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Running Head: developing predictive equations to model visual demand 

ABSTRACT 

Touchscreen HMIs are commonly employed as the primary control interface and touch-

point of vehicles. However, there has been very little theoretical work to model the 

demand associated with such devices in the automotive domain. Instead, touchscreen 

HMIs intended for deployment within vehicles tend to undergo time-consuming and 

expensive empirical testing and user trials, typically requiring fully-functioning 

prototypes, test rigs and extensive experimental protocols. While such testing is 

invaluable and must remain within the normal design/development cycle, there are clear 

benefits, both fiscal and practical, to the theoretical modelling of human performance. 

We describe the development of a preliminary model of human performance that makes a 

priori predictions of the visual demand (total glance time, number of glances and mean 

glance duration) elicited by in-vehicle touchscreen HMI designs, when used concurrently 

with driving. The model incorporates information theoretic components based on Hick-

Hyman Law decision/search time and Fitts’ Law pointing time, and considers 

anticipation afforded by structuring and repeated exposure to an interface. Encouraging 

validation results, obtained by applying the model to a real-world prototype touchscreen 

HMI, suggest that it may provide an effective design and evaluation tool, capable of 

making valuable predictions regarding the limits of visual demand/performance 

associated with in-vehicle HMIs, much earlier in the design cycle than traditional design 

evaluation techniques. Further validation work is required to explore the behaviour 

associated with more complex tasks requiring multiple screen interactions, as well as 

other HMI design elements and interaction techniques. Results are discussed in the 

context of facilitating the design of in-vehicle touchscreen HMI to minimise visual 

demand.  



 - 2 - 

 

CONTENTS 

 

1. INTRODUCTION 

 1.1. Background: Information Theory 

 1.2. Combining Fitts’ Law and Hick-Hyman Law 

 1.3. Applying Cockburn et al.’s Approach in an Automotive Context 

 1.4. Overview of Research 

2. GENERAL METHOD 

 2.1. Approach  

 2.2. Apparatus and Design  

3. DATA COLLECTION AND ANALYSIS 

 3.1. Pointing – Single Targets 

 3.2. Pointing – Multiple Target Items 

 3.3. Decision/Search – Uniform Array 

  Visual Search Component  

  Hick Hyman ‘Decision’ Component 

  Refining the Model 

 3.4. Combining Terms 

4. VALIDATION OF MODEL 

5. GENERAL DISCUSSION 

6. CONCLUSIONS AND FUTURE WORK 

7. ACKNOWLEDGEMENTS 

 

 

 

 

 

 

 

 
  



 - 3 - 

 

1. INTRODUCTION 

There has been significant interest in the theoretical prediction of human behaviour 

and performance, and a substantial corpus of literature exists. Applied to the field of 

human-computer interaction (HCI), this work has traditionally focussed on technology 

and interfaces that act as the only or primary focus for a user’s attention (e.g. menu 

selection using desktop computers), with the aim of predicting interaction time or user 

performance. However, given that the world is now suffused with computers and 

technology, users may be required to interact with an interface while concurrently 

executing a more critical primary task (e.g. while driving). Consequently, there is 

increasing interest in the prediction of human behaviour and performance in situations 

which place multiple demands on users’ attention. Existing work in this domain has 

centred on the development and integration of individual cognitive frameworks to make a 

priori predictions concerning behaviour for both primary and secondary tasks (e.g. 

Salvucci, 2001), and typically necessitates a detailed and thorough understanding of the 

task, the user and the system, and the interactions between them (Harvey et al., 2011). 

However, early models often failed to capture individual differences in the desire or 

ability of users to engage in a secondary task, while maintaining satisfactory primary task 

performance, and are equally absent of any efficiencies achieved through repeated 

exposure to an interface (i.e. learning effects). While significant advancements have been 

made (e.g. Pettitt, et al., 2007), there is general consensus that the prediction of human 

performance and behaviour in a divided-attention context remains a challenge, with 

existing ‘combined’ models often requiring substantial reworking following integration 

(see: John et al., 2004). In contrast, our work utilises a more rudimentary approach, 

applying underlying information theory from basic principles to predict secondary task 

performance. 

1.1. Background: Information Theory  

A common foundation for modelling behaviour is Information Theory (Shannon and 

Weaver, 1949), which views humans as information processors. Adaptations of 

Information Theory were first applied to the then fledgling field of HCI during the 1980s 

by Card et al. (1983), who articulated two information theoretic models as guiding 

principles to enhance technology and interface design and usability, notably Fitts’ Law 

and the Hick-Hyman Law (Fitts, 1954; Hick, 1952; Hyman, 1953). 

Fitts’ Law concerns the prediction of movement time necessary to acquire a visual 

target (typically using a pointing device) and is predicated on the fact that human 

performance is limited primarily by the capacity of the human motor system, as 

determined by the visual and proprioceptive feedback that permits an individual to 

monitor their own movement and activity. The Hick–Hyman Law (Hick, 1952; Hyman, 

1953) compliments Fitts’ Law by modelling the relationship between information load 

and choice-reaction time, i.e. the time taken to determine which target/item to acquire 

before moving towards it – interfaces with more options have higher information content, 

as do unlikely events. 
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Both Fitts’ Law and the Hick-Hyman Law are thus highly applicable within the fields 

of HCI and Human Factors. Fitts’ Law, in particular, has been used extensively within 

the HCI community, for example, as a theoretical framework for computer input device 

evaluation (Card et al., 1978; MacKenzie, 1992), a tool for optimising new interfaces (Bi 

et al., 2012; Lewis et al., 1999) and as a method to understand or predict performance 

when selecting items from menus/interfaces (Cockburn et al., 2012; Cockburn et al., 

2007), and is formally recognised in the evaluation of pointing devices (ISO, 2007). 

However, much of this work overlooks the time taken to choose and locate the target, or 

fails to consider adaptations to visual search strategies, and associated changes in search-

time, as users become more familiar with interfaces. Investigations have also tended to be 

conducted in a sedentary context, where the interface is the only or primary focus for the 

user’s attention. 

1.2. Combining Fitts’ Law and Hick-Hyman Law  

Given their common root in information theory and obvious practical application, 

there is an inherent logic and attraction in combining elements of Fitts’ and Hick-Hyman 

models to create a more expansive prediction of human behaviour than each model offers 

alone. Indeed, since their inception, several attempts have been made to fuse the two 

models (e.g. Beggs et al., 1972; Soukoreff and MacKenzie, 2004; Hoffmann and Lim, 

1997). However, these have achieved limited success, attributed, at least in part, to 

attempts to incorporate elements that were not amenable to theoretical analysis or 

intended to be modelled by the laws. Moreover, whereas Fitts’ law is immediately 

applicable to highly familiar and recognisable tasks, such as selecting an on-screen icon 

or typing on a keyboard, and thus captures human performance that is kinaesthetic and 

related to dexterity, Hick-Hyman incorporates degrees of unpredictability in stimuli and 

considers tasks that contain a cognitive element (Seow, 2005). At a theoretical level, the 

successful application of Hick-Hyman is thus dependent on first codifying different 

events and then determining their probabilities, in order to calculate their information 

content or entropy (Landauer & Nachbar, 1985). 

