
A Patterns Based Approach for Design of
Educational Technologies

Sridhar Chimalakonda · Kesav V. Nori

Abstract Instructional design is a fundamental base for educational tech-
nologies as it lays the foundation to facilitate learning and teaching based on
pedagogical underpinnings. However, most of the educational technologies to-
day face two core challenges in this context: (i) lack of instructional design
as a basis (ii) lack of support for a variety of instructional designs. In order
to address these challenges, we propose a patterns based approach for design
of educational technologies. This is in contrast with existing literature that
focuses either on patterns in education or in software, and not both. The core
idea of our approach is to leverage patterns for modeling instructional design
knowledge and to connect it with patterns in software architecture. We dis-
cuss different categories of patterns in instructional design. We then present
the notion of Pattern-Oriented Instructional Design (POID) as a way to model
instructional design as a connection of patterns (GoalPattern, ProcessPattern,
ContentPattern) and integrate it with Pattern-Oriented Software Architecture
(POSA) based on fundamental principles in software engineering. We demon-
strate our approach through adult literacy case study (287 million learners, 22
Indian Languages and a variety of instructional designs). The results of our
approach (both web and mobile versions) are available at http://rice.iiit.ac.in
and were adopted by National Literacy Mission Authority of Government of
India.

Keywords patterns; modeling; architecture; instructional design; software
engineering; adult literacy

Submitted to Educational Technology Research and Development Journal, Springer

This work was carried out as part of first author’s doctoral thesis at IIIT Hyderabad, India
and contains content from the thesis (Chimalakonda, 2017)

S. Chimalakonda
Department of Computer Science & Engineering
Indian Institute of Technology, Tirupati
E-mail: ch@iittp.ac.in

K.V. Nori
Software Engineering Research Center
International Institute of Information Technology Hyderabad, India
E-mail: ch@iittp.ac.in

ar
X

iv
:1

80
2.

02
66

3v
1 

 [
cs

.S
E

] 
 7

 F
eb

 2
01

8



2 Sridhar Chimalakonda, Kesav V. Nori

1 Introduction

Education domain has been undergoing a major transformation in the last
decade or so (Adams Becker et al., 2017; Alper & Gülbahar, 2009; Hwang &
Tsai, 2011; Wu et al., 2012). On one hand, there is a significant surge on the use
of educational technologies1 (such as game based learning (Tobias, Fletcher,
& Wind, 2014), MOOCs (Reich, 2015), gesture based learning (Sheu & Chen,
2014), augmented reality (Bower, Howe, McCredie, Robinson, & Grover, 2014)
and so on) to facilitate learning and teaching. On the other hand, there is a
significant fallout on the expectation of educational technologies ranging from
terminological inconsistency (Bayne, 2015) to the lack of effectiveness of in-
structional technology in classrooms (Venkatesh, Croteau, & Rabah, 2014).
Several researchers have underlined the broken promises of educational tech-
nologies (Bingimlas, 2009; Cuban & Jandrić, 2015; Spector, 2013; Spector,
Merrill, Elen, & Bishop, 2014). In addition, the community has identified sev-
eral grand challenges in educational technologies (Fischer, Wild, Sutherland,
& Zirn, 2014; Woolf, Lane, Chaudhri, & Kolodner, 2013), computing and in-
formation systems (Association et al., 2003) in the context of education. The
National Academy of Engineering lists “Advance personalized learning” as a
grand challenge of engineering2. In this paper, we are concerned about two
core challenges that underlie most of these grand challenges:

1.1 Challenge 1: Lack of Instructional Design as a Basis for
Design of Educational Technologies

Instructional Design3 has gained a significant role in the field of Technology
Enhanced Learning as an underlying and complex discipline often involving
multiple perspectives and connotations (Reigeluth, 2013a, 2013b; Reigeluth &
Carr-Chelman, 2009). Merrill has defined instructional design as the practice
of creating “instructional experiences which make the acquisition of knowledge
and skill more efficient, effective, and appealing” (Merrill, 2012).

Berger defines instructional design as a “systematic development of in-
structional specifications using learning and instructional theory to ensure the
quality of instruction” (Berger & Kam, 1996). From the definition of Berger,
instructional design acts as a basis for quality of instruction. In a similar
line, Carroll emphasizes that quality of instructional design leads to quality
of instruction (Carroll, 1963). Bednar et al. have stated that “... effective in-
structional design is possible only if the developer has reflexive awareness of
the theoretical basis underlying the design . . . [it] emerges from the deliber-
ate application of some particular theory of learning” (Bednar, Cunningham,
Duffy, & Perry, 1992). This strong need to have a pedagogical basis for design
of educational technologies has been emphasized in the literature by several

1We consider “educational technologies as a set of processes, techniques, methods and tools
that facilitate learning and teaching based on well-established instructional designs.”

2http://www.engineeringchallenges.org/challenges/learning.aspx
3We consider instructional design as an underlying structure consisting of different aspects
of instruction such as goals, process, content aimed at (i) providing a base for quality of
instruction (ii) facilitating design of educational technologies

http://www.engineeringchallenges.org/challenges/learning.aspx


A Patterns Based Approach for Design of Educational Technologies 3

researchers (Boyle & Cook, 2001; Duffy & Jonassen, 2013; Garzotto, Retalis,
& Chapter, 2009; Goodyear et al., 2004; Govindasamy, 2001). A critical and
detailed analysis of the need to bridge learning theories and technology en-
hanced learning environments is elaborated in (Lowyck, 2014). However, most
of the educational technologies today lack instructional design basis leading
to poor quality of instruction (Laurillard, 2013a, 2013b; Lowyck, 2014; Reid,
2014; Spector et al., 2014; Toyama, 2011).

How to facilitate design of educational technologies with an instructional
design basis?

1.2 Challenge 2: A Scale & Variety of Instructional Designs and
Educational Technologies

Instructional Design is used as an umbrella term that can refer to an entire
discipline or as a process, art, science or technology (Brown & Green, 2015).
One size does not fit all is a core principle that suits well for teaching and
learning as every context is different because of aspects such as varied learning
styles, varied instructional designs, varied learning environments and so on.
There are over 100 instructional design models in the literature (Reigeluth &
Carr-Chelman, 2009) and several perspectives of instructional design. In one
of the early works, a continuum of instructional strategies was presented with
one end focusing on instructor-centered to the other end focusing on student-
centered with a wide range of activities ranging from drill and practice to
projects and inquiry (Gustafson & Branch, 1997).

The ADDIE model involving analysis, design, development, implementa-
tion and evaluation phases is one of the most widely used instructional design
model that is applicable in several contexts (Kruse, 2002). Gagne’s series of
nine learning events (Gagne & Briggs, 1974) has laid foundation for several in-
structional design models such as Dick and Carey model (Dick, Carey, Carey,
et al., 2001) and Merrill’s first principles of instruction (Merrill, 2012). Mill-
wood summarizes over 25 learning theories in a concept map connecting the
different facets of instructional design (Millwood, 2014). Gibbons (Gibbons,
2013) presents eight views of instructional design (i) organizational view (ii)
systems approach view (iii) design language view (iv) instructional systems
design view (v) functional-modular view (vi) architectural view (vii) team
process view (ix) operational principle view. Mizoguchi et al. have done an
comprehensive survey of learning theories from instructional technology per-
spective and modeled them using ontologies (Mizoguchi, Hayashi, & Bourdeau,
2007). The synthesis of literature on instructional design reveals that there is
a strong need to support a variety of instructional designs during design of
educational technologies.

There has been extensive research on modeling instructional design for the
last several years resulting in a plethora of educational modeling languages
(EMLs) (Botturi, Derntl, Boot, & Figl, 2006; Botturi, Stubbs, & Global, 2008;
Mart́ınez-Ortiz, Moreno-Ger, Sierra, & Fernandez-Manjon, 2007) such as po-
EML (Caeiro, Llamas, & Anido, 2014), PALO (Rodŕıguez-Artacho & Maillo,



4 Sridhar Chimalakonda, Kesav V. Nori

2004), Web COLLAGE (Villasclaras-FernáNdez, HernáNdez-Leo, Asensio-PéRez,
& Dimitriadis, 2013) as a way to model and reuse aspects of instructional de-
sign. Sampson et al. presented an open access hierarchical framework for inte-
grating open educational resources at different levels of granularity (Sampson
& Zervas, 2014). IMS-LD emerged as a standard for learning design (Consor-
tium et al., 2003) and then focus shifted to tools such as LAMS (Dalziel, 2003)
and LDSE (Laurillard et al., 2013a) that aim to support teachers. A vision
paper aimed to create an approach that integrates most of these tools towards
an integrated learning design environment (Hernández-Leo, Chacón, Prieto,
Asensio-Pérez, & Derntl, 2013). Despite this rapid progress, many researchers
have pointed to several shortcomings of modeling and reusing instructional
design such as complexity of authoring, lack of adequate tool support, inter-
operability and inability to support teachers (Neumann et al., 2009).

How to facilitate design of educational technologies to support a variety of
instructional designs?

