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ABSTRACT 

The goal of this study was to investigate the patterns of engagement among professional 

firefighters during a rescue operation challenge simulated in a virtual reality (VR). The simulator offers 

a training that would otherwise be impossible or very difficult to arrange in the real world, here a mass-

casualty incident. We measured engagement with cardiovascular reactivity as well as subjective 

perceptions of workload. We found that both a VR rescue challenge and a VR control condition lead to 

engagement evident in the decrease in parasympathetic activation from baseline (measured as high-

frequency heart rate variability). However, the rescue operation lead to a stronger increase in 

sympathetic activity (shorter pre-ejection period and RZ-interval) than the control condition. 

Furthermore, the subjective workload ratings corroborate the results from the objective engagement 

indices. These results demonstrate that it is possible to create a virtual environment that elicits 

engagement among professional rescuers. [145 words] 

 

Keywords: virtual reality; professional simulators; rescue operation; engagement; cardiovascular 

measures 
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1. INTRODUCTION 

1.1. Goal and importance 

Firefighting is a demanding profession, both physically and psychologically (e.g., Bos, Mol, Visser,  

& Frings-Dresen, 2004;  Guidotti, 1992; Williams-Bell et al., 2015). Due to the myriad of incidents that 

firefighters are required to deal with along with the serious consequences of their actions, their 

training is extensive and demanding. However, responses to events of low frequency and high damage, 

are very difficult to train. This is because of the high costs and little flexibility of live training of such 

events (e.g., impossibility to repeat a specific rescue operation). Thus, virtual reality (VR) technology 

offer a valuable complement to the current firefighting curriculum. They offer a cost-effective 

opportunity for the training of otherwise difficult or impossible situations. However, an important 

question is whether the rescue challenge in VR simulators can actually elicit engagement among 

firefighters. Many researchers claimed that VR technology provides an engaging educational 

environment (Dede, 2009; Psotka, 1995; Schutte & Stilinovic, 2017) but others doubted that all VR 

applications result in engagement (Harris & Reid, 2005; Martin-Niedecken & Gotz, 2017; Mineo, 

Ziegler, Gill, & Salkin, 2009) and suggested that the efficacy of VR applications to engage users needs 

yet to be proven (Huang, Rauch, & Liaw, 2010).  Hence, the goal of the current study was to examine 

whether a VR application simulating a rescue operation elicits engagement among professional 

firefighters.  

1.2. Training in Virtual Reality 

The firefighter training involves mainly in-class demonstrations and live training (Heldal & Hammar 

Wijkmar, 2017). Interestingly, only a small proportion of firefighters’ work is actual fighting the fire. In 

fact, the majority of their duties is related to traffic collisions, natural disasters, gas or water leaks, 

elevator accidents, or industrial accidents (e.g., Austin, Dussault, & Ecobichon, 2001; Lusa, Louhevaara, 

& Kinnunen, 1994; Park, Jang, & Chai, 2006; Williams–Bell et al., 2015). Workload of professional 

rescuers is usually high, especially among firefighters who tend to work at great pace, long hours, with 

heavy equipment and protective gear, often in extreme thermal conditions which puts great 

cardiovascular and thermoregulatory demands on the body (e.g., Bos et al., 2004; lmer & Gavhed, 

2007; Smith et al., 1995). For example, it was shown that firefighting exercise lead to reaching maximal, 

or near maximal, heart rate (e.g., Smith, Manning, & Petruzello, 2001). Moreover,  it was demonstrated 

that highest demand is placed when firefighters climb or carry heavy objects (Holmer & Gavhen, 2007). 

Apart from a wide variety of tasks, additional burden of this profession is a changing nature of the 
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incidents and skills required to deal with them, e.g., various constructions of buildings, new materials 

used, and novel societal challenges such as terrorist attacks (Harrald, 2006; McDevitt, 2017; Meissner 

et al., 2002). Because of these challenges, professional VR simulators might offer an important 

supplement to the current training practice. The advantages of VR technology in firefighter training 

are evident.  

First, firefighters, novice and as well as more experienced ones, can test their reactions to various 

incidents in a safe environment. For example, they may try, repeat, and improve their reactions to fire 

in different structures and under different weather conditions, such as wind, rain, etc. Second, VR 

applications are a cost-effective method of simulating low-frequency or mass-casualty incidents 

(McDevitt, 2017). The costs of organizing real-life simulations include not only hiring the staff, careful 

preparations, and the materials that is used but also the cost of long-distance travel of the firefighters 

to a training center (Haldal & Hammar Wijkmark, 2017). Furthermore, the costs of the VR equipment 

and applications has significantly decreased in recent years (e.g., Evalt, 2017). Third, VR provides an 

opportunity to train reactions to situations which would be otherwise impossible to perform, for 

example a large port cannot be closed to simulate a tanker fire (Heldal & Hammar Wijkmark, 2017). 

Fourth, trainings in VR may offer an instant feedback on performance, which is not possible in real-life 

simulations. Exposure to errors is especially important during initial skill acquisition and improves 

retention and performance (Gardner, Abdelfattah, Wiersch, Ahmed, & Willis, 2015; Keith & Frese, 

2008). A further benefit of VR is that it provides a high degree of control and flexibility: The VR 

simulation might be adapted to the needs and the proficiency level of a particular user (e.g., Gallagher 

et al., 2015). Finally, even if trainees possess the theoretical knowledge and skills to react correctly, 

they may struggle responding properly during real emergency and time pressure (McDevitt, 2017). VR 

offers an environment that is as close to an actual emergency as possible and provides thus the best 

preparation for real-life crisis. In sum, VR technology provides a unique opportunity to train skills 

required in rescue challenges, especially situations which are low in frequency, dangerous, and 

associated with increased time pressure in decision-making.  

In a few occupations, especially those where mistakes lead to fatal consequences, professional 

simulators have already been adopted for training. Professional simulators are used in medicine, army, 

air traffic control, power plant management and emergency management trainings, to name but a few 

(e.g., Boulet et al., 2003; Dimakis, Filippoupolitis, & Gelenbe, 2010; Gatto, Mól, dos Santos, Jorge, & 

Legey, 2013; Khan et al., 2013). For example, in healthcare, there are VR applications allowing users to 

practice  open and laparoscopic surgeries (e.g., Bric, Lumbard, Frelich, & Gould, 2016; Lam, Sundaraj, 

& Sulaiman, 2013), drug administration (e.g., Dubovi, Levy, & Dagan, 2017), or interpersonal and 

conversational skills for novice clinicians (e.g., Kenny & Parsons, 2011).  
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Currently, there are several simulators available for firefighter training (see Williams – Bell et al., 

2015, for an overview). For example, St Julien and Shaw (2003) created the Firefighter Command 

Training Virtual Environment, an application for command training for officers. In the simulator, 

trainees lead a group of virtual agents during extinguishing a fire. Another VR application, the 

Advanced Disaster Management Simulator (The Environmental Tectonics Corporation), offers a 

training on how to respond in emergency situation, such as a fire or a terrorist attack. It provides a 

training on crisis management, including coordination of on-ground personnel and distribution of 

equipment. Furthermore, Backlund and others (Backlund et al., 2007, 2009) developed SIDH, an 

immersive game-based firefighter training application, which is simulated using cave virtual 

environment. Trainees can be exposed to up to 13 different scenarios in which they are supposed to 

search for victims while wearing breathing apparatus. Despite the existence of several VR applications 

for firefighters training, the majority of them is focused on emergency management, i.e. the training 

of the leaders (Williams–Bell et al., 2015). In contrast, in the current study we tested a VR application 

in which firefighters of various experiences and levels can practice their reactions in a demanding 

rescue challenge, such as a mass-casualty incident in which they have an opportunity to act as an 

individual member of a basic tactical unit.  

