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For decades, brain–computer interfaces (BCIs) have been used
for restoring the communication and mobility of disabled peo-
ple through applications such as spellers, web browsers, and
wheelchair controls. In parallel to advances in computational
intelligence and the production of consumer BCI products, BCIs
have recently started to be considered as alternative modalities
in human–computer interaction (HCI). One of the popular topics
in HCI is multimodal interaction (MMI), which deals with com-
bining multiple modalities in order to provide powerful, flexible,
adaptable, and natural interfaces. This article discusses the situa-
tion of BCI as a modality within MMI research. State-of-the-art,
real-time multimodal BCI applications are surveyed in order to
demonstrate how BCI can be helpful as a modality in MMI. It is
shown that multimodal use of BCIs can improve error handling,
task performance, and user experience and that they can broaden
the user spectrum. The techniques for employing BCI in MMI
are described, and the experimental and technical challenges with
some guidelines to overcome these are shown. Issues in input
fusion, output fission, integration architectures, and data collection
are covered.

1. INTRODUCTION
The intelligent computers of today are able to perceive their

environment using sensor technologies and to respond with the
help of advanced decision-making algorithms. They welcome
us into an elevator or a photo booth, and they accompany us
in our pockets or on our clothes. Considering the amount of
interaction we enter into with these pervasive machines, we
need natural, intuitive user interfaces that understand or antic-
ipate our intentions and react to make our lives easier. Thus,
we should be able to interact with computers in the same way
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that we do with humans. In other words, human–computer inter-
action (HCI) should carry the characteristics of human–human
interaction (HHI).

HHI relies on concurrent use and perception of behavioral
signals (cues) such as speaking, moving, gazing, and gesturing,
which convey various messages (communicative intentions).
We show our approval by a thumbs-up, perhaps accompanied
by speech, a wink, or a nod. To describe an object, we talk
about it, at the same time moving our hands to explain its
different features such as its size or shape. While we are send-
ing our signals, our conversation partner receives them through
his multiple senses; he listens to us and watches our gestures.
For a humanlike interaction, the interfaces of the modern HCI
offer multiple sensing (input) and response (output) modalities
for interacting with computers. Within this interaction style,
called multimodal interaction (MMI), computers hear us via
the microphone, see through the camera, and even feel through
haptic devices. In return, they give feedback in the form of an
embodied conversational agent (Cassell, Sullivan, Prevost, &
Churchill, 2000) or through a tactile device.

Although computers can mimic some human senses, there
are situations in which they need to possess better sensing abil-
ities than humans. There are times that we, consciously or not,
conceal our mental or emotional states. Some people are just not
comfortable with expressing themselves overtly, or they delib-
erately suppress their behavioral cues as in the case of bluffing.
Moreover, in the absence of a human conversation partner, the
cues may become subtle or may even vanish. In expressing
our intentions, we are also not always explicit. This is perhaps
because we are so tired that we do not want to move, or our
hands are occupied so that we cannot use them, or we are phys-
ically disabled. Still, we expect computers to understand our
implicit emotions, difficulties, and intentions.

Computers cannot read our minds, but brain-computer
interfaces (BCIs) can infer our mental/emotional states and
intentions by interpreting our brain signals. The classical
application domains of BCI are the restoration of the mobility
and communication of the disabled individuals through a
brain-controlled wheelchair (Leeb et al., 2007) or a spelling
device (Sellers & Donchin, 2006), and the rehabilitation of
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people with disorders such as attention deficit hyperactivity
disorder (Gevensleben et al., 2009). With the emerging portable
and usable signal acquisition hardware as well as robust data
processing and artifact removal techniques, BCI has started
to be considered as an HCI modality for nondisabled users
as well. Some nonmedical BCI applications include games
(Plass-Oude Bos et al., 2010), attention monitors (Jackson &
Mappus, 2010) and tools for mobile devices (Campbell et al.,
2010; Wang, Wang, & Jung, 2011).

Although there are a substantial number of BCI applications
for nondisabled users, the majority of them are unimodal (i.e.,
BCI is the only modality). As we later report in this article,
there are also a small number of multimodal BCI applications
as well, but these were developed mostly for research purposes
and assessed in controlled experiments. To take part in an HHI-
like HCI and be used at home by regular users, BCI needs to be
employed in MMI. Therefore, many prototype multimodal BCI
applications should be developed to evaluate the joint advan-
tages of BCI and MMI, and guidelines should be proposed to
the challenges encountered.

The purpose of this article is twofold. First, we survey the
state-of-the-art multimodal BCI applications to demonstrate
how BCI can be helpful as a modality in MMI. Second, we
describe the techniques for employing BCI in MMI and show
the experimental and technical challenges with some guidelines
to overcome these.

The article is organized as follows. In section 2, we sum-
marise the fundamental principles of MMI and BCI. First we
define MMI and its components. Then we give an overview of
brain activity measurement and interpretation methods followed
by BCI interaction paradigms. Section 3 provides a range of
multimodal BCI applications grouped according to their major
benefits and illustrates their possible real-life uses. In section

4, we describe the techniques for using BCI in MMI and dis-
cuss the challenges involved while providing some guidelines
to cope with these challenges. We cover the issues of input
fusion, output fission, integration architectures, and data collec-
tion. Finally, in section 5, we conclude by stressing the essential
aspects discussed throughout the article and point to future
research directions.

2. BACKGROUND
Before going into any discussion about the employment of

MMI and BCI together, we find it useful to give an overview
of each separately. We first define MMI and provide the MMI
framework. Next we describe the principles of BCI and give
examples of the latest applications.

2.1. Definition and Mechanism of Multimodal Interaction
A multimodal user interface (MUI) could simply be regarded

as an interface that allows its users to provide input through two
or more different modalities. However, we understand “modal-
ity” not only as a means of input but as an output pathway
as well. For better understanding and structuring of this con-
cept, here we adopt the definition from Oviatt (2008, p. 414):
“Multimodal systems process two or more combined user input
modes -such as speech, pen, touch, manual gestures, gaze,
and head and body movements- in a coordinated manner with
multimedia system output.” Thus, in MMI one major task is to
perceive the human input (which is nonconventional, thus other
than keyboard and mouse), whereas the other one is to output
reaction accordingly.

In congruence with this definition, W3C identifies six com-
ponents of an MMI framework (see Figure 1; Larson, Raman,
& Raggett, 2003). The input and output components can be

Input
(Perceptive User Interfaces)

Microphone
Video camera
Haptic Devices

BCI
...

Output
(Multimedia User Interfaces)

Text-to-speech
Visual cues
Audio cues
Vibration

...

Interaction
Manager

Application
Functions

System &
Environment

Session
Component

Multimodal User Interfaces

User

FIG. 1. Multimodal interaction framework based on the original model of W3C (Larson et al., 2003). Note. The user provides input using perceptive user
interfaces while receiving output through multimedia user interfaces. The communication between the perceptive and multimedia user interfaces is facilitated by
the interaction manager in cooperation with application functions, the session component, and the system and environment component.
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294 H. GÜRKÖK AND A. NIJHOLT

viewed as perceptive user interfaces and multimedia user inter-
faces, respectively, as suggested by Turk and Robertson (2000),
although they situate these interfaces and MUIs differently
under the concept of perceptual user interfaces. Perceptive
user interfaces are those that add perceptual (i.e., sensing)
capabilities to the computer. This can be achieved through a
combination of techniques such as speech, gesture or handwrit-
ing recognition. Multimedia user interfaces, on the other hand,
provide feedback to the user through different media formats
such as audio, animation, automated speech, and text. The com-
munication between these two interfaces is maintained by the
interaction manager in cooperation with application functions,
the session component, and the system and environment compo-
nent. Within this framework, BCI is a perceptive user interface
and therefore belongs to the input component.