Nevertheless, a more recent application by Cockburn et al. (2007) successfully 

combined elements of Fitts’ and Hick-Hyman laws to predict the static task time 

associated with different menu designs. The Cockburn et al. (2007) model predicts that 

the time to select an item, T, comprises a Hick-Hyman decision/search time component 

(Tdst) and a Fitts’ Law pointing time (Tpt): 

 

 𝑇 =  𝑇𝑑𝑠𝑡 + 𝑇𝑝𝑡 (1) 

 

Pointing time, Tpt, is derived using a Fitts’ Law relationship. To determine item 

decision/search time, Cockburn et al. (2007) recognise that when users first encounter a 

menu, they are required to visually search for the target regardless of the layout/design. 
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However, as users become more familiar with the menu design, benefits may be realised 

based on their spatial location memory, provided that the placement of items remains 

predictable and stable. Thus, the model calculates decision/search time by interpolating 

between a linear visual search-time component and a logarithmic Hick-Hyman decision 

time component. Cockburn et al. (2007) also model user’s expertise, e, (with values 

notionally ranging from 0, ‘complete novice’, to 1, ‘complete expert’) to reflect the fact 

that as user’s familiarity increases, their visual search time tends towards zero and the 

Hick-Hyman decision time component then dominates. Users’ experience is determined 

by the number of previous trials (selections) of the item and the learnability, L, of the 

interface. Cockburn et al. (2007) nominally assign values for L from 0 to 1, with 1 

representing an entirely learnable interface, interpreted as ‘items that do not change 

location or position’. The model therefore recognises that users can never reach ‘expert 

performance’ with some interfaces because of poor learnability within the design. It is 

noteworthy that calculating experience in this manner fails to recognise the number of 

items in a menu; in practice, it is expected that users will require more trials to become 

expert with menus containing more items. 

The final Cockburn et al. (2007) model thus predicts that the time to select an item 

(T), can be determined by combining the following Hick-Hyman and Fitts’ elements 

(please refer to original Cockburn et al. (2007) paper for further clarification of terms and 

derivation): 

 

 𝑇 = (1 − 𝑒𝑖)(𝑏𝑣𝑠. 𝑁 +  𝑎𝑣𝑠) + (𝑏ℎℎ. log2 𝑁 +  𝑎ℎℎ) + (𝑎𝑝𝑡 + 𝑏𝑝𝑡. log2
𝐷

𝑊
) (2) 

 

Results of validation studies conducted by Cockburn et al. (2007) indicated that their 

predictions of static task time were generally very accurate – within 2% of empirically 

collected data. However, a limitation of the Cockburn et al. (2007) model – at least from 

our own research perspective – is that it only applies to the prediction of static task time 

in a sedentary context.  

 

1.3. Applying Cockburn et al.’s Approach in an Automotive Context  

Human-machine interfaces (HMIs) are increasingly prevalent within modern 

automobiles. From an automotive design perspective, the HMI is a critical customer-

facing attribute that represents the touch-point of the vehicle. Automotive manufacturers 

therefore often employ enticing and aesthetically pleasurable interactive designs, often 

comprising a touchscreen embedded within the centre console of vehicles, to enhance the 

driving experience. Indeed, touchscreen interfaces offer a beguiling design solution, 

typically attracting the most positive opinions from drivers, but they can also be more 

effective when undertaking common tasks (e.g. menu selection), compared to other 
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devices, such as rotary controllers and touchpads, even while driving (Burnett et al., 

2011). Furthermore, the omnipresence of touchscreens in everyday society (i.e. within 

non-automotive domains) means that such devices are likely to be familiar and ‘intuitive’ 

to use.   

In contrast to a ‘desktop’ sedentary context, however, automotive users are also 

encumbered by a conflicting primary task of driving. The collocation of visually-enticing 

HMIs and driving naturally raises concerns. Touchscreen HMIs (in particular) inherently 

demand some visual attention, due in part to designers’ slavish adherence to 

skeuomorphic interface elements, even in the automotive domain, to reflect previously 

physical buttons. Screen layouts and target elements may therefore be visually 

captivating, and interactions often rely on strong visual cues in lieu of tactile prompts. 

Users may therefore be forced to visually sample the interface in order to locate and 

acquire on-screen elements and confirm activation. Vehicle interiors may also be littered 

with portable, aftermarket devices, such as nomadic GPS-enabled navigation devices and 

smartphones that require visually demanding touch-based interaction. Evidently, 

interacting with a poorly designed or visually-enticing HMI, whether it adorns an OEM 

(original equipment manufacturer) or aftermarket device, has the potential to divert 

drivers’ attention away from the road scene, and there is little dispute that increased 

‘eyes-off-road’ time elevates the risk to drivers, and indeed other vulnerable road users, 

and can cause deleterious effects on driving performance and vehicle control (NHTSA, 

2013).  

Consequently, several standardised test protocols have been developed (e.g. ISO, 

2014; NHTSA, 2013) that aim to discourage the introduction of highly demanding 

devices in vehicles. These measure visual demand empirically utilising experimental 

techniques such as driving simulation and eye-tracking, in which test participants interact 

with the new device or HMI while driving in a simulator, or visual occlusion, which 

assesses the visual/manual demand induced by in-vehicle devices or tasks by regulating 

drivers’ visual activity using shuttered glasses. However, such testing can be expensive 

and time-consuming to conduct, often requiring extensive user trials involving large 

numbers of test participants and fully functioning prototype systems (at least in so far as 

the functionality under examination). While empirical testing is invaluable, and it is 

imperative that it remains within the design and development cycle, there are clear 

benefits (both fiscal and practical) to be gained by the theoretical prediction of task time 

and visual demand associated with new HMI designs intended for in-vehicle placement.  