1.3. Engagement  

Engagement is defined as energy expenditure to perform an instrumental behavior (see 

Richter, 2013). This is an important component of an efficient training as it leads to a better 

performance (e.g., Bakker, Vergel, & Kuntze, 2014; Freeman et al., 2014). In the educational context, 

researchers focus on three aspects of engagement: cognitive, behavioral, and emotional (e.g., 

Fredericks, Blumenfeld, & Paris, 2004). In the current setting, the most important aspects of 

engagement are the cognitive and behavioral ones as they both relate to effort, attention, and 

concentration on a given task. It was suggested that the reason why engagement is important in 

education is that it helps students to be more goal-oriented, which in turn increases their chance for 

performance and learning success (Bakker et al., 2014). In training settings that are not engaging, it is 

unlikely that trainees try out different strategies or invest the effort that is required to solve the 

problem. Consequently, they could miss the opportunity to improve their skills and knowledge. An 

efficient learning environment, thus, needs to be engaging.  

In empirical research, engagement is often measured with questionnaires, which sometimes 

can be problematic. First, people may easily fake their responses trying to conform to the researcher’s 

expectations (e.g., Furnham & Henderson, 1982; McKibben & Silvia, 2017). Furthermore, people may 

not be aware of their internal processes, for example they may not be aware of what caused their 
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behavior or how they made a particular decision (e.g., Nisbett & Wilson, 1977). Finally, they might be 

prone to self-serving biases, e.g., unrealistically perceive their intellect in a way that would enhance 

their self-esteem (e.g. Paulhus & John, 1998). For those reasons, the relationship between the 

perception of engagement and actual engagement may not be straightforward (e.g., Harper, 

Eddington, & Silvia, 2016; Muraven, Tice, & Baumeister, 1998; Smith & Hess, 2015). Thus, in this 

research we focused on objective, physiological measures of engagement. In particular, we focused on 

cardiovascular measures of engagement. We also employed a subjective measure of workload to 

complement the analysis of actual engagement with the subjective perceptions. 

Drawing on decades of research on active coping hypothesis (Obrist, 1976, 1981), the 

motivational intensity theory (Brehm & Self, 1989; Wright, 1996), the autonomic space model 

(Berntson, Cacioppo, & Quigley, 1991), and on cardiovascular responses to physical exercise (Rowell, 

1993; White & Raven, 2014), we assumed that objective engagement is reflected by changes in the 

activity of the autonomic nervous system. In particular, engagement should be reflected by an 

increased activity of the sympathetic nervous system and a decreased activity of the parasympathetic 

nervous system (these are the two branches of autonomic nervous system). Given that the 

cardiovascular system is affected by the sympathetic and parasympathetic branches, studying its 

function allows inferences about autonomic nervous system activity and this has been done in 

multitude of studies (e.g., Obrist, 1976; Van Roon, Mulder, Althaus, & Mulder, 2004; White & Raven, 

2014; Wright, 1996). Some indices, like heart rate or blood pressure, reflect the interplay between the 

sympathetic and parasympathetic nervous systems and provide general information about autonomic 

activity (Berntson, Quigley, & Lozano, 2007). Other indices, like pre-ejection period or high-frequency 

heart rate variability, are more specific and reflect more selectively sympathetic or parasympathetic 

activity.  

Among the non-invasive indices of sympathetic impact on the cardiovascular system, pre-

ejection period is considered the most sensitive measure (Kelsey, 2012; Sherwood et al., 1990). Pre-

ejection period is the time interval from the onset of left ventricular depolarization, referring to Q-

onset in the electrocardiogram, until the opening of the aortic valve, the B-point in the impedance 

cardiography signal (Berntson, Lozano, Chen, & Cacioppo, 2004; Sherwood et al., 1990). The shorter 

the pre-ejection period, the stronger the sympathetic impact on the heart, indicating higher 

engagement. A related measure, RZ-interval is the time interval between the R-peak in the 

electrocardiogram, and the maximum dZ/dt peak in the impedance cardiogram (Lozano et al., 2007; 

Sherwood et al., 1990). Similarly, to pre-ejection period, the shorter the RZ-interval, the stronger 

sympathetic impact on the heart. The advantage of RZ-interval over pre-ejection period is that it can 

be estimated more reliably than pre-ejection period given that it can be difficult to identify the B-point 
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in a noisy signal (Kuipers et al., 2016; Lozano et al., 2007; Silvia, Beaty, Nusbaum, Eddington, & Kwapil, 

2014).  

In contrast to pre-ejection period and RZ-interval as measures of sympathetic activity, 

assessing heart rate variability enables the estimation of parasympathetic influence on the heart. Heart 

rate variability is an umbrella term for a wide array of methods, e.g., time-domain analysis, frequency-

domain analysis, rhythm pattern and other types of analyses, assessing variations in the interval 

between consecutive heart beats (Berntson et al., 1997; Task Force, 1996). Most importantly, the 

frequency domain analysis allows estimating parasympathetic influence on the heart. While low 

frequency heart rate variability (0.04-0.15 Hz) represents both sympathetic and parasympathetic 

activity, high frequency heart rate variability (0.15-0.40 Hz) represents parasympathetic activity 

selectively (Berntson et al., 1997; Task Force, 1996). Thus, to capture the parasympathetic activity, we 

focused only on high frequency power range of heart rate variability. As parasympathetic nervous 

system decreases heart activity (it operates as a brake on the heart), the stronger the decrease in 

parasympathetic activity, the higher the level of engagement. In other words, the stronger the 

withdrawal of the “vagal brake”, the higher the engagement. 