In this section, we limit our discussion on MMI to the basic
mechanism. We provide MMI examples for various scenarios
with and without BCIs in section 3. In section 4 we describe the
principles of MMI, namely, input fusion, output fission, syn-
chronization, and data collection in general while showing the
challenges they pose to BCI.

2.2. Principles of Brain–Computer Interfaces
In this article we represent a BCI as a system with three pro-

cedural components that outputs supporting actions according
to human intention or mental/emotional state derived through
brain activity (see Figure 2). First, a user’s brain activity is
acquired and quantified as a signal (see the next section). Then,
based on the neuromechanisms stemming from the neurologi-
cal functioning of the brain, the signal is interpreted to obtain
knowledge on user state or intention (see the Interpreting Brain
Activity (Neuromechanisms) section). Finally, this knowledge
is employed in an application to satisfy the user’s need (see the
Interacting via Brain Activity section). Next, we briefly describe
each component. For an extensive overview of BCIs we refer
the reader to the review by Wolpaw, Birbaumer, McFarland,
Pfurtscheller, and Vaughan (2002).

Acquiring (measuring) brain activity (Imaging Modalities).
The first experiments on acquiring (measuring) human brain
activity date back to the 1920s. Berger (1929) was the first
to publish the results of electroencephalography (EEG) experi-
ments on humans (translated version available by Gloor, 1969).
EEG is a technique for acquiring the electrical activity of the
brain from the scalp by use of electrodes. Since Berger’s first

experiments, not only have EEG recordings become prevalent
but other acquisition techniques relying on electrical, magnetic,
and hemodynamic (blood movement) response of the brain have
also emerged.

Brain activity acquisition methods (also known as imag-
ing modalities in neuroscience, but we do not refer to them
as modalities so as not to cause any conflict with the HCI
definition of modality) can be categorized according to the
manner of deployment as being invasive or noninvasive (see
Table 1). Invasive methods are implemented either by placing
electrodes on the surface of the cortex (electrocorticography, or
ECoG) or by implanting them inside the cortex (multielectrode
array, or MEA). These methods provide high dimensionality
and signal quality. However, they require surgery for deploy-
ment and extreme care for stability and against possible infec-
tions. Therefore, they are applied only on people with severe
disabilities for whom these are the only ways of redressing
the disability. Noninvasive methods measure the activity from
the scalp, so do not carry the same risks as invasive meth-
ods. Thus, they are used more frequently in human research.
Among noninvasive methods, magnetoencephalography (MEG)
and functional magnetic resonance imaging (fMRI) are immo-
bile machines and require good shielding from the environment
so they are bound to controlled laboratory environments. On the
other hand, EEG and near-infrared spectroscopy (NIRS) are
portable, easily deployable, and relatively inexpensive devices.
Their wireless implementations are also feasible, making them
even more convenient to use. Therefore, they are more suitable
for HCI research. Despite many advantages, the noninvasive
methods are prone to artifacts from intense movements of the
body, and the measurement quality is inferior in comparison to
the invasive methods.

EEG, ECoG, MEA, and MEG measure the activity of the
fast dendritic currents in a large population of brain cells. Thus,
the recordings of the measurements have low latency (i.e., high
temporal resolution). fMRI and NIRS measure the blood oxy-
genation in the brain, which is a much slower correlate of
the brain activity. Therefore they offer lower temporal resolu-
tion. Noninvasive methods provide lower spatial resolution in
comparison to invasive ones due to spatial mixing of electrical
activity generated by different cortical areas and passive con-
ductance of these signals through brain tissue, bone, and skin
(van Gerven et al., 2009). Among noninvasive methods, fMRI
has relatively higher spatial resolution, as it can sample the
activity of deep brain structures. For a detailed description of

Acquisition
EEG, fMRI, ...

Interpretation
ERD, ERP, ...

Interaction
aBCI, pBCI, ...

Brain activity Brain signal

Knowledge
on user

state/intention

User support
& satisfaction

FIG. 2. Three-component brain–computer interface (BCI) model. Note. Brain activity is acquired and quantified as a signal. Then, the signal is interpreted to
obtain knowledge on user state or intention. Finally, this knowledge is employed in an application to satisfy the user’s need. Since the users’ brain activity affects
the BCI input as well as gets affected by the BCI output, the components of the BCI model actually form a loop.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ite

it 
Tw

en
te

] a
t 1

0:
41

 0
9 

A
pr

il 
20

12
 



BRAIN–COMPUTER INTERFACES FOR MULTIMODALITY 295

TABLE 1
Properties of Brain Activity Measurement (Acquisition) Methods (Imaging Modalities)

EEG MEG NIRS fMRI ECoG MEA

Deployment Noninvasive Noninvasive Noninvasive Noninvasive Invasive Invasive
Measured activity Electrical Magnetic Hemodynamic Hemodynamic Electrical Electrical
Temporal resolution Good Good Low Low High High
Spatial resolution Low Low Low Good Good High
Portability High Low High Low High High
Cost Low High Low High High High

Note. EEG = electroencephalography; MEG = magnetoencephalography; NIRS = near infrared spectroscopy; fMRI = functional
magnetic resonance imaging; ECoG = electrocorticography; MEA = microelectrode (or multielectrode) array.

the recording methods, the reader should see Kübler and Müller
(2007), Lebedev and Nicolelis (2006), and van Gerven et al.
(2009).

Interpreting brain activity (Neuromechanisms). Once the
brain activity is acquired as a signal, the next step is to interpret
its content. In doing this, we benefit from neuromechanisms,
which signify certain changes in the signal with respect to an
event. The event can be a voluntary action such as moving a
hand or looking at something as well as an involuntary reaction
to a stimulus or an error. In this section we briefly cover the
most commonly employed neuromechanisms.

The brain maintains an ongoing (rhythmic) activity in
absence of an external or internal intervention. These rhythms
are identified by the frequency and brain location they occur
at. Two closely related neuromechanisms, event related desyn-
chronisation (ERD) and event related synchronisation (ERS;
Pfurtscheller & Lopes da Silva, 1999; often referred to together
as ERD/ERS) are the suppression and enhancement of the
rhythmic brain activities respectively in relation to an event.
By observing the signal amplitude in certain frequencies mea-
sured at specific parts of the brain, we can infer the underlying
brain activity. As an example, the rolandic µ rhythm oscillates
9–13 Hz in the sensorimotor area. It is desynchronised during
execution, preparation, or imagination of motor actions. So, by
analyzing the amplitude of the signal recorded from the sensori-
motor area between 9–13 Hz, it is possible to understand when
a person executes or imagines executing a motor action, such
as a hand, foot, or tongue movement (Pfurtscheller, Brunner,
Schlögl, & Lopes da Silva, 2006). If in an application certain
motor actions are matched to some commands, then one can
control the application without any device or even actual move-
ment. Scherer et al. (2007) used motor imagery to navigate in
a virtual environment (VE) and execute certain commands in
Google Earth. Another example is the alpha rhythm oscillat-
ing 8–13 Hz in the posterior region. It is blocked or attenuated
by attention, especially visual, and mental effort so it has been
associated with physical relaxation and relative mental inactiv-
ity (Deuschl & Eisen, 1999). Plass-Oude Bos et al. (2010) used
parietal alpha power in the game World of Warcraft to switch

the player avatar between an elf and a bear according to the
player’s relaxedness.

