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ABSTRACT

The presence of bounded variables complicates finite termination procedures in interior-
point methods for linear programming. ln our numerical experiments, we found that satisfying
the upper bound constraints was the main obstacle to computing an exact solution of a linear
program. To prevent the computed solution from violating the bound constraints, one approach
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incorporates nearest bound information into a projection model through an afbe scaling trans-
formation. This works well in practice but may introduce ill-conditioning due to the potential
presence of infinitesimal weights, particularly for variables near a bound.

In this paper, we investigate the role of Tapia indicators in finite termination procedures.
Using Tapia indicators, we identify variables in the active set, remove them from the sub-
problem, and solve a lower dimensional projection problem. Numerical evidence suggests that
using Tapia indicators to identify variables in the active set in tandem with an affine scaling
transformation results in the fewest iterations needed to compute an exact solution of a linear
program.
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1 Introciuction

We consider one class of finite termination procedures called optimal face identification methods.
Optimal face identification methods identifj the face upon which the objective function attains
its optimal value. The opt imal face is uniquely defined by the active set, the set of variables
which are at a,bound at the solution. Once the active set has been identified, the exact solution
of a linear program can be obtained by computing an interior feasible point on the optimal face.
For a survey of optimal face identification methods, see Williams, E1-Bakry, and Tapia [32].

Adding optimal face identification methods to the interior-point framework can lead to
computational savings and highly accurate solutions. Moreover, a point on the optimal face
can be used to generate an optimal basic solution in strongly polynomial time, see for example
Megiddo [18], Bixby and Saltzman [4], Andersen and Ye [2], and Andersen [3]. Knowledge of
the optimal face in sensitivity analysis in the context of interior-point methods was assumed
by Adler and Monteiro [1]; Monteiro and Mehrotra [22]; Jansen, Roos, and Terlaky [13, 14];
Jansen, Roos, Terlaky, and Vial [15]; and Greenberg [10, 11].

In this paper, we predict the active set of a linear program and remove the correspond-
ing variables from the optimal face identification problem. We compare the efficiency of this
approach with the incorporation of bound information through an affine scaling transformation.

1.1 The Linear Programming Problem

We consider linear programs of the form

minimize CTX
subject to Ax= b, (1)

l< X<U,

where c, x G R~, b c Rn, A c R~x” (m < n) and A has full rank m. The vector 1 c R“
represents the vector of lower bounds and u ● Rn represents the vector of upper bounds for
the vector x. Without loss of generality, we assume all the variables have lower bounds of zero
and finite upper bounds. Problem (1) written in standard form is

minimize c?x
subject to AX = b,

X+s=u,
(2)

Z,s>o,

where s E FL~ is the primal slack vector. The inequality x z O denotes component-wise
nonnegativity.

#
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The Karush-Kuhn-Tucker( KKT) conditions for (2) are

[ 1-

Ax–b
x-l —s-u

F’(z, y, z, S,w) = ATy+z–w–c = o, (z,z,s, w) >0, (3)
XZe
SWe

where X = diag(z), Z = diag(z), S = diag(s), W = diag(w), and e is the n-vector of all ones.
The vector y c Rm is the vector of Lagrange multipliers corresponding to the equality con-
straints, z E Rn is the Lagrange multiplier vector corresponding to the lower bound constraints,
and w E Rn is the Lagrange multiplier vector corresponding to the upper bound constraints.

The Jacobian of (3) is

F’(z, g, Z, s, w) =

AO 000
IO 010
OAT I–10
Zoxoo

(4)

The vectors z and s are feasible for the primal problem if Az = b,x +s = u, and (z,s) z O.

(Ooows

We say that z and w are feasible for the dual problem if there exists y such that (y, z, w) is
feasible for the dual constraint, ATy + z – w = c. A point (z, y, z,s, W) is said to be strictly
feasible if it satisfies Ax = b, z +s = u, ATy + z – w = c, and (z, z,s, w) >0.

We denote the solution set of (3) as

s = {(x, gqz, s,w) : F(z, y,z, s,w) = o, (Z, z,s, w) ~ o}.

If a solution satisfies x + z >0 and s + w >0, in addition to XZe = O and SWe = O, then
this solution is said to satis& the strict complementarily condition or strict complementarily.
Given a feasible point (z, y, z,s, w) we see that ll~(x, y, z,s, w) [[1= XTZ+STW. It can be shown
that the expression ZTZ + STW is equal to the duality gap, which vanishes at any solution.

