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Motivation

Complex models, large scale:

— Unexpected results, bad performance, solver failure...
Limited information returned by (e.g. NLP) solvers:
— Feasible, KKT conditions satisfied

— No improvement in many iterations: stopping.

— Unable to find feasible point.

— Too many iterations.

— Various specific failure messages...

Questions:

— Why do | have this problem?

— How do | make the solver run better on this model?

Needed: tools to discover the characteristics of models
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Model Characteristics

Some characteristics (e.g. for NLPs):

Shapes of the constraints and objective (convex,
concave, both, almost linear, etc.)

Shape of the feasible region (convex, non-convex)
Redundancy of constraints
Location of feasible region

Insights gained:

Better understanding of outcomes and behaviour
Functions that can be approximated (e.g. linear)
Constraints that can be ignored

Best type of solution algorithm to apply

Good starting point
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Outline

Theory

« Sampling for Characteristic Discovery
— What you can discover

« Tightening Sampling Box for Better Accuracy

« Sampling in Convex Envelopes
— Hit and run methods
— Approximating the analytic centre

* Point-Oriented Analysis
Practice
« MProbe software
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Box Sampling

Random line segments
within variable bounds:

— Uniform distrn for endpoint 1
— Uniform distrn for endpoint 2

Interior points at fixed
positions on line segment
(e.g. 3 equally spaced)
Default settings:

— 500 line segments
— 3 interior points per line

segment \

Info from pts, info from lines
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Empirical Function Shape

« Empirical Shape: based on sampled differences
between actual and interpolated function values
 Depends on where you sample

— E.g. algebraically nonlinear function may be linear in region of
interest

{0

concave

X

convexX
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Tolerances

Difference: interpolated — actual value

Equality tolerance: if difference less than
ttol, g4, then interpolated=actual at that point

Almost tolerance: if difference is less than
ttol, .. then interpolated almost equals actual
at that point

E.g.: tol,qyi,~0-00001, fol,,,s~0.001
Almost identifies candidates for approximation
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Shape Histogram

[Z]Shape Histogram: singularity
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Function Shape Assessment

linear: all diffs within ttol
convex: all diffs are above -tol,,,;;, and at least one above +tol

convex, almost linear: all diffs are above -tol, ., at least one is
between +tolg,,r, and +tol, ., and none are above +tol, -

almost convex: at least one diff is between the -tol,, .. and -tol
and at least one diff is above +tol,; .

concave: all diffs are below +1t0loquaity, @nd at least one is below -tol,

concave, almost linear: all diffs are below +tol, ualty at least one is
between -tol, ., @and -tol, .., and none are below -tolmost-

almost concave: at least one diff is between +tol, .., and +tol
and at least one diff is below -tol;,.«-

convex anpl concave: at least one diff is above +tol
one diff is below -tol;,«-

convex and concave, almost linear: at least one diff is between
+tol \, and the +tol and at least one diff is between -tol

almost-

equality’

equality?

and at least

almost?

equality almost’

equality
and -tol, .«

Discovering Characteristics of Math Programs 9



Summary of Constraint Shape
Assessments

narme | i.d.| bound | alg. shape | emp. shape |req. effect |
myquadratic ¢ 0 Less than a constant Lluadratic Conwves Corrves
myrionlinear 1 Greater than a constant General nonlinear, not quadratic Conves and concave  Monconves
Myerrons & Leszz than a constant General nonlinear, not quadratic | Ermar Shape erors
singularity 3 Less than a congtant General nonlinear, not quadratic | Convex and concave | Moncornves
sinquadratic 4 Equality General nonlinear, not quadratic | Conwves Monconyes
Impogzible A Greater than a constant | Cluadratic Corwvens Monconwves
Inetfective B Greater than a constant | Quadratic Cotrves Monconyes
ImpogsE quality ¢ Equality Cluadratic Corvex and concave | Moncornves
mylinear 8 Lezz than a constant Linear Linear Conves
multipleChoice 9 Equality Linear Linear Conves
mixedT ppes 10 Lezs than a constant Linear Linear Conves
alllrts 11 Inkerval Linear Linear Cormes
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(Un)certainty of Empirical
Assessments

Linear report: confidence increases with testing

Almost linear reports: confidence increases with testing:
— Convex, almost linear

— Concave, almost linear

— Convex and concave, almost linear

Nonlinearity is certain if report is:
— Convex

— Concave

— Convex and concave

— XXX, almost linear

Convex and concave is certain if report is:
— almost convex

— almost concave

— convex and concave
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Constraint Eﬁectiveness

O elim inated )
O -+ ®

o
® ® 0

/

* Inequalities: what fraction of the sampling
enclosure is eliminated?