Section §2 of the paper discusses core guiding principles in computing to-
wards a patterns based approach. We then present an overview of the source
of patterns, their evolution and how to document them in Section §3. How
patterns can help scale and variety is discussed in Section §4 followed by a
patterns based approach for design of educational technologies in Section §5.
Section §6 presents the idea of pattern-oriented instructional design with its
sub sections proposing patterns for goals in Section §6.1, instructional pro-
cess in Section §6.2 and instructional material in Section §6.3. We present
Pattern-Oriented Software Architecture in Section §7 and discuss implemen-
tation of our approach in Section §8. We end the paper with conclusions and
future work in Section §9.

1.3 Patterns as a Solution

One interesting approach that has been undermined and largely unexploited
in technology enhanced learning is the use of patterns and pattern languages
for modeling instructional designs. The core idea of patterns and pattern lan-
guages is the encapsulation, modeling and delivery of expert’s knowledge and
best practices to novices in a discipline. Essentially, patterns are derived from
experiences and provide abstract representations of recurring solutions to re-
curring problems in a given context (Alexander, Ishikawa, & Silverstein, 1977).
The roots of patterns are claimed to be in the field of architecture (Alexander
et al., 1977) and extensively practiced in software engineering mainly for im-
proving quality of software design and facilitating reuse (Buschmann, Henney,
& Schimdt, 2007; Gamma, Helm, Johnson, & Vlissides, 1994).

There is also extensive work on patterns and pattern languages for different
aspects of teaching and learning (Cristea & Garzotto, 2004; Goodyear et al.,
2004). The Pedagogy Patterns Project was a major effort to capture best prac-
tices in the area of teaching and learning as a way to document best advices
for teachers and support quality of instruction (Sharp, Manns, & Eckstein,
2000) (Bergin et al., 2012). The E-LEN project is another initiative aimed at



A Patterns Based Approach for Design of Educational Technologies 5

providing pedagogically-informed technology and experiences as pattern lan-
guages for new institutions mainly focusing on learning management systems
(Avgeriou, Papasalouros, Retalis, & Skordalakis, 2003). A pattern language
for creative learning is presented in (Iba & Miyake, 2010) and for adaptive
learning in (Midgley, 2014). Laurillard has created pedagogical patterns using
a design science approach (Laurillard, 2012). Patterns and pattern repositories
for person centered e-learning were proposed in (Derntl & Motschnig-Pitrik,
2004). Another direction was to mine patterns derived from practitioner work-
shops were documented in (Mor, 2014).

While existing literature on patterns emphasizes the need for capturing
best practices in teaching and learning, the focus has been mostly on pedagogy
and technology aspects are largely ignored. Even in research that considered
technology, there is a huge gap between domain (teaching and learning) and
technology patterns motivating further research. The key focus in this paper is
to leverage the potential of patterns for modeling a scale and variety of instruc-
tional designs and use them as a base for design of educational technologies.

2 Guiding Principles

To support design of educational technologies for scale and variety, the pro-
posed approach is based on the following underlying principles.

It is a dire necessity to improve flexibility and re-usability while reducing
complexity during the design of educational technologies and some of these
concerns are tackled by the software engineering community through a set of
fundamental principles (Ghezzi, Jazayeri, & Mandrioli, 2002). One principle
that is of interest to this paper is the notion of separation of concerns that
helps in handling different dimensions of a system while improving re-usability
and reducing complexity (Dijkstra, 1982; Greenfield, Short, Cook, Kent, &
Crupi, 2004). This principle can be used to separate concerns in the form of
layers either horizontally or vertically; views (Kruchten, 1995); modules (Par-
nas, 1972); aspects (Kiczales et al., 1997); patterns (Greenfield et al., 2004);
features (Kang, Cohen, Hess, Novak, & Peterson, 1990) and so on. Modu-
larity is a specialization of this principle that deals with separating software
into components (Parnas, 1972) while Abstraction is another specialization
that hides complexity of the system enabling designers to focus on specific
concerns (Ghezzi et al., 2002). Domain-driven design is another fundamental
principle that tries to address complexity by emphasizing domain as the basis
for software design (Evans, 2004). We apply these principles throughout the
paper for systematically modeling instructional design in the form of patterns.
We discuss these principles further in Section §6. In the next section, we will
summarize some key aspects related to patterns and get into the crux of our
pattern-oriented design approach.

3 Source, Evolution and Structure of Patterns

Source and Evolution of Patterns - During the professional journey of an
expert in a field, the expert encounters several recurring problems and different
ways of solving those problems. When a group of experts in a particular field



6 Sridhar Chimalakonda, Kesav V. Nori

Fig. 1 Overview of patterns life cycle

communicate, discuss, debate and document their experience, they realize that
certain solutions work and do not work in particular contexts. This leads to the
idea that the primary source of patterns is literature or experience, either own
or documented experience in the form of best practices and guidelines. Gran-
ularity of a pattern is another critical aspect that has to be considered during
the design of patterns. For example, in the field of software engineering, there
are coding idioms (a kind of patterns), design patterns, architectural patterns,
each representing an increasing granularity of abstraction. Pattern languages
help in connecting these patterns by describing the relationships between them
and how they can be integrated to address specific problems. The agreement
on whether a particular knowledge is pattern or not usually comes through a
consensus among a group of experts in the particular field. The Hillside group
has been sponsoring a series of conferences along with workshops named Pat-
tern Languages of Programs (PLoP) since 1994 (Berczuk, 1994). These venues
provide a forum for pattern authors to gather, discuss, learn and document
patterns. This series has led to development of communities of patterns such
as AsianPLoP, EuroPLoP, ScrumPLoP in order to create patterns with a con-
sensus from local communities. A pattern typically goes through the phases of
discovery, specification, validation, application and maintenance and is contin-
uously revised based on updated pattern knowledge (Derntl, 2005). Figure §1
shows a typical process during pattern development. In the domain of educa-
tion also, patterns have mainly emerged from participatory pattern workshops
(Mor, Warburton, & Winters, 2012).

In essence, patterns generally emerge from literature or experience, and
are generally specified by an expert or pattern modeler. Once the pattern is
specified, it is exposed to the community for review from experts in the field for
a consensus of the pattern. This pattern is applied by pattern users in varied
problem contexts and they provide feedback leading to update of pattern.



A Patterns Based Approach for Design of Educational Technologies 7

Fig. 2 Diversity of structure of patterns

Structure of Patterns - There are patterns everywhere and at different
levels of granularity expressed in different ways by different experts in different
communities (Meszaros & Doble, 1998). This presents the challenge of what
constitutes pattern knowledge and how to capture it. Traditionally, patterns
are captured as a description of context, problem, solution. However, several
researchers have proposed different structures for capturing pattern knowl-
edge. Figure §2 shows examples of commonly used pattern structures from
the domains of software engineering (Gamma et al., 1994) and pedagogy (The
Pedagogical Patterns Project , 2014). Alexandrian form is the most commonly
used format for representing patterns (Alexander et al., 1977). Using this form,
Alexander has documented a pattern language comprising of 253 patterns for
the domain of towns, buildings and construction (Alexander et al., 1977). The
23 Gang of Four (GoF) patterns are the most commonly used patterns in
the domain of software design (Gamma et al., 1994) and use the meta data
as shown in Figure §2. The Pedagogical Patterns project uses the structure
shown in Figure §2. These are just a few examples of pattern structures used
by different communities. A pattern language for representing patterns itself
has emerged from the community (Meszaros & Doble, 1998).

4 Patterns for Scale and Variety

Figure §3 shows a detailed pattern structure derived from existing pattern
representations. The key idea of this pattern structure is to capture as much
information as possible such that this metadata could be used for searching
and managing patterns and pattern repositories. In addition to the textual
information as shown in Figure §3, patterns could be represented visually
focusing on structure as well as behaviour. However, one critical requirement
for patterns in this paper is to facilitate domain experts to model pattern
knowledge without overburden.

In his seminal work on patterns, Alexander emphasizes that a solution in
pattern can be used “a million times over without ever doing it the same time



8 Sridhar Chimalakonda, Kesav V. Nori

Fig. 3 A detailed pattern structure

twice”. We extend this notion to include not just the solution but also the
problem, its variations, representations of the pattern, different aspects of the
solution and its variants to facilitate scale and variety.

There are several possibilities of creating variants of patterns. The simplest
case being that a pattern can be instantiated multiple times as shown on the
left hand side of Figure §4 or instantiated with simple variations as shown on
the right hand side. In Figure §4, we show a simple example of different kinds
of possible relationships between two patterns in a domain. If we change these
relationships, we get a different view of the pattern in context leading to a vari-
ation. Similarly, patterns can be composed using different operators as shown
in Figure §4. Changing the operators results in new composed patterns and
variations. If we move beyond just two patterns and consider a large number
of patterns, then different ways of composition with multiple operators leads



A Patterns Based Approach for Design of Educational Technologies 9

Fig. 4 Some pattern variations, relationships and compositions

to different ways of modeling the domain. Consider the case of an instructional
design with 10 patterns, then different compositions of these patterns can lead
to several instructional design variants. This leads to creation of varied in-
structional designs catering to the needs of specific requirements. The essence
of this discussion is to emphasize that modeling domain in terms of patterns
facilitates systematic creation of several variants, which is one of the primary
goals of this paper. We will elaborate more on these patterns with examples
throughout the paper. But formalizing the representation and composition of
patterns is beyond the scope of this paper and is outlined as future work.