1.2 Algorithmic I?ramework

It is well-known that the Kojima, Mizuno, and Yoshise [16] primal-dual interior-point method
for linear programming can be viewed as perturbed and damped Newton’s method on the
first order optimality conditions. In this section, we describe an infeasible primal-dual Newton
interior-point method since we implement our finite termination procedures in an infeasible
interior-point method.

Algorithm 1 (Infeasible Primal-Dual Interior-Point Algorithm)
Given V“ = (Zo, yo, zo, so, wo) with (Zo, zo, so, wo) >0, fork= 0,1,..., do
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1. Choose # c (O, 1) and set pk = ((zk)Tzk + (sk)Twk)/2n.

2. Solve for the step Auk

F’(vk)Av~ = –F’(vk) + okp~ where p 20

3. Choose # E (O,1) and set ak = rnin(l, ~kbk), where

4. Let Vk+]

5. Test for

~k = –1

min((X~)–lAzk, (Zk)–lAz~, (S~)–lAs~, (W~)–lAw~)”

::= Vk + CYkAVk.

convergence.

In Step 2,@= (0,..., O,l,..., 1)~ with 2n + m zero components. The optimality conditions
(3) are perturbed so that the Newton direction obtained from the perturbed KKT conditions
does not point towards the boundary. If ok = O (i.e., no perturbation), global convergence may
be precluded. See Proposition 3.1 of Gonzalez-Lima [17] and Tapia [28] for a proof. In Step 4,
the Newton steps are damped to maintain strict positivity of the iterates.

F’or notational convenience, we introduce

2 = (x, s) c R2~ and : = (z, w) c R2n.

If S # 0, then the relative interior of S, TZ(S), is nonempty. In this case, the solution set
S has the following structure (see E1-Bakry, Tapia, and Zhang [6] for a proof): (i) all points
in the relative interior satisfy strict complementarily; (ii) the zero-nonzero pattern of points in
the relative interior is invariant. For any (Z”, g“, ~“) in the relative interior of the solution set
of (2), we deilne the index sets ~ and N as

~={j:ti~> 0,1<j<2n)andfi= {j:i~=0,1<j<2n}.

Moreover,
8UN={1,..., 2n} and ~(1~=0.

Thus the sets ~ and N define the optimal partition of the set {1, 2,..., 2n}. The optimal
partition uniquely defines the optimal primal and dual faces.

The optimal primal face of (2) is

61P={ii: Ax= b,x+s=u, ii20, $j=Oj’ E#}

and the optimal dual face is

&={(y,2) :ATy+z-w=c, Z~0,2j =Ojc 6}.

8



In the following sections, for u e R“, we use the notation

min U = ~mi$n Ui.
— —

The cardinality of set ~ is denoted by l@. Unless otherwise specified, 1]- II is the Euclidean
norm.

The paper is organized as follows. We provide an historical overview of the optimal face
identification problem in Section 2. In Section 3 we describe mathematical models to solve the
optimal face identification problem. Indicators and their role in finite termination procedures
are discussed in Section
remarks in Section 6.

41 We present computational results in Section 5 and concluding

2 Background

In 1989, stopping tests to compute optimal solutions in interior-point methods for linear pro-
gramming were proposed by Gay [9]. While these tests did not constitute a finite termination
procedure because the primal and dual optimality checks were iterative methods, they were
clearly predecessors of current optimal face identification methods. In 1992 Ye [34] popularized
the study of finite termination in interior-point methods for linear programming. He was mo-
tivated by the fact that the simplex method for linear programming has the finite termination
property and also by research activity in efficient algorithmic termination techniques. Ye [34]
established a theoretical base for Gay’s tests when they are added to primal-dual interior-point
algorithms which generate iteration sequences that converge to strict complementarity solu-
tions. The author proposed an orthogonal projection model to identify the optimal primal and
dual faces. Mehrotra and Ye [21] developed a solution technique based on Gaussian elimination
to compute an interior feasible point on the optimal primal and dual faces. Previously Tardos
[29] used Gaussian elimination to calculate a feasible point on the optimal face of an integer
program. Recently, Ye [35] proposed a weighted projection model which incorporates bound
information, for the standard linear program with no upper bound constraints. Ye [35] proved
for k sufficiently large his method when included in a feasible primal-dual interior-point method
computed an exact solution of a linear program in finite time. Williams, E1-Bakry, and Tapia
[33] extended Ye’s weighted projection model and analysis to linear programs with bounded
variables.