Whereas Cockburn et al. (2007) applied Fitts’ Law and Hick-Hyman Law to predict 

static task time, the primary concern associated with secondary task engagement within 

the automotive domain is visual demand – notably recognised by several, widely-cited 

international driving standards/guidelines (e.g. ISO, 2014; NHTSA, 2013). Vision 

provides the primary source of information available to drivers and there is a 

demonstrable link between glance behaviour and safe driving. For example, naturalistic 

driving studies have shown that the risk of a crash or near-crash event increases 

significantly as eyes-off-road time increases above 2.0 seconds (Klauer et al., 2006; 

NHTSA, 2013). Considering the visual demand required to extract salient information 
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from (and interact with) an in-vehicle device or interface is thus considered a direct 

indicator of the suitability of the interface for in-vehicle deployment (ISO, 2014; 

NHTSA, 2013).  

Secondary task visual demand is typically measured using three key metrics: total 

glance time (TGT), mean glance duration (MGD) and number of glances (NG). Common 

definitions for these terms are provided by International driving standards/guidelines. For 

example, ISO 15007 part 1 (2014) defines TGT as the “summation of all glance durations 

to an area of interest (or set of related areas of interest) during a condition task, subtask or 

sub-subtask”. MGD is defined as the “mean duration of all glance durations to an area of 

interest (or set of related areas of interest) during a condition task, subtask or sub-

subtask”, and NG is the “count of glances to an area of interest (or set of related areas of 

interest) during a condition task, subtask or sub-subtask” (ISO, 2014).  

 

1.4. Overview of Research  

Inspired by the work of Cockburn et al. (2007), we conjectured that a similar 

approach to that employed by Cockburn et al. (2007) could be applied in an automotive 

domain. Our research therefore draws upon the influential work by Cockburn et al. 

(2007) as motivation, but with the notable difference that our model has been applied to 

single target acquisition using finger-touch input on an in-vehicle touchscreen HMI while 

driving. We also extend the approach to consider anticipation afforded by the structuring 

of interfaces, and the learning effects of repeated exposure. Moreover, rather than task-

time per se, we aim to build a model to predict the visual demand of in-vehicle HMIs. To 

date, there is no evidence of successful attempts to combine Fitts’ and Hick-Hyman Laws 

to model the visual demand of touchscreen HMI interactions in a driving context. The 

paper thus addresses the following research questions: 

1. Do Fitts’ Law and Hickman-Hyman Law apply in a driving context? 

2. Can the Cockburn at al. (2007) approach be applied to visual behaviour? 

In building a predictive model of the visual demand of in-vehicle touchscreen HMIs, 

we aim to provide both an evaluation and design tool, allowing stakeholders to consider 

the visual demand of a larger number of HMIs or menu designs, intended for in-vehicle 

placement, much earlier within the design cycle and without the pre-requisite investment 

in costly implementation or extensive user trials.  

The paper incorporates three studies, which were conducted independently. Section 2 

(‘General Method’) describes the shared methodology applicable to all studies. Section 3 

(‘Data Collection and Analysis’) presents further details for each study and describes the 

ongoing development of the model.  
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Section 3.1 describes the derivation of an initial pointing component for 

individual target items. In section 3.2, study two considers the effect of flanking targets 

on pointing efficiency, thereby revising the pointing component to account for arrays of 

multiple items. The results from study two are also used to derive a decision/search 

component (presented in Section 3.3). In addition during study two, we explore the effect 

of structuring – presenting target items within structured and unstructured arrays. Finally, 

in Section 4, we present study three, in which the proposed models are validated by 

comparing predictions with actual performance using a fully functioning prototype in-

vehicle touchscreen HMI. Results are presented, analysed and discussed throughout each 

section. 

 

2. GENERAL METHOD 

2.1. Approach  

In line with Cockburn et al. (2007), we consider target item selection as comprising 

decision/search and pointing components. Cockburn et al. (2007) were concerned with 

predicting the time to select an item using static menus. Assuming similar logic, we 

conjecture that the glances associated with selecting an item comprises glances associated 

with both deciding/searching (ds) and pointing (pt): 

 𝑇𝐺𝑇 =  𝑇𝐺𝑇𝑑𝑠 + 𝑇𝐺𝑇𝑝𝑡 (3) 

 𝑁𝐺 =  𝑁𝐺𝑑𝑠 + 𝑁𝐺𝑝𝑡 (4) 

For MGD, we assume that this can be obtained from TGT and NG data, in line with 

International Standards definitions (ISO, 2014), i.e.: 

 𝑀𝐺𝐷 =  
𝑇𝐺𝑇

𝑁𝐺
 (5) 

Finally, in order to isolate decision/searching and pointing behaviour, we initially 

assume that these activities can be modelled separately from one another. To ensure that 

participants’ behaviour could be segregated in this manner, we asked participants to 

locate their hand on the steering wheel at a designated location during each study, and 

remove this only when they began pointing. Therefore, for the purpose of analysis, we 

assume that pointing behaviour began at the time that participants’ hand left the steering 

wheel and anything prior to this (following the presentation of a new stimulus) was 

deemed to be associated with deciding/searching. 
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2.2. Apparatus and Design  

All testing took place using a medium-fidelity, fixed-based driving simulator based at 

the University of Nottingham. The driving simulator comprised the front half of a 2001 

right-hand drive Honda Civic car positioned within a curved screen affording a 270° 

viewing angle. A bespoke driving scenario was created using STISIM (v2) software to 

replicate a generic three-lane UK motorway, and projected onto the screen using three 

overhead projectors (Figure 1). The scenario was based on that specified by the NHTSA 

eye glance testing using a driving simulator (EGDS) protocol (NHTSA, 2013), but 

included additional features/infrastructure (e.g. additional road users, geotypical terrain, 

lateral curvature, UK central ‘Armco’ barriers and road markings), with the aim of 

creating a more engaging and ecologically-valid environment. This scenario is well-

established, having been employed successfully during numerous similar research studies 

conducted at the University of Nottingham (see: Large, et al., 2015).  

 

(Figure 1 about here)  

 

The car-following, dual-task paradigm was employed throughout testing: drivers were 

required to undertake the secondary task (typically, locating and/or selecting a target on 

the touchscreen) while performing the primary driving task of following a lead car 

travelling at 70 mph. This approach is typically employed in driver distraction 

research/testing to control primary task workload, and is specified as part of a 

standardised experimental protocol within International driving standards (e.g. NHTSA, 

2013). 

For all studies, participants were self-selecting volunteers, comprising experienced 

and regular drivers, who responded to advertisements posted online and around the 

University campus; further details are provided with each study. All participants were 

reimbursed with shopping vouchers as compensation for their time and provided written 

informed consent before taking part.  

Stimuli were displayed on an HP EliteBook 2740p tablet computer that was located in 

representative locations within the centre console of the car. During the first study, the 

location of the tablet computer was alternated between two different positions – 

notionally referred to as ‘upper’ and ‘lower’ – within the centre console of the simulator. 