5 A Patterns Based Approach

The notion of patterns has its roots in the field of Architecture (Alexander et
al., 1977) but was adopted in other disciplines such as software engineering
(Gamma et al., 1994) and interaction design (Borchers, 2001) among others.
Whilst there exists several definitions and views, patterns are primarily con-
cerned with the idea of finding recurring solutions to recurring problems in a
certain context. According to Alexander, the emphasis has to be on pattern
languages that facilitate the assembly of patterns in order to create numerous
possible solutions, rather than patterns themselves (Alexander et al., 1977).
Buschmann et al. have distilled existing literature on patterns and proposed
the following uses (Buschmann et al., 2007; Buschmann, Meunier, Rohnert,
Sommerlad, & Stal, 1996):



10 Sridhar Chimalakonda, Kesav V. Nori

– Capturing, Documenting and Communicating Experience
– Patterns document existing best practices built on tried and tested

design experience
– Patterns identify and specify abstractions that are above the level of

single objects, classes, and components
– Patterns provide a common vocabulary and shared understanding for

design concepts
– Patterns are a means of documenting software architectures
– Patterns capture experience in a form that can be independent of spe-

cific project details and constraints, implementation paradigm, and of-
ten even programming language

– Construction of Systems

– Patterns support the construction of software with well-defined prop-
erties

– Patterns help in building complex and heterogeneous software architec-
tures. Every pattern provides a predefined set of components, roles and
relationships between them

In this paper, we apply the idea of patterns primarily for (i) capturing expe-
rience (ii) providing instructional design as basis for educational technologies
(iii) facilitating reuse during design of educational technologies. Specifically,
we use patterns for modeling domain (instructional design) and software. We
also look at patterns as a central way to encapsulate commonly understood
knowledge of experts (instructional designers, software architects) and facili-
tate use of this experience by näıve professionals. This is extremely important
in a discipline like Technology Enhanced Learning (TEL) with huge scarcity
of expert teachers at all levels of education. Figure §5 presents the core archi-
tecture of our proposed patterns based approach to design of educational tech-
nologies. This architecture stems from fundamental principles in software en-
gineering and integrates multiple architecture styles (Layered, Domain-Driven
and Component-Architecture). This architecture shows a holistic perspective
(top-down and bottom-up) and tries to integrate patterns in both domain as
well as software through five layers.

We briefly explain the core design principles and different layers of our
approach in the next sections.

Core Design Principles
Separation of Concerns (SoC) Principle - SoC principle was applied

in (Caeiro-Rodŕıguez, Llamas-Nistal, & Anido-Rifón, 2006; Rodŕıguez-Artacho
& Maillo, 2004) for modeling instructional design but an analysis of this work
reveals that this principle was applied either in modeling instructional design
or in creating technology and not both, which we aim to address through our
approach. As shown in Figure §5, we continuously applied SoC principle at
different levels (low-level, high-level and pattern approaches) in instructional
design and software as a way to address complexity, evolution and reusability
of instructional design. We also applied the notion of abstraction as an under-



A Patterns Based Approach for Design of Educational Technologies 11

Fig. 5 Architecture of patterns based approach

lying principle of SoC to separate technology specific aspects from technology
independent aspects through bridge architecture as shown in Figure §5.

Design for Reuse and Customization - It is extremely effort inten-
sive to design educational technologies for scale and variety. Learning from
the negative impact of ad hoc reuse in software engineering, our approach in
Figure §5 is explicitly designed for systematic reuse emphasizing a patterns-
based approach. Every aspect of this architecture is modeled with explicit
interfaces using required dependencies, provided services, open ports, assem-
blers and connectors. This ensures that each pattern makes its assumptions
and capabilities explicit enabling systematic reuse.

Domain Driven Architecture Design - According to this architecture
style, the design of software systems is essentially a realization of the under-



12 Sridhar Chimalakonda, Kesav V. Nori

lying domain that is modeled by experts in that domain. In Figure §5, POSA
is driven by POID emerging from domain. By design, POID and POSA are
closely mapped via patterns in instructional design and software engineering.
In addition, this architecture follows a layered style with several layers from
the top dealing with domain and layers from the bottom dealing with tech-
nology. Even though the layers shown in the diagram seem to be fixed, the
number of layers can be increased or decreased based on the application type,
quality attributes of desired system, and technology constraints among others.
Bridge architecture (message bus architecture style) defined via well defined
interfaces allows better communication between the layers.

A Instructional Design/Methodologies - lays a pedagogical foundation for de-
sign of educational technologies - Educational experts have long empha-
sized that developing educational technologies without strong instructional
basis is futile and can lead to poor quality of instruction (Govindasamy,
2001; Laurillard, 2013a). Most of the educational technologies today re-
quire huge effort from teachers in configuring the technologies rather than
on focusing instruction (Laurillard et al., 2013b). This is further aggra-
vated with a huge dearth of qualified teachers. The first layer from the top
in Figure §5 focuses on providing a pedagogical foundation for design of
educational technologies. We rely on well-established principles and prac-
tices from a pedagogical perspective in this paper and specifically focus
on how we can structure these practices towards systematic design of ed-
ucational technologies. For the case of adult literacy in this paper, we rely
on Improved Pace and Contents of Learning (IPCL) approach (Handbook
for Developing IPCL Material , 2003) as a pedagogical foundation. This
pedagogy is further integrated with other commonly accepted approaches
such as Merrill’s principles of instruction from teaching or instructional
process perspective (Merrill, 2012) and Bloom’s taxonomy from learning
perspective. The rationale for these principles is presented in Section §6.1
and Section §6.2 of patterns.

B Pattern-Oriented Instructional Design - The goal of this layer to model
instructional design using patterns (Section §6)

C An Ontology Based Modeling Framework - acts a bridge between domain
and software platforms - The key purpose of this bridge layer is to connect
from instructional design (domain) to educational technologies (software)
through a common interface. We used ontologies as the primary mechanism
to represent knowledge from patterns and to connect with the rest of the
software architecture (Chimalakonda & Nori, 2013b). We extended the
existing literature on instructional design, and proposed an ontology based
framework called IDont for systematically modeling instructional design
(Chimalakonda & Nori, 2013b).

D Pattern-Oriented Software Architecture - models the software architecture
of educational technologies using patterns - In their seminal work that in-
spired successful use of patterns in software engineering, Buschmann et al.
emphasize that the primary purpose of architectural patterns is to cre-



A Patterns Based Approach for Design of Educational Technologies 13

ate a fundamental structural organization schema for software systems
(Buschmann et al., 1996). In our approach, instructional architecture pat-
terns derived from POID and software architecture patterns that drive
POSA provide this structure for instructional design and educational tech-
nologies. We use common interfaces to bridge these different types of pat-
terns at different levels of abstraction (instructional architecture patterns
→ instructional design patterns → software architecture patterns → de-
sign patterns). Essentially, POSA represents the architecture of educational
technologies. In the fourth layer and on the left hand side of Figure §5, we
have a three-tier architecture of a TEL system that implements two impor-
tant architectural patterns from (Buschmann et al., 1996) (i) From Mud
to Structure (Layers) – allows controlled decomposition of overall system
(ii) MVC and several design patterns (Strategy, Composite, Factory and so
on). On the right hand side is an MVC architectural pattern that is derived
from instructional architecture patterns and instructional design patterns
in POID.

E Technologies, Platform and Infrastructure provides the delivery platform
with a set of technologies and tools. In this layer, a set of technologies and
tools are designed to support the proposed architecture and facilitate the
semi-automatic development of eLearning Systems.

We will elaborate POID and POSA in the rest of the paper.

6 Pattern-Oriented Instructional Design

The changing landscape of educational technologies requires a diversified range
of instructional designs catering to multiple perspectives and views from a
diversified range of stakeholders (Reigeluth, 2013b). This is primarily because
there is no “one-size-fits-all” solution for all needs. In fact, even the problem
itself varies depending on who is viewing it, where does it come from, how
critical is it? what are the short term and long term needs? how to address
them? their capabilities and resources available at that point of time. This
presents a definite need for systematic instructional design such that it can
be flexibly modified as per changing requirements. Several researchers have
tried to address these concerns through a number of Educational modeling
languages (EMLs) (Botturi et al., 2008; Caeiro et al., 2014; Dalziel, 2003;
Hernández-Leo et al., 2013; Hernández-Leo, Moreno, Chacón, & Blat, 2014;
Koper, 2005; Rodŕıguez-Artacho & Maillo, 2004; Villasclaras-FernáNdez et al.,
2013). Despite significant research, modeling instructional design remained
an open research problem with several challenges (Burgos, 2015; Goddard,
Griffiths, & Mi, 2015; Hernández-Leo et al., 2013; Neumann et al., 2009). Our
analysis of the state-of-the-art in learning design also revealed that the goal
of end-to-end automation (from pedagogy to technology) through tools has
resulted in too generic, too complex specifications leading to slow progress in
this field and is in line with existing research (Laurillard, 2013a; Laurillard et
al., 2013b).