The following lemma provides a theoretical basis for most finite termination procedures for
linear programs of the form

minimize C*X
subject to Ax= b, (5)

z~o.

9



Lemma 2.1 (Gtller- Ye [1!2]) Let {(xk, yk, zk)} be an iteration sequence generated by an interior-
point algorithm. Furthermore, let Xk and .zk satisfy

rnzn(XkZke)
(zk)Tzk/n 27

(6)

where y > 0 and is independent of k. Then every limit point of { (xk, Zk)} satisfies the strict
complementary condition.

Lemma 2,1 is sufficient to guarantee that all limit points of the iteration sequence are in
the relative interior of the solution set. Since the nonzero-zero pattern of points is invariant in
the relative interior, the optimal primal and dual faces of (5) are uniquely defined.

3 Mathematical Models

Before describing our proposed modification, we briefly discuss projection models for (5) and
define some notation. The projection models for linear program (5) are important because tra-
ditionally researchers have not explicitly included upper bound constraints into the subproblem.
Instead they treat the upper bounds as side constraints.

We define the index sets 2? and N as

13={j:x~> O,l<j<n}and M={j :x~=O, lSj <n].

The index selts 23 and N define the optimal partition of (5). The columns of A corresponding
to the indices of 23comprise the matrix AB. The matrix AM is formed in an similar manner.
The vector X,5 represents the components of the vector z whose indices are in B.

Ye [35] was the first to incorporate bound information into the optimal face identification
model via an affine scaling transformation of the subproblem. For the standard linear program
(5), Ye posed two projection problems

minH(m-’b -4112
St. AEXE = b

(7)

and

minH#)-’&(Y - Yk)112
St.

(8) -
= Q?,

to find an interior solution on the optimal primal and dual faces, respectively. The primal model
restricts movement in components that can least afford to deviate from x~ by placing large
weights on the smaller components. Similarly, the dual model attempts to restrict movement
of & components.

.-

.
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Williams [31] and Williams, E1-B&ry, Tapia [33] extended Ye’s work to linear programs with
bounded variables. The authors proposed the following modified weighted projection model

where
dfj = min(x$, uj – x;)

as the optimal primal face identification problem and

m> ~l\Dk(A~y - WJB- ~B)112 (11)

as the optimal dual face identification problem. Given formulation (11), one matrix factorization
is needed to solve both the optimal primal and dual face identification problems as opposed to
the two matrix factorization required by (7) and (8). If no upper bounds exist, problem (9)
reduces to problem (7).

Weighting the objective function by llk penalizes the movement of the variables in the di-
rection of their nearest bound. Therefore, if Z$ for j c 23is close to its upper bound, the weight
in (10) prevents the jth component of the solution vector z~ from violating its upper bound as
well as its lower bound, which is the desired result. The use of weights to prevent bound viola-
tions is not novel. Plantenga [23], for example, proposed scaling the quadratic subproblem of a
sequent ial quadratic programming algorithm for bound and equality constrained optimization
using trust regions by @ to prevent bound violations.

The affine scaling transformation in (9) has the following drawback. If any variable is
‘close’ to its upper bound, the scale 13~ has the potential of introducing ill-conditioning into
the subproblem. We want to minimize this possibility by removing these problematic variables
from the subproblem. The difficulty arises in defining ‘closeness’ of a variable. to its upper
bound. The next section addresses this issue.

4 Identification of the Active Set

The term indicator denotes a function that identifies active constraints at the solution of a
constrained optimization problem, see Tapia [27] and E1-Bakry [5]. Commonly used indicators
include variables as indicators, the primal-dual indicator, and the Tapia indicator. Recently,
Facchinei, Fischer, and Kanzow [8] proposed an indicator based on growth functions to identify
the active set of column sufficient linear complementarit y problems. A similar indicator for
general nonlinear programs was introduced in Facchinei, Fischer, and Kanzow [7].

An extensive numerical comparison of indicators as stopping criterion can be found in de
Vreede [30]. For a thorough study of indicator theory, see E1-Bakry [5] and E1-Bakry, Tapia,
and Zhang [6].