In all other testing, the tablet computer was located in the ‘upper’ position – a more 

common location for an in-vehicle, centre console display. All testing assimilated data 

from multiple stimulus-response iterations to ensure that the derived relationships were 

well-founded and robust. SensoMotoric Instruments (SMI) Eye Tracking Glasses (ETG) 

were used to collect binocular gaze data at thirty frames-per-second throughout testing.  
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3. DATA COLLECTION AND ANALYSIS 

3.1. Pointing – Single Targets 

Twelve people took part in study one: 6 male, 6 female. Participants’ mean age was 

33, with ages ranging from 21 to 53 years. All participants held a valid driving licence 

and were experienced and active drivers (mean time with licence, 14 years; range, 1 to 30 

years; mean current annual mileage, 6000).  

Participants undertook two driving sessions. During one of these, the touchscreen was 

located in the upper position; for the other, it was in the lower position (Figure 2 shows 

the tablet computer in the lower position). Participants experienced the touchscreen in 

both locations, with the order of touchscreen location (upper-lower or lower-upper) 

counterbalanced between participants. Each driving session lasted approximately fifteen 

minutes.  

At the start of the testing phase of each session, participants were instructed to locate 

their left hand at a predefined position on the steering wheel marked with white tape (see 

Figure 2) approximating to the 10 o’clock position on an analogue clock face. This 

ensured that the Fitts’ metric, D (distance to target), could be measured for each target 

location and remained consistent between participants. All testing occurred on straight 

segments of the motorway scenario. Thus, the location of the tape on the steering wheel 

remained in the same position in 3-dimensional space for all interactions. The time at 

which drivers removed their hand from the steering wheel also acted as the demarcation 

between deciding/searching and pointing behaviour during the subsequent studies. 

 

(Figure 2 about here)  

 

During each trial, a single square target item appeared on the touchscreen (Figure 2), 

accompanied by an audible tone to inform participants of the presence a new stimulus. 

Targets varied in size (6, 12, 18, 24mm) and location, based on existing in-vehicle HMI 

guidelines. Participants were instructed to touch (‘point at’) the target as promptly as 

possible (while maintaining safe driving), and then return their hand to the steering 

wheel. After touching the target, it disappeared from the screen and, after a short delay, a 

new target appeared. The order of presentation of target locations and dimensions was 

randomised between participants. 

During study one, the independent variables were: distance to target (D) (measured 

from the white tape on the steering wheel to the geometrical centre of the target) and 

width of target item (W). Dependent variables were: response (pointing) time and visual 

demand – number of glances (NG), total glance time (TGT) and mean glance duration 
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(MGD). For the purpose of analysis, we assume that no search time is associated with 

single target acquisition. 

 

(Figure 3 about here)  

 

Pointing behaviour is obtained from the traditional Fitts’ Law relationship (𝑎 +

𝑏. log2
𝐷

𝑊
), where D and W represent the amplitude of movement (distance to target) and 

target width, respectively, and a and b are empirically-derived model parameters that 

reflect the efficiency of the pointing system. Observing the ration of distance to target to 

width of target (i.e. 
𝐷

𝑊
) plotted against pointing TGT (Figure 3), it is evident that a strong 

relationship exists. Using regression analysis, the following prediction for TGTpt can thus 

be derived: 

 𝑇𝐺𝑇𝑝𝑡 = 0.26 + 0.11 log2
𝐷

𝑊
        (𝑅2 = 0.77) (6) 

Given that pointing is achieved within a single glance (moreover, this is an 

assumption of our analysis approach), NGpt is assumed to equal 1.0 and MGDpt can thus 

be determined using the same relationship as TGTpt. 

Recognising that touchscreen HMIs are unlikely to contain only one target (in any 

context), a second study was conducted using larger target arrays to explore the effect on 

pointing efficiency of additional, flanking targets. 

 

3.2. Pointing – Multiple Target Items 

Sixteen people took part in study two: 12 male, 4 female. Mean age was 25.3. All 

participants held a valid driving licence and were experienced and active drivers (mean 

time with licence, 7.3 years; range, 1 to 27 years; mean current annual mileage, 5100). 

Participants undertook seven drives, each lasting approximately 5 minutes. During each 

drive, participants were required to find and select a single target, located amongst an 

array of similar items (Figure 4). Target size was consistent throughout the study, in line 

with existing in-vehicle HMI guidelines, and was the median size used during study 1 

(i.e. 15mm).  

 

(Figure 4 about here)  
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To add a ‘decision/search’ element, targets comprised white squares containing two 

letters. Participants were presented with a pre-recorded auditory cue – a target word, 

spoken aloud – and were required to locate and select the on-screen element containing 

the first two letters of that word as quickly as possible (example screenshots are provided 

in Figure 4). Although this search-and-select task may be considered artificial in an 

automotive context, the approach was chosen to ensure that the effect of structuring could 

be explored – in this case, alphabetical. Furthermore, by selecting only those words 

(between 6 and 12 letters in length) that conformed to regular UK English phonetic 

pronunciation and spelling – meaning in particular that any acoustic ambiguity (e.g. 

homophones) and/or pop-out effects were avoided – and by presenting the target word 

immediately before each search task began, the cognitive load associated with 

remembering the word and matching its first two letters was minimised. An alternative 

‘ecologically-valid’ approach in which automotive icons were utilised would likely have 

invited too much variability in cognitive load, with participants also required to interpret 

the meaning of different icons prior to selection. 

Target arrays varied in size from one to 36, but targets were always adjacent, equally 

spaced and grouped in squares, i.e. 1x1, 2x2, 3x3 and 6x6, affording 1, 4, 9 or 36 targets 

(Figure 4). Targets were presented as either alphabetically-structured arrays, thereby 

encouraging anticipation, or unstructured arrays. Each of the seven drives constituted a 

different array size and structure, and these factors remained consistent throughout the 

drive (i.e. the seven drives corresponded with the seven layouts presented in Figure 4).  

Participants experienced all structured array conditions sequentially (i.e. N=1, 4, 9 

and 36), followed by all unstructured conditions (or vice versa to avoid order/learning 

effects), with the order of array size (N) presentation within each condition 

(structured/unstructured) randomised. During each drive (and therefore each 

configuration), participants were required to locate and select 36 targets, with targets 

appearing in each of the possible locations. The layout of the unstructured arrays 

remained consistent within each of these drives in order to investigate the experience 

effects of repeated exposure to an unstructured display.  