Another family of neuromechanisms is the event-related
potentials (ERPs). These are called event related fields in the
case of magnetic activity measurement, but for brevity we refer
to them as potentials from now on. ERPs are short amplitude
deflections in the brain signal, time-locked to an event. That is,
they are expected at a fixed positive or negative latency with
respect to a particular event. Thus, by observing the amplitude
at this fixed latency, we can infer a person’s reaction or
intention. Various ERPs have been employed in BCI applica-
tions; we introduce the most commonly used ones next. ERPs
are identified by the triggering event, direction of deflection,
observed location, and latency. For the purpose of this arti-
cle, we emphasize only the triggering event for each ERP and
describe example applications. We encourage the reader to refer
to Luck (2005) and Fabiani, Gratton, and Federmeier (2007)
for a complete overview. A commonly used potential of the
brain, P300, occurs after being exposed to a task-relevant stim-
ulus (Farwell & Donchin, 1988). This makes P300 suitable for
detecting intention through selection tasks. Edlinger, Holzner,
Groenegress, Guger, and Slater (2009) used P300 to select and
control items in a virtual apartment, whereas Campbell et al.
(2010) used it to select and dial contacts on a real mobile
phone. Intentions can also be inferred through the readiness
potential (RP, also known as the Bereitschaftspotential), which
precedes voluntary motor movements (Shibasaki & Hallett,
2006). Krepki, Blankertz, Curio, and Müller (2007) used later-
alized RPs to predict the actual or imaginary finger movements
of users and translate them into commands in a Pac-Man game.
Another widely exploited set of potentials are the error poten-
tials (ErrPs), which are reactions of the brain to errors (Ferrez
& del R. Millán, 2007). Förster et al. (2010) used ErrPs to
train their hand gesture recognition system based on the errors
occurring during interaction.

When we attend to a stimulus repeating with a certain fre-
quency, the amplitude of the signal measured in the brain area
processing the stimulation is enhanced at the frequency of the
stimulation. This enhancement is known as the steady-state
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296 H. GÜRKÖK AND A. NIJHOLT

evoked potential and is another frequently used neuromecha-
nism (Regan, 1977). By presenting multiple stimuli with dis-
tinct repetition frequencies, we can detect which of the stimuli
a person was paying attention to. If each of these stimuli is
associated with a message, then we can understand the person’s
intention. Martinez, Bakardjianm and Cichocki (2007) used
four checkerboards, each flickering with a unique frequency
and associated with a direction (up, down, left, and right) for
navigating a car on the computer screen. As in this work,
when the stimulation is a visual one, the resulting response
is called a steady-state visually evoked potential (SSVEP) and
is observed over the occipital (visual) cortex. In the literature
there are also studies with auditory (Herdman et al., 2002) and
vibratory (Muller-Putz, Scherer, Neuper, & Pfurtscheller, 2006)
stimulation.

While using neuromechanisms, which are evoked through
stimulation, attention should be paid to the features of the
stimuli, the stimulation device, and the environment. The stimu-
lation parameters might significantly affect not only the strength
or the presence of the brain response but also the comfort and
experience of the user. For SSVEP-based BCIs, Bieger and
Molina (2010) wrote an excellent report on the influence of
stimulation parameters (such as the environment; the stimula-
tion device; and the flicker frequency, color, and shape of the
stimulus) on recognition performance and user comfort. Also
for P300 stimulation, effects of factors such as screen size (Li,
Nam, Shadden & Johnson, 2011), and color of and distance
between stimuli (Salvaris & Sepulveda, 2009) on recognition
accuracy have been reported.

Apart from the aforementioned standard neuromechanisms,
there are power changes at specific frequencies distributed
across the scalp in correlation with emotions (Chanel, Kierkels,
Soleymani, & Pun, 2009) and certain mental activities such as
mental object rotation (Nikolaev & Anokhin, 1998) or problem
solving (Fink et al., 2009). These correlates could, for instance,
be used to detect a user’s mental or emotional state for assisting
the user. We would like to finally note that for some events there
is more than one representative neuromechanism, such as ERD
and RP signifying motor execution or imagery, so combined use

of these can yield a better recognition capability (Fatourechi,
Birch, & Ward, 2007).

Interacting via brain activity. Interpreting the brain activity
based on neuromechanisms allows us to arrive at knowledge
about a user’s intention, mental processing, or emotional state.
We differentiate between BCIs with respect to their ways of
utilizing this knowledge in an application according to user’s
needs. In this work, we adopt the categorization of Zander, Kothe,
Welke, and Roetting (2009) and identify three types of BCIs:
active (aBCI), reactive (rBCI), and passive (pBCI) (see Table 2).

In aBCI, the user intends to interact with the BCI appli-
cation and for this purpose directly generates brain activity.
For instance, such brain activity could be generated by imag-
ining movements to navigate in a VE. In rBCI, the user still
intends to interact with the BCI application but the brain activ-
ity is generated indirectly, in reaction to external stimulation.
The user voluntarily attends to a stimulus, but what causes the
brain to react are the stimulus features, not the act of attend-
ing. For example in SSVEP navigation, where each direction is
associated with a stimulus repeating at a unique frequency, the
user looks at one of the stimuli to go in a certain direction. It is
not the act of looking that generates the desired brain activity
but the brain’s reaction to the repetition frequency of the stim-
ulus. In pBCI, the user’s primary aim is not to interact with
the BCI application, or possibly he does not have an aim at all.
The BCI system watches the user passively in order to adapt the
task or the environment for improving and enriching the HCI
or the quality of life. This might be by monitoring the attention
level, emotional state, or mental load of the user. pBCIs rely
on brain signals generated during natural interaction of the user
with his environment so they do not require any additional effort
(such as attention to stimulation). Therefore, they can operate
within aBCIs and rBCIs without demanding extra experimental
requirements.

We would like to stress that the interaction methods
are applicable to BCI applications but not to the BCI
neuromechanisms, because a neuromechanism can be utilized
in different ways in applications. For example a P300 speller
(Serby, Yom-Tov, & Inbar, 2005) would be an rBCI because the

TABLE 2
Features and Application Domains of BCI Interaction Paradigms

Type of BCI
Interaction With

BCI System
Generation of Brain

Activity Used for Example Applications

Active Intended Consciously Direct control Motor imagery-based
navigation

Reactive Intended In response to stimulation
(i.e., unconsciously)

Direct control SSVEP-based selection,
P300 speller

Passive Unintended Through interaction Supporting systems User state detection, error
handling via ErrPs

Note. BCI = brain–computer interface.
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BRAIN–COMPUTER INTERFACES FOR MULTIMODALITY 297

user interacts with the BCI system for spelling words. On the
other hand, a P300 workload monitor (Allison & Polich, 2008)
would be a pBCI as the user has a primary task to devote atten-
tion to other than responding to the workload monitor. Having
made this distinction, we would like to draw reader’s attention
to yet another important detail. Depending on the context and
the goal of the user, different interaction methods can be utilized
to operate the very same BCI application. In the aforementioned
BCI game, Alpha-World of Warcraft (Plass-Oude Bos et al.,
2010), the player avatar changes between the elf and bear forms
according to the relaxedness of the player. During the game
players might intentionally try to regulate their relaxedness for
better performance or they might simply enjoy seeing the game
reflect their natural state. In the former scenario the game would
be an aBCI, and in the latter a pBCI. Moreover, a blend of these
two is highly probable during the game. Therefore BCI inter-
action methods are applicable to the applications but dependent
on the user and the context.