* Equalities: fractions of sample points
above, below, on the function?
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Simple Feasibility & Redundancy

« Simple constraint

N

redundancy (0% -
effective) enclosure
» Simple feasibility test sampling

enclosure

(100% effective)

N
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Function “slope”

a

\

b

[f(a) — f(b)| / (length a to b)

« Multidimensional idea of “steepness”
* Collect in histogram
« Especially useful for objective functions

Discovering Characteristics of Math Programs

14



Objective Optimum Effects

* Objective sense and shape interact:
— global optimum possible by descent methods
— Local optimum likely

Max: global
opt possible
Min: local opt
like ly

Max or
Min: local
opt likely
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Constraint Region Effect

Effect on shape of
convex

constrained region A \ *  region effect
Inequalities: sense / L—>|
Interacts with shape

N nonconvex

. ; N
Equalltles. / \ region effect
— Linear: convex region  <+— —

effect

— Others: nonconvex
region effect

Discovering Characteristics of Math Programs 16



Shape of Constrained Region

« Assessing shape of the
constrained region:

— All constraints have convex
region effect: feasible region
is convex (if it exists)

— Else constrained region is
nonconvex

* Note: constraints sampled
iIndividually, results
compiled
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Other Info from Sampling

Function value statistics
— histogram, max, min, etc.

Objective function best sampled value and
point (not nec. feasible)

variables min and max sampled values

Line segment length
— effect on conclusions

Discovering Characteristics of Math Programs 18



Tightening Sampling Box for
Improved Accuracy

AN

Sampling box

/ Feasible region
[

« Sampling box should be a close outer
approximation of the feasible region
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Tightening Bounds

Methods:

Manual adjustment

Linear interval analysis

Nonlinear interval sampling

Get a nucleus box

Range cutting

Constraint Consensus bound tightening

Max/min sampled values from convex
enclosure (explanation deferred)
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Linear Interval Analysis

* Applies to the subset of linear constraints

» Like standard presolve: bound changes
percolate

 E.Q.
— constraint 2x, — 5x, <10 when -10 < x,x, <10

— Tighten x, lower bound by applying the constraint

when x, is at it's lower bound: 2(-10) - 5x, <10 =

— Conclusion: true bounds are -6 < x, < 10.
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Nonlinear Interval Sampling

to— ' 1= »
inequality b) equality
Apply to each constraint in turn
overtightens

non-overlap? return the gap itself
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Get a Nucleus

1
Il

 For unbounded variables

* Look at constraints involving the variable that
were never satisfied during interval sampling

 try gradually larger boxes centred at origin. Stop
when next box shows no feasible points
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Nonlinear Range Cutting

any feasible ’—\
points?

* Accept cut if at least one constraint never
satisfied when sampling in the zone

* equalities: "satisfied” if find one pt <rhs
and one pt > rhs
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Constraint Consensus Heuristic

Quickly achieves approximate
feasibility

For each violated constraint:
estimate vector to achieve
feasibility

Consensus vector:

Component-wise average of
feasibility vectors

Update point using consensus
vector

Repeat until close to feasible

Feasible
region
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Constraint Consensus bound

tightening
| | °
o Final pomt\* i} ¢ ® ® ®
O
° OO OO O ¢ ° ®
o 0°© 0 ®
® ® Initial point

* Apply CC method from numerous random
initial points in current sampling box

* Shrink bounds to encompass cloud of final
points
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Sampling in Convex Enclosures

How do you find a convex region that
encloses the feasible region?

Procedure:

1. analyze constraint region effects by box
sampling

2. select inequalities that have convex region
effects and all variable bounds

Sample via hit-and-run methods
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Hit-and-Run Sampling

hit constraints are non-enclosure
necessary, unhit constraints

are redundant (relative to
enclosure)

estimate fraction of
enclosure surface area 3

non-enclosure constraints \
sampled as usual (shape,

effectiveness, etc.) redundant
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Finding an Initial Feasible Point

Need an initial feasible point to start hit-and-run

Method 1:

« Sample randomly until at least one constraint satisfied
» Thereafter use hit-and-run to keep constraints satisfied
« Stop when all constraints satisfied.