During study two, the independent variables were: anticipation (structured versus 

unstructured) and array size (number of targets) (N) (1, 4, 9, 36). Dependent variables 

were: secondary task/response time, comprising search time and pointing time, and visual 

demand – number of glances (NG), total glance time (TGT) and mean glance duration 

(MGD). Analysis is predicated on the assumption that decision/searching and pointing 

activities occur independently and in series and the data were segregated on this basis. As 

before, it is assumed that pointing began when participants’ hands left the steering wheel, 

and participants were instructed as such during testing; the time that this occurred was 

obtained using frame-by-frame video analysis. We initially consider the pointing 

behaviour associated with single target acquisition from an array of multiple square items 

presented on the touchscreen (from N=1 to 36). 

The observed behaviour during the second study suggests that, when only a single 

item was presented on the screen, pointing behaviour (TGT) conformed with the 
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predictions made by the Fitts’ relationships derived during study one (Equation 6), i.e. 

TGTpt = 6.0 seconds. In the presence of additional, flanking items, however, TGTpt 

exceeded the predictions from the first study (Figure 5), suggesting that pointing 

efficiency was degraded in the presence of additional targets, thereby elevating visual 

demand.  

 

(Figure 5 about here)  

 

The additional visual attention demanded by the presence of multiple targets 

(highlighted by the lighter shaded areas in Figure 5) was derived empirically as: 

  0.045 log2 N  (R2 = 0.98). This was concatenated with Equation 6 to enhance our model 

of pointing behaviour: 

 𝑇𝐺𝑇𝑝𝑡 = (0.26 + 0.11 log2
𝐷

𝑊
) + (0.045 log2 𝑁)  (7) 

Again, we assume that pointing requires only one glance, so NGpt remains equal to 

one and MGDpt can effectively be determined using the same expression as TGTpt. 

 

3.3. Decision/Search – Uniform Array 

In line with Cockburn et al. (2007), we assume that for the visual metrics under 

investigation, decision/search behaviour can be determined by interpolating behaviour 

between a linear visual search component (TGTvs) and a logarithmic Hick-Hyman 

decision component (TGThh). Cockburn et al. (2007) conjectured that the degradation of 

the visual search component is determined by users’ experience with the particular 

interface/item under investigation (e), with values of e range from 0 (representing a 

complete novice) to 1 (complete expert) (i.e. as user’s familiarity increases, the linear 

search component tends towards zero, and the logarithmic Hick-Hyman decision time 

component dominates) (Equation 8). 

 𝑇𝐺𝑇𝑑𝑠 = (1 − 𝑒). 𝑇𝐺𝑇𝑣𝑠 + 𝑇𝐺𝑇ℎℎ (8) 

To model users’ expertise, Cockburn et al. (2007) consider the number of previous 

trials (selections) of the item, t, and the learnability, L, of the interface (Equation 9). 

 𝑒 = 𝐿 × (1 −
1

𝑡
) (9) 

where values for L range from 0 to 1, with 1 representing an entirely learnable 

interface – described by Cockburn et al. (2007) as one where items do not change 
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location or position – and zero, by inference, a menu that is continually changing and 

thus impossible to learn. 

In contrast to Cockburn et al. (2007), we believe that in a driving context, the ability 

to anticipate the location of the desired target, and resume searching after attention has 

been directed elsewhere (i.e. towards the driving task), are better predictors of visual 

performance/behaviour than learnability per se. While the concept of anticipation may be 

closely related to learnability, in so far as if an interface is quick and easy to learn, then it 

should also be possible to anticipate the location of a desired target (and quickly resume 

searching) even after limited exposure, we feel that the concept of learnability, as 

presented by Cockburn et al. (2007), has limited practical application in a driving context. 

Moreover, while we understand that an entirely learnable interface may be assigned a 

value of L=1, locating other designs elsewhere on a continuum from zero to one appears 

rather arbitrary and Cockburn et al. (2007) provide limited guidance to support this. 

Therefore, in our model, we account for ‘learnability’ through the affordance of 

anticipation, and have therefore evaluated interfaces that are either structured (st) or 

unstructured (un) during the development of our predictive model.  

Furthermore, it is expected that users will require more trials to achieve expert status 

while using menus containing larger numbers of items, particularly in situations of 

divided attention. Consequently, we would expect the visual demand associated with 

searching (TGTvs) to persist longer in the presence of additional target items and a driving 

context.  

To account for these factors, we used mathematical modelling to define a new visual 

search/experience scale factor, dvs, applicable to situations of dual task/divided attention 

(Equation 10). This replaces the expressions for experience and learnability proposed by 

Cockburn et al. (2007). Moreover, the new scale factor removes the need to arbitrarily 

assign numerical values to these constructs. 

 𝑑𝑣𝑠 =
log2 𝑁

log2(𝑁+𝑡)
  (10) 

 𝑇𝐺𝑇𝑑𝑠 = 𝑑𝑣𝑠. 𝑇𝐺𝑇𝑣𝑠 + 𝑇𝐺𝑇ℎℎ (11) 

Determining experience/expertise in this manner also reflects the fact that it is more 

difficult to anticipate the location of targets (or ‘learn’ the interface) for larger target 

array sizes, i.e. as N increases, the degradation in the search term is retarded 

proportionally to the number of items presented. Furthermore, the new scale factor 

reflects the fact that when N=1, there is no search component (an assumption we also 

made during study one).  

Again, analysis is predicated on the assumption that decision/searching and pointing 

activities occur independently and in series and the data were segregated on this basis. 

We assume that decision/search ended when participants’ hands left the steering wheel to 

point, as instructed. We also assume that, at t=1, all participants were ‘inexperienced’ 

and at t=36, all participants were ‘expert’. While these values may appear arbitrary, the 
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assumption is supported by empirical data which suggests that users’ performance 

levelled out between these extremes.  

 

 

Visual Search Component 

In line with Cockburn et al. (2007), we assume that when a user is inexperienced, 

they are unable to anticipate item location. Using empirical data, based on participants’ 

initial exposure to the interface (i.e. t=1), we observe a linear relationship between TGT 

and the total number of items, for both structured and unstructured interfaces/arrays 

(Figure 6). A similar linear relationship is observed for NG (Figure 7). 

