult to quantify. The system
is able to prune out bad images successfully. However, the judgements on the better
images are not as accurate, and some of the better images are also mistakenly pruned
away. Throughout this paper, the system has been evaluated on its ability to predict
the user’s preferences on a static image set. Although this is straightforward, in
simulating evolutions, evaluation is much more difficult since the underlying process
of evolution is stochastic. The decisions the ANN makes are combined with the
random factors from the GA before the final product is produced. For example, the
evaluations provided by the ANN are used as fitness values—they are used to select
probabilistically the images from the population.

Further, other relevant characteristics of a human user are also hard to imple-
ment. In general, users have a very low patience when the current population
converges to very similar images, and are apt to restart the program quickly, or to
load alternative image libraries. However, the ANN has neither a notion of popu-
lation convergence, nor the ability to reinitialize the population. The ANN provides
an evaluation for each image based solely upon the image, and not on the population
in which the image is contained. These are severe constraints in simulating a user.
Nevertheless, in a more limited context, that of providing evaluations of the images
to the GA so that it can continue its search process, the user’s task can be automated
by this project. The goal of this project was to create an end-to-end system which
can automatically create pleasing images. Although a few of the automated evolu-
tions have failed, as they converged very quickly and were unable to perform
sufficient exploration to find pleasing images, other evolutions, in which conver-
gence occurred much more slowly, revealed complex and interesting images.

An important question, which should be considered along with these results, is
how important it is to have a learning agent trying to simulate the user. Would it
be possible to get equally good results just using a random selection process? In the
experiments attempted in this study, the ANN, in comparison to a random process
which has a uniform probability of selecting any image, typically produces much
more complex images, and maintains diversity in the population longer than simple
random selection. One of the reasons that random selection performs poorly is that
once a population loses diversity, it is difficult to regain it, given the cross-over and
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mutation operators used. For example, if two images which are each represented
by small equations are recombined, the children produced are likely to be similar.
The ANN-based selection method has the advantage of not generally selecting these
images, because in its training set such images were usually given low evaluations
by the user. As the AN N s used in this study have been given an extensive amount
of training data with images which are not considered pleasing, the ANN is more
likely to avoid selecting images which are represented by smaller equations, and
thereby more likely to avoid convergence. Nonetheless, because the ANN makes
errors in its judgements and because of the stochastic nature of the GA and the
small population size used, the populations evolved in this study all eventually
converge, whether they are evolved automatically, or manually. The success or
failure of a particular evolution must be judged by the amount of useful exploration
that is conducted before the population converges.

In order to show how the automated evolution typically progresses, Figure 12
presents two evolutions of 24 generations each. The figures show the two parents
chosen for recombination in each generation. Figure 12(a) shows a typical evolution
using uniform random selection for the images. As can be seen, the exploration is
very limited and largely uninteresting. Because of the small probability of choosing
randomly from the image repository, sometimes images from outside the population
are chosen as parents. However, as the selection process is entirely random, the
interesting children produced by the novel parent image may not be chosen again
for recombination. Therefore, the population will again quickly converge to unin-
teresting images. The second set of images, Figure 12(b), shows a typical evolution
which is controlled by the ANN. Immediately, a vast difference between Figure
12(a) and Figure 12(b) is apparent. The majority of the images chosen are more
complex than those which appear in Figure 12(a). However, as can be seen, the
network makes mistakes in its selection procedure. Towards the end, these mistakes
happen in consecutive generations, the population loses its interesting properties,
and quickly becomes too homogenous to perform further interesting search until
an image from the repository is randomly selected.

Figure 13 presents 6 images which do not appear in Figure 12. These images
were also selected for recombination by the ANN. These images were hand-picked
from the results of several automated evolution sessions. In comparison to the
images shown in Figure 5, which were manually evolved through many hours of
interactive time with the system, the images in Figure 13 were selected by the
authors in only a few minutes of interactive time with the automated system. One
of the potential methods of using this system is to prune away the large number of
images which the user will probably dislike, and to present only images which the
user is likely to find interesting. Such methods of extending the ability to learn about
the user’s preferences to work in conjunction with the user is an area for future
research. This concept is expanded upon in the next section.

7. Conclusions and Future Directions

The idea of hiding the details of how the mathematical functions are generated,
recombined and stored, provides users with the ability to concentrate on the aspect
of the algorithm with which they are concerned: the images. By simply selecting
images which the users find interesting, it is possible to evolve subsequent popula-
tions of images which are closer to individual conceptions of ‘interesting’.
Evolution is a powerful method for creating images (Sims, 1991; Todd &
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Figure 12. Two automated evolutions. The first is directed by a uniform random
selection process. The second is directed by a trained ANN. The parents of 24
consecutive generations are shown. The parents of generations 1 are shown in the
upper-left comer of the image. The sequence of consecutive generations proceeds
from left to right. The lower-right comer images are the parents of generation 24.
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Figure 13. Shown here are six images which the ANN selected for recombination
through several different evolutions.

Latham, 1992). Although there exists a large random factor in the images which
are created, through a number of generations, images will be produced which are
closer to the user’s desires. Sims stated concisely the role of evolution in this process:

Evolution is a method for creating and exploring complexity that does not require
human understanding of the specific process involved. This process of artificial evolu-
tion could be considered as a system for helping the user with creative explorations, or
it might be considered as a system which attempts to ‘learn’ about human aesthetics
from the user. In either case, it allows the user and computer to interactively work
together in a new way to produce results that neither could easily produce alone. (Sims,
1991).

