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Motivation
• Complex models, large scale:

– Unexpected results, bad performance, solver failure…
• Limited information returned by (e.g. NLP) solvers:

– Feasible, KKT conditions satisfied
– No improvement in many iterations: stopping.
– Unable to find feasible point.
– Too many iterations.
– Various specific failure messages…

• Questions:
– Why do I have this problem?  
– How do I make the solver run better on this model?

• Needed: tools to discover the characteristics of models
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Model Characteristics
Some characteristics (e.g. for NLPs):
• Shapes of the constraints and objective (convex, 

concave, both, almost linear, etc.) 
• Shape of the feasible region (convex, non-convex)
• Redundancy of constraints
• Location of feasible region
Insights gained:
• Better understanding of outcomes and behaviour
• Functions that can be approximated (e.g. linear)
• Constraints that can be ignored
• Best type of solution algorithm to apply
• Good starting point
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Outline
Theory
• Sampling for Characteristic Discovery

– What you can discover
• Tightening Sampling Box for Better Accuracy
• Sampling in Convex Envelopes

– Hit and run methods
– Approximating the analytic centre

• Point-Oriented Analysis
Practice
• MProbe software
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Box Sampling
• Random line segments 

within variable bounds:
– Uniform distrn for endpoint 1
– Uniform distrn for endpoint 2

• Interior points at fixed 
positions on line segment 
(e.g. 3 equally spaced)

• Default settings:
– 500 line segments
– 3 interior points per line 

segment
• Info from pts, info from lines
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Empirical Function Shape
• Empirical Shape: based on sampled differences

between actual and interpolated function values
• Depends on where you sample

– E.g. algebraically nonlinear function may be linear in region of
interest

c o nc a v e  

c o n ve x  

x  

f ( x)  
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Tolerances

• Difference: interpolated – actual value
• Equality tolerance: if difference less than 

±tolequality then interpolated=actual at that point
• Almost tolerance: if difference is less than 

±tolalmost then interpolated almost equals actual 
at that point

• E.g.: tolequality=0.00001, tolalmost=0.001
• Almost identifies candidates for approximation
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Shape Histogram
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Function Shape Assessment
linear: all diffs within ±tolequality
convex: all diffs are above -tolequality and at least one above +tolalmost.
convex, almost linear: all diffs are above -tolequality, at least one is 

between +tolequality and +tolalmost, and none are above +tolalmost.
almost convex: at least one diff is between the -tolalmost and -tolequality, 

and at least one diff is above +tolalmost
concave: all diffs are below +tolequality, and at least one is below -tolalmost
concave, almost linear: all diffs are below +tolequality, at least one is 

between -tolequality and -tolalmost, and none are below -tolalmost.
almost concave: at least one diff is between +tolalmost and +tolequality, 

and at least one diff is below -tolalmost.
convex and concave: at least one diff is above +tolalmost, and at least 

one diff is below -tolalmost.
convex and concave, almost linear: at least one diff is between 

+tolequality and the +tolalmost, and at least one diff is between -tolequality
and -tolalmost.
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Summary of Constraint Shape 
Assessments
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(Un)certainty of Empirical 
Assessments

• Linear report: confidence increases with testing
• Almost linear reports: confidence increases with testing:

– Convex, almost linear
– Concave, almost linear
– Convex and concave, almost linear

• Nonlinearity is certain if report is:
– Convex
– Concave
– Convex and concave
– xxx, almost linear

• Convex and concave is certain if report is:
– almost convex
– almost concave
– convex and concave
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Constraint Effectiveness

• Inequalities: what fraction of the sampling 
enclosure is eliminated?

• Equalities: fractions of sample points 
above, below, on the function?

e l i m i n a t e d  
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Simple Feasibility & Redundancy

• Simple constraint 
redundancy (0% 
effective)

• Simple feasibility test 
(100% effective)

s a m p ling  
e nc lo s u r e  

sampling 
enclosure 
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Function “slope”

|f(a) – f(b)| / (length a to b)

• Multidimensional idea of “steepness”
• Collect in histogram
• Especially useful for objective functions

a 

b 
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Objective Optimum Effects

• Objective sense and shape interact:
– global optimum possible by descent methods
– Local optimum likely

M a x :  g lo b a l  
o p t  p o s s ib le  
M in :  lo c a l o p t  
lik e ly  

M a x  o r  
M in :  lo c a l  
o p t  li k e ly  
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Constraint Region Effect

• Effect on shape of 
constrained region

• Inequalities: sense 
interacts with shape

• Equalities:
– Linear: convex region 

effect
– Others: nonconvex 

region effect

conve x 
reg io n e ffec t 

no nco nve x  
reg io n e ffec t 



Discovering Characteristics of Math Programs 17

Shape of Constrained Region

• Assessing shape of the 
constrained region:
– All constraints have convex 

region effect: feasible region 
is convex (if it exists)

– Else constrained region is 
nonconvex

• Note: constraints sampled 
individually, results 
compiled
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Other Info from Sampling

• Function value statistics
– histogram, max, min, etc.

• Objective function best sampled value and 
point (not nec. feasible)

• variables min and max sampled values
• Line segment length

– effect on conclusions
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Tightening Sampling Box for 
Improved Accuracy

• Sampling box should be a close outer 
approximation of the feasible region

Feasible region

Sampling box
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Tightening Bounds
Methods:
• Manual adjustment
• Linear interval analysis
• Nonlinear interval sampling
• Get a nucleus box
• Range cutting
• Constraint Consensus bound tightening
• Max/min sampled values from convex 

enclosure (explanation deferred)
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Linear Interval Analysis

• Applies to the subset of linear constraints
• Like standard presolve: bound changes 

percolate
• E.g.:

– constraint 2x1 − 5x2 ≤ 10 when -10 ≤ x1,x2 ≤ 10
– Tighten x2 lower bound by applying the constraint 

when x1 is at it’s lower bound: 2(-10) − 5x2 ≤ 10 �
x2 ≥ -6.    

