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RIESZ BASIS APPROACH TO THE

TRACKING CONTROL OF A FLEXIBLE

BEAM WITH A TIP RIGID BODY

WITHOUT DISSIPATIVITY
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A linear feedback control is designed regardless of dissipativity of the system for the
stabilization of a flexible beam with a tip rigid body. The Riesz basis approach is
adopted in the investigation. It is shown that the closed loop system is a Riesz spectral
system and as consequences, the exponential stability, the observability and the controll-
ability of the system are concluded. Finally, some numerical results are also presented.
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1 INTRODUCTION

In this article, we consider a flexible beam rotated by a motor in a

horizontal plane at one end and a tip body rigidly attached at the free

end. This model fits a large class of real applications such as links of

robot systems and space-shuttle arms in which high speed manipula-

tion and long and slender geometrical dimensions are the major factors

causing mechanical vibration. To achieve high speed and precision end

point positioning of the flexible beam, the boundary control is one of

the major strategies in production and space applications.
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Let ‘ be the length of the beam, � the uniform mass density per unit

length, EI the uniform flexural rigidity, ~MM the mass of the tip body

attached, ~IIm the moment of inertia of the motor and ~JJ the moment

of inertia associated with the tip body. Suppose that the terminal

state trajectory is x#d ðtÞ at position x and time t, where #00dðtÞ ¼ 0,

i.e., the tracked state would be uniform motion or fixed in some direc-

tion of the flexible beam. Let the difference displacement

~yyðx, tÞ ¼ zðx, tÞ � x#dðtÞ, where z(x, t) is the total transversal displace-

ment at x and t. Then ~yyðx, tÞ satisfies the following Euler–Bernoulli

beam equation and the Newton–Euler rigid-body equations [1]:

� ~yyttðx, tÞ þ EI ~yyxxxxðx, tÞ ¼ 0, 0 < x < ‘, t > 0,

~yyð0, tÞ ¼ 0,

EI ~yyxxð0, tÞ � ~IIm ~yyxttð0, tÞ þ uðtÞ ¼ 0,

EI ~yyxxxð‘, tÞ � ~MM ~yyttð‘, tÞ ¼ 0,

EI ~yyxxð‘, tÞ þ ~JJ ~yyxttð‘, tÞ ¼ 0

8>>>>>><
>>>>>>:

ð1Þ

where u(t) is the torque developed by the motor. It was shown in [1]

that the following nonlinear feedback control

uðtÞ ¼ �� ~yyxð0, tÞ � f ð ~yyxtð0, tÞÞ ð2Þ

can make system (1) asymptotically stable or, exponentially stable

when Ĩm¼ 0, where �> 0 is a constant and f 2 CðRÞ is increasing with

f ð0Þ ¼ 0 and sf ðsÞ > 0 for s 6¼ 0: ð3Þ

However, when Ĩm 6¼ 0, no result is available to the uniform stabiliza-

tion of this hybrid system.

A similar problem was considered in [2] for string vibration that

describes the vibration of an overhead crane. There are many different

models in literature describing the vibration of a flexible beam with

a tip rigid body [3,4,14,15], we refer to [3,4] for further descriptions

concerning the physical structure of the system. To realize the uniform

stabilization, the ‘‘high derivative’’ feedback control is usually required

(see e.g. [5,6]), for instance, when f is linear in (2), we shall see in

Section 2 of this article that control (2) cannot uniformly stabilize the

closed-loop system. However, on the one hand, the design of the

‘‘high derivative’’ feedback controllers in literature are mainly based

on principle of ‘‘passivity’’ that makes the closed-loop system be
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dissipative so that the system is at least asymptotically stable by

Lyapunov function method [5,6]. In applications, on the other hand,

there are many ways of designing controllers that make system practi-

cally uniformly stable but there is no dissipativity which usually brings

the difficulty of theoretical proof for the uniform stability of the system

[7]. In this article, we shall design such a ‘‘high derivative’’ feedback

controller for system (1) which can make the closed-loop system

exponentially stable although we do not know if it is dissipative. The

approach used here is so called Riesz basis approach that is recently

used to study the basis generation, exponential stability and distri-

bution of eigenvalues of the Euler–Bernoulli beam equations in a

very simple way [8,16]. In the next section, an unbounded boundary

feedback control is designed and the asymptotic expressions of eigen-

values and eigenfunctions are derived. In Section 3, we show that

there is a sequence of generalized eigenfunctions of system (1), which

forms a Riesz basis for the state Hilbert space. Section 4 is devoted

to the exponential stability of the system. Controllability and observa-

bility are obtained in Section 5. Numerical simulation is presented in

Section 6 after relating the stability of the system to a finite dimensional

eigenvalue problem. Some concluding remarks are made in Section 7.

2 ASYMPTOTIC EXPRESSION OF EIGENPAIRS

In order to adopt the Riesz basis approach to study the stability of

system (1) as in [8,16], we should first formulate the closed-loop

system into a linear evolution equation in an underlying Hilbert

state space and then find asymptotic expressions of eigenpairs of the

system operator associated with this evolution equation. All these

will be treated in this section. First, we design the feedback control.

To simplify notations, let yðx, tÞ ¼ ~yyð‘x,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘4=EI�t

p
Þ, Im ¼ ~IIm‘

�3��1,

M ¼ ~MM‘�1��1, J ¼ ~JJ‘�3��1. Then y satisfies

yttðx, tÞ þ yxxxxðx, tÞ ¼ 0, 0 < x < 1, t > 0,

yð0, tÞ ¼ 0,

yxxð0, tÞ � Imyxttð0, tÞ þ ‘2EI�1uð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘4=EI�t

p
Þ ¼ 0,

yxxxð1, tÞ �Myttð1, tÞ ¼ 0,

yxxð1, tÞ þ Jyxttð1, tÞ ¼ 0:

8>>>>>><
>>>>>>:

ð4Þ
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We design a feedback controller:

‘2EI�1u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘4=EI�t

p� �
¼ ��yxð0, tÞ � 	yxtð0, tÞ þ kyxxtð0, tÞ ð5Þ

where �> 0 and 	 and k are real numbers. Then the closed-loop

system becomes

yttðx, tÞ þ yxxxxðx, tÞ ¼ 0, 0 < x < 1, t > 0,

yð0, tÞ ¼ 0,

yxxð0, tÞ � Imyxttð0, tÞ � �yxð0, tÞ � 	yxtð0, tÞ þ kyxxtð0, tÞ ¼ 0,

yxxxð1, tÞ �Myttð1, tÞ ¼ 0,

yxxð1, tÞ þ Jyxttð1, tÞ ¼ 0:

8>>>>>><
>>>>>>:

ð6Þ

It seems not apparent that there is a Lyapunov function for the system

above.