* Note: bias hit-and-run sampling rays according to
variable bounds (long thin boxes are a problem)

Method 2:
* Apply constraint consensus method
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The Analytic Centre

Analytic centre: P is point that maximizes
W=2 [In(distance to constraint) over all constraints.

« Best place to launch rays for estimating surface frac.
Heuristic for finding analytic centre:

« Initial feasible pt is first estimate of P. W always
calculated over necessary constraints found so far.

« Launch hitting rays from P.

* Get new hit-and-run launch point x.
o If W(x)>W(P) then P=x.
Advantages:

* Pushes P away from discovered necessary constraints
towards undiscovered necessary constraints

* Quick convergence to analytic centre.
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“replace current bounds with
max/min sampled values”

« After convex enclosure sampling: tighten bounds

« Use hit points to (over)tighten the variable
bounds

A
@

v

- >
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Point-Oriented Analysis

* Finding (near) feasible points
— What is a good starting point?

* Finding (near) optimal points
* Analyzing features of points
— Why did my solver stop here?
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Finding (Near) Feasible and
Optimum Points

* Finding a near-feasible point.
— constraint consensus method
* Finding a near-optimal point.

— keep track of feasibility status and objective
function value of all sampled points.

— Note best found point and best found feasible
point
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Analyzing Point Features

* Create a small box around a point:

— E.g. shrink bounds to 1% of each current
edge dimension, centred around point

* Look at objective “flatness” in the box
— Histogram of objective “slope” in the box.

Flat (1-D) \/\
——— < o\/
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MProbe

« Software tool embodying these and other
analytic methods

* Reads AMPL, GAMS, MPS files

« Essential part of an integrated
development environment for math
programming
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MProbe Workshops

Variables Workshop
— Shift, tighten variable bounds

Constraints and Objectives Workshops

— Analyze shape, effectiveness, redundancy, set up
convex enclosures for tighter sampling

Constrained Region Workshop
— Analyze shape of feasible region

Points Workshop

— Exchange points with solvers, look for near-feasible
points, etc.
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Additional Features

Model statistics
“Snhapping” of integer/binary variables

Spreadsheet-like displays of constraints,
objectives, variables

— View subsets by category (e.g. only nonlinear
constraints, only binary variables)

— Sort on any column

— N)avigate (e.g. see all constraints that contain variable
X

User adjustment of tolerances, histogram cells
Text file trace of session
Help system
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Constraints Workshop

Showey anly = | Iall LI r 5:@%? 12 of 12 constraints visible
name |id. |bound aly. shape emp. shape | rea. etfect effectiveness | tat. var| real va| int+hin | int. var| bin. var sampling redundancy | surface
L myguadratic o Less than a Quadratic Convex Convex n.a. 2 2 o 1] o Enclosure Mecessary 0165
| |mynonlinear 1 Greater tha  General nonlin Convex and concave  Monconwe:x 05120 2 2 ] 1] ] Analyze n.a. ]
| |myerrors 2 Less than a General nonlin Convex and concave  Monconwyesx 01974 2 2 u] i] u] Analyze n.a. ]
|| =ingularity 3 Less than a General nonlin - Almost convesx Almost convex 00000 2 2 u] i] u] Analyze n.a. ]
| |singuadratic 4 Eqquality General nonlin Convex Monconye: Pozsible. LT:0. 2 2 u] i] u] Analyze n.a. ]
| |imposszible 5 Gregter tha | Guadratic Conwvesx Monconywe: 1.0000 1 1 u] i] u] Analyze n.a. ]
| |ineffective B Grester tha  Guadratic Convex Monconwe:x 0.000a 2 2 1] i} 1] Analyze n.a. ]
| |ImpossEquality 7 Ecjuality Ciadratic Convex and concave  Monconwesx 1.0000 4 2 2 1] 2 Analyze n.a. ]
| |mylinear g Less than a Linear Linear Convex n.a. 2 2 ] 1] ] Enclosure Mecessary 0.043
| |muttipleChoice 9 Ecjuality Linear Linear Convex Possible. LT:0. 3 u] 3 i] 3 Analyze n.a. ]
| |mixedTypes 10 Less than a Linear Linear Convex n.a. 3 1 2 1 1 Enclosure Mecessary 0.099
alllrt=s 11 Interval Linear Linear Convex n.a. 3 u] 3 3 u] Enclosure Mecessary 0183
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Visualizing Shape: Function Profile

e 2 dimensional
plot between 2
endpoints in n-
space

* End-points
selectable and
configurable In
multiple ways

14000

12000

10000

2000

Go00

4000

o= — o = SO —— 0 S C T

2000

1]