Instead, we learn from the community and attempt to present a pointed
approach towards design of educational technologies for a family of instruc-



14 Sridhar Chimalakonda, Kesav V. Nori

tional designs in the context of adult literacy in India. Our work fundamentally
deviates from the state-of-the-art as we focus on not one instructional design
but on a family of similar but distinct instructional designs.

In our analysis of literature, despite immense work, we have observed that
patterns and pattern languages are still not widely used either in instructional
design or in TEL because of several reasons including:

– Existing approaches focus on patterns and pattern languages either for
communication or engineering purposes and not both

– Current approaches focus on patterns mainly from a pedagogical perspec-
tive rather than their structure and provide minimal support towards de-
sign of educational technologies

– Lack of bridge between domain patterns (instructional design) and tech-
nology patterns (software)

To summarize, existing approaches focus on patterns either in domain or in
software and not both. Most importantly, none of the existing works focus on
scale and variety, which is the main goal of this paper. Paquette has summa-
rized the extensive work and progress in the field of instructional design and
concluded the strong need for researching and applying ontological engineer-
ing and software methods for instructional design and engineering (Paquette,
2014). On the other hand, from a software engineering perspective, domain
engineering is a critical activity to address complexity, reuse and evolution
needs of software systems (Taylor, Medvidovic, & Dashofy, 2009). In this pa-
per, we take a cue from Apel et al. (Apel, Batory, Kästner, & Saake, 2013)
and Czarnecki et al. (Czarnecki & Eisenecker, 2000) and consider domain as
an area of knowledge:

– that covers the desired requirements of the systems in that area
– includes a set of concepts and terminology understood by practitioners in

that area
– and includes the knowledge of how to build software systems (or parts of

software systems) in that area

Modeling and structuring domain is a fundamental step that acts as a basis
towards facilitating reuse and in this paper we are concerned with the domain
of instructional design. We propose Pattern-Oriented Instructional Design as a
domain engineering activity towards design of educational technologies based
on instructional design. POID aims at designing a solution in the problem
domain in the language of instructional designers and teachers. The key input
for POID comes from pedagogies or learning methodologies that provide a
basis for TEL. The purpose of this layer is two-fold (i) to structure instruc-
tional design for reuse (ii) to facilitate flexible modeling of instructional designs
such that educational technologies based on these instructional designs have
a pedagogical basis and are prepared for facilitating automation.

We base the design of POID on Pattern-Oriented Software Architecture
(POSA) (Buschmann et al., 2007) to model instructional design aspects as
patterns. Figure §6 shows a high level diagram of how POID corresponds to



A Patterns Based Approach for Design of Educational Technologies 15

Fig. 6 Comparision of Pattern-Oriented Software Architecture and Pattern-Oriented In-
structional Design

Fig. 7 An overview of Pattern-Oriented Instructional Design

POSA with different levels of granularity. For example, on the left hand side, we
have design patterns at the bottom and then architecture patterns. On similar
lines, we have instructional design patterns at the bottom and instructional
architecture patterns on top of them.

Figure §7 shows an overview of Pattern-Oriented Instructional Design. The
core instructional design requirements stem from different kinds of instructors
and learners, which are then used as input to compose different patterns such
as goals, process, content and so on to create a specific instructional design. A
Pattern-Oriented Instructional Design is an integration of patterns at instruc-
tional architecture level and instructional design patterns towards designing
a specific instructional design for a specific set of educational requirements.
Here, we consider instructional architectural patterns as high-level organizing
structures that address recurring high-level problems in instructional design.
For example, Can we have a pattern that allows different evaluations for the



16 Sridhar Chimalakonda, Kesav V. Nori

Fig. 8 A classification of patterns in instructional design

same instructional goals? These patterns are essentially an integration of in-
structional design patterns, which focus on a specific aspect such as goals or
process and so on. One popular example of an architectural pattern for inter-
active systems in software engineering is the Model-View-Controller (MVC)
that allows flexible design of user interfaces (Krasner, Pope, et al., 1988). Can
we have these kinds of patterns for instructional design? It is here our POID
approach is a direction integrating patterns at a higher level of abstraction.

The POID process starts by understanding instructional design and then
progresses towards a detailed analysis of the instructional design to identify
patterns in the domain. Then these patterns are continuously refined and re-
lationships between them are identified and established. Figure §8 shows a
classification of patterns in POID into categories of Context, Goals, Process,
Content, Evaluation and Environment. This list is primitive and is designed
such that it can be adapted and extended by instructional designers to support
evolution. Each of these categories have patterns that aim to address a partic-
ular aspect of instructional design. For example, Goals in instructional design
can be represented in various forms such as Bloom‘s or Gagne‘s taxonomy or
ABCD technique, and each of them can have their associated patterns, from
which the teacher or instructional designer chooses patterns for their partic-
ular context. In our approach, every pattern provides and requires a set of
interfaces that clearly define the boundaries of that pattern and how that pat-
tern communicates with the rest of the patterns. The focus in this paper is
not just on patterns or pattern categories, but on integration of these patterns
towards specific instructional designs.

Figure §5 shows two possible instructional architecture patterns; one that
integrates goals and evaluations (goal provides an interface ↔ evaluation re-
quires an interface). The core idea of this pattern is to provide a flexible
architecture that allows changing of goals and evaluations in an instructional
design with less effort. Another possible pattern could be an integration of
processes and content. This kind of abstraction leads to POID, which in itself



A Patterns Based Approach for Design of Educational Technologies 17

is a technology independent solution in the language of problem domain. How-
ever, it is important to note that patterns were never proposed to be specific
and complete solutions rather provide a basic structure of a generic solution
to a family of problems (Buschmann et al., 2007), which have to be further
adapted and implemented for a specific context. Finally, Alexander hints that
the problem of scale and variety can be addressed using patterns in his seminal
work (Alexander et al., 1977) as:

“The elements of this language are entities called patterns. Each pattern
describes a problem that occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it the same way
twice.”

This emphasizes that patterns provide an opportunity to find a generic
solution to a problem and then find several customized solutions to a family of
similar problems. Even though patterns are generic in nature, they have to be
discovered from literature and experience for a particular context. In this pa-
per, we use our decade-long experience in the case of adult literacy in India. We
conducted a workshop in collaboration with Tata Consultancy Services and in
association with NLMA to discover our patterns with the community towards
a consensus4. The workshop consisted of directors of State Resource Centers
representing officers who are responsible for creating instructional process and
material for teaching adult illiterates based on local requirements. Specifically,
we introduced our patterns for instructional process and content and incor-
porated their feedback. We also held interviews with the directors of SRCs to
figure out their use of technology for adult literacy especially to gather what
kinds of technologies have been accepted and what are the hindrances to the
use of technologies. One key learning that came out of that workshop is a strong
requirement that the technology has to be customized as per local needs. One
director specifically noted that “the instructional process that you follow in a
state like Bihar and the one in a state like Tamilnadu differ and the technology
has to be adapted as per varied needs”. In addition to our experience, we also
rely on commonly accepted approaches such as Bloom‘s taxonomy (Anderson
et al., 2001), Merrill‘s first principles of instruction (Merrill, 2012) as a basis
for the patterns proposed in this paper.

In the following section, we detail some of the instructional design patterns
we discovered in the context of adult literacy in India.

6.1 A pattern for modeling goals

We assume that any instruction is goal-driven; making it critical to explic-
itly state instructional goals. Several terminologies such as “learning goals”,
“learning outcomes”, “learning objectives” have been in use to discuss goals.
But the crux is to explicitly state and represent these goals such that they be-
come clear to different stakeholders such as teachers, learners, policy makers
and so on. In our case, for design of educational technologies while adhering

4at TCS, Hyderabad, India in 2011



18 Sridhar Chimalakonda, Kesav V. Nori

to instructional design principles, they can also help in tracking the progress
of learners, evaluation and in helping teachers to improve instructional strate-
gies. We advocate a goal-driven approach throughout this paper as it is critical
and essential for any instructional design.

For example, if we consider the representation of goals in instructional
design, several variations are possible. In the simplest case, a goal can be
represented using Bloom‘s taxonomy and several instances of this goal can be

Fig. 9 A sample structure and partial instance of GoalsPattern



A Patterns Based Approach for Design of Educational Technologies 19

created. If we extend the scenario and think of two goals as part of instructional
design, the two goals can be associated in several ways.