It should be pointed out that in deriving the third equation in (6), the

motor driver of torque control type is used and the rate of change of the

strain signal yxxt(0, t) is assumed being measurable. However, in prac-

tice, it is usually difficult to directly measure yxxt(0, t). In case yxxt(0, t)

is not measurable, [9] suggests to use a control motor with a motor

driver of speed reference type to get indirectly yxxt(0, t). Actually,

from [9]

Vref ðtÞ _¼¼kf yxtð0, tÞ

where kf> 0 is the back emf (electro-motive force) constant. ‘‘Back

emf constant’’ specifies how much voltage is created by the armature

conductors moving through the constant magnetic field in electrical

motors. Vref (t) is the speed reference voltage of the control motor.

Let Vref (t) be commanded to follow the following feedback law:

Vref ðtÞ ¼
kf
Im

��

Z t

0

yxð0, 
Þd
 � 	yxð0, tÞ þ kyxxð0, tÞ þ

Z t

0

yxxð0, 
Þd



 �
:

ð7Þ

Note that the strain signal yxx(0, t) can be easily measured using

strain gauges and hence the above feedback law is meaningful.
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Substituting such a Vref(t) into Vref(t)¼ kf yxt(0, t), we obtain also

yxxð0, tÞ � Imyxttð0, tÞ � �yxð0, tÞ � 	yxtð0, tÞ þ kyxxtð0, tÞ ¼ 0:

Details can be found in Section V of [9].

Next, define the underlying state Hilbert space H for the system (6):

H ¼ H2
Eð0, 1Þ 	 L2ð0, 1Þ 	 C

3, H2
Eð0, 1Þ ¼ f f 2 H2ð0, 1Þ, f ð0Þ ¼ 0g with

the inner product induced norm

kð f ,g,a,b, cÞk2 ¼

Z 1

0

½j f 00ðxÞj2 þ jgðxÞj2�dxþ �j f 0ð0Þj2 þ
jaj2

Im
þ
jbj2

M
þ
jcj2

J

and the state variable

YðtÞ ¼ ð yð�, tÞ, ytð�, tÞ, Imyxtð0, tÞ � kyxxð0, tÞ,Mytð1, tÞ, Jyxtð1, tÞÞ: ð8Þ

Then Eq. (6) is formulated to be an evolution equation in H:

d

dt
YðtÞ ¼ AYðtÞ ð9Þ

where the associated system operator A : ðH �ÞDðAÞ ! H is defined

as follows:

A

�
 
a
b
c

0
BBBB@

1
CCCCA ¼

 
��ð4Þ

�00ð0Þ � ��0ð0Þ � 	 0ð0Þ
�000ð1Þ

��00ð1Þ,

0
BBBB@

1
CCCCA

DðAÞ ¼ fð�, , a, b, cÞ 2 ðH4 \H2
EÞ 	H2

E 	 C
3
j

a ¼ Im 
0ð0Þ � k�00ð0Þ, b ¼ M ð1Þ, c ¼ J 0ð1Þg

8>>>>>>>>><
>>>>>>>>>:

ð10Þ

LEMMA 1 A�1 exists and is compact on H. Hence 
(A), the spectrum of

A, consists of isolated eigenvalues only.

Proof For any ð f , g, a, b, cÞ 2 H, solving

A

�
 

IM 
0ð0Þ � k�00ð0Þ
M ð1Þ
J 0ð1Þ

0
BBBB@

1
CCCCA ¼

 
��ð4Þ

�00ð0Þ � ��0ð0Þ � 	 0ð0Þ
�000ð1Þ
��00ð1Þ

0
BBBB@

1
CCCCA ¼

f
g
a
b
c

0
BBBB@

1
CCCCA
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produces the unique solution (notice that �ð0Þ ¼ 0)  ¼ f 2 H2
E and

� 2 H4 \H2
E

�ðxÞ ¼ �
aþ 	f 0ð0Þ

�
þ

c

�
þ

2bþ b�

2�
þ

1

2

Z 1

0

s2gðsÞdsþ
1

�

Z 1

0

sgðsÞds


 �
x

þ
b

6
þ

Z 1

0

1

6
s3gðsÞds�

c

2
x2 þ

b

6
ðx� 1Þ3 �

1

6

Z x

1

ðx� sÞ3gðsÞds:

ð11Þ

The result then follows from the Sobolev’s embedding theorem ([17],

p. 208). œ

LEMMA 2 For any � ¼ i
2 2 
ðAÞ, there is a unique eigenfunction (up to

a scalar)

ð�, ��, Im��
0ð0Þ � k�00ð0Þ,M��ð1Þ, J��0ð1ÞÞ

¼ ð�, ��, ��1½�00ð0Þ � ð	�þ �Þ�0ð0Þ�, ��1�000ð1Þ, � ��1�00ð1ÞÞ

where

�ðxÞ ¼�ð1þMJ
4Þsinh
x

þ½�2J
3 cos
þð�1þMJ
4Þsin
�cosh
ð1�xÞ

þ ½2J
3 cosh
�ð1þMJ
4Þsin
þð�1þMJ
4Þsinh
�cos
ð1�xÞ

þ ½ð1�MJ
4Þcos
�2M
 sin
�sinh
ð1�xÞ

þ ½ð1�MJ
4Þcosh
þð1þMJ
4Þcos
þ2M
 sinh
�sin
ð1�xÞ

ð12Þ

and the characteristic equation that � satisfies is

ð�Im

4 þ i	
2 þ �Þf1 þMJ
4 þ ðM
 � J
3Þ sinh 
 cos 


� ðM
 þ J
3Þ cosh 
 sin 
 þ ð1 �MJ
4Þ cosh 
 cos 
g

þ 
ðki
2 þ 1Þf�2J
3 cosh 
 cos 
 þ ð�1 þMJ
4Þ cosh 
 sin 


þ ð1 �MJ
4Þ sinh 
 cos 
 � 2M
 sinh 
 sin 
g ¼ 0: ð13Þ
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Proof Solving the eigenvalue problem