Physiological measures of engagement have already been used to demonstrate that VR 

applications lead to high levels of engagement among users. For example, Kothgassner and colleagues 

(2016) demonstrated that public speaking tasks in virtual and real-life environment elicit similar 

physiological responses, i.e. elevated salivary cortisol and heart rate. For heart rate, there was an 

increase of about 20 beats per minute in the beginning of the task in both real and VR public speaking 

conditions, in comparison to a 10-beat increase in the control condition. There were, however, no such 

differences for their heart rate variability indices. Similarly, Crescentini, Chittaro, Capurso, Sioni, and 

Fabbro (2016) showed that exposure to VR emergency situation results in higher heart rate (an 

increase of around 5 beats per minute from baseline to a task period) and this relationship was 

moderated by mindfulness training. Furthermore, Parsons, Rizzo, Courtney, and Dawson (2012) 

showed that heart rate was higher when participants faced a challenging task condition, vs. an easier 

one, but only when the virtual environment was presented using immersive technologies (i.e., head 

mounted display) but not when it was presented on a computer screen. To the contrary, Egan and 

others (2016) did not find differences in heart rate when they compared an exposure to a VR vs. non-

VR environments. However, users were only watching a virtual city and followed a path pre-defined 

by the researchers which may explain no differences in heart rate between conditions. Furthermore, 

another study by Gorini, Capideville, De Leo, Mantovani, & Riva (2011) showed a similar high heart 

rate response when the task was presented using head mounted display or a computer screen but with 

a meaningful narrative framework (an increase in heart rate was around 13 and 9 beats per minute, 

respectively). In narrative condition, participants performed a task as doctors who had to find a 
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container with a rare blood which was to be transfused for a seriously sick child.  It was contrasted 

with a low heart rate reactivity in a non-narrative/immersive as well as non-narrative/non-immersive 

conditions (an increase of around 2 beats per minute). On the other hand, the reported presence, 

which is a technology-mediated feeling of being present in a simulated environment (e.g., Heeter, 

1992), was highest in the narrative/immersive condition. This study demonstrates the importance of 

both including immersive methods and well as narrative contexts to create most engaging 

environments. Relatedly, it was shown that heart rate responses were positively but weakly related to 

higher sense of presence (Meehan, Razzaque, Insko, Whitton, and Brooks, 2005) but other studies did 

not confirm that link (e.g., Felnhofer et al., 2014). It suggests that although presence and engagement 

might be related, they are conceptually, and physiologically, distinct.  

As reviewed above, several studies documented autonomic responses to tasks in VR 

environment. Nevertheless, to the best of our knowledge, the present study is a first one to examine 

the whole spectrum of engagement-related autonomic responses (sympathetic activity and 

parasympathetic withdrawal) in a VR application. 

1.4. Overview of the study 

In this study we investigated whether VR application elicits engagement during rescue operation 

challenge. In particular, we ran an experimental study with two groups of firefighters. In the 

experimental condition participants engaged in a VR rescue operation challenge. In the control 

condition, participants were free to explore the same VR setting without a rescue goal. Thus, the 

differences between the experimental and the control group cannot be attributed to the excitement 

of the first time VR experience as both groups used VR setup.  

We measured objective engagement using cardiovascular responses: high frequency heart rate 

variability, pre-ejection period, RZ-interval, and heart rate. These measures captured both sympathetic 

activation (pre-ejection period, RZ-interval) as well as parasympathetic withdrawal (high frequency 

heart rate variability). Furthermore, we measured the subjective workload that the VR task required. 

We hypothesized that participants would demonstrate higher levels of objective engagement (shorter 

pre-ejection period and RZ-interval, lower high frequency heart rate variability) and subjective 

workload in the VR rescue challenge condition than in the control condition. 
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2. METHOD 

2.1. Participants 

Due to external constraints the number of participants was fixed to 60 participants: 59 men 

and 1 woman aged between 19-24 (M = 21.58, SD = 1.45) took part in the study.  A sensitivity power 

analysis in GPower (ver. 3.1.9.2; Faul, Erdfelder, Buchner, & Lang, 2009; alpha = .05) showed that we 

had a power of 80% to detect an effect of f = 0.37, which is moderate to large in size, for the comparison 

of the rescue challenge and the control conditions.  All the participants were firefighter’s trainee in the 

second year of their education. All of them already had a considerable experience of performing in real 

rescue operations. Participants were recruited at the College of the State Fire Service in Cracow 

(Poland). One participant was excluded from the dataset due to problems with electrocardiogram 

recording. One person more was excluded from the analysis of pre-ejection period and RZ-interval due 

noisy impedance cardiography signal (it was impossible to correctly mark landmarks in their ICG signal). 

Nevertheless, his person has been taken into account in the analysis of subjective perceptions of task, 

heart rate, and high frequency heart rate variability. Thus, the final sample size for analysis of 

sympathetic activation, i.e., pre-ejection period and RZ-interval, was 58 participants and for any other 

reported measure the final sample size was 59. The sensitivity analysis for such a restricted sample size 

(N=58) showed that we had a power of 80% to detect an effect of f = 0.37, for the comparison of the 

rescue challenge and the control conditions.  

2.2. Measures and Equipment  

Task 

Participants were immersed in VR with a stereoscopic head-mounted display (HMD). In 

particular, we used HTC Vive (field of view 110 degrees, refresh rate 90 Hz). The HMD was connected 

to a PC with a 3.40 GHz Intel Core i7 processor, 16GB of RAM and Nvidia GeForce GTX 1080. To operate 

within a task, participants used HTC Vive wireless controllers held in both hands. The VR application 

was developed using Unity engine (Unity Technologies, San Francisco, CA).  

 In the rescue challenge condition, participants performed a simulated rescue operation. In 

particular, their task was to perform a standard rescue procedure (detailed in the documentation of 

the National Firefighting and Rescue System1) in VR and mark critically injured victims of the car crash. 

For example, they were supposed to check victims’ consciousness, airways, breathing, circulation, and 

 

1 Available at http://www.straz.gov.pl/english/national_firefighting_rescue_system 
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mark them if they required further medical help. The time limit for the task was 5 minutes. There were 

6 victims with various injuries in the car crash. A sample screenshot from the rescue challenge 

(experimental) condition is presented in Figure 1 Panel B. In the control condition, participants 

explored a similar VR environment but without a car crash, victims, or a rescue goal in this task for 5 

minutes. A sample screenshot from the control condition is presented in Figure 1 Panel A. In both 

conditions, participants navigated from a first-person perspective.  

[Figure 1 about here, PLEASE USE B&W IN PRINT FOR THIS FIGURE] 

Figure 1. Sample screenshots from a task in the control condition (Panel A) and the rescue challenge 

condition (Panel B). 

Self-reported workload 

 We measured subjective workload with the NASA-TLX (Hart & Staveland, 1988, Polish version 

by Zieliński & Biernacki, 2010) in which participants rate their perception of task mental workload, 

physical workload, time pressure, effort, performance, and frustration (there is one item per 

dimensions). All responses are given using a 21-point scale. In the results section, we present separate 

scores for each one of the subscales. 

Physiological Acquisition   

During the experiment, we measured participants' electrocardiogram and impedance 

cardiogram using a BIOPAC MP160 system (BIOPAC Systems Inc., Goleta, CA, USA). We used a 3-lead 

electrocardiography setup with the pre-gelled Ag/AgCl spot electrodes attached to a participant torso 

(on the right and left clavicle as well as on the lower left abdomen). The impedance cardiogram was 

measured with 4 sets of Ag/AgCl pre-gelled spot electrodes placed on both sides of a base of a neck 

and both sides of lower abdomen (the distance between inner neck and abdomen electrodes was 

approximately 30 cm). Before placing the electrodes, participants’ skin was abraded with ELPREP gel. 