11



Tapia [27] used the following indicators to determine the active set in nonlinear constrained
optimization :problems. The Tapia indicators are

~k+l ~k+l

T“(zj)= +- and Z-d(z$) = >,
J ~

‘+1 = Z$ + @Az~. In [6] E1-13akry,Tapia, and Zhang showedwhere Z!+l = x$ + flkAx$ and zj
the Tap~a indicators have a O-1 separation property and converge R – superlinearlg to their
terminal values.

It is well-known that the Tapia indicators are an effective computational tool for identifying
the active set of problem (5), which can lead to reduction of problem size and computational
savings. Beca,use of the efficacy of the Tapia indicator in identifying variables which are zero
on the soluticm set, it is the natural choice to identify variables at their upper bounds. Unfor-
tunately the indicator, TP(z~), does not differentiate between variables that are at their upper
bounds and those which are strictly between their lower and upper bounds. Other indicators
such as variables as indicators and the logarithmic Tapia indicators predict variables at the
upper bounds wit h varying success. However, this drawback is easily remedied.

Let’s consider the upper bound constraint

X-1- s=u.

We see that as x$ + Uj, then S$ + O. Therefore determining variables at their upper bounds
is the same as identifying which primal slack variables are zero.

The Tapia indicators for the primal slack variable, s, and its corresponding Lagrange mul-
tiplier, w, are

~k+l Wk+l

T(sj) = +- and T(?JJ$). —;k ?
3 J

k+l = w;+ ~kAwjwhere Sk+l = s: + ~kAs~ and Wj
We &e the notation

U={ ’i: Sa=O, l~i <n}

to denote the primal slack variables which are zero at the solution of (2) and correspondingly
the z variables which equal their upper bounds.

The following proposition shows that the Tapia indicators for the slack variables and the
corresponding Lagrange multipliers for the upper bound constraints have a O-1 separation prop-
erty. For numerical experiment ation, the O-1 convergence limits of the Tapia indicators provide
us with a theoretical basis for an indicator threshold value to use in active set identification.

Proposition 4.1 Consider a sequence of iterates {(zk, yk, Zk, Sk,Wk)} generated by Algorithm
1. Assume

12



1.

2.

3.

(zq~z~+ (s~)~w~ + o;

min(X~ Z~e, S~W~e) ~ qp~, jor a~lk and jfor some -y E (O,1);

The algorithmic parameters are chosen such that

o~*Oandrk~l.

Then forj=l,..., n
~k+l

lim ~ =
{

O jCZ.4
k+-ca + 1 j@14

where sk+l = Sk+ @kAsk and Wk+l = Wk+ ~kAwk for any /?kc [ak, 1] with ak given in step
3 of Algorithm 1.

An alternative is to apply the Tapia indicator directly to the vector Z, which includes the
primal slack vector. We can then extract bound information from the terminal value of TP(tij),
but for our purposes it is more convenient to consider the slack vector separately.

In the following section, we describe numerical experiments performed to test the effective-
ness of the proposed optimal face identification models in computing an exact solution of a
linear program. We measure effectiveness in terms of the number of projection attempts that
are needed to compute an exact solution of a linear program.

5 Computational Results

In our numerical experiments, we used the LIPSOL - Linear programming Interior-Point
SOLver- package developed under the MATLAB3 environment. The software package, written
by Zhang [36], implements an infeasible primal-dual predictor-corrector interior-point method.
We selected 35 problems with upper bounds from the netlib suite of linear programming prob-
lems as our test set.

The initial matrix is scaled in an attempt to achieve row/column equilibration. Preprocess-
ing deletes fixed variables, deletes zero rows and columns horn the matrix .4, solves equations
of one variable, and shifts nonzero lower bounds to zero.

SMATLAB is ~ ~e@tered trademarkof The MathWOrb lnc

13



5.1 Methodology

We first attempt to compute an exact solution of a linear program, when

Another option is to project when maximum relative error,

(m= IIAz - b\l llATy + z - W - Cll [cTz - (bTy - UTW)I

1 + llbll ‘ 1 + I\C]/ ‘ 1 + \bTg– ZJTWI
)

~ 10–8.

Mehrotra and Ye in [21], Mehrotra in ([19, 20]), as well as Andersen and Ye [2] used the
‘1%.piaindicators to identify the optimal partition. Specifically, they defined

(12)

Mehrotra ancl Ye [21] proved that when 23~was defined as in (12) the optimal partition could be
identified in iinite time for algorithms that generate iteration sequences that satisfy centrality
measure (6). For numerical experiments, the authors used the Tapia indicators and variables
as indicators in tandem.