3. BRAIN–COMPUTER INTERFACES IN MULTIMODAL
INTERACTION

Having established basic knowledge about MMI and BCI,
we now move on to real-time applications that involve both
concepts. Following a pragmatist approach, we categorize the
widely agreed benefits of using MMI in HCI and within each
category survey related multimodal BCIs. As mentioned ear-
lier, MMI has not been largely explored for BCI, so there are
not many multimodal BCI applications. We discuss the poten-
tial contribution of multimodal BCIs in cases where no such
applications exist for a category.

Before describing the use of BCIs in MMI, we want to men-
tion a highly related concept called the hybrid BCI (hBCI),
which was first coined by Pfurtscheller et al. (2010) and used
mostly in the context of assistive technologies. They defined
hybrid BCI as a system that uses two different brain signals
(such as EEG and fMRI), or one brain signal associated with
multiple neuromechanisms (such as ERD/ERS and ERP), or
one brain signal and another input (such as EEG and eye gaze
control system). The mechanism underlying hBCI corresponds
to multimodal input and even more than that, as it concerns not
only different modalities but also different neuromechanisms
and signal acquisition methods. However, we want to make
the distinction between our point of view of employing BCI in
MMI and the ideology behind the hBCI research. First, hBCI
is all about combining inputs, whereas in MMI we understand
a two-way communication between the human and the com-
puter. Therefore we care about output presentation as well as
the coordination of input and output. Second, the motivation
for current hBCI research is to compensate the weak points of
modalities and improve the overall performance of a system.
Taking this motivation also into account, we would like to go
beyond that and investigate how the multimodal use of BCIs
can improve the quality of HCI.

3.1. Improved Error Handling
Avoiding errors to improve robustness is essential in HCI.

Current nonconventional HCI modalities are still not perfectly
reliable, and each technology has its own restrictions for use.
Functioning in noisy environments or even in the case of sensor
failures are some of the many issues of concern. Consequently
the technical weaknesses of HCI modalities often cause errors
during interaction. Humans are not perfect in expressing them-
selves either. We make errors of action, such as misspeaking,
and errors of intent, such as doing something that we actually
did not mean to do. In some cases we do not make an error, but
what we do is ambiguous. All the factors mentioned here can
cause errors in HCI.

In traditional HCI, error prevention is mostly accomplished
by asking the user to confirm an action before committing to
it. Indeed, frequently, the confirmation dialog boxes save us
from inconveniences such as deleting a file accidentally or send-
ing an e-mail with an empty subject field. Nevertheless, some
associated drawbacks are still present. Confirmation dialogs
cost additional time, and when they become numerous they
may introduce frustration to the user. Moreover, depending on
the familiarity and frequency of the task, confirmation boxes
sometimes become integrated into the actual command and lose
their functionality. Therefore, in most systems, there is the pos-
sibility of reversing (undoing) a previously executed command
to eliminate an unavoided error.

BCI can prevent errors in the same manner as just described
but in a way that appears seamless to the user by utilizing ErrPs.
Ferrez and del R. Millán (2005, 2007) identified four types of
ErrPs. The first type, response ErrP, arises at the time a user
realizes a self-made error. The second type, feedback ErrP,
occurs also at the time a user realizes a self-made error, but in
this case the user is not aware of his error until he is informed
by some feedback. In the third type, interaction ErrP, the error
is not caused by the user but by the system instead. Finally
the fourth type, observation ErrP, arises when the user is not
involved directly in the interaction but rather witnesses an error
made by an operator during a choice reaction task, in which the
operator is required to respond to stimuli as quickly as possible.

In a theoretical setup for preventing errors (see Figure 3),
a BCI system would first interpret the user input but would
not execute it immediately. The input would be evaluated or
executed only if it was not followed by an ErrP. If the ErrP
occurred after the input had already been executed (e.g., in the
case of feedback ErrP), then the execution would be rolled back.
In a way, ErrP would automatize the confirmation through the
dialog box and the subsequent undoing in traditional HCI. Such
a mechanism requires accurate single trial ErrP detection to be
successful. Simulation studies have demonstrated the theoreti-
cal success of error handling with BCI. Ferrez and del R. Millán
(2007) applied this methodology in a simulated, keyboard-
based human–robot interaction experiment, by not executing
a command if an interaction ErrP is detected afterward, and
they reported significant improvement in BCI performance in
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No

Yes
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FIG. 3. Theoretical error prevention using brain–computer interfaces (BCIs). Note. Brain signals are acquired by the BCI and checked for the presence of error-
related potential (ErrPs). If no ErrP is detected, the user command is executed or an action is taken according to the user state. Otherwise, user input is ignored.
If the ErrP occurs after the feedback (dashed elements in the figure), the executed command is rolled back.

terms of bit rate. Similarly, Schalk, Wolpaw, McFarland, and
Pfurtscheller (2000) used response ErrP in a simulated target
selection experiment with ERD/ERS-based cursor movements
and obtained gains in classification accuracy and bit rate.

3.2. Improved Task Performance
One of the features of MMI is redundancy (Mills & Alty,

1998) whereby the users are able to express themselves via
more than one modality for the very same task and to receive
feedback via more than one media for the very same response.
While interacting simultaneously through multiple modalities
that are imperfect in performance, weaknesses of one modal-
ity can be overcome by the others, thus the overall recognition
performance can be improved. Leeb, Sagha, Chavarriaga, and
del R. Millán (2011) combined EEG and electromyography
(EMG; measuring the electrical activity of the muscles) sig-
nals during left/right hand movement tasks. They simulated
muscle fatigue by degrading the EMG signals and showed
that the recognition performance can be improved in compar-
ison to EEG-only and EMG-only recognition. Another way to
benefit from multimodal redundancy is to let the system/user
switch modality during interaction. In this way, users can switch
modality when they encounter an error or feel loss of control,
or the system can automatically switch when an error or sig-
nal degradation is detected. Thereby, task performance can be
improved. Kreilinger, Kaiser, Breitwieser, Neuper, and Müller-
Putz (2011) designed an experiment where users could control
a car game using a joystick and imaginary movements. For both
types, four different quality measures were constantly applied
to evaluate the quality of the signal. As soon as the quality
of a control mode dropped below a certain threshold, the sys-
tem would switch to the other mode. The authors concluded
that their approach proved to be feasible for use, especially
in assistive technologies where fatigue and other deteriorating
factors are widely anticipated.