 

(Figure 6 about here)  

 

(Figure 7 about here)  

 

Using these relationships, we can derive the following equations: 

 𝑇𝐺𝑇𝑣𝑠_𝑠𝑡 = 0.029𝑁 +  0.44        (𝑅2 = 0.97) (@𝑡 = 1) (12) 

 𝑇𝐺𝑇𝑣𝑠_𝑢𝑛 = 0.10𝑁 −  0.028        (𝑅2 = 0.99) (@𝑡 = 1) (13) 

 𝑁𝐺𝑣𝑠_𝑠𝑡 = 0.021𝑁 +  1.04        (𝑅2 = 0.98) (@𝑡 = 1) (14) 

 𝑁𝐺𝑣𝑠_𝑢𝑛 = 0.044𝑁 +  0.81        (𝑅2 = 0.94) (@𝑡 = 1) (15) 

 

Hick Hyman ‘Decision’ Component 

As users become more experienced, they are able to anticipate the location of the item 

based on spatial memory. Using empirical data, based on participants’ final exposure (i.e. 

t=36) – at which point they are deemed to be expert performers – we observe a 

logarithmic Hick-Hyman relationship between TGT and the total number of items, for 

structured interfaces/arrays (Figure 8).  
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(Figure 8 about here)  

 

In contrast, the data obtained from unstructured interfaces suggest that the 

relationship between glance duration and number of items is linear, suggesting that no 

such anticipation (or learning) is possible for unstructured interfaces (Figure 8), as might 

be expected.  

Using these relationships, we can derive the following equations: 

 𝑇𝐺𝑇ℎℎ_𝑠𝑡 =  0.069. log2 𝑁 +  0.094        (𝑅2 = 0.84)(@ 𝑡 = 36) (16) 

 𝑇𝐺𝑇ℎℎ_𝑢𝑛 =  0.049𝑁 −  0.091        (𝑅2 = 0.998)(@ 𝑡 = 36) (17) 

Relationships for NG can be derived in a similar fashion and provide the following: 

 𝑁𝐺ℎℎ−𝑠𝑡 = 1        (@ 𝑡 = 36) (18) 

 𝑁𝐺ℎℎ_𝑢𝑛 =  0.0071𝑁 +  0.96        (𝑅2 = 0.98)(@ 𝑡 = 36) (19) 

 

 

Refining the Model 

It was evident from the data that, for structured interfaces, expert users (i.e. at t = 36) 

were, on average, able to achieve the complete task in one glance, even for the larger 

target arrays. This suggests that pointing seldom necessitated a separate, dedicated 

glance. Instead, it is suspected that participants began pointing (i.e. their hand left the 

steering wheel) during a search/decide glance, despite instructions to the contrary. To 

confirm this, we re-examined all individual glances made by participants for both 

structured and unstructured interfaces, specifically comparing the duration of the final 

glance with the predicted pointing component: in every situation, the pointing glance 

component (as defined by Equation 7), constituted only a proportion of the final glance 

(Figure 9). Thus, we conclude that the final glance constituted elements of both 

search/decide and pointing. This is perhaps unsurprising given that in a dual task/divided 

attention context, one would expect users to be naturally inclined to select a target as 

soon as it is located, rather than returning their attention to the primary task, as this would 

require them to relocate the target during a subsequent glance.  

 

(Figure 9 about here)  
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We therefore modify our analysis approach, disregarding an isolated pointing element 

for NG, and assume that this glance is already included during the derivation of NGds. 

MGD can still be derived by dividing TGT (i.e. TGTpt plus TGTds) by NGds, in line with 

International Standards definitions (ISO, 2014). 

 

3.4. Combining Terms 

Combining searching, decision and pointing terms, the following equations are 

therefore proposed: 

𝑇𝐺𝑇𝑠𝑡 = (
log2 𝑁

log2(𝑁+𝑡)
) . (0.029𝑁 +  0.44) + 0.11 log2 𝑁 + 0.11 log2

𝐷

𝑊
+ 0.35  (20) 

𝑇𝐺𝑇𝑢𝑛 = (
log2 𝑁

log2(𝑁+𝑡)
) . (0.10𝑁 −  0.028) + 0.049𝑁 + 0.045 log2 𝑁 + 0.11 log2

𝐷

𝑊
+ 0.17 (21) 

𝑁𝐺𝑠𝑡 = (
log2 𝑁

log2(𝑁+𝑡)
) . (0.021𝑁 +  1.04) + 1 (22) 

𝑁𝐺𝑢𝑛 = (
log2 𝑁

log2(𝑁+𝑡)
) . (0.044𝑁 +  0.81) + 0.0071𝑁 +  1.96  (23) 

𝑀𝐺𝐷𝑠𝑡 = 𝑇𝐺𝑇𝑠𝑡 ÷ 𝑁𝐺𝑠𝑡 (24) 

𝑀𝐺𝐷𝑢𝑛 = 𝑇𝐺𝑇𝑢𝑛 ÷ 𝑁𝐺𝑢𝑛 (25) 

where: 

 st = structured 

 un = unstructured 

 N  =  total number of selectable items on the screen 

 t  =  number of exposures to interface  

 D  =  distance to target from hand position on steering wheel 

 W  =  target width 

and N >1 

 

 

 

4. VALIDATION OF MODEL 

Twelve people took part in the evaluation study: 5 male, 7 female. Mean age was 

37.9, with ages ranging from 22 to 56 years. All participants held a valid driving licence 

and were experienced and active drivers (mean time with licence, 18 years; mean current 

annual mileage was 8500). 
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The device under evaluation was a novel touchscreen interface providing 

‘infotainment’ and HVAC control functions. It was fully operational (with respect to the 

tasks under evaluation) and fitted to the driving simulator in the intended real world 

location within the centre console of the vehicle. Testing was conducted in accordance 

with the NHTSA Eye Glance Testing using a Driving Simulator (EGDS) test protocol 

(NHTSA, 2013) with an enhanced motorway scenario (as described in Section 2.2).  

Three tasks were evaluated during the study; each began from a ‘home’ screen and 

required multiple screen interactions (Figure 10). Given that the tasks under investigation 

comprised multiple screen interactions, it was assumed that each separate 

screen/interaction constituted an isolated subtask (involving a ‘search, find and select’ 

activity) that could be modelled independently. For example, the ‘HVAC’ task (change 

the airflow from ‘balanced’ to ‘soft’) constituted four ‘subtasks’: pressing the ‘setting’ 

button; pressing ‘driver airflow’; pressing ‘soft and quiet’; and pressing the ‘close’ 

button.  

 

(Figure 10 about here) 

 

In line with the NHTSA EGDS testing protocol, participants were provided with 

training on how to perform each testable task while stationary, how to drive the simulator 

while not performing a testable task, and how to perform each testable task while driving 

the simulated vehicle, before data collection began. As such, it could be assumed that 

participants were expert performers. 

Following data collection, the proposed model (Equations 20 to 25) was used to 

predict visual demand for each task (defined by: TGT, NG and MGD metrics). During 

the calculations, the exposure measure (t) was selected as equal to 36, to reflect ‘expert 

use’ in accordance with our conjecture during the development of the model. It was also 

assumed that each subtask (and its associated metrics) occurred in series and thus 

predictions for each subtask could be aggregated to determine the total (TGT, NG) or 

mean (MGD) visual demand associated with each complete task. The theoretical 

predictions of visual demand were then compared to the empirically derived measures. 