Both the electrocardiogram and impedance cardiogram signal were sampled at 1000 Hz with a 

BioNomadix BN-ECG-2 and a BioNomadix-NICO, respectively (BIOPAC Systems Inc., Goleta, CA, USA). 

Data was stored with AcqKnowledge 5.0 software (BIOPAC Systems, Goleta, CA, USA). 

2.3. Procedure 

Participants signed informed consents and answered a set of demographic questions. Next, 

they were randomly assigned to one of the two conditions. Participants were asked to wear the HTC 

Vive HMD and to take the HTC wireless controllers. Subsequently, they were presented with the VR 

environment and were instructed how to move. Participants in the rescue challenge condition were 

additionally instructed how to move objects and start an interaction with a victim of an accident. After 
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the training, participants were asked to remove the HMD and controllers and rated their affect2. Later, 

participants were asked to wear the HMD again and were watching a relaxing movie for 8 minutes. 

During that period, we measured participants baseline electrocardiogram and impedance cardiogram. 

Next, participants were given task instruction and performed the main task for 5 minutes. After the 

task, they stood still for two minutes while being immersed in VR. After this, participants removed the 

HMD and controllers and completed questionnaires measuring their affect and perception of the task. 

In short, the procedure was as follows: consent and instructions, pre-task self-report ratings, 

cardiovascular baseline measurement (8 minutes), task performance (5 minutes), cardiovascular 

recovery measurement (2 minutes), and post-task self-report ratings.  

2.4. Offline Physiological Analysis  

 In a first step, we filtered the electrocardiogram (0.5–40 Hz) and the impedance cardiogram 

signals (0.5–50 Hz, Hurwitz et al., 1993). Then, QRS complex boundaries were automatically located 

with a Pan-Tomkins (Pan & Tomkins, 1985) algorithm. The electrocardiogram signal was visually 

inspected and corrected. C-points were automatically detected with an adaptive template matching 

method (BIOPAC, 2016) and B-points were identified using the R-C polynomial method (Lozano et al., 

2007). Impedance cardiogram signals with the detected B- and C-points were visually inspected and 

corrected, if needed. In order to derive pre-ejection period and RZ-intervals, we calculated coherent 

averages over 1-minute periods (Hurwitz, Shyu, Reddy, Schneiderman, & Nagel, 1990). Pre-ejection 

period was defined as the interval between Q-onset and B-point, whereas RZ-interval was defined as 

the interval between R-peak and C-point (e.g., Sherwood et al., 1990).  

For heart rate variability and heart rate, we derived RR-intervals (the time difference between 

two consecutive R-peaks, measured in milliseconds). The RR-intervals were submitted into the HRVAS 

software (Ramshur, 2010). Ectopic beats were identified as those RR-intervals which were larger than 

20% or 3 standard deviations in comparison to a preceding RR-interval (Akhter, Gite, Tharewal, & Kale, 

2015). RR-intervals marked as ectopic were removed from analysis (Lippman, Stein, & Lerman, 1994). 

Furthermore, we used wavelet-based method for a trend removal (Thuraisingham, 2006). The RR-

interval signal was interpolated with 6 Hz (Singh, Vinod, & Saxena, 2004). Spectral decomposition was 

performed with Welch periodogram method. The very low frequency band of heart rate variability was 

defined as up to 0.04 Hz, the low frequency band as 0.04-0.15 Hz, and the high frequency band as 0.15-

0.40 Hz (Task Force, 1993). High frequency heart rate variability was calculated in normalized units 

 

2 In the current study, we measured affect, emotion, stress and several dimensions of task percepcion. 
These measures, as not of a vital importance for the current manuscript, are presented in the 
Supplemental material section. 
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(relative to the total power in the LF and HF band). Cardiovascular baseline scores were calculated as 

an arithmetic mean of the data collected during the last 5 minutes of the baseline period. 

Cardiovascular task scores were calculated as an arithmetic mean of the data collected during the 5 

minutes of the task. Next, we computed cardiovascular change scores (delta) by subtracting baseline 

scores from task scores (Llabre, Spitzer, Saab, Ironson, & Schneiderman, 1991). The delta scores for 

pre-ejection period, RZ-interval, heart rate variability, and heart rate served as our dependent 

variables of task-related cardiovascular reactivity. 

 

2.5. Statistical Analysis  

To examine whether performing a task in our VR application leads to engagement, we first ran 

a set of repeated measures ANOVA comparing cardiovascular baseline and task scores. To examine 

whether the rescue challenge led to higher engagement than the control condition, we compared both 

groups with one-way ANOVAs. With those two steps of the analysis (for the cardiovascular measures) 

we could separately examine the impact of VR on engagement and verify whether the engagement is 

especially pronounced in the rescue challenge condition in comparison to the control condition.3 

3. RESULTS 

3.1. Cardiovascular reactivity 

Cardiovascular baseline values and change scores are presented in Table 1. 

  Baseline values 
Task change 

score 
Significance 

Measure Condition Mean SD Mean SD 

High frequency 
heart rate 
variability 

  

Control 0.38 0.17 -0.14 0.13 ns 

Rescue 
challenge 

0.41 0.16 -0.18 0.17 
 

Pre-ejection period Control 123.04 11.13 -1.40 6.58 * 

 
Rescue 
challenge 

122.24 10.04 -7.32 6.89 
 

RZ-interval Control 146.52 14.93 -5.86 7.60 * 

 
Rescue 
challenge 

147.10 15.96 -21.52 12.62 
 

 

3 An introduction to this statistical analysis strategy can be found in the books by Field (2013; especially 
chapters 11 and 14) and Field, Miles, and Field (2012; especially chapter 10 and 13). 
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Heart rate Control 69.92 8.25 5.85 3.42 * 

  
Rescue 
challenge 

66.84 10.70 11.41 4.72 
 

Table 1. Cell means for cardiovascular baseline values and change scores during the task. Note. High 
frequency heart rate variability is in normalized units, pre-ejection period and RZ-interval are in ms, 
heart rate is in bpm. An asterisk indicates a significant difference between the two conditions (that is, 
a p-value less than or equal to  .05), “ns” indicates a non-significant difference. 

 

For high frequency heart rate variability, task scores were lower than baseline scores in both 

the control, F(1,28) = 33.814, MSE = 0.009, p < .001, ηG
2 = .211, and the rescue challenge conditions, 

F(1,29) = 33.096, MSE = 0.014, p < .001, ηG
2 = .327. For pre-ejection period, while task scores did not 

differ from baseline in the control condition, F(1,28) = 1.315, MSE = 21.672, p = .261, ηG
2 = .005, they 

were lower than baseline scores in the rescue challenge condition, F(1,29) = 32.713, MSE = 23.732, p 

< .001, ηG
2 = .117. For RZ-interval, task scores were lower than baseline scores in both the control, 

F(1,28) =  17.220, MSE = 28.885, p < .001, ηG
2 = .035, and the rescue challenge conditions, F(1,29) = 

84.333, MSE = 79.656, p < .001, ηG
2 = 0.305. Finally, for heart rate, task scores were higher than 

baseline scores in both the control, F(1,28) = 84.699, MSE = 5.855, p < .001, ηG
2 = .012, and the rescue 

challenge conditions, F(1,29) = 175.050, MSE = 11.149, p < .001, ηG
2 = .242. 