With the addition of ANNs, we hoped to increase the ability for the system to learn
and automatically create aesthetically pleasing images which are focused upon the
individual tastes of a specific user. Although we cannot claim to have taught the
system to understand human aesthetic values, we have made a step in the direction
of teaching the system how to simulate an individual user’s aesthetic preferences.
Although AN N s hold the promise of being able to generalize from examples,
the examples must be carefully chosen. To illustrate this point, consider giving only
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the raw image to the system without the appropriate corrections made for the large
color cliff between white and red. Although it is theoretically possible for the ANN
to find the distinction, practically, it is helpful to accentuate the differences. This
feature, although visually striking, may be lost in other features of the pixel image.
Second, consider giving only the sequence of images from a single evolution. Even
if the training set contains good and bad images, the images will probably not be
heterogeneous enough to allow the ANN to generalize to images from another
evolutionary sequence. Instead, the ANN must be trained on a variety of images
taken from several evolutions.

The GA is a good basis for the system; however, much more can be done to
improve the ability of automating the evolutionary process. Further exploration
should be divided into at least five areas. The first is that of the neural network
architecture. As can be witnessed in the several attempts shown here, different
architectures have the potential to lead to very different success rates. However,
larger architectures also become increasingly difficult to train, as the need for larger
training sets becomes more pronounced. Another architecture which should be
considered is an unsupervised learning model in which the similar features are first
ascertained, and the images placed into groups based upon similarity. With the
formation of these groups, learning the user’s rankings of the images may prove to
be an easier task.

The second area for possible future attention is creating a fuller, more represen-
tative, training set. As has been addressed throughout the paper, it is difficult to get
a large set of images which are in the ‘medium’ and ‘high’ range. The training set
used in these experiments was derived from several manual evolutions. As the ANN
is very sensitive to the input data used for training, a larger training set, with many
more images classified in the higher regions, may greatly improve performance.

The third area for research requires relaxing the constraint of imbedding no a
priori knowledge into the ANN, and training the system using other characteristics
of the image in addition to the pixel image, or as a replacement for the pixel image.
These additional features may yield more accurate classifications. Such features
might include those commonly used in traditional machine vision techniques; they
include clusters, edges, circles, regions of noise, etc. The human eye can easily gauge
many of these features automatically and incorporate them into decision-making
processes. Giving these features explicitly to an ANN may also prove to be
beneficial.

The fourth area of future research is examining the effects of using a larger
population size. The population size was limited to the nine images in the user
interface to make the role of the user easier. However, in an automated system, this
is not a concern, and a larger population can be employed. Additionally, more
traditional GA techniques may be used for generating subsequent populations. For
example, in this study, only one set of parents was chosen to create all of the children
of the next generation. A more effective means of ensuring diversity is to select
different pairs of parents probabilistically to contribute a single ‘child’ image to the
next generation. In this way, multiple parents are allowed to contribute to the
subsequent populations. This should have a tremendous beneficial impact in
preserving diversity.

Finally, methods for tying the learning mechanisms more closely with the user
interface should be explored. One can imagine a system which can work with the
user by proposing images which the user may find interesting, while pruning away
images which the user will probably dislike. This task would fit well with the abilities



Automated Evolution for Computer-generated Images 353

of the current system. In addition, the system could also suggest its choice for
recombination. If the user disagrees with the system’s selection, the user can select
an alternative image. If an alternative image is chosen, the learning mechanisms can
revise its knowledge to better model the user’s preferences. As an extension, perhaps
this system can run in the background, periodically querying the user for feedback,
and continuing with its defaults when no feedback is given.
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Appendix: Typical Image Equations

The equations for the images grow large very quickly. Understanding the contribu-
tions of each element within the context of the equation rapidly becomes cumber-
some. It is also interesting to note that many of the sub-expressions either do
nothing, or may easily be replaced by constants. The equations for the images in
the bottom row of the 9 squares in Figure 5 are, respectively:

avg(mod (x,x),mul (Sin(x),mul (sin(y),add (sin(x) ,sub(sin (y) ;mod (sin(3) gnul (sub(x,su
b(sqr(x),mod (sin(x),mod (sin(x),min(sin® ,sub(v,x)))))),sub(x,add (y,add (sin(x) ,m
od(sin(sin(x)),add(sin(x),sub(sin(3),x)))))))))))))

avg (mod (x,x),mul (SiN(x), mul(sin(y),add(sin) ,sub (sin(y), mod(sin(y) mul (sub(x,su
b(sqr(x),mod (sin®) Jmod (sin(x), min(sin(x),sub®>x)))))) sub(x,add(y,add (sin(mod(
x,x)),mod(sin(x),add(sin(x),sub(sin(3),x)))))))))))))

avg(mod (x,x) ,mul(sin(x),mul(sin(y),add(sin(x),sub(sin(y),mod (Sin &), mul (sub(x,su
b(hsn(x) mod(sin(x), x))) ,sub(x,add(y,add(sirn(x), mod(sin(x),add(sin(x),sub(sin(y),
x)))))))))))))