A

�

 

a

b

c

0
BBBBBBBB@

1
CCCCCCCCA

¼

 

��ð4Þ

�00ð0Þ � ��0ð0Þ � 	 0ð0Þ

�000ð1Þ

��00ð1Þ

0
BBBBBBBB@

1
CCCCCCCCA

¼ �

�

 

Im 
0ð0Þ � k�00ð0Þ

M ð1Þ

J 0ð1Þ

0
BBBBBBBB@

1
CCCCCCCCA

one has  ¼ �� and

�0000 þ �2� ¼ 0,

�ð0Þ ¼ ðIm�
2 þ 	�þ �Þ�0ð0Þ � ðk�þ 1Þ�00ð0Þ ¼ 0,

�000ð1Þ �M�2�ð1Þ ¼ 0,

�00ð1Þ þ J�2�0ð1Þ ¼ 0:

8>>>>><
>>>>>:

ð14Þ

Hence

ðIm��
0ð0Þ � k�00ð0Þ,M��ð1Þ, J��0ð1ÞÞ

¼ ð��1½�00ð0Þ � ð	�þ �Þ�0ð0Þ�, ��1�000ð1Þ, � ��1�00ð1ÞÞ:

Let f ðxÞ ¼ �ð1 � xÞ. Then f satisfies

f 0000 þ �2f ¼ 0,

f ð1Þ ¼ ðIm�
2 þ 	�þ �Þf 0ð1Þ þ ðk�þ 1Þf 00ð1Þ ¼ 0,

f 000ð0Þ þM�2f ð0Þ ¼ 0,

f 00ð0Þ � J�2f 0ð0Þ ¼ 0:

8>>>>><
>>>>>:

ð15Þ

Let �¼ i
2. It is easily seen that for any �¼ i
2, the general solution of

the following equation

f 0000 þ �2f ¼ 0,

f 000ð0Þ þM�2f ð0Þ ¼ 0,

f 00ð0Þ � J�2f 0ð0Þ ¼ 0:

8>><
>>:
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is of the form

f ðxÞ ¼ ½ðc1 � c2Þ �MJ
4ðc1 þ c2Þ� cosh 
x

þ ½ðc1 � c2Þ þMJ
4ðc1 þ c2Þ� cos 
x

þ 2M
ðc1 sinh 
xþ c2 sin 
xÞ

where c1, c2 are arbitrary constants. By f(1)¼ 0, one has (up to a

scalar)

c1 ¼ ð1 þMJ
4Þ cosh 
 þ ð1 �MJ
4Þ cos 
 � 2M
 sin 
,

c2 ¼ ð1 �MJ
4Þ cosh 
 þ ð1 þMJ
4Þ cos 
 þ 2M
 sinh 
,

c1 � c2 ¼ 2MJ
4 cosh 
 � 2MJ
4 cos 
 � 2M
 sin 
 � 2M
 sinh 
,

c1 þ c2 ¼ 2 cosh 
 þ 2 cos 
 � 2M
 sin 
 þ 2M
 sinh 
:

Hence (again up to a scalar)

f ðxÞ ¼ �ð1 þMJ
4Þ sinh 
ð1 � xÞ

þ ½�2J
3 cos 
 þ ð�1 þMJ
4Þ sin 
� cosh 
x

þ ½2J
3 cosh 
 � ð1 þMJ
4Þ sin 
 þ ð�1 þMJ
4Þ sinh 
� cos 
x

þ ½ð1 �MJ
4Þ cos 
 � 2M
 sin 
� sinh 
x

þ ½ð1 �MJ
4Þ cosh 
 þ ð1 þMJ
4Þ cos 
 þ 2M
 sinh 
� sin 
x

this is (12) by �ðxÞ ¼ f ð1 � xÞ. Note that the function f defined above

actually satisfies

f 0000 þ �2f ¼ 0,

f ð1Þ ¼ 0,

f 000ð0Þ þM�2f ð0Þ ¼ 0,

f 00ð0Þ � J�2f 0ð0Þ ¼ 0

8>>><
>>>:

ð16Þ

for any �¼ i
2. In order f (it is obvious that f cannot be identical zero)

to be a solution of (15), it is necessary and sufficient that

ðIm�
2 þ 	�þ �Þf 0ð1Þ þ ðk�þ 1Þf 00ð1Þ ¼ 0 which induces (13), proving

the lemma. œ
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LEMMA 3 There is a family of eigenvalues f�n ¼ i
2
n , � i �

2

ng of A with

the following asymptotic expression

�n ¼ i
2
n ¼ �kI�1

m þ i ½M�1 þ ðm�Þ2� þ Oðn�1Þ ð17Þ

where m¼ n� 1/2, n is a sufficiently large positive integer. A corre-

sponding eigenfunction

�n ¼ ð�n, �n�n, Im�n�
0
nð0Þ � k�00nð0Þ,M�n�nð1Þ, J�n�

0
nð1ÞÞ

¼ ð�n, �n�n, �
�1
n ½�00nð0Þ � ð	�n þ �Þ�

0
nð0Þ�, �

�1
n �

000
n ð1Þ,� �

�1
n �

00
nð1ÞÞ

where

�nðxÞ ¼ �ð1 þMJ
4Þ sinh 
nx

þ ½�2J
3
n cos 
n þ ð�1 þMJ
4

nÞ sin 
n� cosh 
nð1 � xÞ

þ ½2J
3
n cosh 
n � ð1 þMJ
4

nÞ sin 
n

þ ð�1 þMJ
4
nÞ sinh 
n� cos 
nð1 � xÞ

þ ½ð1 �MJ
4
nÞ cos 
n � 2M
n sin 
n� sinh 
nð1 � xÞ

þ ½ð1 �MJ
4
nÞ cosh 
n þ ð1 þMJ
4

nÞ cos 
n

þ 2M
n sinh 
n� sin 
nð1 � xÞ

which is obtained by (12) with 
¼ 
n. The following asymptotic expres-

sion holds

FnðxÞ ¼

e�m�ð1�xÞ � e�m�x sinm�þ cosm�ð1� xÞ � sinm�ð1� xÞ

i ½e�m�ð1�xÞ � e�m�x sinm�� cosm�ð1� xÞ þ sinm�ð1� xÞ�

0

0

0

0
BBBBBB@

1
CCCCCCA

þOðn�1Þ ð18Þ

where

FnðxÞ ¼ �2ðMJÞ�1
�6
n e�
n

	 ð�00n, �n�n, Im�n�
0
nð0Þ � k�00nð0Þ,M�n�nð1Þ, J�n�

0
nð1ÞÞ

T :
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(18) holds uniformly in x 2 ½0, 1�. It is seen that