For high frequency heart rate variability, we did not observe the predicted difference between 

the rescue challenge and the control conditions, F(1,57) = 0.734, MSE = 0.023, p = .395, ηG
2 = .013. 

However, for pre-ejection period,  F(1,56) = 11.175, MSE = 45.404, p = .001, ηG
2 = .166, RZ-interval, 

F(1,56) = 32.791, MSE = 108.542, p < .001, ηG
2 = .369, and heart rate, F(1,57) = 26.646, MSE = 17.097, 

p < .001, ηG
2 = .319, we found the predicted effect. In comparison to the control condition, participants 

had shorter pre-ejection period, shorter RZ-interval, and higher heart rate in the rescue challenge 

condition. Cardiovascular change scores are presented in Figure 2.   

[Figure 2 about here] 

Figure 2. Cardiovascular change scores for high frequency heart rate variability, heart rate, pre-

ejection period and RZ-interval in the control and rescue challenge conditions. 

3.2. Subjective Engagement 

For NASA-TLX, we found the effects of the task condition on mental workload, 

F(1,57) = 10.533, MSE = 428.728, p = .002, ηG
2 = .160, time pressure, F(1,57) = 60.372, MSE = 446.796, 

p < .001, ηG
2 = .514, effort, F(1,57) = 13.785, MSE = 378.960, p < .001, ηG

2 = .195, performance, F(1,57) 

= 37.857, MSE = 409.964, p < .001, ηG
2 = .399, and frustration ratings, F(1,57) = 13.149, MSE = 328.937, 
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p < .001, ηG
2 = .187. In contrast, we did not find an effect of the task condition on physical workload, 

F(1,57) = 0.214, MSE = 196.600, p = .645, ηG
2 = .004. In particular, we found that participants reported 

higher workload on all NASA-TLX subscales, except physical workload, in the rescue challenge 

condition in comparison to control condition. Finally, for the composite score of all NASA-TLX subscales 

averaged, we found an effect of the condition, F(1,57) = 33.616, MSE = 207.038, p < .001, ηG
2 = .370, 

with people in the rescue challenge condition reporting higher overall NASA-TLX scores. The average 

scores of the NASA-TLX subscales are presented in Table 2 and Figure 3. 

Subscale Condition Mean SD Significance 

Mental Workload Control 30.00 19.13 * 

Rescue challenge 47.50 22.12  

Physical Workload Control 19.31 14.38 ns 

Rescue challenge 21.00 13.67  

Time Pressure Control 16.90 15.61 * 

 Rescue challenge 59.67 25.36  

Performance Control 16.72 16.05 * 

  Rescue challenge 49.17 23.60  

Effort Control 20.35 17.78 * 

  Rescue challenge 39.17 20.97  

Frustration Control 16.21 12.15 * 

  Rescue challenge 33.33 22.45  

 Table 2. Cell means for subjective workload ratings in NASA-TLX. Note. An asterisk indicates a 
significant difference between the two conditions (that is, a p-value less than or equal to  .05), “ns” 
indicates a non-significant difference. 

 

 

[Figure 3 about here] 

Figure 3. Subjective workload ratings in NASA-TLX. 

 

4. DISCUSSION 

The goal of this study was to investigate the patterns of engagement elicited by a rescue 

operation simulated in VR. We found that cardiovascular responses to VR application both in the 

control and the rescue challenge conditions differed from baseline across all indices (except for pre-

ejection period in the control condition). This suggests that performing a task in the VR environment 

led to a decrease in parasympathetic activity and an increase in sympathetic activity. More 

importantly, we found that performing the rescue challenge resulted in shorter pre-ejection period 
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and shorter RZ-interval than the mere presence in the VR environment (control condition). This means 

that performing a simulated rescue operation led to an additional increase in sympathetic activation. 

These results are in line with the theories of engagement suggesting that on lower levels of task 

difficulty, engagement is driven by parasympathetic withdrawal but to support performance at higher 

levels of difficulty, there is an additional increase in the sympathetic activity (White & Raven, 2014; 

Van Roon et al., 2004). Furthermore, we found larger heart rate in the rescue challenge condition in 

comparison to the control condition. The overall pattern of results suggests that this increase in heart 

rate was mainly driven by the increase in sympathetic activity. 

Apart from quantifying engagement physiologically, we used measures of subjective 

engagement (NASA-TLX). The results from the self-report mirrored the effects observed for the 

objective engagement. Specifically, we found that people who took part in a simulated rescue 

operation reported higher subjective engagement than those in the control condition. We found this 

effect for perception of mental demands, time pressure, performance, effort, and frustration but not 

for the perception of physical demands. Overall, our results demonstrated that the simulated rescue 

operation was not only perceived as but also objectively engaging to professional firefighters. This is 

important finding because, as already mentioned, engagement is the prerequisite for efficient learning 

and higher engagement leads to better learning outcomes (Bakker et al., 2014; Freeman et al., 2014).  

Unexpectedly, for the subjective engagement measures, we found that the simulated rescue 

challenge was perceived as more frustrating in comparison to the control condition. This is a 

noteworthy finding as the real-life rescue challenges evoke more negative emotions than workshops 

(Strojny, Strojny, & Rębilas, 2017). Thus, the training using a professional simulator should not be 

perceived only as fun activity but probably could also be used to elicit negative emotions to mirror 

real-life emergency. Furthermore, research suggests that in computer-based learning environments 

frustration may lead to better learning outcomes than other low-arousal negative emotions such as 

boredom (e.g., Baker, D’Mello, Rodrigo, & Graesser, 2010).  

The current findings suggest that a VR rescue simulator is not only engaging but it allows for 

emulating characteristics of the real-life incidents, i.e., frustration, mental demand, and time-pressure. 

On the other hand, we did not find differences between virtual rescue and control conditions for the 

perceived physical workload of the task. This could suggest that the VR application, or more precisely 

the application being currently tested, does not imitate the requirements of the real-life emergency 

situations regarding physical workload. However, we believe that even if VR technology might be 

useful for trainings focused on achieving goals of physical nature, such as rehabilitation (e.g., Bryanton 

et al., 2006) or anti-obesity interventions (Fung et al., 2006), the greatest potential of VR professional 
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simulators lies in reflecting the psychological situation of a rescue challenge. This is because the  

physical aspects of a task could be more easily trained in live training. As it was suggested, 

psychological experience that is similar to the real life supports knowledge and skill transfer (Bacon, 

Windall, & MacKinnon, 2012; Romano & Brna, 2001). We, thus, believe that the future professional 

simulators should aim at recognizing the psychological states of the users and trying to imitate them 

as close as possible and be less concerned with the physical resemblance, e.g., weight of the objects. 