Brain responses and sensory processes can help in improving
the performance of computers via BCIs. Analyzing the errors
occurring during interaction can provide clues on the incon-
gruity between a user and a system. We have already covered the
principles of error detection with BCIs (through ErrPs) in the
previous subsection. An adaptive system may train itself using
the ErrPs and optimize its performance specifically for a user
or in general. Use of errors to improve task performance has
been demonstrated by Förster et al. (2010) on their hand ges-
ture recognizer. In their experiment, the recognizer analyzed the
users’ ErrPs during interaction, and this way it became aware of
its own performance. Thereupon, it was able to improve itself
through reoccurring detection of ErrP signals.

Human sensory capabilities are superior to any computer
technique in terms of speed and quality. It costs us just a blink
of an eye to recognize an object, whereas a computer can rec-
ognize it only within a second through extensive training on
a limited collection of objects (Tolba, El-Baz, & El-Harby,
2006). Moreover, we have the capability to recognize even the
childhood photograph of a now-old person, whereas for a com-
puter this is an extremely challenging task. Parra et al. (2008)
developed a target detector that rapidly displays a collection of
images (10–20 images per second) to the user and detects if
an image matches the target image based on the P300 response
from the user. For an image with a low number of matches in a
collection, trained image analysts were able to identify a greater
number of matching images in a shorter time using the target
detector than by simply observing the thumbnails.

A user’s task performance might be affected by his mental
and emotional state. For assessing mental workload (Kramer
& Weber, 2000) and emotional state (Chanel et al., 2009;
Mandryk, Inkpen, & Calvert, 2006), physiological methods
such as galvanic skin response (GSR; measuring conductivity
of the skin), electrocardiography (ECG; measuring electrical
heart activity), and electrooculography (EOG; measuring elec-
trical eye activity) have been proposed. However, physiological
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BRAIN–COMPUTER INTERFACES FOR MULTIMODALITY 299

sensors make use of much slower responses of the body when
compared to the fast brain activity acquired by the EEG.
Therefore, they require baseline periods and longer intertrial
intervals, in which the subject establishes a true neutral state.
In contrast, EEG studies do not require long intervals as EEG
provides high temporal resolution. For these reasons it is advan-
tageous to use EEG-based BCIs for mental/emotional state
detection over the physiological methods.

Mental state is crucial for critical human tasks such as
driving, operating an aircraft, or controlling the traffic. By
monitoring the mental workload of the user, a system may
adapt task difficulty or intensity for safe operation and opti-
mal task performance. There are a number of examples of
BCI applications for real-time mental state detection while the
user is performing multiple tasks. In a typical scenario, the
user performs a critical task and the BCI system monitors the
user’s mental load or drowsiness. The system warns the user
or adjusts the settings in order to improve task performance
or prevent undesired consequences. Among many indicators of
mental state, ERD of parietal alpha rhythm, ERS of frontal
theta rhythm, and amplitude of P300 response are the most
prominent neuromechanisms used in mental workload (Holm,
Lukander, Korpela, Sallinen, & Müller, 2009) and drowsiness
(Oken, Salinsky, & Elsas, 2006) detection. Kohlmorgen et al.
(2007) developed a system that monitors the mental workload
of drivers in a real car on the highway in moderate traffic condi-
tions. The drivers also had auxiliary tasks other than driving.
The system mitigated the workload on the auxiliary tasks in
high workload conditions, which improved the performance
of drivers in terms of shorter response time. Lin et al. (2008)
implemented a system that monitors the drowsiness of drivers in
a highway VE and warns them when this condition occurs. They
computed the system performance as the correlation between
the detected drowsiness and actual driving errors and reported
an average performance of 75%. However, the influence of the
real-time warning system on decreasing the amount of errors
was not evaluated.

Emotions also play a role in cognition. For example, frus-
tration diminishing abilities with respect to attention, memory
retention, learning, and thinking creatively (Klein, Moon, &
Picard, 2002). Thus, by helping to regulate certain emotional
states a better HCI performance may be achieved for certain
tasks. Emotions are complex to understand, model, and thus
measure. They are subjective and might often involve other
brain functions, such as memory access. Thus, although a lot
of research has been done on finding emotion correlations in
the brain, there is much inconsistency as well. We do not delve
into the details of these studies, and refer the reader to the com-
prehensive survey by Chanel et al. (2009). Use of BCIs as thera-
peutic tools for regulating the emotions through neurofeedback
has already been proposed (Johnston, Boehm, Healy, Goebel,
& Linden, 2010). But so far no real-time BCI system has been
developed for investigating the effect of regulating emotions on
task performance.

3.3. Improved User Experience
The most up-to-date definition of user experience accord-

ing to the ISO standard (ISO 9241-210:2010, 2010) is, “A
person’s perceptions and responses that result from the use
or anticipated use of a product, system or service.” The HCI
community is continuously trying to improve the definition of
user experience (Law, Roto, Hassenzahl, Vermeeren, & Kort,
2009) and suggesting models for it (Nacke, Drachen, & Goebel,
2010). One of these models, upon which we base our discus-
sion, is the model from Hassenzahl (2004) suggesting two sets
of attributes of a product that affect the user experience: prag-
matic and hedonic. Pragmatic attributes are those relating to a
product’s functionality (utility) and ways to access functionality
(usability). Biological research has shown that human percep-
tion is multisensory (Murphy, 1996). We perceive things around
us by integrating information provided by our multiple senses.
This implies that HHI is multisensory, so MMI is analogous to
HHI in this respect. By this analogy it should be natural and
easier to interact with an MUI than a unimodal one, and there-
fore MMI should improve user experience. Several studies have
practically confirmed that people prefer to use multiple-action
modalities for certain tasks. Examples include using speech
and gestures for manipulating virtual objects (Hauptmann &
McAvinney, 1993) and maps (Oviatt et al., 2000). Hedonic
attributes, on the other hand, are those that provide stimula-
tion, communicate user identity, and provoke valued memories.
A vintage product might bring back a memory so has a hedonic
attribute. A user interface offering novel features also has such
an attribute, as it might stimulate the user with the new possibil-
ities it offers. In a study by Wechsung and Naumann (2009),
a multimodal remote controller was found to improve user
experience in comparison to a conventional remote TV con-
troller, although the authors note that there are studies reporting
opposite findings.

Until very recently, BCI research has concentrated only on
optimizing the performance of the systems. Not much atten-
tion has been paid to the user’s experience while interacting
with the system. Nonetheless, a very few examples did con-
sider the factors affecting user experience in BCI applications.
Van de Laar, Reuderink, Plass-Oude Bos, and Heylen (2010)
examined the differences in user experience between actual
and imaginary movements during a BCI game. They reported
that performing imagined movement is more of a challenge
than actual movement. Groenegress, Holzner, Guger, and Slater
(2010) assessed how mental workload imposed by a BCI affects
sense of presence in a VE. They compared P300-based selec-
tion against gaze-based selection and found that the reported
presence scores for the P300-based selection were much lower
than those for the gaze-based selection. All the BCI systems
considered in aforementioned studies are unimodal, and so far
there has been no study investigating the added value of BCI
to user experience when used in MMI. Using BCI may add to
user experience because of the novelty or might detract from it
due to the effort it may demand. More applications and research
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300 H. GÜRKÖK AND A. NIJHOLT

are required to answer questions about user experience in the
multimodal use of BCIs.

3.4. Broader User Spectrum
While using a redundantly multimodal interface, users’

choice of the modality depends on various factors such as their
skills, impairments, or preferences. From the input point of
view, a user with a broken hand bone would prefer speech over
the mouse, and a user who can draw well would prefer pen input
over speech. Likewise, for the output, a hearing impaired indi-
vidual would appreciate visual output while a visually impaired
user an acoustic one. So redundant design leads to a broader
range of users.