lim
n!1

kFnk
2
L2	L2	C

3 ¼ lim
n!1

k2ðMJÞ�1
�6
n e�
n�nk

2
H ¼ 2:

Proof Note that for a large positive integer n, in a uniformly

bounded small neighborhood of m� ¼ ðn� 1=2Þ�,

j sin 
j � C, j cos 
j � C, je�
 sinh 
j � C, je�
 cosh 
j � C

uniformly for all n with some constant C. By multiplying

ð�ImMJÞ�1
�8e�
 on both sides of (13), we can write (13), in a uni-

formly bounded small neighborhood of m� ¼ ðn� 1=2Þ� for each n,

to be

cos 
 ¼ Oðj
j�1Þ ð19Þ

or

cos 
 ¼ �
1



ðM�1 þ ikI�1

m Þ sin 
 þOðj
j�2Þ: ð20Þ

Applying the Rouche’s theorem ([18], p. 181) to two functions cos 


and �Oðj
j�1Þ in a small neighborhood of m� for each n, we can

obtain a solution 
n of (19):


 ¼ 
n ¼ ðn� 1=2Þ�þOðn�1Þ ð21Þ

for sufficiently large n. Substituting (21) into (20) yields

Oðn�1Þ ¼
1

ðn� 1=2Þ�
ðM�1 þ ikI�1

m Þ þ Oðn�2Þ

and so


n ¼ ðn� 1=2Þ�þ
1

ðn� 1=2Þ�
ðM�1 þ ikI�1

m Þ þ Oðn�2Þ

hence

�n ¼ i
2
n ¼ �kI�1

m þ i ½M�1 þ ððn� 1=2Þ�Þ2� þ Oðn�1Þ:
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For the estimation of (18), we treat the first component only because

the second component can be treated similarly and ��1
n �

00
nð0Þ, �

�1
n �

00
nð1Þ,

��1
n �

000
n ð1Þ can be found first from the expression below and then

treated in a similar fashion. Now


�2
n �00nðxÞ ¼ �ð1 þMJ
4Þ sinh 
nx

þ ½�2J
3
n cos 
n þ ð�1 þMJ
4

nÞ sin 
n� cosh 
nð1 � xÞ

� ½2J
3
n cosh 
n � ð1 þMJ
4

nÞ sin 
n

þ ð�1 þMJ
4
nÞ sinh 
n� cos 
nð1 � xÞ

þ ½ð1 �MJ
4
nÞ cos 
n � 2M
n sin 
n� sinh 
nð1 � xÞ

� ½ð1 �MJ
4
nÞ cosh 
n þ ð1 þMJ
4

nÞ cos 
n

þ 2M
n sinh 
n� sin 
nð1 � xÞ:

Since for any bounded y> 0 and x 2 ½0, 1�, it holds uniformly

e�
ny ¼ e�m�y þOðn�1Þ,

sin 
nx ¼ sinm�xþOðn�1Þ, cos 
nx ¼ cosm�xþOðn�1Þ:

Hence

2ðMJÞ�1
�6
n e�
n�00nðxÞ ¼ �e�
nð1�xÞ þ e�
nx sin 
n � cos 
nð1 � xÞ

þ sin 
nð1 � xÞ þ Oðn�1Þ

¼ �e�m�ð1�xÞ þ e�m�x sinm�� cosm�ð1 � xÞ

þ sinm�ð1 � xÞ þ Oðn�1Þ:

Moreover,

2ðMJÞ�1
�6
n e�
n�0nð0Þ ¼ Oðn�1Þ:

This is the result required. œ

It should be pointed out that up to now, we can only say that (17)

and (18) are valid for ‘‘a family of eigenpairs’’ of A only. However,

in the next section, we shall show that they are indeed asymptotic

expressions of all eigenpairs of A. This is one of merits of the approach.
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3 RIESZ BASIS PROPERTY

Let us recall that for a closed linear operator A in a Hilbert space H,

a nonzero x 2 H is called a generalized eigenvector of A, corresponding

to an eigenvalue � of A that has finite algebraic multiplicity, if there is

a positive integer n such that ð�� AÞnx ¼ 0: A sequence fxng
1
n¼1 in H is

called a Riesz basis for H if there is an orthonormal basis feng
1
n¼1 in H

and a linear bounded invertible operator T such that

Ten ¼ xn, n ¼ 1, 2, . . .

It is seen that each Riesz basis sequence must be approximately

normalized:

C1 � kxnk � C2, C1,C2 > 0, n ¼ 1, 2, . . .

Suppose that f�ng
1
n¼1 � 
ðAÞ. If each �n has finite algebraic multiplicity

mn, then there is a sequence of linear independent generalized eigen-

vectors fxni g
mn

i¼1 corresponding to �n. If mn¼ 1 for sufficiently large n

and ffxni g
mn

i¼1g
1
n¼1 forms a Riesz basis for H, then A generates a C0-

semigroup eAt which can be represented as

eAtx ¼
X1
n¼1

e�nt
Xmn

i¼1

ani
Xmn

j¼1

fnijðtÞxnj , for any x ¼
X1
n¼1

Xmn

i¼1

anixni 2 H

where fnij(t) is a polynomial of t with order less than mn. In particular,

if a<Re �<b for some reals a and b then A generates a C0-group on

H. Moreover, the spectrum-determined growth condition holds for

eAt:!ðAÞ ¼ SðAÞ, where !(A) is the growth order of eAt and S(A) is

the spectral bound of eAt.