The crux of most commonly used Bloom‘s taxonomy is to provide a classi-
fication for organizing educational objectives based on thinking models and to
facilitate better communication among stakeholders in education (Anderson
et al., 2001). This taxonomy has evolved since its inception but was originally
divided into three domains: cognitive, affective, pyschometer with the first two
domains focusing on acquiring knowledge and attitude and the third domain on
skills to put that knowledge to constructive use (Anderson et al., 2001). Each
of these domains are further divided into levels that indicate progress “from
simple to complex and concrete to abstract” (Anderson et al., 2001). In revised
Bloom‘s taxonomy, goals are organized in the increasing order of complexity
in six levels: remember, understand, apply, analyze, evaluate, and create from a
cognitive domain perspective. ABCD model proposed by R. Mager is another
commonly used framework for writing learning objectives (Mager, 1962). In
this model, a learning objective consists of four components: [audience- who]
will be able to [behavior -perform] [condition- constraints] [degree - level of
quality]. The point of this discussion is to emphasize that there are several
ways of modeling goals motivating the need for several patterns for goals in
different contexts. In the context of this paper, based on these inputs and
our experience of designing eLearning Systems for adult literacy in India, we

Fig. 10 Examples of goals in adult literacy



20 Sridhar Chimalakonda, Kesav V. Nori

propose a pattern to model goals based on these inputs. Figure §9 shows our
proposed pattern for modeling goals based on Bloom‘s taxonomy. Figure §10
shows some examples of goals for adult literacy based on IPCL methodology
and Bloom’s taxonomy.

These goals can be refined for varied lessons as part of instructional design
and can be customized for specific multiple Indian languages.

6.2 A pattern for modeling instructional processes

Instructional process is one of the critical aspects of instructional design as
it facilitates the fulfillment of goals through a systematic process. However,
most of the times it is not explicitly modeled by making it difficult for design
of educational technologies. In this section, we will look at a commonly ac-
cepted way of teaching in the context of adult literacy in India based on IPCL
methodology (Handbook for Developing IPCL Material , 2003) and present a
structure for organizing that knowledge into a pattern. We discuss the in-
structional process in detail along with teaching philosophy as it forms the
basis for a pattern that could be instantiated thousands of times for all Indian
languages and dialects.

Figure §11 shows organizational structure of a lesson using the pasi pat-
tern (Chimalakonda, 2017). The number and order of the plays, acts, scenes,
instructions is not strictly fixed even though guidelines can be framed. For
example, the first play, act and scene focus on providing motivation to the
learner and the last instruction might be a summary of what has been learnt
so far in a particular lesson. Figure §12 shows few examples of acts and some
scenes. In this example, there are several acts each having its respective goals,
and consisting of specific scenes and further instructions. For example Act4
deals with the goal of teaching how to form new words from syllables with two

Fig. 11 Structure of instructional process



A Patterns Based Approach for Design of Educational Technologies 21

Fig. 12 Example acts in adult literacy instructional design

scenes illustrating how new words are formed from already learnt syllables.
This ProcessPattern has several sources of variation for instruction process.
The variations can be the number of plays, acts, scenes, instructions; the order
of them, the specific play, act, scene or instruction, the content used and other
aspects of instruction providing customization for scale and variety.

While the ProcessPattern provides a goal-driven structure for modeling a
pedagogy at a high-level, it does not include a strong philosophical attitude of
instructional process and does not specify how these goals have to be achieved.
It is here we analyzed the literature in instructional design and found that
there are several perspectives of instructional design. There are also several
ways of modeling instructional processes based on different instructional design
theories or methodologies. Merrill has analyzed existing instructional design
models and proposed that the following fundamental principles are critical to
any instructional design (Merrill, 2012).

– Activation principle - reaching out to what students know
– Application principle - exercising their new knowledge
– Integration principle - accumulating or integrating what they have learnt

recently with what was learnt in the past
– Demonstration principle - showing how this new knowledge can be used
– Task Orientation principle - getting students to solve problems



22 Sridhar Chimalakonda, Kesav V. Nori

Fig. 13 Pattern structure and mapping to cognitive and knowledge dimensions of Bloom’s
taxonomy

Each of these principles (activities) are repeatedly used in a specific order in
the instructional process to fulfill goals. In addition to these principles, Merrill
also proposed a deeper sub-cycle structure–guidance–coaching–reflection that
strengthens these activities. For example, a structure has to be provided for the
learner as part of instruction while applying activation principle and necessary
guidance has to be given to the learners during a demonstration activity.

Generally, the ProcessPattern involves some or all of these principles at
different levels of granularity but the application of these principles becomes
explicit for tasks at instruction level. So, for example Scene1 of Act2 intro-
duces words that are familiar to the learners essentially involving activation
principle whereas learners have to use application principle in Scene2 of Act5
to form new words from existing syllables. Similarly, other instructions in the
instructional process can be mapped to principles.

6.3 A pattern for modeling instructional material

Instructional material is at the center of instruction and we discovered a pat-
tern for content as shown in Figure §13. This pattern is primarily derived from
IPCL, scientific method but most importantly driven by our future need to fa-
cilitate reasoning in the subject. Can learners provide rationale and reasoning
for their answers?

Figure §13 shows the progression of content from simple facts to be remem-
bered to foundations in the subject. The mapping of this pattern to cognitive
and knowledge dimensions of Bloom’s taxonomy is also shown in the figure. We
discussed the foundations of this pattern during its formative stages in (Chi-
malakonda & Nori, 2012). Figure §14 shows instances of the ContentPattern
in Hindi, Telugu and Gujarati languages.

The ProcessPattern and ContentPattern are closely connected and can be
considered as an instructional architecture pattern. In this pattern, teaching
is structured, not simply as a sequence of lectures, but as a sequence of models



A Patterns Based Approach for Design of Educational Technologies 23

Fig. 14 Example of ContentPattern instances for Hindi, Telugu and Gujarati languages

as needed by a theory to be taught. Here, we consider teaching as a play
uncovering each model as the instruction unfolds, with learner participation!
Each model in turn would be a sequence of topics. Uncovering a model is
done in a succession of acts, with each act uncovering a topic pertinent to
some model. Each act is presented as a succession of scenes, with each scene
focusing on cases or rules. Finally, each scene is delivered as a succession of
basic instructions, which uncover and play with facts.

7 Pattern-Oriented Software Architecture

Software architecture deals with most of the design decisions concerned with
structure, behavior, interaction, qualities, and implementation of a software
system (Taylor et al., 2009). In this paper, we are interested in identifying
the variants that are possible in each of these aspects to support the desired
requirements of scale and variety in educational technologies. In general, ar-
chitectural patterns and reference architectures provide a baseline and a set of
guidelines for creating specific software architectures tapping the variabilities
of multiple related systems in a particular domain (Taylor et al., 2009). At a
high-level, customization of software can be done at design level, requiring ex-
plicit modifications to architecture and design of software and also from a user
perspective, requiring configurations (Mørch, 1997). Morche (Mørch, 1997)
lists three common ways of tailoring software applications from literature:

The users can customize the application by configuring a set of pre-defined
options mostly related to user interface and existing functionality. These op-
tions can range from themes or colors in the user interface to turn off or turn
on features of the existing system. For example, an instructor might config-
ure the theme of the eLearning System based on local context and culture,
evaluation in terms of multiple choice or fill in the blanks and so on.



24 Sridhar Chimalakonda, Kesav V. Nori

In integration, users can have configuration options to integrate functional-
ity that is outside the system. For example, a teacher might want to integrate
learning management system like Moodle into the current system. This might
require tweaking of components, extending interfaces and fixing interoperabil-
ity issues. A GLUE-architecture was proposed to support integration of tools
into virtual environments (Alario-Hoyos et al., 2013).

When additional new features have to be added, the system has to be
extended by adding new code, re-writing and sometimes even re-designing some
parts of the system. Extending the system becomes an expensive activity if the
current system is not designed for extensibility. Extensions can emerge from
new requirements from domain or because of new techniques and technologies
available to design software. For example, if a new accreditation rule requires
the instructional goals to conform to a particular standard, then the system
designed for extensibility should have a basic module for evaluation which
could be extended to add/remove features required as per new accreditation
requirements.

In essence, variability is a broad concept and can range from user needs,
market segments, customer profiles which can be addressed through a wide
variety of artifacts that are generated throughout the software development
life cycle. In this paper, we attempt to address variability in instructional
design as well as in software through patterns and software product lines.

The core idea of POSA is to create software architecture using patterns
such that these patterns can address variability and map to patterns in POID.
Architecture patterns can further consist of design patterns with each of them
addressing variability at different levels of granularity. In this section, we briefly
provide examples for both architecture and design patterns.