– Conclusion: true bounds are -6 ≤ x2 ≤ 10. 
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Nonlinear Interval Sampling

a) inequality          b) equality
• Apply to each constraint in turn
• overtightens
• non-overlap?  return the gap itself

x  

y  

x  

y  

( a )  ( b )  
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Get a Nucleus

• For unbounded variables
• Look at constraints involving the variable that 

were never satisfied during interval sampling
• try gradually larger boxes centred at origin.  Stop 

when next box shows no feasible points
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Nonlinear Range Cutting

• Accept cut if at least one constraint never 
satisfied when sampling in the zone

• equalities: “satisfied” if find one pt ≤ rhs
and one pt ≥ rhs

a n y  f e a s ib l e  
p o in t s ?  
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Constraint Consensus Heuristic
• Quickly achieves approximate 

feasibility
• For each violated constraint: 

estimate vector to achieve 
feasibility

• Consensus vector: 
Component-wise average of 
feasibility vectors

• Update point using consensus 
vector

• Repeat until close to feasible

Feasible 
region
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Constraint Consensus bound 
tightening

• Apply CC method from numerous random 
initial points in current sampling box

• Shrink bounds to encompass cloud of final 
points

Initial point

Final point



Discovering Characteristics of Math Programs 27

Sampling in Convex Enclosures

How do you find a convex region that 
encloses the feasible region?

Procedure:
1. analyze constraint region effects by box 

sampling
2. select inequalities that have convex region 

effects and all variable bounds
Sample via hit-and-run methods



Discovering Characteristics of Math Programs 28

Hit-and-Run Sampling
• hit constraints are 

necessary; unhit constraints 
are redundant (relative to 
enclosure)

• estimate fraction of 
enclosure surface area

• non-enclosure constraints 
sampled as usual (shape, 
effectiveness, etc.)

1 

2 3 

non-enclosure 

redundant 
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Finding an Initial Feasible Point
Need an initial feasible point to start hit-and-run

Method 1:
• Sample randomly until at least one constraint satisfied
• Thereafter use hit-and-run to keep constraints satisfied
• Stop when all constraints satisfied.
• Note: bias hit-and-run sampling rays according to 

variable bounds (long thin boxes are a problem)

Method 2:
• Apply constraint consensus method
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The Analytic Centre
Analytic centre: P is point that maximizes 

W=�[ln(distance to constraint) over all constraints.
• Best place to launch rays for estimating surface frac.
Heuristic for finding analytic centre:
• Initial feasible pt is first estimate of P.  W always 

calculated over necessary constraints found so far.
• Launch hitting rays from P.
• Get new hit-and-run launch point x.
• If W(x)>W(P) then P=x.
Advantages:
• Pushes P away from discovered necessary constraints 

towards undiscovered necessary constraints
• Quick convergence to analytic centre.
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“replace current bounds with 
max/min sampled values”

• After convex enclosure sampling: tighten bounds
• Use hit points to (over)tighten the variable 

bounds

sampling enclosure
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Point-Oriented Analysis

• Finding (near) feasible points
– What is a good starting point?

• Finding (near) optimal points
• Analyzing features of points 

– Why did my solver stop here?
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Finding (Near) Feasible and 
Optimum Points

• Finding a near-feasible point: 
– constraint consensus method

• Finding a near-optimal point: 
– keep track of feasibility status and objective 

function value of all sampled points.
– Note best found point and best found feasible 

point
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Analyzing Point Features

• Create a small box around a point: 
– E.g. shrink bounds to 1% of each current 

edge dimension, centred around point
• Look at objective “flatness” in the box

– Histogram of objective “slope” in the box.

Flat (1-D)
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MProbe

• Software tool embodying these and other 
analytic methods

• Reads AMPL, GAMS, MPS files
• Essential part of an integrated 

development environment for math 
programming
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MProbe Workshops
Variables Workshop

– Shift, tighten variable bounds
Constraints and Objectives Workshops

– Analyze shape, effectiveness, redundancy, set up 
convex enclosures for tighter sampling

Constrained Region Workshop
– Analyze shape of feasible region

Points Workshop
– Exchange points with solvers, look for near-feasible 

points, etc.
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Additional Features
• Model statistics
• “Snapping” of integer/binary variables
• Spreadsheet-like displays of constraints, 

objectives, variables
– View subsets by category (e.g. only nonlinear 

constraints, only binary variables)
– Sort on any column
– Navigate (e.g. see all constraints that contain variable 

x)
• User adjustment of tolerances, histogram cells
• Text file trace of session
• Help system
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Constraints Workshop
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Visualizing Shape: Function Profile

• 2 dimensional 
plot between 2 
endpoints in n-
space

• End-points 
selectable and 
configurable in 
multiple ways
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Constrained Region Workshop
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Points Workshop
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Conclusions

• Model probing and analysis tools a vital part of 
IDE for math programming

• Shape analysis tools are heuristic and based on 
random sampling
– Tools don’t always work, but often do.
– Can be slow for very large or very complex models
– Performance depends on characteristics of the model

• Download: www.sce.carleton.ca/faculty/
chinneck/mprobe.html
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Research Directions
• Better Sampling

– Interior pts on line segments means more samples 
towards centre of sampling box

• Better bound tightening
– Better interaction among the component methods

• Determining best approximations of functions 
(e.g. best piecewise linear approximation)

• Connection to computer algebra system 
(Matlab?)

• Tool for identifying implied equalities
• Etc……….
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