Following their philosophy, we let

(13)

Similarly,
Uk = {j : S$ <10-14 or lAwjl/w$ < lAs~l/s~}.

We then redefine B~ as
13k:= Bk\uK

This step is necessary since the set in (13) may contain indices of variables at their upper
bounds.

After setting
z~ = Uu, XN = O,

we solve
min *ll(~k)-%B -@112
St. AEz~ = b – A~x~

and

m~ ~llDk(A~y - WB - CB)112

14

(14)

.
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for ZB and y. We then update z,s, w as follows.
Sets= u–xandd=c-A~y, then

{

o if6j<0

{

‘dj if 6j <0Zj =
dj else

and Wj =
o else.

The update formula for the dual variables was used by Resende and Veiga in [25], Resende,
Tsuchiya, and Veiga [26] and Portugal, Resende, Veiga, and Judice [24] to generate feasible
dual variables in network flow problems.

If the computed solution is complementary and

(~=[IAz - bll l\ATy+ Z - W - cII {cTz - (bTy - UTW)\

1 + llbl~ ‘ 1 + Ilc]l ‘ 1 + lb~y - UTWI )

< 10–11

the algorithm terminates with an exact solution of a linear program. If not, the procedure is
repeated at the next interior-point iteration.

We allow a maximum of six projection attempts to compute an exact solution.

5.2 Numerics .

Table 1 illustrates problem size reduction, one of the benefits of identifying variables which are
at their upper bounds. For problem jitld, removal of variables at their bounds transforms the
linear system from an undetermined system to a square system.

Table 1: Problem Size Reduction

Problem Il?kl Iukl 113’\ Ukl
boeing2 123 6 117

finnis 435 17 418
fitld 377 353 24

greenbeb 1456 194 1262
pilot4 611 247 364

pilotnov 2114 1 2113
recipe 147 8 139
seba 442 3 439

vtpbase 135 32 103

We compare three projection models to compute an exact solution of a linear program.
The first one is the orthogonal projection model where D ~ = 1, the second is Ye’s weighted

projection method (7) and the third is the modified weighted projection. The first two models

15



were developed by Ye [34, 35]. Column 1 of Tables 2 and 3 gives the number of failed calls
(misses) to the finite termination procedure before the optimal face identification problem was
solved to the desired accuracy. We consider a call a failure if the procedure does not generate
a positive solution that satisfies the given feasibility tolerances. The second column gives the
number of problems solved by the orthogonal projection model for the given number of misses.
The third column contains the computational results of Ye’s weighted projection model and
the fourth column the modified weighted projection.

Table 2: Variables at Upper Bounds Not Removed

I 1 Models I
# of misses Orthogonal Weighted Modified Weighted

o 13 15 19
1 13 12 11
2 2 2 4

1312131 1 I
4 2 0 0
5 1 1 0

more than 5 2 2 0 1

Table 3: Variables at Bounds Removed

Models
# of misses Orthogonal Weighted Modified Weighted

o 21 21 22,

t 1 9 8 8
2 3 4 3

3 2 2 2

Identifying the variables at their upper bounds plays a crucial role in finite termination
procedures. The orthogonal projection model computes an exact solution of a linear program
with 6070 fewer misses on the first attempt; the weighted projection model has approximately
40% fewer misses. The reduction in projection attempts represents a substantial savings in
computational expense.

To further demonstrate the importance of identifying and removing variables at their upper
bounds, in Ti%ble4 we consider three problems, etamacro, greenbea, nesm, for which either 6
projection attempts were needed or the optimal face identification procedure failed to compute
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an exact solution. Removing the variables at the upper bounds produces a dramatic decrease
in the projection attempts. In particular, the problem greenbea requires 5 fewer projections.

Table 4: Orthogonal Projection Model

Misses
problem Variables at Upper Bounds not Identified Identified
etamacro 5 3
greenbea >5 0

nesm >5 2

It is important to point out that for these three problems the number of misses with variables
at their upper bounds identified is the same as the modified weighted projection model without
variables at upper bounds identified. This suggests that the modified scale simulates removal
of variables at their upper bounds from the problem.

6 Concluding Remarks

Using Tapia indicators to identify variables at their upper bounds increases the efficiency of
optimal face identification procedures. For best results we recommend the implementation
of a finite termination procedure which includes Tapia indicators as well as an affine scale
transformation which incorporates bound constraints.
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