To ensure thorough evaluation, results obtained for TGT, NG and MGD were initially 

compared to predictions made by both structured and unstructured models.  

Figures 11, 12 and 13 show observed behaviour plotted against the structured and 

unstructured predictions for each task/subtask for TGT, NG and MGD, respectively. It is 

evident that, for all three tasks, the model overestimates TGT and NG for subtask 1 (i.e. 

interactions associated with the home screen). For subsequent subtasks, the observed 

behaviour generally falls between (or close to) the limits of structured and unstructured 

predictions (highlighted by shading in the Figures). 
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(Figure 11 about here)  

(Figure 12 about here)  

(Figure 13 about here)  

 

 

5. GENERAL DISCUSSION 

We describe the development of a model of human behaviour that predicts the visual 

demand associated with HMIs intended for use while driving. The approach draws upon 

the influential work by Cockburn et al. (2007), incorporating elements based on Hick-

Hyman decision/search time and Fitts’ Law pointing time. However, the model extends 

Cockburn et al.’s (2007) work by considering anticipation afforded by structuring and 

repeated exposure to an interface, and reflects the additional learning required to achieve 

expert status while using menus containing larger numbers of items; moreover, we aim to 

predict visual demand (rather than task time) in a dual task/divided attention situation, i.e. 

driving.  

There are clear similarities between our model and the model proposed by Cockburn 

et al. (2007). A notable difference is the inclusion of an additional visual 

search/experience scale factor (dvs), which reflects the increased learning required for 

larger target arrays, but also considers the additional visual demand due to 

primary/secondary task division/allocation. Indeed, drivers are required to divide their 

attention between driving (primary task) and interacting with the interface (secondary 

task) and may therefore be required to resume their search on multiple occasions, rather 

than only during initial exposure to the interface. Consequently, an element of ‘searching’ 

is likely to persist, even after multiple interactions with a well-designed, ‘learnable’ 

interface. In contrast, no such ‘chunking’ and search resumption would be expected in 

situations involving static menus in a sedentary context and thus the ‘searching’ element 

quickly decays through repeated exposure, evident within Cockburn et al.’s (2007) 

model. 

A fundamental question posed by the research is whether the visual behaviour 

associated with secondary task execution while driving is amenable to theoretical 

analysis and modelling. Fitts’ and Hick-Hyman theories are predicated on the ability to 

identify predictable patterns of behaviour. The current scarcity of Fitts and Hick-Hyman 

applications within driving-related HCI literature may therefore be indicative of concerns 

regarding the consistency and predictability of drivers’ visual tendencies during 

secondary task execution. Indeed, there is natural variability regarding drivers’ 

willingness and propensity to take their eyes off the road to engage with secondary tasks. 
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As such, drivers have been classified according to their natural gaze behaviour, with so-

called ‘long glancers’ more inclined to take their eyes of the road for periods greater than 

2.0 seconds (Donmez et al., 2010). Nevertheless, our research is predicated on the fact 

that interacting with an in-vehicle HMI presents an intrinsic and underlying visual 

demand that is fundamentally determined by the design of the interface and context of 

use. The model therefore assumes that a driver has decided (or is required) to interact 

with an in-vehicle HMI, and aims to predict the visual load that this demands. We are not 

attempting to model visual distraction, or how other driving-related factors (e.g. 

variations in primary task load, individual differences etc.) may influence visual 

engagement. The model therefore effectively aims to predict the minimal visual demand 

afforded by an HMI from a design perspective, and assumes that this is unaffected by the 

individual glance patterns or behaviour of test participants or drivers. As such, there is 

clear evidence from the data that, under these assumptions, single target acquisition using 

in-vehicle touchscreen HMIs constrains the user to predictable patterns of visual 

behaviour, suggesting that it is indeed amenable to theoretical analysis.  

A possible limitation of the model derivation, however, is that it initially assumes that 

‘deciding/searching’ and ‘pointing’ occur independently of one another (i.e. drivers 

complete the searching/locating task before commencing target selection), and thus the 

visual demand can be succinctly divided between these two activities. While such 

behaviour may be enforced or constrained experimentally (participants were instructed to 

maintain their hand on the steering wheel until they began pointing), aspects of searching 

and pointing may occur in parallel in real world applications, i.e. drivers may begin to 

‘point’ before fully completing their ‘search’ activities. However, isolating these 

activities was necessary during the initial analysis, given Fitts and Hick-Hyman 

assumptions, and is in line with other, similar work, such as Cockburn et al. (2007). 

Further work is required to validate this approach. 

An important consideration when designing HMIs for minimum visual demand (i.e. 

intended for in-vehicle placement) is the extent to which users are able to anticipate the 

location of their chosen option or function. Anticipation can be encouraged through 

repeated exposure and/or structuring items – repeated exposure enhances familiarisation 

and allows users to anticipate the location of target items, whereas structure can provide 

clues about target location. Structuring can be achieved by arranging options in 

alphabetical, numerical or chronological order. However, effective structuring within 

graphical user interfaces can be difficult to achieve, particularly if using visual 

iconography, typical of current in-vehicle touchscreen applications. Thus, one could 

consider any new interface to be ‘unstructured’ when encountered for the first time. 

When the interface becomes more familiar (for example, through repeated exposure), and 

users are able to anticipate the locations of target items, it may be more appropriate to 

consider the HMI as a ‘structured’ interface. By deriving equations for both structured 

and unstructured interfaces, we can therefore predict the range of performance that may 

be achieved from initial exposure, typical of novice users, to expert performance 

achieved through repeated use. Indeed, by comparing the observed and predicted 

behaviours during the validation study, it was evident that (with the exception of the 

home-screen, i.e. subtask 1) the empirical data generally existed between structured and 
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unstructured predictions, with notable variability for different subtasks/measures (Figures 

11, 12 and 13). It could be concluded that in situations where the observed behaviour was 

more closely aligned with ‘unstructured’ predictions, users were less familiar with that 

particular subtask or screen layout; moreover, one may predict that visual behaviour 

would migrate towards ‘structured’ predictions as familiarity/expertise increases. From 

this perspective, the validation results suggest that users may have been more familiar 

with some screens than others – the observed visual demand associated with the home-

screen in particular was significantly lower than even the structured predictions. 