The following result is recently reported in [8]:

THEOREM 1 Let A be a densely defined discrete operator (that is,

(��A)�1 is compact for some �) in a Hilbert space H. Let fzng
1
n¼1 be

a Riesz basis for H. If there exist an N� 0 and a sequence of generalized
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eigenvectors fxng
1
n¼Nþ1 of A such that

X1
Nþ1

kxn � znk
2 <1

then

(i) there exists a constant M>N and generalized eigenvectors

fxn0g
M
n¼1 of A such that fxn0g

M
n¼1 [ fxng

1
n¼Mþ1 forms a Riesz basis

for H;

(ii) let fxn0g
M
n¼1 [ fxng

1
n¼Mþ1 correspond to eigenvalues f
ng

1
n¼1 of A.

Then 
ðAÞ ¼ f
ng
1
n¼1, where 
n is counted according to its algebraic

multiplicity;

(iii) if there is an M0> 0 such that 
n 6¼ 
m for all m, n>M0, then there

exists an N0>M0 such that all 
n, n > N0 are algebraically simple.

In Lemma 3, we have found a sequence of approximate normalized

generalized eigenfunctions of A. In order to apply Theorem 1, we have

to find a reference Riesz basis. This is realized by finding a discrete

skew-adjoint linear operator in H. From functional analysis, for a

discrete skew-adjoint linear operator in H, there is always a sequence

of generalized eigenvectors which forms a Riesz basis, moreover,

for such an operator, the geometric multiplicity of each eigenvalue

is identical to its algebraic multiplicity and all eigenvalues lie on the

imaginary axis.

Now we show the game. Let operator A0 be the operator A with

	¼ k¼ 0. That is,

A0

�

 

a

b

c

0
BBBBBBB@

1
CCCCCCCA

¼

 

��ð4Þ

�00ð0Þ � ��0ð0Þ

�000ð1Þ

��00ð1Þ

0
BBBBBBB@

1
CCCCCCCA

DðA0Þ ¼ fð�, , a, b, cÞ 2 ðH4 \H2
EÞ 	H2

E 	 C
3
j a ¼ Im 

0ð0Þ,

b ¼ M ð1Þ, c ¼ J 0ð1Þg

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð22Þ

Then it is easily checked that A0 is indeed a discrete skew-adjoint

linear operator in H. Because in previous sections, we consider 	
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and k being only real numbers, this means that all results in previous

sections are still valid for A0. From Lemma 2, each eigenvalue of A0 is

geometrically simple and hence algebraically simple and the character-

istic equation satisfied by � ¼ i!2 2 
ðA0Þ is

ð�Im!
4 þ �Þf1 þMJ!4 þ ðM!� J!3Þ sinh! cos!

� ðM!þ J!3Þ cosh! sin!þ ð1 �MJ!4Þ cosh! cos!g

þ !f�2J!3 cosh! cos!þ ð�1 þMJ!4Þ cosh! sin!

þ ð1 �MJ!4Þ sinh! cos!� 2M! sinh! sin!g ¼ 0: ð23Þ

Because all eigenvalues of A0 lie on the imaginary axis and the

eigenvalues appear in conjugate pairs, we need consider only positive

solutions of (23) in order to find eigenvalues of A0. Like (19), we write

(23) asymptotically to be

cos! ¼ Oð!�1Þ ð24Þ

The positive solutions of (24) are of

! ¼ !n ¼ ðn� 1=2Þ�þOðn�1Þ ð25Þ

for sufficiently large n. Same to (17), it has

�n ¼ i!2
n ¼ i ½M�1 þ ðm�Þ2� þ Oðn�1Þ: ð26Þ

The difference between (26) and (17) is that (26) is indeed an asymptotic

expression for all eigenvalues of A0 on the up half complex plane.

From Lemma 2, we can obtain the unique (up to a scalar) eigenfunc-

tion of A0 associated with �n to be

�n ¼ ð fn,�n fn, Im�n f
0
nð0Þ,M�n fnð1Þ, J�n f

0
nð1ÞÞ

¼ ð fn,�n fn,�
�1
n ½ f 00

nð0Þ � �f
0
nð0Þ�,�

�1
n f 000

n ð1Þ, � �
�1
n f 00

nð1ÞÞ ð27Þ
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where

fnðxÞ ¼ �ð1 þMJ!4Þ sinh!nx

þ ½�2J!3
n cos!n þ ð�1 þMJ!4

nÞ sin!n� cosh!nð1 � xÞ

þ ½2J!3
n cosh!n � ð1 þMJ!4

nÞ sin!n

þ ð�1 þMJ!4
nÞ sinh!n� cos!nð1 � xÞ

þ ½ð1 �MJ!4
nÞ cos!n � 2M!n sin!n� sinh!nð1 � xÞ

þ ½ð1 �MJ!4
nÞ cosh!n þ ð1 þMJ!4

nÞ cos!n

þ 2M!n sinh!n� sin!nð1 � xÞ: ð28Þ

By Lemma 3

GnðxÞ ¼

e�m�ð1�xÞ � e�m�x sinm�þ cosm�ð1� xÞ � sinm�ð1� xÞ

i ½e�m�ð1�xÞ � e�m�x sinm�� cosm�ð1� xÞ þ sinm�ð1� xÞ�

0

0

0

0
BBBBBB@

1
CCCCCCA

þOðn�1Þ ð29Þ

where

GnðxÞ ¼ �2ðMJÞ�1!�6
n e�!n ð f 00

n,�n fn, Im�n f
0
nð0Þ,M�n fnð1Þ,J�n f

0
nð1ÞÞ

T

and

�2ðMJÞ�1!�6
n e�!n f 0

nð0Þ ¼ Oðn�1Þ:

Since A0 is a discrete operator, there are only finite number of

eigenvalues in any bounded complex region, all f�2ðMJÞ�1
	

!�6
n e�!n�ng [ ftheir conjugatesg with at most other finite number of

generalized eigenfunctions (in the sense of !-linearly independent) of

A0 form a Riesz basis for H. Therefore, we may assume, without

loss of generality that

Generalized eigenfunctions of A0 ¼ f�2ðMJÞ�1!�6
n e�!n�ng

1
1 [

ftheir conjugatesg:
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It follows from (18) and (29) that there exists an N> 0 such that

X1
n>N

k2ðMJÞ�1
�6
n e�
n�n � 2ðMJ Þ�1!�6

n e�!n�nk
2
H ¼

X1
n>N

Oðn�2Þ <1:

ð30Þ

The same thing is true for their conjugates. Therefore, considering

f��n=ðMJ!6
ne
!n Þg11 [ ftheir conjugatesg being a reference Riesz basis,

Theorem 1 can be applied to obtain our main result of the article.