/

N /

et

i
=

i ] ] % = =
x| 3] 1 oo r- B4

Foint Mumber (from Paint A to Point B)

Discovering Characteristics of Math Programs

[HH]

39



Constrained Region Workshop

[~ Constrained Region Workshop

constraint count

CONYE: [egion E I
almost conves region i

NORNCONYEs region 3

100% effective constr. 2 I

redundant constraints Ijl
0% effective constr. 1 I
redundant bounds Ijl

ot pet analyzed Ijl
ot a function i

ghape error 1 k-wWaABMIMG: may invalidate analysis. e

koo many math erars 0

Presz button to zee

relevant constraint list

For valed resolts, 2 fenction analpsor choelfd oo Hhe
IR Samline encioiore

— Eztimated Shape of Constrained Region

100% effective constraints have been ignored. 0% effective
conztraintz have been ignored. Analyzis for remaining constraints:
Region iz noncaonvex. Mote warnings below,

— Feasibility Analyzizs
Conztrained region appears to be infeasible.

— Redundancy Analyziz [relative to zampling enclosure] —

Model can be zimplified by removing redundant constraints ar
bounds. [hate: redundant constraints and bounds are part of the
zampling enclosure, 0% effective constraints were zampled inzide
the enclosure]

Enclozure
Statiztics

Help

Cloze
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Points Workshop

todel lnaded.

W ariable: »

|Eu:unstraint: ryguadratic

|Elbie-:ti~.-'e: zinobj

Point Title:

0 of 2 best found poirts are feasible

I best found pt for current objective

I zelect uzer-defined poaoint

Description:

[

Bes=t found point for objective sinokj

S

—Information far this Point
Sel. Obj. Value at this Point:

5. S595E+01

Distance from Con. I myquadratic

(winlated) 6031 E+03 ;|

=SIHF: 1 BOGESE+05
MIFF: Tz

iy |CONEtraint Evalustion Errors: 0

WiEsny IObjeu:tive Evaluation Errars: 0

—Point Info Made
variable | i.d. |type | value gradient value | caon gradient L
LAk 1] Real -5.33617E+01 0E+00 -2 1344 7E+02
= 2 Feal 5.69106E+00 OE+00 OE+00
| |z2 3 Real -7.43965E+00 QE+00 QE+00
singuadi 4 Real -5.49001E+00 OE+00 OE+00
singuad2 5 Real 4.19051E+00 OE+00 QE+00
| |mt1 G Real -9.453069E-01 0E+00 QE+00
| |mt2 7 Real -9.653463E-01 QE+00 QE+00
L y! g Binar 7.00611E-01 0E+00 QE+00
| v2 9 Binar 3.53893E-01 QE+00 QE+00
sinpd 10 Real  1.36949E+01 -9.99957E-01 QE+00
zinp2 11 Feal &.35908E+01 1E+00 OE+00
Sort on zelected columngz) = I szcending - I ™ Show Temp Bnd Info ™ Show Crrigg Brd Info Showy only = Iall LI
Pertarm Action = Idu:u random sampling to look for points of interest d Edit this Point Sl Sl JJAT: | i | =t |
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Conclusions

« Model probing and analysis tools a vital part of
IDE for math programming

« Shape analysis tools are heuristic and based on
random sampling
— Tools don’t always work, but often do.
— Can be slow for very large or very complex models
— Performance depends on characteristics of the model

« Download: www.sce.carleton.ca/faculty/
chinneck/mprobe.html
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Research Directions

Better Sampling

— Interior pts on line segments means more samples
towards centre of sampling box

Better bound tightening
— Better interaction among the component methods

Determining best approximations of functions
(e.g. best piecewise linear approximation)

Connection to computer algebra system
(Matlab?)

Tool for identifying implied equalities
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