An alternative explanation is that the observed behaviour may be indicative of the 

effectiveness of the HMI design. Indeed, participants who took part in the validation 

study were trained in accordance with NHTSA EGDS protocol (NHTSA, 2013) and 

consequently were deemed to be expert users. Thus, in situations where the observed 

behaviour was more closely aligned with structured predictions, one could conclude that 

the interface or interactions associated with that task or subtask were designed well and 

afforded anticipation/efficient use. In contrast, visual behaviour tending towards the 

unstructured predictions may suggest that the interface or task lacked learnability (e.g., 

the interface was cluttered, target items were poorly located etc.). By deconstructing each 

task into component subtasks (each representing a single target interaction with the 

HMI), it is therefore possible to draw conclusions regarding the design of the interface 

(associated with each subtask) by comparing the observed performance of each subtask 

with its predicted behaviour (Figures 11, 12 and 13). Thus, one could conclude that in 

situations where the observed performance matches the ‘structured’ predictions, the HMI 

design encouraged efficient interactions and could be considered as ‘well-designed’. In 

contrast, visual behaviour that is more closely aligned with the ‘unstructured’ predictions, 

may indicate poor design. Consequently, the predictive model also has utility as a 

formative design evaluation tool. However, it is noteworthy that the evaluation results 

were predicated on the notion that the tasks could be broken down into discreet subtasks, 

each of which could be modelled independently; this is not necessarily the case in all 

situations. Further work is required to explore this assumption. 

An additional consideration is that assigning model parameters (e.g. number of items 

in an interface, target width, distance to target etc.) to real-world interfaces may be 

complicated by novel design techniques, such as skeuomorphic elements that may not 

lend themselves to theoretical analysis (i.e. complications in defining target width etc.). 

During the validation work, all interactions involved finger touch input using discrete and 

delineated elements; this may not be the case for all real-world interfaces. Therefore, 

further work that considers different design elements and interaction techniques is 

required.  

It is also noteworthy that despite our model’s apparent utility as both a design and 

evaluation tool, the resulting predictions are likely to be highly contextual. Testing was 

conducted in a medium fidelity, fixed-based driving simulator using a generic motorway 

scenario. If a different simulated driving scenario had been used during testing, some 

aspects of visual behaviour may have been affected (Large et al, 2015), and thus the 

derived equations would have differed. For the decision/search component, visual 
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demand may also have been influenced by semantic complexity associated with the 

search tasks (although efforts were made to mitigate this affect by selecting unambiguous 

targets). Furthermore, in a real-world environment, other factors inherent with the in-

vehicle environment (e.g. limited space, restricted movement/anthropometry, location of 

touchscreen, arm instability, roadway vibrations, enforced operation using non-dominant 

hand in right-hand drive vehicle etc.), may also influence secondary task visual demand 

while driving (particularly NG and MGD) and the simulated vehicle, experimental 

approach and participant cohort may have been insufficient to fully represent all factors. 

It is also noted that the derived models are complex, requiring up to five parameters 

to be fitted to data to predict performance. Given this complexity, some factors, such as 

the numbers of participants used to derive the model, may be considered relatively low. 

Consequently, absolute predictions of visual demand should be treated with caution and 

derived data should serve as a guide only (further validation work is ongoing). 

Nevertheless, the model still has genuine utility in its ability to predict relative metrics, 

e.g. comparing several prospective design concepts early in the design cycle, thereby 

reducing arguments to simple calculations based on an understanding of the underlying 

characteristics of the HMI and task (Raskin, 2000). 

 

6. CONCLUSIONS AND FUTURE WORK 

We describe the development of a predictive model of visual behaviour associated 

with in-vehicle HMIs. Empirical testing and initial validation suggest that the derived 

model may be capable of making valuable predictions regarding the visual demand 

presented by such interfaces. Furthermore, it possesses utility as both a design and 

evaluation tool. In line with similar theoretical work (e.g. Cockburn, 2007), the model 

assumes that interactions with an HMI can be considered as comprising separate 

decision/search and pointing components that are amenable to Fitts’ Law and Hick-

Hyman theory: this assumption, as well as other limitations, such as the relatively low 

number of participants who took part in each study and the model’s un-tested application 

to multiple-screen interactions, need to be revisited in future investigations. 

Although the research focused on single finger-touch pointing tasks using a 

touchscreen while driving, the results are not limited to driving and can be generalized to 

any setting where users interact with an interface, making a choice decision followed by a 

pointing task (i.e. ‘search, find and select’ tasks), while concurrently executing a more 

critical primary task. However, empirical work would be required to derive and validate 

models specific to other situations and contexts. Further work should also consider the 

visual demand of more complex interactions, e.g. surface gestures, as well as 

investigating other techniques, such as grouping UI elements and skeuomorphism, 

intended to enhance HMI usability, learning and appeal.  
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Figure 1. Driving simulator used during studies showing motorway scenario 
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Figure 2. Experimental set-up showing (clockwise from top left) (i) touchscreen with 

target, (ii) participant wearing ETG, (iii) screen located in ‘lower’ 

position, (iv) ETG visual trace 
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Figure 3. Fitts’ ‘pointing’ relationship for TGT during single target acquisition 

while driving 
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Figure 4. Target layouts used during study two 
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Figure 5. Fitts’ pointing relationship for TGT showing observed behaviour for 

N={1, 4, 9, 36} and derivation of additional pointing glance time modifier 
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Figure 6. Modelling visual search behaviour: TGT @ t=1 for structured and 

unstructured arrays 
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Figure 7. Modelling visual search behaviour: NG @ t=1 for structured and 

unstructured arrays 
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Figure 8. Modelling Hick-Hyman decision behaviour: TGT @ t=36 for structured 

and unstructured arrays 
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Figure 9. Visualisation of final glance, highlighting ‘decision/search’ (darker 

shading) and ‘pointing’ (lighter shading) components 
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Figure 10. Details of evaluation tasks 

 

Task Description 
No. of 

subtasks 

Entertainment Change the listening mode to ‘radio’ 3 

HVAC 
Change the airflow from ‘balanced’ to ‘soft 

and quiet’ 
4 

Personal 

Comfort 

Change the driver seat massage mode to 

‘shoulder’ and set the massage intensity to 

‘level 4’ 

4 
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Figure 11. Structured and unstructured model predictions of TGT compared to 

observed performance (isolated by subtask) showing Entertainment (E), 

HVAC (H) and Personal Comfort (C) tasks 
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Figure 12. Structured and unstructured model predictions of NG compared to 

observed performance (isolated by subtask) showing Entertainment (E), 

HVAC (H) and Personal Comfort (C) tasks 
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Figure 13. Structured and unstructured model predictions of MGD compared to 

observed performance (isolated by subtask) showing Entertainment (E), 

HVAC (H) and Personal Comfort (C) tasks 
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