THEOREM 2 For any �>0 and real numbers 	 and k

(i) there is a sequence of generalized eigenfunctions of operator A,

which forms a Riesz basis for the state space H;

(ii) (17) is an asymptotic expression for all eigenvalues of A;

(iii) all eigenvalues of A with sufficiently large modulus are algebraically

simple, therefore, A generates a C0-group on H and the spectrum-

determined growth condition holds for the semigroup eAt generated

by A: !(A)¼S(A).

4 EXPONENTIAL STABILITY

It is seen from (17) that if k<0, then system (6) is never exponentially

stable. In this section, we shall show that system (6) is exponentially

stable if

	 � �k > 0: ð31Þ

Since the spectrum-determined growth condition holds, it follows

from (ii) of Theorem 2 that eAt is exponentially stable under condition

(31) if and only if Re � < 0 for all � 2 
ðAÞ.

THEOREM 3 Suppose 	 � �k > 0. Then there exists an ! > 0 such that

Re � < �! for all � 2 
ðAÞ. Therefore, the C0-semigroup eAt generated

by A is exponentially stable:

keAt�k � Me�!tk�k, for any � 2 H

where M>0 is a constant independent of �.
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Proof It suffices to show that Re � < 0 for all � 2 
ðAÞ. We start

from the eigen problem (14). Assume k�þ 1 6¼ 0. Multiplying ���, the

conjugate of �, on both sides of the first equation in (14) and integrat-

ing from 0 to 1 with respect to x yields

Z 1

0

j�00ðxÞj2dxþ �2


 Z 1

0

j�ðxÞj2dxþMj�ð1Þj2 þ Jj�0ð1Þj2
�

þ
Im�

2 þ 	�þ �

k�þ 1
j�0ð0Þj2 ¼ 0: ð32Þ

Clearly, if � is a real number, it must have �<0 (Notice Lemma 1,

�¼ 0 is always not in the spectrum of A). Suppose that � ¼ �1 þ i�2,

�2 6¼ 0. Then comparing the imaginary part of (32) yields

2�1


 Z 1

0

j�ðxÞj2dxþMj�ð1Þj2 þ Jj�0ð1Þj2
�

þ
kImj�j

2 þ 2Im�1 þ 	� �k

jk�þ 1j2
j�0ð0Þj2 ¼ 0: ð33Þ

There are two cases. When �1 6¼ 0, it is obvious that �1 < 0 as 	 � �k.

While as �1 ¼ 0, it must be �0ð0Þ ¼ 0 and so �00ð0Þ ¼ 0 from the bound-

ary condition of (14). In this case, the solution of (14) shall be (we may

assume that �2 > 0) �ðxÞ ¼ sinh
ffiffiffiffiffiffiffiffi
�2x

p
� sin

ffiffiffiffiffiffiffiffi
�2x

p
. But from the

boundary condition �000ð1Þ ¼ �M�2
2�ð1Þ, we arrive the contradiction

that

cosh
ffiffiffiffiffi
�2

p
þ cos

ffiffiffiffiffi
�2

p
¼ �M

ffiffiffiffiffi
�2

p
ðsinh

ffiffiffiffiffi
�2

p
� sin

ffiffiffiffiffi
�2

p
Þ:

The proof is complete. œ

5 EXACT CONTROLLABILITY

In this section, we consider the following control problem:

yttðx, tÞ þ yxxxxðx, tÞ ¼ 0, 0 < x < 1, t > 0,

yð0, tÞ ¼ 0,

yxxð0, tÞ � Imyxttð0, tÞ � �yxð0, tÞ þ vðtÞ ¼ 0,

yxxxð1, tÞ �Myttð1, tÞ ¼ 0,

yxxð1, tÞ þ Jyxttð1, tÞ ¼ 0:

8>>>>>><
>>>>>>:

ð34Þ
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Let

ZðtÞ ¼ ðyð�, tÞ, ytð�, tÞ, Imyxtð0, tÞ,Mytð1, tÞ, Jyxtð1, tÞÞ: ð35Þ

In the space H, we can write (34) as

d

dt
ZðtÞ ¼ A0ZðtÞ þ bvðtÞ, b ¼ ð0, 0, 1, 0, 0Þ 2 H ð36Þ

where A0 is defined by (22). For simplicity, we denote the all eigen-

functions of A0 as following:

f ~��ngn2Z ¼ fðgn,�ngn, Im�ng
0
nð0Þ,M�ngnð1Þ, J�ng

0
nð1ÞÞgn2Z ð37Þ

which satisfies

ðg00n,�ngn, Im�ng
0
nð0Þ,M�ngnð1Þ, J�ng

0
nð1ÞÞ ¼ GnðxÞ

T , g0nð0Þ ¼ Oðn�1Þ

where Gn is defined by (29).

Definition 1 System (36) (or (A0, b)) is called exact controllable on

[0,T ] in H if for any given Z0,Z1 2 H, there exists a control

vðtÞ 2 L2ð0,T Þ such that the unique corresponding mild solution of

the system (36), which is defined to be

ZðtÞ ¼ eA0tZ0 þ

Z t

0

eA0ðt�sÞbvðsÞdx ð38Þ

satisfies Z(T )¼Z1. System (36) is called approximately controllable

on [0,T ] if for any given states Z0,Z1 2 H and constant � > 0, there

exists a control vðtÞ 2 L2ð0,T Þ such that kZðT Þ � Z1k < �.

Since A0 generates a C0-group, exact controllability is equivalent to

what so called ‘‘null’’ exact controllability: that is, we may choose

Z1¼ 0 in the Definition 1.

PROPOSITION 1 System (36) is approximately controllable on [0,T ] for

any T> 0 in H but never exactly controllable in H for any T> 0.