Sometimes there are very limited options to choose from,
or there are no options at all as in the case of locked-in syn-
drome (LiS). LiS is a neurological condition consisting of
tetraplegia and paralysis of all cranial nerves except vertical
eye movements (Bauer, Gerstenbrand, & Rumpl, 1979) and is a
characteristic of multiple sclerosis or amyotrophic lateral scle-
rosis (also known as Lou Gehrig’s disease). The clinical BCI
applications have long been addressing this case. For example,
a patient with LiS can use a prosthetic hand (Guger, Harkam,
Hertnaes, & Pfurtscheller, 1999) or control a cursor on the com-
puter screen (Wolpaw, McFarland, Vaughan, & Schalk, 2003)
by imagining left- and right-hand movements. For a comprehen-
sive overview of invasive and noninvasive BCIs to restore the
interaction of the LiS patients, the reader is referred to Kübler,
Nijboer, and Birbaumer (2007).

Gaze and blink trackers based on camera (Betke, 1998) or
EOG (Barea, Boquete, Mazo, & Lopez, 2002) input can also
be used for LiS patients because their vision is intact. The true

value of the BCI becomes clear in the case of people with
complete (or total) LiS (CLiS), which is the condition of vir-
tually total immobility including all eye movements combined
with preserved consciousness (Bauer et al., 1979). A nonvisual
BCI is the sole means of restoring the interaction capability
of a CLiS user. Despite successful demonstrations of auditory
BCIs for the locked-in (Furdea et al., 2009), so far no patient
in CLiS has been able to reliably use such a device (Kübler
& Birbaumer, 2008). Nevertheless, research has shown that it
is possible to detect the consciousness in CLiS with an auditory
BCI (Schnakers et al., 2009), so BCIs are still promising devices
for this group of people.

4. TECHNIQUES, CHALLENGES AND GUIDELINES
FOR EMPLOYING BCI IN MMI

So far we have covered the objectives of MMI and the prin-
ciples of BCI together with the recent applications. We now
continue with the techniques for employing BCI in MMI and
provide some guidelines for the associated challenges. We base
our discussion on the driving principles of MMI as mentioned
by Dumas, Lalanne, and Oviatt (2009) as well as Jaimes and
Sebe (2007). These principles are fusion of input modalities,
fission of output modalities, integration architectures, and data
collection procedures.

4.1. Multimodal Information Integration (Fusion)
The integration of information from different input modali-

ties is a typical process in MUIs. In this process, also known as
fusion, the goal is to extract a common meaning from multiple
inputs and make a decision accordingly. The multimodal fusion
can be executed in three main levels (see Figure 4), namely, the

Data 1 Data 2

Feature
extractor

Decision
maker

Decision
maker

Feature
fuser

Decision
maker

Data
fuser

Decision
maker

Decision
fuser

Decision

Feature
extractor
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Decision

(b)

(c)
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FIG. 4. Three main levels of multimodal signal integration (fusion) illustrated on bimodal data: (a) data-level fusion, (b) feature-level fusion and (c) decision-level
fusion (color figure available online).

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ite

it 
Tw

en
te

] a
t 1

0:
41

 0
9 

A
pr

il 
20

12
 



BRAIN–COMPUTER INTERFACES FOR MULTIMODALITY 301

data, feature, and decision levels (Sharma, Pavlovic, & Huang,
1998). Next we define each of these levels and describe relevant
multimodal BCI applications.

Data-level fusion. Data-level fusion is performed while
integrating multiple observations of the same kind, such as
audio data coming from camera and microphone. The data are
not processed before the fusion, so a high level of information
detail is preserved. On the other hand, the absence of pre-
processing makes this level of fusion susceptible to noise and
sensor failure as well. In HCI, data-level fusion is not com-
monly applied as the modalities usually deliver different types
of data, such as speech and gestures yielding audio and visual
data, respectively.

Within BCI research, data-level fusion is mostly used for
subtracting electrical eye activity (EOG) from the EEG in
the domain of artefact correction. EOG contamination is dif-
ficult to avoid, especially in applications for nondisabled users,
and simple artifact rejection causes data loss. Therefore, arti-
fact reduction and correction is an essential topic in BCI
research. We recommend that reader would look at the survey
by Fatourechi, Bashashati, Ward, and Birch (2007) for a very
good review of EEG artifacts and artifact removal methods.

Feature-level fusion. Feature-level fusion is used for
modalities, which are not necessarily of the same type but
are tightly coupled or synchronized, such as speech and lip
movements. As the data are processed in this case, informa-
tion loss is inevitable. On the other hand, relying on extracted
features rather than the raw data increases robustness. In this
level of fusion, the size of feature sets can be very large so
dimensionality reduction is a commonly applied technique.

A typical application of this level of fusion in BCI is for
mental and emotional state detection. Just as speech and lip
movements are indicators of the act of speaking, neurophys-
iological changes in the body are indicators of certain states.
As an example, ECG measures the electrical activity of the
heart. Heart rate, interbeat interval, heart rate variability (HRV),
and respiratory sinus arrhythmia are some features which can
be extracted from the ECG data. These features are representa-
tives for certain states. For example, heart rate can differentiate
between positive and negative emotions, and HRV is associated
with stress (Mandryk et al., 2006). A state can correlate with
multiple features extracted from different sensors. For instance,
stress can be traced in respiration rate, HRV, and some other
features extracted from GSR, EEG, and EMG data. Thus by
combining these features, it is possible to assess a person’s
stress level.

In general practice, the feature sets obtained from different
modalities are concatenated to form a single vector and fed into
a classifier. A recent example is the work by Chanel, Kronegg,
Grandjean, and Pun (2006) for arousal assessment using EEG
and peripheral sensors (a temperature sensor, GSR to measure
the skin conductance, plethysmograph to measure blood pres-
sure, and respiration belt to evaluate abdominal and thoracic
movements). Six EEG features and 18 peripheral features were

extracted, concatenated, and fed into naive Bayes and Fisher’s
discriminant classifiers. The results showed that fusion provides
more robust results than using only EEG or physiological data.

Feature-level fusion is also used for combining multiple
brain measurement methods. As mentioned in the Acquiring
(Measuring) Brain Activity (Imaging Modalities) section, the
measurement methods have their strong and weak properties.
For instance EEG and MEG are weak in spatial resolution
but strong in temporal resolution, whereas the situation is the
opposite for fMRI. Therefore, integrating the methods with
complementary assets can overcome the drawbacks of each.
Merzagora et al. (2009) extracted two EEG and three fNIRS
features during a working memory task carried out by six peo-
ple and combined in a single feature vector. They showed that
integrating the modalities improved the spatiotemporal resolu-
tion. Another approach is to use the features extracted from
one measurement method as constraints (prior knowledge) in
source reconstruction of another one. Friston (2009) provided
some examples for the fusion of EEG and fMRI in this fashion.

Decision-level fusion. The third type of fusion is the deci-
sion level (or classifier) fusion, which is used for integrating
modalities that are not necessarily tightly coupled, such as pen
and speech input. In this case, data from each input are mod-
eled independently and the unimodal recognition results are
combined. Therefore low-level information is not preserved.
However, because data are preprocessed, tolerance to sensor
failure and noise is higher.