We illustrate the idea of POSA through a commonly used pattern called
Model-View-Controller (MVC). Kranser and Pope have described MVC for
interactive user interface applications (Krasner et al., 1988). The key purpose
of MVC pattern is to facilitate separation of the interactive application into
three parts or components to efficiently address changing requirements. Models
primarily represent the underlying application domain knowledge and act as
core structure for Views and Controllers. Instructional design is the underlying
domain in this paper and as such forms the basis for models. The represen-
tation of this model itself can vary based on how the domain is modeled. As
emphasized by Kranser and Pope, the focus should be on modeling specific
information about the application domain such that it can drive the other
two parts. Views primarily focus on the user interface, graphical elements and
what the users view as part of the system. A typical user interface consists of
hierarchical views and the data for these views is fed from the model behind
them. This is quite useful as a model can have many views associated with it
facilitating variability from a user interface perspective. Consider a scenario
where an eLearning System uses the same model but can be viewed using
several user interface metaphors. The variabilities can range from simple color
or themes to complex modifications emerging from instructional design. The
order of these views itself can be a source of variability. Controller is the third



A Patterns Based Approach for Design of Educational Technologies 25

component of MVC pattern that acts as the interface between models and
views.

It is not uncommon to integrate several architectural patterns while de-
signing a software application to address varied requirements (Buschmann et
al., 2007). For example, Figure §15 shows a simple overview of how MVC
pattern can be integrated into a layered architectural pattern. Here the user
interface, business logic and data are separated into three layers Presenta-
tion, Business and Domain. MVC pattern is spread across presentation and
business layers. The MVC pattern itself is a composed pattern consisting of
several design patterns and can be implemented in several ways leading to
variations like Hierarchical MVC, PVC (Karagkasidis, 2008). Several design
patterns are used to implement MVC and its variations. The model part of
the MVC pattern is part of the domain strongly mapped to data parts of
the domain i.e., pattern-oriented instructional design. A simple way to vary
the application is to change these data parts in the POID without changing
the interfaces exposed to POSA. Even MVC itself uses Observer pattern to
notify views and controllers, providing a variation point. Composite pattern
is commonly associated for constructing user interface elements in a hierar-
chical way and exposing only the top level view for the entire architecture
leaving flexibility to change user interface elements. Strategy pattern is com-
monly used to alter between different controllers and use concrete strategies at
different points of time to facilitate different behaviors for different triggers in
the software application. One key difference in this layered MVC architecture
as shown in Figure §15 is the use of components instead of classes emphasizing
the need to model every class as a component with explicit interfaces to fa-
cilitate variability. The domain layer emphasizes the strong role of domain in
this architecture than just traditional databases. The data is mapped to pat-
terns in the domain as this can allow traceability of changes from domain to
software. A 10-step process for MVC pattern (Buschmann et al., 1996) along
with potential variabilities is shown below:

1. Separate human-computer interaction from core functionality
inputs, output behaviours, accessor functions

2. Implement the change-propagation mechanism
publish-subscribe pattern, specific implementations

3. Design and implement the views
appearance of views, display procedures, parameterized views, multiple draw
methods

4. Design and implement the controllers
specific behaviours for user actions, event handling

5. Design and implement the view-controller relationship
initializations for which factory method pattern could be used, hierarchy of
views and controllers

6. Implement the set-up of MVC
initializations, events



26 Sridhar Chimalakonda, Kesav V. Nori

Fig. 15 Layered Model View Controller Pattern

7. Dynamic view creation
components for managing views

8. Pluggable controllers
different controllers

9. Infrastructure for hierarchical views and controllers
composite pattern, chain of responsibility pattern

10. Further decoupling from system dependencies
bridge pattern, higher levels of abstraction

Today, there are several web frameworks such as Django, Symfony, Rails
that are based on MVC pattern but most importantly implement their own
variation, addressing specific requirements. Most of the variations are possible
by tweaking one or more of the steps in the above process. For example, there



A Patterns Based Approach for Design of Educational Technologies 27

could be hundred controllers in a large scale application providing variability
or the need to create varied interaction themes with users can be addressed
by tweaking step 9. According to (Buschmann et al., 2007), MVC pattern
references twelve design patterns such as Facade, Observer and so on.

POSA can also be designed by integrating several design patterns. Gamma
et al. list 23 design patterns and their relationships in a single diagram (Gamma
et al., 1994) and Zimmer provides a succinct classification of relationships be-
tween various design patterns into three layers: [design patterns specific to an
application domain], [design patterns for typical software problems] and [basic
design patterns and techniques] (Zimmer et al., 1995). To summarize, the core
essence of this paper is to show how varying different aspects in patterns can
facilitate variability needed for scale and variety in educational technologies.

In the next section, we discuss an implementation of our approach that uses
patterns as the base for instructional designs and educational technologies.

8 Implementation

Owing to the nature of our research work closely connected to the idea of solv-
ing societal challenges using computing, the implementation of our research
work is made available at http://rice.iiit.ac.in and the work has been
transferred to National Literacy Mission Authority , Government of India for
further proliferation. The mobile version of the generated software is deployed
on Google Play Store and is available at https://play.google.com/store/

apps/details?id=iiit.rice.al.telugu. In addition, our work is also listed
in the official websites of Department of Adult Education of Government of
Telangana at http://tslma.nic.in/ and State Resource Center, Government
of Telangana at http://srctelangana.com/. In this section, we will provide
an overview of our implementation.

Our initial implementation was a manual approach based on patterns in in-
structional design. We have designed an authoring tool called EasyAuthor that
helps non-technical teachers to create educational content (Chimalakonda &
Nori, 2013a) based on pedagogy patterns through our IDont framework (Chi-
malakonda & Nori, 2013b). This tool has wizards that help teachers to create
different aspects of ID (context, goals, process, content, evaluation and envi-
ronment) and eases the authoring process. Each of these wizards are based on
patterns for corresponding aspects of the instructional design. This essentially
connects different components of educational technologies to instructional de-
sign.

However, a critical need is to create a variety of authoring tools based on a
variety of instructional designs. For example, there is a need for EasyAuthor1
mapping to an InstructionalDesignModel1, EasyAuthor2 for InstructionalDe-
signModel2 and so on. To address this need of automating the development
of EasyAuthor(N) tools for varied InstructionalDesignModel(N), we have de-
veloped a software product line approach based on ontologies (Chimalakonda,
2017).

Figure §16 shows an overview of the implementation of our approach. Here,
an instructional designer first decides the instructional design model for a set

http://rice.iiit.ac.in
https://play.google.com/store/apps/details?id=iiit.rice.al.telugu
https://play.google.com/store/apps/details?id=iiit.rice.al.telugu
http://tslma.nic.in/
http://srctelangana.com/


28 Sridhar Chimalakonda, Kesav V. Nori

Fig. 16 Overview of Implementation of Pattern-Oriented Approach

of courses that have to be taught. For example, the instructional designer may
choose to use “project based learning” as a strategy to teach several courses. He
creates a set of patterns for aspects such as goals, process, content either from
scratch or by customizing existing patterns to suit the specific instructional
design model. However, this model is mainly aimed at different stakeholders
such as teachers, instructional designers, evaluators, policy makers and so on.
These instructional design specifications have to be converted to specifications
that are machine-processable such that automation is possible. To achieve this,
we have used ontologies to concretely represent the patterns (Chimalakonda,
2017). These specifications are read by a tool called ID Editor Product Line
that semi-automatically generates an “ID Editor” that essentially allows a
teacher to create a specific instance of instructional design. This ID Editor is
driven by the idea of connecting patterns in Pattern-Oriented Instructional
Design and Pattern-Oriented Software Architecture. The ID Instances are
then used as input to another product line for generating eLearning Systems.
The details of how these product lines are implemented is beyond the scope of
this paper and are detailed in the thesis (Chimalakonda, 2017). Further details
on implementation and source code of implementation are available through
http://rice.iiit.ac.in.

9 Conclusions & Future Work

We emphasized that lack of instructional design base is a critical challenge
for design of educational technologies. So is the challenge of facilitating reuse
and supporting a variety of instructional designs. To address these concerns,
we presented a patterns-based approach that integrates patterns in instruc-
tional design and educational technologies. This approach has its roots in
fundamental architecture principles in software engineering. Based on these
principles, we presented an architecture that integrates Pattern-Oriented In-
structional Design that is driven by instructional design methodologies and
Pattern-Oriented Software Architecture that drives the design of educational

http://rice.iiit.ac.in


A Patterns Based Approach for Design of Educational Technologies 29

technologies. The essence of our approach is to systematically model different
aspects of instructional design (goals, process, content) using patterns such
as GoalsPattern, ProcessPattern (plays, acts, scenes, instructions) and Con-
tentPattern (facts, cases, rules, models and theories). We demonstrated the
application of our approach to model patterns in adult literacy case study in
India. We then provided an implementation of our approach that generates in-
structional design authoring tools based on patterns. Finally, we see this paper
as a major research direction that addresses challenges in design of educational
technologies through solutions in software engineering.

This paper is an attempt to integrate research on patterns and patterns-
based approaches in software engineering and instructional design to facilitate
design of educational technologies that have a pedagogical basis and support
systematic reuse. There many ways of improving our work. Firstly, there is no
way to claim that the patterns we presented are the only possible patterns in
instructional design nor they are comprehensive. In each category of patterns
such as goals, process and so on, there is possibility of a variety of patterns in
multiple contexts. In addition, there are still many manual steps in the pattern
life cycle. While using patterns facilitates reuse, we see the following future
research directions:

– Discovering new patterns is a critical future direction to support the breadth
of instructional designs, so are the mechanisms to support evolution of ex-
isting patterns.