In other words, in our opinion the greatest potential of VR applications is in nurturing the psychological 

fidelity, which is the degree to which users subjectively perceive that a simulator reproduces real-life 

scenario (Dahl, Alsos, & Svanæs, 2010; Rehmann, 1995; cf. Hamstra, Brydges, Hatala, Zendejas, & Cook, 

2014).  

We also would like to address an important implication of our study. Namely, the feasibility of 

utilizing measures assessing activation of autonomic nervous system during task performance in VR 

applications and its consequences for designing human-computer interfaces in the future. As already 

mentioned, the methods used in the current study enables assessing both sympathetic  and 

parasympathetic activation. Monitoring activation of autonomic nervous system on a basis of blood 

pressure or heart rate may be insufficient here because it is determined by an interplay of both 

sympathetic and parasympathetic influences (Berntson et al., 2007). For example, the relationship 

between heart rate and actual engagement might be complex as engagement at lower levels of 

difficulty may manifest in parasympathetic withdrawal, while sympathetic activation may occur only 

at higher levels of task difficulty (White & Raven, 2014; Van Roon et al., 2004). Assessing activity of 

both branches of autonomic nervous system to assess engagement has been already done (e.g., 

Richter, 2010; Silvia et al, 2014) but to our best knowledge it has never been simultaneously assessed 

in professional VR applications. We believe that such an approach provides more detailed and useful 

information for developing VR applications, especially the adaptive ones. In particular, it is a first step 

toward integration of physiological indices into interfaces adapting the course of the virtual experience 

to the needs of a particular user (Vaughan, Gabrys, & Dubey, 2016). Such an adaptation could involve 

dynamic adjusting a difficulty of a game (e.g., Hunicke & Chapman, 2004), manipulation of arousal that 

a user experiences to prevent too extreme states, similarly to adaptive automation applications (e.g., 

Pope, Bogart, & Bartolome, 1995; Schaefer, Haarmann, & Boucsein, 2008; Yamamoto & Isshiki, 1992) 

or balancing task characteristics to prevent simulation sickness (e.g., Cobb, Nichols, Ramsey, & Wilson, 

1999; Murata, 2004). For example, if a user responds only with a parasympathetic withdrawal or low 

sympathetic activation, the app would choose a more challenging task.  

The results of the current study are encouraging but we need to address several limitations. 

First, our sensitivity power analysis demonstrated that we were able to find statistically significant 
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results for the effects of moderate to large magnitude. We did not have the sample size needed to 

detect small effects. Thus, our sample, ideally, would have been larger. Second, our sample was mainly 

composed of male participants.  This reflects the composition of professional firefighters in Poland: 

women represent around 4% firefighter workforce, with this number be even lower for firefighters 

taking part in the everyday operations (Ministry of the Interior and Administration, 2014). 

Furthermore, as there is little research on the topic of gender differences in engagement in VR 

technology context, we refrain from speculating on the potential moderating effects of gender. This is 

also related to the broader question of generalizability of our findings across other dimensions of 

demographics and individual differences such as age, rank, experience, or personality traits of 

professional rescuers. We believe that further studies should address this question. Third, in the 

current study, we were focused on engagement, both subjective and objective. In the future studies, 

however, it would be crucial to include measures of performance in a simulated rescue operation. This 

is because research on the effectiveness of VR training show mixed results. Some of them suggest that 

training in VR increases performance (e.g., Dubovi et al., 2017; Gamberini et al., 2003). In contrast, 

other studies commands skepticism rather than enthusiasm regarding the usefulness of VR technology 

for educational purposes (e.g., Bliss, Tidwell, Guest, 1997; Dehn et al., 2018). Thus, the effectiveness 

of the training in the currently tested VR application need to be checked in the future studies. Fourth, 

it is important to note that although our measures of engagement provide information on sympathetic 

and parasympathetic activation, they reflect overall engagement. They do not allow to distinguish 

between particular psychological states, e.g., presence or frustration. Furthermore, we focused on the 

average engagement throughout the whole task period. However, it is possible that there are temporal 

dynamics of engagement during the course of a task. For example, users may initially engage but 

withdraw from a task once they realize that the challenge is too low or too high. Future studies might 

want to  focus on the temporal aspects of task engagement. 

4.1. Conclusions 

The main goal of the current paper was to investigate the patterns of engagement during 

rescue operations performed in VR. We demonstrated that objective measurement of engagement 

during task performance in VR application is possible and we suggest that it is worth exploring in 

further research. In particular, we showed the importance of assessing both branches of autonomic 

nervous system, parasympathetic and sympathetic, to make inferences about engagement. This could 

be especially useful for future human-computer interfaces such as adaptive applications. Apart from 

that, we also stress the importance of focusing on psychological fidelity of the professional simulators 

to foster training and performance.  
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Finally, using VR technology might be especially useful to prepare professional rescuers to 

situations of low frequency but high risk for which the training is usually insufficient (Bertram et al., 

2015; Heldal & Hammar Wijkmark, 2017; McDemott, 2017). Using VR applications, professional 

rescuers might train their skills, receive feedback, and repeat their actions in a safe environment. For 

example, such a training might be included in the firefighters’ training curriculum for the novice 

officers. It would be especially useful as the vast majority of the existing VR applications focus on 

training management skills. On the other hand, we believe that VR applications cannot entirely replace 

the live and on-the-job trainings with real threats and real victims. Thus, VR technology can be a 

valuable addition to the regular training but it cannot replace it. 
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SUPPLEMENTAL MATERIALS 

Affect 

Participants’ affective states were assessed with The Self-Assessment Manikins (Bradley & 

Lang, 1994). In the Self-Assessment Manikins participants assessed their affect on the dimensions of 

valence, arousal, and dominance. Participants were presented with three series of pictorial 

representations of the affective states varying in valence, intensity, and dominance.  For each 

dimension, participants were asked to choose a picture that represent their current state. We used 

modified version of a task (Irtel, 2007) in which there were 9 pictures for each dimension (instead of 

5). Results are presented in Figure S1. 

In order to identify emotions of subjects, we used Scale of emotions and Scale of General Mood 

(Wojciszke, & Baryła, 2005). In the first questionnaire participants answered a question regarding 

intensity of experienced emotions on 7-point scale (1 = “not at all” to 7 = “extremely intensive”). The 

list contains 24 single-word names of emotions - four per each of six basic emotions. We also used 

Scale of general mood in which participants assessed their mood by rating of 10 statements on 5-point 

Likert scale (1 = “I disagree” to 5 = “I agree”). Results from both scales are presented in Figure S1. 

In order to identify the level and nature of stress experienced during simulation, Stress 

Appraisal Questionnaire (Włodarczyk & Wrześniewski, 2010) was used. It contains two forms - 

dispositional and situational stress assessment, we used only situational part due to our research 

questions. It contains the set of 35 adjectival expressions used for describing stressful situations. 