In this level of fusion, modalities can be combined to perform
a single task or separate tasks contributing to a single higher
level task. In the former case, the combination scheme is the
main concern. There are various alternatives depending on the
format of the results and availability of training data. If scores
are available from the modalities for every alternative decision
and the scores are in the same scale (or can be normalized),
then they can directly be combined. This can be done by sim-
ply averaging the scores, but there are more advanced methods
as well (Aslam & Montague, 2001). If information is available
on the reliability of modalities—for example, via some training
data—then the scores can be weighted in proportion to the reli-
ability and then combined (also known as linear combination).
On the other hand, if there are no scores but only a ranking
of possible decisions (i.e., an n-best list) or the scores coming
from the modalities are not comparable, then ranks can be com-
bined. Again, depending on the availability of training data, the
contribution of each modality can be weighted. Nuray and Can
(2006) provided a nice overview of rank-based fusion meth-
ods, from an information science point of view. This type of
decision-level fusion has been used for combining neurophysi-
ological data such as EEG and fNIRS in a working memory task
(Merzagora et al., 2009) or neurological and physiological data,
such as EEG and pupil data for visual detection analysis (Qian
et al., 2009).

The latter type of decision-level fusion just mentioned (i.e.,
where there are multiple tasks but a single higher level task) is
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302 H. GÜRKÖK AND A. NIJHOLT

sometimes called semantic-level fusion. It is used in combining
BCI with HCI (i.e., non-neurophysiological) modalities. Mühl
et al. (2010) employed decision-level fusion in their multimodal
BCI game, which uses keyboard input and EEG signals. They
combined key presses with the player’s parietal alpha activ-
ity, associated with relaxed alertness, to position the player
avatar in the game world. The main concern in this type of
decision-level fusion is not the combination scheme but rather
the synchronization of modalities. We mention this issue in the
next subsection.

Decision-level fusion can be used to combine any sorts
of modalities, even with simple classification algorithms.
Nevertheless, the underlying assumption of conditional inde-
pendence between the modalities must be taken into account.
Especially with tightly coupled modalities, the data provided
by the modalities might contain mutual information. So model-
ing the data independently would cause loss of information of
mutual correlation. In this case one could opt in for model-level
fusion in which data from each modality are modeled separately
(using a model such as the Hidden Markov Model) and the
resulting models are fused together using a probabilistic fusion
model that is optimal according to the maximum entropy princi-
ple and a maximum mutual information criterion (Zeng, Pantic,
& Huang, 2009).

4.2. Integration Architectures
In multimodal fusion, synchronization of the modalities is

an indispensable step. Lags may occur due to technology (as in
the case of automatic speech recognition or BCI), multimodal
system architecture, or user differences in multimodal integra-
tion patterns (Dumas et al., 2009). For this reason, multiagent
architectures are desirable for distributing the processes and
coordinating the modalities. Ideally, all data should be time-
stamped at each individual modality and should be verified
before the fusion.

Theoretically BCI modalities can provide a temporal resolu-
tion of less than a second (van Gerven et al., 2009). But because
BCI is not as robust as other HCI modalities, often a task is
repeatedly performed or a mental/emotional state is kept sta-
ble within a time window and the cumulated data are analyzed.
For example Savran et al. (2006) used blocks 12.5 s long to
fuse EEG and functional NIRS (fNIRS) data for emotion detec-
tion. In each block, they showed five stimulating images to the
subject to accumulate data. Mühl et al. (2010) used 3 s of over-
lapping EEG windows to combine with the keyboard input in
their multimodal game. The windowing technique introduces a
trade-off between speed and accuracy. The longer the window is
(i.e., the more repetitions there are), the more the data accumu-
lates, thus the higher is the chance of correct recognition. On the
other hand, as the window gets longer, the observed speed of the
interface decreases up to several seconds.

The trade-off between speed and latency might make it
difficult to achieve fast-paced BCI applications with high

performance. Zander, Gaertner, Kothe, and Vilimek (2011)
developed a multimodal speller where users make selections by
dwelling (i.e., staring for some time) or imagining hand move-
ments on the choices. They compared short and long dwell
selections against the BCI selection in terms of accuracy and
speed. The results showed that BCI control (with 83.3%) was
significantly more accurate than short dwelling (with 67.4%)
and as accurate as long dwelling (with 84.7%). However, BCI
was the slowest method in task completion time (easy task:
5.90 s; hard task: 8.84 s) compared to short (3.98 s; 5.38 s)
and long (4.79 s; 7.37 s) dwelling. This study shows that the
proportion of the amount of time spent on collecting data to the
amount of collected data is a matter of consideration.

4.3. Data Collection Procedures
There are experimental challenges associated with com-

bining different measurement methods. The multimodal data
can be collected either in separate sessions or simultaneously.
Separate recordings are preferred if an experiment can be
repeated more than once with a high degree of reliability of
the data, whereas simultaneous measurements are essential in
cases such as when a subject’s state might influence the results
as in monitoring spontaneous activity or sleep state changes
(Halchenko, Hansen, & Pearlmutter, 2005). During separate
acquisition habituation effects, variations in the stimulation
paradigm, or any other difference between sessions, might lead
to differential activity of the brain. On the other hand, when
recording simultaneously, reciprocal electromagnetic perturba-
tions between the measurement devices pose a constraint. For
example, during fMRI-EEG recordings, the magnetic resonance
field strength and positioning of the EEG recording equip-
ment induce voltages that add linearly to the EEG signal and
obscure the biological signal of interest (Daunizeau, Laufs, &
Friston, 2010). Halchenko et al. (2005) listed some artifact
removal techniques and protocols for simultaneous fMRI-EEG
recordings.

There are also physical constraints in simultaneous
multimodal measurements. The number of sites on the head
where sensors can be placed is limited, and once one type of
sensor is placed, another one cannot simply be applied on the
same location. For this reason, different types of sensors can
record at different locations exploiting different correlates of
the very same activity. Alternatively, integrated probes can be
used as done by Cooper et al. (2009) for simultaneous EEG and
NIRS recordings.

When the experiments are conducted in a laboratory (posed,
controlled) setting, the optimal conditions for the operation of
the recording device are satisfied. Isolation against electromag-
netic inference and audio noise would be ensured, and subjects
would be instructed to avoid movements, blinks, or speak-
ing, which could cause physiological noise (Gunes, Piccardi,
& Pantic, 2008). However in real-world (spontaneous, natu-
ral) contexts, all the aforementioned noises occur naturally and
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BRAIN–COMPUTER INTERFACES FOR MULTIMODALITY 303

should either be handled or, better, included in the analyses.
Solovey et al. (2009) identified some considerations and pro-
vided guidelines for using fNIRS in realistic HCI settings. They
examined whether typical human behavior (e.g., head and facial
movements) or computer interaction (e.g., use of keyboard and
mouse) interfere with fNIRS measurements. They stated that,
provided the interference is corrected according to the guide-
lines they proposed, fNIRS can be used in realistic experiment
environments. Lotte et al. (2009) investigated the feasibility of
using an EEG system based on P300 signals with a moving sub-
ject. They found that it was possible to detect the P300 signal
while the subject was sitting, standing, or walking. Nam, Li,
and Johnson (2010) investigated the usability of a P300 speller
by assessing how background noise affected user performance
and BCI usage preference. They reported that participants had
better performance in the noisy condition than in the quiet con-
dition. Gürkök, Poel, and Zwiers (2010) classified EEG signals
of imaginary movements in presence of speech. They showed
that with their method the presence of speech during motor
imagery did not affect the classification accuracy significantly.