Proof Since the control operator B0 defined by B0u¼ ub for any

u 2 C is compact from the control space C to H, system (36) is not
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exactly controllable (Theorem 4.1.5 of [19]). For the approximate

controllability, we notice that each eigenvalue of A0 is algebraically

simple and, it can be easily shown that each eigenfunction ~��n ¼

ðgn,�ngn, Im�ng
0
nð0Þ,M�ngnð1Þ, J�ng

0
nð1ÞÞ of A0 satisfies

hb, ~��niH	H ¼ Im�ng
0
nð0Þ 6¼ 0:

It follows from Proposition 3.13 at p. 61 of [10] that system (36) is

approximately controllable. œ

However, our next result shows that the system (36) is exactly con-

trollable when it is confined to the space H1¼ [D(A0)], the graph

space of A0. Let us show the process. Consider H1 to be the pivot

space and let H2 ¼ ½DðA2
0Þ�. Then H2 � H1 � H 0

2, where H 0
2 denotes

the dual space of H2. Hence b 2 H � H 0
2. By definition, for any

Z ¼ ð f , g, Img
0ð1Þ,Mgð1Þ, Jg0ð1ÞÞ 2 H2,

hb,ZiH 0
2
	H2

¼ hb,A�
0A0ZiH	H ¼ �g00ð0Þ þ �g0ð0Þ:

Note that A0 generates a C0-semigroup (still denoted by eA0t Þ in H1

with domain H2. Recall that b is admissible (see e.g. [11]) with respect

to eA0t on H1 if

hb, eA
�
0
tZiH 0

2
	H2

can be extended to be a continuous mapping from H1 to L2(0, T ) for

some T> 0.

PROPOSITION 2 b is admissible for the semigroup eA0t on H1.

Proof For any Z ¼
P

n2Z
an ~��n 2 H2,

hb, eA
�
0
tZiH 0

2
	H2

¼
X
n2Z

ane
��nt½��ng

00
nð0Þ þ ��ng

0
nð0Þ�:

Since all �n are separated by a positive distance, it follows from

a classical result due to Ingham [12] that for any T> 0 there exists

a constant DT> 0 such that

Z T

0

jhb, eA
�
0
tZiH2	H 0

2
j2dt � DT

X
n2Z

jan½��ng
00
nð0Þ þ ��ng

0
nð0Þ�j

2:
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However, it follows from (26) and (29) that

j � �ng
00
nð0Þ þ ��ng

0
nð0Þj ¼ 2j�nj½1 þOðn�1Þ�: ð39Þ

Hence

Z T

0

jhb, eA
�
0
tZiH 0

1
	H2

j2dt � ~CCT

X
n2Z

jan�nj
2 � CTkZk

2
H1

for some ~CCT , CT> 0, proving the result. œ

By Proposition 2, system (36) admits a unique solution in H1 for each

Zð0Þ ¼ Z0 2 H1, which can be expressed as

ZðtÞ ¼ eA0tZ0 þ BðtÞv ð40Þ

where (see [11]) B(t) is a strongly continuous family of bounded opera-

tors BðtÞ : L2ð0,T Þ ! H1 extended by

hBðtÞv,ZiH 0
1
	H1

¼

Z t

0

hb, eA
�
0
ðt�sÞZiH 0

2
	H2

vðsÞds, 8Z 2 H2: ð41Þ

THEOREM 4 There exists a T0> 0 such that for any T>T0, system

(36) is exactly controllable on [0,T ] in H1.

Proof By duality principle (see [13]), (A0, b) is exact controllable [0,T ]

if and only if ðA�
0, b

�Þ ¼ ð�A0, b
�Þ is exact observable on [0,T], where

b� is the adjoint operator of b which is considered to be an operator

from input space C to H 0
2. Precisely, there exists a constant T0 > 0

such that for each T>T0, there exists a constant CT> 0 such that

Z T

0

jb�eA
�
0
tZj2dt � CTkZk2

H1
for any z 2 H1: ð42Þ

Since b is admissible, by duality, b� is an admissible observation

element ([11]), that is b�eA
�
0
tZ is well-defined for any T> 0 in the

sense that Z ! b�eA
�
0
tZ is a continuous mapping from H1 to L2(0,T).
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Suppose Z ¼
P

n2Z
an ~��n 2 H1. Then

b�eA
�
0
tZ ¼

X
n2Z

ane
��nt½��ng

00
nð0Þ þ ��ng

0
nð0Þ�: ð43Þ

Again by (39) and Ingham Theorem, there exists an T0 > 0 such that

for any T>T0, there are constants ~CCT , C(T), CT> 0 such that

Z T

0

jb�eA
�
0
tZj2dt � ~CCT

X
n2Z

jan½��ng
00
nð0Þ þ ��ng

0
nð0Þ�j

2

� CðTÞ
X
n2Z

jan�nj
2 � CTkZk2

H1
:

The proof is complete. œ

Theorem 4 may imply the exponential stability of the closed-loop of

the following collocated output feedback system in H1:

d

dt
ZðtÞ ¼ A0ZðtÞ þ bvðtÞ, b ¼ ð0, 0, 1, 0, 0Þ 2 H,

OðtÞ ¼ b�ZðtÞ,

vðtÞ ¼ kOðtÞ:

8>>><
>>>:

ð44Þ

For general theory, we refer to [20]. Actually, for any k> 0, let

	¼ k�. If Z0 ¼ ðy0, y1, Imy
0
1ð0Þ,My1ð1Þ, Jy

0
1ð1ÞÞ 2 DðA0Þ, then Y0 ¼

ðy0, y1, Imy
0
1ð0Þ � ky000ð0Þ,My1ð1Þ, Jy

0
1ð1ÞÞ 2 DðAÞ. Let Y(t)¼ (y(�, t),

yt(�, t), Imyxt(0, t)� kyxx(0, t),Myt(1, t), Jyxt(1, t)) be the solution to (6)

with Y(0)¼Y0. Then Z(t)¼ (y(�, t), yt(�, t), Imyxt(0, t),Myt(1, t),

Jyxt(1, t)) satisfies (44) with Z(0)¼Z0 in the strong sense of H norm.