Subjects respond on 4-point Likert scale (0 = “definitely not” to 3 = “definitely yes”). There were 4 

subscales, such as threat (e.g., “terrifying”, 9 items, Cronbach’s α = .92); challenge - activity (e.g., 

“mobilizing”, 5 items, Cronbach’s α = .49); challenge - passivity (e.g., “interesting”, 5 items, Cronbach’s 

α = .70); harm / loss (e.g., “unjust”, 4 items, Cronbach’s α = .76). Results are presented in Figure S1. 

Participants’ subjective self-efficacy was assessed with General Self-Efficacy scale (Schwarzer,  

Jerusalem,  & Juczynski, 2001) originally aimed to assess dispositional self-efficacy, scale was adapted 

to the need of momentary self-efficacy assessment. It contains 10 statements (e.g., “It is easy for me 

to stick to my aims and accomplish my goals”, Cronbach’s α = .89), to which participants responded on 

four-point scale (1 = “no” to 4 = “yes”). Results are presented in Figure S1. 

 

Figure S1 

Affect ratings 
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Measure  Condition Mean SD 

Manikin Valence [Pre] Control 7.828 1.104 

   Rescue challenge 7.300 1.236 

 Arousal [Pre] Control 4.655 1.446 

   Rescue challenge 4.500 1.889 

 Dominance [Pre] Control 6.207 1.048 

   Rescue challenge 5.233 1.547 

 Valence [Post] Control 7.379 1.049 

   Rescue challenge 6.633 1.351 

 Arousal [Post] Control 4.724 1.688 

   Rescue challenge 5.100 1.936 

 Dominance [Post] Control 5.793 1.590 

   Rescue challenge 5.733 1.617 

 Valence [Post-Pre] Control -0.448 0.870 

   Rescue challenge -0.667 1.184 

 Arousal [Post-Pre] Control 0.069 1.163 

   Rescue challenge 0.600 0.932 

 Dominance [Post-Pre] Control -0.414 1.680 

   Rescue challenge 0.500 1.526 

Emotions Happiness [Pre] Control 5.060 0.731 

   Rescue challenge 4.925 0.711 

 Love [Pre] Control 4.302 1.107 

   Rescue challenge 4.258 0.911 

 Anxiety [Pre] Control 2.431 0.961 

   Rescue challenge 2.392 0.944 

 Anger [Pre] Control 2.664 0.987 

   Rescue challenge 2.875 1.196 

 Guilt [Pre] Control 1.690 0.664 

   Rescue challenge 1.925 0.786 

 Sadness [Pre] Control 1.698 0.745 

   Rescue challenge 1.750 0.685 

 Happiness [Post] Control 3.526 0.955 

   Rescue challenge 3.558 1.188 

 Love [Post] Control 1.991 1.064 

   Rescue challenge 2.625 1.102 

 Anxiety [Post] Control 2.086 0.931 

   Rescue challenge 2.525 1.343 

 Anger [Post] Control 1.353 0.600 

   Rescue challenge 1.733 0.940 

 Guilt [Post] Control 1.198 0.599 

   Rescue challenge 1.550 0.862 

 Sadness [Post] Control 1.198 0.580 

   Rescue challenge 1.508 0.850 

Mood Mood [Pre] Control 4.393 0.660 

   Rescue challenge 4.427 0.558 

 Mood [Post] Control 4.445 0.575 

  Rescue challenge 4.227 0.758 

Stress Threat Control 0.205 0.354 
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   Rescue challenge 0.447 0.591 

 Challenge - active Control 1.705 0.559 

   Rescue challenge 1.753 0.438 

 Challenge - passive Control 2.200 0.563 

   Rescue challenge 2.037 0.522 

 Harm/loss Control 0.086 0.224 

   Rescue challenge 0.192 0.358 

General 
Self-Efficacy 

  Control 3.348 0.384 

  Rescue challenge 3.150 0.434 

 

Subjective Engagement and Workload 

In Two-dimensional Effort to Difficulty Ratio (EtoD-2D; A. Strojny, Rębilas, P. Strojny, 2017), 

participants were asked to rate the perception of task difficulty and effort exerted during a task. They 

gave their response on a 11 by 11 matrix. The x-axis referred to task difficulty: the scale ranges from 0 

(“The task goal was easy to accomplish”) to 10 (“The task goal was nearly impossible to accomplish”). 

The y-axis referred to subjective effort: the scale ranges from 0 (“I did not exert any effort”) to 10 (“I 

exerted a lot of effort”). Participants were asked to mark a point corresponding to their assessment of 

difficulty and effort. Results are presented in Figure S2. 

 In NASA-TLX (Hart & Staveland, 1988; Polish version by Zieliński, & Biernacki, 2010), apart from 

rating scales, participants responded in the second part of a tool in which they indicated which aspect 

of the workload was more strongly felt during the task. They were given 15 pairs of workload aspects 

to compare. For example, they were asked if mental vs. physical demands or time pressure vs. 

frustration were more strongly felt during task performance. The subjective workload rating are 

calculated by weighting the workload ratings from a first part of NASA-TLX by the number of times a 

particular aspect was chosen in a second part. Finally, this weighted score is divided by 15. We present 

the average weight for each aspect of workload, as well as the weighted scores in Figure S2 (the non-

weighted scores are presented in the main text). 

Figure S2 

Subjective effort 

Measure  Condition Mean SD 

EtoD-2D Effort Control 1.865 1.978 

   Rescue challenge 2.983 1.634 

 Difficulty Control 1.596 1.077 

   Rescue challenge 4.259 2.617 

NASA-TLX Mental Workload 
[rating] 

Control 4.069 0.998 

 Rescue challenge 3.207 0.774 

 Control 1.931 1.387 
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Physical Workload 
[rating] 

Rescue challenge 1.103 0.939 

 Time Pressure [rating] Control 2.310 1.228 

  Rescue challenge 4.034 1.017 

 Performance [rating] Control 4.069 1.193 

   Rescue challenge 3.724 1.251 

 Effort [rating] Control 1.345 0.936 

   Rescue challenge 1.138 0.875 

 Frustration [rating] Control 1.276 1.601 

   Rescue challenge 1.724 1.811 

 Average rating Control 8.345 6.115 

   Rescue challenge 10.122 5.915 

 
Mental Workload 
[weight] 

Control 2.264 2.843 

  Rescue challenge 1.489 1.957 

 
Physical Workload 
[weight] 

Control 3.207 4.172 

  Rescue challenge 16.900 9.531 

 
Time Pressure 
[weight] 

Control 4.333 4.097 

  Rescue challenge 11.400 5.900 

 Performance [weight] Control 1.828 2.064 

   Rescue challenge 3.100 3.964 

 Effort [weight] Control 1.724 2.507 

   Rescue challenge 4.722 6.159 

 Frustration [weight] Control 1.865 1.978 

   Rescue challenge 2.983 1.634 

 
Mental Workload 
[score] 