4.4. Multimodal Information Presentation (Fission)
In MMI, fission is the process of conveying the output

of a system using multiple modalities, such as the audio,
visual, and haptic channels. As an input modality, BCI does
not contribute to multimodal information presentation (fission).
However multimodal fission may play a role in the functioning
of BCIs.

Multimodal stimulation can enhance brain activity or
response due to superadditivity, in which the multisensory
response exceeds the sum of those evoked by the modality-
specific stimulus components individually (Stanford & Stein,
2007). In a multimodal feedback P300 study by Brouwer, van
Erp, Aloise, and Cincotti (2010), participants attended to the
vibrations and/or flashes of a target presented in a stream of
standards. The authors reported that classification accuracy was
highest in the bimodal condition and concluded that bimodal
stimuli could enhance classification results within a BCI context
compared to unimodal presentations. In another study (Belitski,
Farquhar, & Desain, 2011) participants used a P300 speller
with visual, auditory, and audiovisual stimuli. The bimodal
version outperformed the others in terms of single trial classifi-
cation. Based on the findings, the authors suggested that when
both sensory modalities are available, multimodal stimulation
improves the performance over unimodal stimulation. They also
concluded that multimodal stimulation is robust to the loss of
a single sensory modality due to, for example, a disease or
distraction.

On the other hand, attentional resource competition between
the modalities may impede the user’s ability to fully use a
combined feedback. In a study by Hinterberger et al. (2004),
subjects learned to regulate their brain potentials with audi-
tory, visual, and combined visual-auditory feedback from the

BCI system. The results of the study revealed that the com-
bined feedback modality showed the smallest learning effect,
indicating that combining modalities may impede learning.

With some BCI interaction paradigms, output modality
selection may become critical. For rBCI, in which a stimulus
is necessary to evoke the desired brain activity, the user is sup-
posed to attend only to the stimulus presented. In this case, using
mutually exclusive modalities for the feedback and the task-
related stimulus might mitigate the interference between the
two. Lalor et al. (2005) developed an EEG-based 3D, immer-
sive BCI game that uses SSVEPs (thus visual stimulation) and
audiovisual feedback during training. Their subjects reported
that audio feedback aided in the successful sustained fixation on
a particular stimulus and the inhibition of responses to distrac-
tions. Cincotti et al. (2004) used a tactile feedback modality and
compared it to the visual feedback while subjects were required
to perform a visually guided navigation task using imaginary
movement of their hands. A significantly higher rate of mis-
takes was made when visual attention was divided between the
control and task monitors.

For aBCI and pBCI, this is less of a concern as they do not
depend on stimulation. As an example of the aBCI, Tangermann
et al. (2008) demonstrated the multimedia feedback in a pin-
ball machine controlled by imaginary movements. The users
were able to control the machine, which provided rich and com-
plex feedback as well as acoustic and visual distracters. Typical
examples of pBCI are the neurofeedback applications in which
the user is provided with visual and auditory feedback about his
mental or emotional state (Jackson & Mappus, 2010).

5. CONCLUSIONS
Until recently, BCI and HCI researchers have not attempted

to look at their own research fields from one another’s perspec-
tives. BCI research disregarded human factors such as usability,
aesthetics, and social interaction but concentrated more on sys-
tem performance. Likewise, HCI research did not consider BCI
as a regular modality and did not include it in HCI topics such as
ubiquitous computing, multimodality, and interactive systems.
With the penetration of portable, wireless, easy-to-use BCI
headsets into homes and the development of everyday appli-
cations, nondisabled users are becoming a target group in BCI
research. This calls for investing time to explore the HCI aspects
in BCI. On the other hand, the unique features offered by the
BCIs can overcome the limitations of conventional modalities,
so HCI research is attracted to the benefits of BCI as a modality.

For a long time, MMI was associated only with speech
and gesture (or pen-based) interfaces. Despite some demon-
strations as MUIs, the BCI has not been commonly employed
in MMI. In this article we defined the research domains of
MMI and BCI and indicated the mutual benefits between them.
We showed that BCIs can improve error handling, task perfor-
mance, and user experience and can broaden the user spectrum
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by multimodal implementations. Then we applied the prin-
ciples of MMI to recent BCI research and applications in
order to identify the possible challenges. We provided some
guidelines to the issues such as noise and interference dur-
ing multimodal fusion, distraction during multimodal output,
physical constraints in multimodal deployment, and experi-
mental constraints with respect to the user, the task, and the
environment.

Perhaps there are two main requirements that HCI demands
to BCI to accept it as an alternative modality: ease of operation
and reliability. BCI technology is not too far from satisfy-
ing these requirements at a certain level. With consumer BCI
devices, which are easy to use for the users as well as for the
researchers, operation of BCIs no longer requires neuroscien-
tists. Although much promising work has been going on to
improve the reliability of the BCI, better signal processing and
classification methods will always be expected. Nevertheless,
as pointed out by Oviatt (1999), the main advantage of MMI
is not enhanced efficiency but decreased error rate, flexibility
to choose between alternating input modes, and a wider range
of users. Throughout this text we have considered the contri-
bution of BCIs in providing these and other advantages when
used in MMI. The individual inadequacies experienced with
BCI should not hinder concurrent exploration of the practical
possibilities of integrating BCI in MMI. We do use previously
developed algorithms for BCI specific tasks such as artifact
removal or response detection in our applications and attempt
to improve them. However, with respect to MMI methods for
BCI, we are not sufficiently aware of each other. This is mainly
because there is not much work being done on integrating MMI
and BCI yet. Despite being far from mature, there are meth-
ods for multimodal input fusion. However the issues including
but absolutely not limited to output fission methods and effects,
synchronization with other modalities, and privacy and security
are still open. MMI and BCI researchers should start regarding
each other’s work as specialized tracks of attention. We need
to develop more multimodal BCI applications and report the
challenges encountered. As the number of multimodal BCIs
increase and their contribution to enriching HCI is appreciated,
BCIs will be more widely accepted as regular HCI modalities.
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APPENDIX A

Nomenclature

aBCI Active BCI
BCI Brain–computer interface
CLiS Complete (or total) locked-in syndrome
ECG Electrocardiography (also known as EKG)
ECoG Electrocorticography
EEG Electroencephalography
EMG Electromyography
EOG Electrooculography
ERD/ERS Event-related desynchronisation/

synchronisation
ERP Event-related potential
ErrP Error-related potential
fMRI Functional magnetic resonance imaging
fNIRS Functional near-infrared spectroscopy
GSR Galvanic skin response
hBCI Hybrid BCI
HCI Human–computer interaction
HHI Human–human interaction
HRV Heart rate variability
LiS Locked-in syndrome
MEA Microelectrode (or multielectrode) array
MEG Magnetoencephalography
MMI Multimodal interaction
MUI Multimodal user interface
NIRS Near infrared spectroscopy
pBCI Passive BCI
rBCI Reactive BCI
RP Readiness potential (also known as the

Bereitschaftspotential)
SSVEP Steady-state visual evoked potentials
VE Virtual environment
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