Since eAt is exponentially stable on H and Y0 2 DðAÞ, we have

kAeAtY0kH ¼ keAtAY0kH � keAtk kAY0kH � Me�!tkAY0kH

for some M, !> 0. However,

kAeAtY0k
2
H ¼

Z 1

0

½y2
xxxxðx, tÞ þ ½y2

xxtðx, tÞ�dxþ �jyxtð0, tÞj2 þ I�1
m jyxxð0, tÞ

� �yxð0, tÞ � 	yxtð0, tÞj2 þM�1jyxxxð1, tÞj2 þ J�1jyxxð1, tÞj2
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kZðtÞk2
H1

¼

Z 1

0

½ y2
xxxxðx, tÞ þ y2

xxtðx, tÞ�dxþ �jyxtð0, tÞj2 þ I�1
m jyxxð0, tÞ

� �yxð0, tÞj2 þM�1jyxxxð1, tÞj2 þ J�1jyxxð1, tÞj2:

Hence there are constants C1,C2 > 0 such that

C1kAe
AtY0kH � kZðtÞkH1

� C2kAe
AtY0kH :

Therefore,

kZðtÞkH1
� C2=C1Me�!tkZ0kH1

: ð45Þ

That is, the closed-loop of the system (44) is exponentially stable in H1.

Finally, we relate the system (34) to an optimal control problem.

For any T> 0, let

EðTÞ ¼
1

2

Z 1

0

½ y2
xxðx, tÞ þ y2

t ðx, tÞ�dxþ
�

2
y2
xð0, tÞ

þ
Im
2
y2
xtð0, tÞ þ

M

2
y2
t ð1, tÞ þ

J

2
y2
xtð1, tÞ

ð46Þ

be the total energy of the system (34). Set

JðvÞ ¼ EðTÞ þ
	

2

Z T

0

y2
xtð0, tÞdtþ

1

2	
v2ðtÞdt: ð47Þ

Since EðTÞ ¼ Eð0Þ þ
R T

0 yxtð0, tÞvðtÞdt, a straightforward calculation

shows that (see also [21])

JðvÞ ¼ Eð0Þ þ
1

2

Z T

0

	�1½vðtÞ þ 	yxtð0, tÞ�2dt � Eð0Þ

Jðv�Þ ¼ Eð0Þ, v�ðtÞ ¼ �	yxtð0, tÞ,

ð48Þ

That is v�ðtÞ ¼ �	yxtð0, tÞ is the optimal feedback control of system

(34) under cost functional (47). But asymptotic expression (17)

shows that system (34) is never exponentially stable under this optimal

feedback control. Our result of present article shows that in order to
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uniformly stabilize system (34), we need a ‘‘high derivative’’ feedback

control vðtÞ ¼ �	yxtð0, tÞ þ kyxxtð0, tÞ. The related optimal control

problem needs further investigations.

6 NUMERICAL SIMULATION

Due to the spectrum-determined growth condition claimed by

Theorem 2, the growth order !(A) of the system (6), that is,

!ðAÞ ¼ inff! jEðtÞ � Me!tEð0Þ, for some M � 1g ð49Þ

where E(t) is defined by (46), is identical to the supremum of real parts

of those � satisfying (14) with some nonzero �, which is a finite dimen-

sional problem. It is seen from (17) that if k¼ 0, then !(A)¼ 0. When

k> 0, Theorem 3 tells us that !(A)<0 provided that 	� k�. For given

system parameters M, J, Im, �, denote specifically by !	,k(A) the

growth order !(A) with feedback gains 	 and k. One of optimization

problems is to find optimal (	�, k�) such that !	�, k� ðAÞ � !	, kðAÞ for

any 	> 0, k> 0. In this section, we shall use spectral method to cal-

culate !	,k(A) [22]. Starting from eigenvalue problem (14) and setting

f ðxÞ ¼ �
xþ 1

2

� �
ð50Þ

we obtain

f 0000ðxÞ þ �2f ðxÞ ¼ 0, � 1 < x < 1,

f ð�1Þ ¼ ðIm�
2 þ 	�þ �Þ f 0ð�1Þ � 2ðk�þ 1Þ f 00ð�1Þ ¼ 0,

8f 000ð1Þ �M�2f ð1Þ ¼ 0,

2f 00ð1Þ þ J�2f 0ð1Þ ¼ 0:

8>>>><
>>>>:

ð51Þ

Let Pn(x) be the Legendre polynomial of degree n, satisfying

d

dx
ð1 � x2Þ

d

dx
PnðxÞ


 �
þ nðnþ 1ÞPnðxÞ ¼ 0,

Pnð1Þ ¼ 1:

8><
>: ð52Þ
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We approximate f (x) by fN (x)

fNðxÞ ¼
XN
n¼0

anPnðxÞ: ð53Þ

We refer the procedure to [22] for details. Here we take N¼ 100. Using

this method, the total of 101 eigenvalues on the up half complex plane

are easily calculated by MATLAB in PC. As it was indicated in [22]

that in computing eigenvalues of boundary value problems with any

discretization method, only those numerical values of small magnitude

have significant accuracy, we only conclude the first 50 eigenvalues on

the up half complex plane although, for our problem, there is no big

change even for large magnitude eigenvalues.

Here we take Im¼M¼ J¼ �¼ 1. Figure 1 shows the functional

relation of !	,1(A) with respect to 	 for 	¼ 0 to 	¼ 6. Figure 2

demonstrates the same relation of !1,k with respect to k. Both

cases suggest us that the optimal (	�, 1) and (1, k�) do exist. An inter-

esting fact is that our assumption 	� k� may be necessary since from

these two pictures that !(A) can be positive outside region 	� k�.

FIGURE 1 Functional relation between !	,1(A) and 	(Im¼ J¼M¼ �¼ 1).
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7 CONCLUDING REMARKS

In this article, we consider the tracking control problem of a flexible

beam with a tip rigid body. A ‘‘high derivative’’ linear feedback con-

trol is designed regardless of dissipativity of the system. By use of an

abstract result on basis generation of discrete operators in Hilbert

spaces, we show that the closed-loop system is a Riesz spectral

system [19]: there is a sequence of the generalized eigenfunctions of

the system, which forms a Riesz basis for the state Hilbert space.

In the process of verification of the basis property, an asymptotic

expression of eigenpairs is easily obtained. As a consequence, the

exponential stability, the controllability of the system are concluded.

Comparing with [16], our dynamic equation is more complicated: it

considers not only the mass and moment of inertia of the tip rigid

body, but also the counterparts of driven motor. This presents the

states of system 5 components. Moreover, unlike the system in

[16], because of lacking dissipativity, some well-known methods

such as multiplier method can not be used to obtain the exponential

stability (even if well-posedness) of the system studied in present

article.

FIGURE 2 Functional relation between !1,k(A) and k(Im¼ J¼M¼�¼ 1).
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