Control 1.596 1.077 

  Rescue challenge 4.259 2.617 

 
Physical Workload 
[score] 

Control 4.069 0.998 

  Rescue challenge 3.207 0.774 

 Time Pressure [score] Control 1.931 1.387 

  Rescue challenge 1.103 0.939 

 Performance [score] Control 2.310 1.228 

   Rescue challenge 4.034 1.017 

 Effort [score] Control 4.069 1.193 

   Rescue challenge 3.724 1.251 

 Frustration [score] Control 1.345 0.936 

   Rescue challenge 1.138 0.875 

Immersion and Realism 

 We measured participants’ sense of presence in VR settings with Igroup Presence 

Questionnaire, (IPQ; Schubert, Friedmann, & Regenbrecht, 2001, Polish version of Lipp, A. Strojny, & 

P. Strojny, in preparation). IPQ is a 14-item measure in which participants rate the degree to which 

they agree with a presented item using a 7-point Likert scale (-3 = ”disagree” to 3 = “agree”). This scale 
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consists of three subscales: spatial presence, which is defined as a sense of being in computer-

generated environment (e.g. “I felt present in the virtual space”; 6 items, Cronbach’s α = .68), 

involvement which is defined as the amount of attention devoted to virtual reality (e.g. “I was 

completely captivated by the virtual world”; 4 items, Cronbach’s α = .77), and realism which is 

subjective experience of how realistic virtual environment is (e.g. “Virtual environment seemed 

absolutely realistic to me”; 4 items, Cronbach’s α = .65).  Results are presented in Figure S3. 

 We used Polish version of the German VR Simulation Realism Scale (Poeschl & Doering, 2014, 

professional Polish translation). The scale contains 14 statements regarding Scenic realism (e.g., 

“Reflection in virtual space seemed to be natural.”, 5 items, Cronbach’s α = .75), Audience behavior 

(e.g., “Gestures of virtual humans was natural.”, 4 items, Cronbach’s α = .85), Audience appearance 

(e.g., “Outfit of virtual humans was adequate.”, 4 items, Cronbach’s α = .74), and Sound realism  

(“Ambience sound intensity in the virtual room was … (1 = too low to 5 = too loud)”, 1 item). 

Participants use 5-point Likert type scale for answering (-2 = “I totally disagree” to 2 = “I totally agree”). 

Results are presented in Figure S3. 

 

Figure S3 

Ratings of immersion and realism 

Measure  Condition Mean SD 

IPQ Spatial Presence Control 1.546 0.804 

   Rescue challenge 1.567 0.856 

 Involvement Control -0.862 1.300 

   Rescue challenge 0.125 1.389 

  Realism Control -0.224 1.018 

   Rescue challenge -0.242 1.056 

Realism Scenic realism Control 0.855 0.628 

   Rescue challenge 0.573 0.584 

 Audience behavior Control 0.724 0.757 

   Rescue challenge 0.167 0.789 

 Audience appearance Control 0.534 0.664 

   Rescue challenge 0.800 0.631 

 Sound realism Control 0.069 0.593 

    Rescue challenge -0.367 0.809 

 

References for Supplemental materials 

Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic 

differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49-59. doi: 

10.1016/0005-7916(94)90063-9 



Running Head: Engagement During a Simulated Rescue Operation 

 

32 
 

 

Hart S.G., & Staveland L.E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical 

and theoretical research. [W]: P. A. Hancock, N. Meshkati (Eds.): Human Mental Workload. 

Amsterdam (The Netherlands): North Holland Press. 

 

Irtel, H. (2007). PXLab: The Psychological Experiments Laboratory [online]. Version 2.1.11. Mannheim 

(Germany): University of Mannheim. Available at http://www.pxlab.de 

 

Lipp, N., Strojny A., & Strojny P. (2017). Polish adaptation of Ingroup Presence Questionnaire. 

Manuscript in preparation. 

 

Poeschl, S., & Doering, N. (2013). The German VR Simulation Realism Scale-Psychometric Construction 

for Virtual Reality Applications with Virtual Humans. Annual Review of Cybertherapy and 

Telemedicine, 11, 33-37. 

 

Schwarzer R., Jerusalem M., & Juczyński, Z. (2001) Skala Uogólnionej Własnej Skuteczności GSES [Self-

Efficacy Scale]. W: Z. Juczyński (Ed.) Narzędzia pomiaru w promocji zdrowia i psychologii zdrowia 

[Measurement tool in health promotion and health psychology]. Warsaw (Poland): Pracownia 

Testów Psychologicznych PTP.  

 

Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The Experience of Presence: Factor Analytic 

Insights. Presence: Teleoperators and Virtual Environments, 10(3), 266-281. 

doi:10.1162/105474601300343603 

 

Strojny, P., Rębilas, K., Strojny, A. (2017). EtoD-2D. Two-dimensional Assessment of Effort to Difficulty 

Ratio. Manuscript in preparation. 

 

Wojciszke, B., Baryła, W. (2005). Skale do pomiaru nastroju i sześciu emocji [Scale for the measurement 

of mood and six emotions]. Czasopismo Psychologiczne, 11, 31-47. 

 

Włodarczyk, D., Wrześniewski, K. (2010). Kwestionariusz Oceny Stresu KOS [The stress appraisal 

questionnaire]. Przegląd Psychologiczny, 53(4), 479-496. 

 

Zieliński, P., Biernacki, M. (2010). Analiza psychometryczna polskiego przekładu narzędzia do 

subiektywnej oceny obciążenia zadaniowego NASA-TLX [Psychometric Evaluation of NASA-TLX 

Polish Translation]. Polski Przegląd Medycyny Lotniczej, 16(3), 219 - 239. 

 

 

  

http://www.pxlab.de/


Running Head: Engagement During a Simulated Rescue Operation 

 

33 
 

Notes on contributors 

Gabriela Czarnek (gczarnek@nano-games.com, http://cscs.edu.pl/gabriela-czarnek/) is a 

social psychologist with an interest in effort mobilization in applied settings; she is a researcher at 

Nano Games and at the Institute of Psychology of Jagiellonian University. 

Paweł Strojny (pstrojny@nano-games.com, http://www.ips.uj.edu.pl/dr_pawel_strojny) is a 

social psychologist interested in motivation toward virtual experiences; He is head of R&D at Nano 

Games and assistant professor at the Institute of Applied Psychology of Jagiellonian University. 

Agnieszka Strojny (agnieszka.strojny@uj.edu.pl, http://www.ips.uj.edu.pl/dr-Agnieszka-

Strojny) is a social psychologist with an interest in video games engagement and learning 

effectiveness in VR simulators; She is a researcher at Nano Games and assistant professor at the 

Institute of Applied Psychology of Jagiellonian University.  

Michael Richter (M.Richter@ljmu.ac.uk, http://www.effortlab.website) is a 

psychophysiologist with an interest in the determinants and consequences of mental and physical 

effort; He is a Reader in Motivation Psychology at the School of Natural Sciences and Psychology of 

Liverpool John Moores University. 

 