– Modeling notations for representing patterns and supporting techniques
and tools for handling patterns throughout life cycle.

– Formal approaches for composing patterns either within the domain or
software or between domain and software, validating assembly of patterns
and their integration.

– Applying our approach to beyond adult literacy for schooling and other
forms of education.

Acknowledgements

We would like to thank TCS for providing us with initial inputs for this work,
NLM for taking our work forward to create national impact, Government of
Telangana for being one of the first adoptors of our technologies and all funding
agencies for supporting several international research travels.

References

Adams Becker, S., Cummins, M., Davis, A., Freeman, A., Hall Giesinger, C.,
& Ananthanarayanan, V. (2017). NMC horizon report: 2017 higher
education edition. Austin, Texas: The New Media Consortium.

Alario-Hoyos, C., Bote-Lorenzo, M. L., GóMez-SáNchez, E., Asensio-PéRez,
J. I., Vega-Gorgojo, G., & Ruiz-Calleja, A. (2013). GLUE!: An archi-
tecture for the integration of external tools in Virtual Learning Environ-
ments. Computers & Education, 60 (1), 122–137.



30 Sridhar Chimalakonda, Kesav V. Nori

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language:
Towns, Buildings, Construction (Center for Environmental Structure Se-
ries).

Alper, A., & Gülbahar, Y. (2009). Trends and issues in educational tech-
nologies: A review of recent research in TOJET. TOJET: The Turkish
Online Journal of Educational Technology , 8 (2).

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A.,
Mayer, R. E., Pintrich, P. R., . . . Wittrock, M. C. (2001). A taxonomy
for learning, teaching, and assessing: A revision of Bloom’s taxonomy of
educational objectives, abridged edition. White Plains, NY: Longman.

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013). Feature-oriented soft-
ware product lines: concepts and implementation. Springer Science &
Business Media.

Association, C. R., et al. (2003). Grand research challenges in information
systems. In A Conference Series on Grand Research Challenges in Com-
puter Science and Engineering.

Avgeriou, P., Papasalouros, A., Retalis, S., & Skordalakis, M. (2003). Towards
a pattern language for learning management systems. Educational Tech-
nology & Society , 6 (2), 11–24.

Bayne, S. (2015). What’s the matter with technology-enhanced learning?
Learning, Media and Technology , 40 (1), 5–20.

Bednar, A. K., Cunningham, D., Duffy, T. M., & Perry, J. D. (1992). Theory
into practice: How do we link. Constructivism and the technology of
instruction: A conversation, 17–34.

Berczuk, S. (1994). Finding solutions through pattern languages. Computer ,
27 (12), 75–76.

Berger, C., & Kam, R. (1996). Definitions of instructional design. Retrieved
January , 30 , 2006.

Bergin, J., Eckstein, J., Volter, M., Sipos, M., Wallingford, E., Marquardt, K.,
. . . Manns, M. L. (2012). Pedagogical patterns: advice for educators.
Joseph Bergin Software Tools.

Bingimlas, K. A. (2009). Barriers to the successful integration of ICT in
teaching and learning environments: A review of the literature. Eurasia
Journal of Mathematics, Science & Technology Education, 5 (3).

Borchers, J. O. (2001). A pattern approach to interaction design. Ai & Society ,
15 (4), 359–376.

Botturi, L., Derntl, M., Boot, E., & Figl, K. (2006). A classification framework
for educational modeling languages in instructional design. In 6th IEEE
International Conference on Advanced Learning Technologies (ICALT
2006), Kerkrade (The Netherlands) (pp. 1216–1220).

Botturi, L., Stubbs, S. T., & Global, I. (2008). Handbook of visual languages
for instructional design: Theories and practices. Information Science
Reference Hershey.

Bower, M., Howe, C., McCredie, N., Robinson, A., & Grover, D. (2014). Aug-
mented Reality in education–cases, places and potentials. Educational
Media International , 51 (1), 1–15.



A Patterns Based Approach for Design of Educational Technologies 31

Boyle, T., & Cook, J. (2001). Towards a pedagogically sound basis for learn-
ing object portability and re-use. In Meeting at the Crossroads. Pro-
ceedings of the 18th Annual Conference of the Australasian Society for
Computers in Learning in Tertiary Education. The University of Mel-
bourne (Vol. 101, p. 109).

Brown, A. H., & Green, T. D. (2015). The essentials of instructional design:
Connecting fundamental principles with process and practice. Routledge.

Burgos, D. (2015). A Critical Review of Ims Learning Design. In The Art &
Science of Learning Design (pp. 137–153). Springer.

Buschmann, F., Henney, K., & Schimdt, D. (2007). Pattern-oriented Software
Architecture: On Patterns and Pattern Language (Vol. 5). John Wiley
& Sons.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).
{Pattern-oriented Software Architecture Volume 1}.

Caeiro, M., Llamas, M., & Anido, L. (2014). PoEML: Modeling learning
units through perspectives. Computer Standards & Interfaces, 36 (2),
380–396.

Caeiro-Rodŕıguez, M., Llamas-Nistal, M., & Anido-Rifón, L. (2006). A sep-
aration of concerns approach to educational modeling languages. In
Frontiers in Education Conference, 36th Annual (pp. 9–14).

Carroll, J. B. (1963). A model of school learning. Teachers college record .
Chimalakonda, S. (2017). A Software Engineering Approach for Design of

Educational Technologies (PhD thesis). International Institute of Infor-
mation Technology-Hyderabad.

Chimalakonda, S., & Nori, K. V. (2012). Towards a Model Driven eLearning
Framework to Improve Quality of Teaching. In Technology for Education
(T4E), 2012 IEEE Fourth International Conference on (pp. 138–143).

Chimalakonda, S., & Nori, K. V. (2013a). EasyAuthor: supporting low com-
puter proficiency teachers in the design of educational content for adult
illiterates. In CHI’13 Extended Abstracts on Human Factors in Comput-
ing Systems (pp. 649–654).

Chimalakonda, S., & Nori, K. V. (2013b). IDont: An Ontology Based Ed-
ucational Modeling Framework for Instructional Design. In Advanced
Learning Technologies (ICALT), 2013 IEEE 13th International Confer-
ence on (pp. 253–255).

Consortium, I. G. L., et al. (2003). IMS learning design specification.
Cristea, A., & Garzotto, F. (2004). Designing patterns for adaptive or adapt-

able educational hypermedia: a taxonomy. In World Conference on Ed-
ucational Multimedia, Hypermedia and Telecommunications (Vol. 2004,
pp. 808–813).

Cuban, L., & Jandrić, P. (2015). The dubious promise of educational technolo-
gies: Historical patterns and future challenges. E-Learning and Digital
Media, 12 (3-4), 425–439.

Czarnecki, K., & Eisenecker, U. W. (2000). Generative programming. Edited
by G. Goos, J. Hartmanis, and J. van Leeuwen, 15.

Dalziel, J. (2003). Implementing learning design: The learning activity man-



32 Sridhar Chimalakonda, Kesav V. Nori

agement system (LAMS). December.
Derntl, M. (2005). Patterns for person centered e-learning. Citeseer.
Derntl, M., & Motschnig-Pitrik, R. (2004). Patterns for blended, person-

centered learning: Strategy, concepts, experiences, and evaluation. In
Proceedings of the 2004 ACM symposium on Applied computing (pp.
916–923).

Dick, W., Carey, L., Carey, J. O., et al. (2001). The systematic design of
instruction (Vol. 5). Longman New York.

Dijkstra, E. W. (1982). On the role of scientific thought. In Selected writings
on computing: a personal perspective (pp. 60–66). Springer.

Duffy, T. M., & Jonassen, D. H. (2013). Constructivism and the technology of
instruction: A conversation. Routledge.

Evans, E. (2004). Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional.

Fischer, F., Wild, F., Sutherland, R., & Zirn, L. (2014). Grand Challenges
in Technology Enhanced Learning: Outcomes of the 3rd Alpine Rendez-
Vous. Springer.

Gagne, R. M., & Briggs, L. J. (1974). Principles of instructional design. Holt,
Rinehart & Winston.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns:
elements of reusable object-oriented software. Pearson Education.

Garzotto, F., Retalis, S., & Chapter, V. (2009). A critical perspective on
design patterns for e-learning. Learning Objects: Is-sues, Applications
and Technologies, 346–372.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2002). Fundamentals of software
engineering. Prentice Hall PTR.

Gibbons, A. S. (2013). An architectural approach to instructional design.
Routledge.

Goddard, T., Griffiths, D., & Mi, W. (2015). Why has Ims Learning Design
not Led to the Advances which were Hoped for? In The Art & Science
of Learning Design (pp. 121–136). Springer.

Goodyear, P., Avgeriou, P., Baggetun, R., Bartoluzzi, S., Retalis, S., Ron-
teltap, F., & Rusman, E. (2004). Towards a pattern language for net-
worked learning. In proceedings of networked learning (pp. 449–455).

Govindasamy, T. (2001). Successful implementation of e-learning: Pedagogical
considerations. The Internet and Higher Education, 4 (3), 287–299.

Greenfield, J., Short, K., Cook, S., Kent, S., & Crupi, J. (2004). Software
factories: assembling applications with patterns, models, frameworks, and
tools. Wiley Pub.

Gustafson, K. L., & Branch, R. M. (1997). Survey of instructional development
models. ERIC.

Handbook for Developing IPCL Material. (2003). Directorate of Adult Edu-
cation, India.

Hernández-Leo, D., Chacón, J., Prieto, L. P., Asensio-Pérez, J. I., & Derntl, M.
(2013). Towards an integrated learning design environment. In Scaling
up Learning for Sustained Impact (pp. 448–453). Springer.



A Patterns Based Approach for Design of Educational Technologies 33

Hernández-Leo, D., Moreno, P., Chacón, J., & Blat, J. (2014). LdShake
support for team-based learning design. Computers in Human Behavior ,
37 , 402–412.

Hwang, G.-J., & Tsai, C.-C. (2011). Research trends in mobile and ubiquitous
learning: A review of publications in selected journals from 2001 to 2010.
British Journal of Educational Technology , 42 (4).

Iba, T., & Miyake, T. (2010). Learning patterns: A pattern language for cre-
ative learning ii. In Proceedings of the 1st Asian Conference on Pattern
Languages of Programs (p. 4).

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990).
Feature-oriented domain analysis (FODA) feasibility study (Tech. Rep.).
DTIC Document.

Karagkasidis, A. (2008). Developing GUI Applications: Architectural Patterns
Revisited. In EuroPLoP.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M., & Irwin, J. (1997). Aspect-oriented programming. In European
conference on object-oriented programming (pp. 220–242).

Koper, R. (2005). An introduction to learning design. Springer.
Krasner, G. E., Pope, S. T., et al. (1988). A description of the model-view-

controller user interface paradigm in the smalltalk-80 system. Journal
of object oriented programming , 1 (3), 26–49.

Kruchten, P. B. (1995). The 4+ 1 view model of architecture. Software,
IEEE , 12 (6), 42–50.

Kruse, K. (2002). Introduction to instructional design and the ADDIE model.
Retrieved January , 26 , 2005.

Laurillard, D. (2012). Teaching as a design science: Building pedagogical
patterns for learning and technology. Routledge.

Laurillard, D. (2013a). Rethinking university teaching: A conversational
framework for the effective use of learning technologies. Routledge.

Laurillard, D. (2013b). Teaching as a design science: Building pedagogical
patterns for learning and technology. Routledge.

Laurillard, D., Charlton, P., Craft, B., Dimakopoulos, D., Ljubojevic, D.,
Magoulas, G., . . . Whittlestone, K. (2013a). A constructionist learning
environment for teachers to model learning designs. Journal of Computer
Assisted Learning , 29 (1), 15–30.

Laurillard, D., Charlton, P., Craft, B., Dimakopoulos, D., Ljubojevic, D.,
Magoulas, G., . . . Whittlestone, K. (2013b). A constructionist learning
environment for teachers to model learning designs. Journal of Computer
Assisted Learning , 29 (1), 15–30.

Lowyck, J. (2014). Bridging learning theories and technology-enhanced envi-
ronments: A critical appraisal of its history. In Handbook of research on
educational communications and technology (pp. 3–20). Springer.

Mager, R. F. (1962). Preparing instructional objectives.
Mart́ınez-Ortiz, I., Moreno-Ger, P., Sierra, J. L., & Fernandez-Manjon, B.

(2007). Educational modeling languages. In Computers and Education
(pp. 27–40). Springer.



34 Sridhar Chimalakonda, Kesav V. Nori

Merrill, M. D. (2012). First principles of instruction. John Wiley & Sons.
Meszaros, G., & Doble, J. (1998). A pattern language for pattern writing.

Pattern languages of program design, 3 , 529–574.
Midgley, C. (2014). Goals, goal structures, and patterns of adaptive learning.

Routledge.
Millwood, R. (2014). The Design of Learner-Centred, Technology-Enhanced

Education (Unpublished doctoral dissertation). University of Bolton.
Mizoguchi, R., Hayashi, Y., & Bourdeau, J. (2007). Inside theory-aware and

standards-compliant authoring system. In SW-EL’07 (pp. 18–pages).
Mor, Y. (2014). Practical Design Patterns for Teaching and Learning with

Technology. Springer.
Mor, Y., Warburton, S., & Winters, N. (2012). Participatory pattern work-

shops: a methodology for open learning design inquiry. Research in
Learning Technology , 20 .

Mørch, A. (1997). Three levels of end-user tailoring: Customization, integra-
tion, and extension. Computers and design in context , 51–76.

Neumann, S., Klebl, M., Griffiths, D., Hernández-Leo, D., De la Fuente-
Valentin, L., Hummel, H., . . . others (2009). Report of the results
of an IMS learning design expert workshop.

Paquette, G. (2014). Technology-Based Instructional Design: Evolution and
Major Trends. In Handbook of Research on Educational Communications
and Technology (pp. 661–671). Springer.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into
modules. Communications of the ACM , 15 (12), 1053–1058.

The Pedagogical Patterns Project. (2014, May).
http://www.pedagogicalpatterns.org/.

Reich, J. (2015). Rebooting MOOC research. Science, 347 (6217), 34–35.
Reid, P. (2014). Categories for barriers to adoption of instructional technolo-

gies. Education and Information Technologies, 19 (2), 383–407.
Reigeluth, C. M. (2013a). Instructional-design theories and models: A new

paradigm of instructional theory (Vol. 2). Routledge.
Reigeluth, C. M. (2013b). Instructional design theories and models: An

overview of their current status. Routledge.
Reigeluth, C. M., & Carr-Chelman, A. A. (2009). Instructional-Design The-

ories and Models: Building a Common Knowledge Base. Volume III.
Education Review//Reseñas Educativas.

Rodŕıguez-Artacho, M., & Maillo, M. F. V. (2004). Modeling educational
content: the cognitive approach of the PALO language. Educational
Technology & Society , 7 (3), 124–137.

Sampson, D. G., & Zervas, P. (2014). A hierarchical framework for open
access to education and learning. International Journal of Web Based
Communities, 10 (1), 25–51.

Sharp, H., Manns, M. L., & Eckstein, J. (2000). The pedagogical patterns
project (poster session). In Addendum to the 2000 proceedings of the
conference on Object-oriented programming, systems, languages, and ap-
plications (Addendum) (pp. 139–140).



A Patterns Based Approach for Design of Educational Technologies 35

Sheu, F.-R., & Chen, N.-S. (2014). Taking a signal: A review of gesture-based
computing research in education. Computers & Education, 78 , 268–277.

Spector, J. M. (2013). Emerging educational technologies and research direc-
tions. Journal of Educational Technology & Society , 16 (2).

Spector, J. M., Merrill, M. D., Elen, J., & Bishop, M. (2014). Handbook of
research on educational communications and technology. Springer.

Taylor, R. N., Medvidovic, N., & Dashofy, E. M. (2009). Software architecture:
foundations, theory, and practice. Wiley Publishing.

Tobias, S., Fletcher, J. D., & Wind, A. P. (2014). Game-based learning. In
Handbook of Research on Educational Communications and Technology
(pp. 485–503). Springer.

Toyama, K. (2011). There are no technology shortcuts to good education.
Educational Technology Debate, 8 .

Venkatesh, V., Croteau, A.-M., & Rabah, J. (2014). Perceptions of effective-
ness of instructional uses of technology in higher education in an era of
Web 2.0. In System Sciences (HICSS), 2014 47th Hawaii International
Conference on (pp. 110–119).

Villasclaras-FernáNdez, E., HernáNdez-Leo, D., Asensio-PéRez, J. I., & Dim-
itriadis, Y. (2013). Web Collage: An implementation of support for
assessment design in CSCL macro-scripts. Computers & Education, 67 ,
79–97.

Woolf, B. P., Lane, H. C., Chaudhri, V. K., & Kolodner, J. L. (2013). AI
Grand Challenges for Education. AI Magazine, 34 (4), 9.

Wu, W.-H., Wu, Y.-C. J., Chen, C.-Y., Kao, H.-Y., Lin, C.-H., & Huang, S.-H.
(2012). Review of trends from mobile learning studies: A meta-analysis.
Computers & Education, 59 (2), 817–827.

Zimmer, W., et al. (1995). Relationships between design patterns. Pattern
languages of program design, 57 .


	1 Introduction
	2 Guiding Principles
	3 Source, Evolution and Structure of Patterns
	4 Patterns for Scale and Variety
	5 A Patterns Based Approach
	6 Pattern-Oriented Instructional Design
	7 Pattern-Oriented Software Architecture
	8 Implementation
	9 Conclusions & Future Work

