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Abstract

In this paper, we consider the nonconvex minimization problem of the value-at-risk (VaR)
that arises from financial risk analysis. By considering this problem as a special linear program
with linear complementarity constraints (a bilevel linear program to be more precise), we develop
upper and lower bounds for the minimum VaR and show how the combined bounding procedures
can be used to compute the latter value to global optimality. A numerical example is provided
to illustrate the methodology.

Dedication. With great pleasure we dedicate this paper to a respected pioneer of our field,
Professor Olvi L. Mangasarian, on the occasion of his 70th birthday. The two topics of this paper,
LPECs and smoothing methods, are examples of the vast contributions that Olvi has made in
optimization, which have benefited us in many ways and which will continue to benefit us in the
future. Happy 70th birthday, Olvi!

1 Introduction

The value-at-risk (VaR) and conditional value-at-risk (CVaR) are two important risk measures
that have been used extensively in recent years in portfolio selection and in risk analysis. Whereas
the VaR is closely related to a particular quantile of a random variable, the CVaR is formally
defined and analyzed by Rockafellar and Uryasev in two papers [32, 33] as a way to alleviate
some of the computational difficulties associated with the optimization of the VaR. There is now
a substantial literature on the applications and further developments of these two risk measures; a
partial list of this literature relevant to optimization includes the papers [1, 18, 19, 27, 29, 34, 35, 40].
In particular, the paper [19] presents some CVaR-based algorithms for computing the VaR in a
portfolio selection problem; in spite of their practical efficiency, however, these algorithms offer no
guarantee of global optimality of the computed VaR.

Setting aside some criticisms of the VaR mentioned in the literature, part of which stems from
the difficulty associated with the portfolio selection problem using the VaR criterion, we study the
global optimization problem using a scenario formulation, which is the principal approach employed
in the cited references for solving the (C)VaR minimization problem. Specifically, we consider the
VaR minimization problem as an LPEC [24], a linear program with equilibrium constraints, which
is a subject pioneered by Mangasarian, to whom this paper is dedicated. By exploiting the special
structure of this program, we derive linear programs whose optimum objective values yield upper

∗Preprint ANL/MCS-P1112-1203
†Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, U.S.A.

Email: pang@mts.jhu.edu. The work of this author’s research was partially supported by the National Science
Foundation under grant CCR-0098013.

‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439. Supported
by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

1

http://arxiv.org/abs/math/0401063v1


and lower bounds for the optimal VaR. The bounding procedures are then used in a branch-and-cut
algorithm for computing the latter value to global optimality. A numerical example is provided to
illustrate the algorithm.

An LPEC is a special case of a mathematical program with equilibrium constraints (MPEC).
Since the publication of the two monographs [22, 28], there has been significant computational
advance in numerical methods for solving MPECs; a partial list of recent references includes [7,
11, 12, 13, 9, 10, 14, 15, 16, 20, 37, 36, 38]. In spite of such extensive efforts, the computation of
globally optimal solutions to MPECs remains elusive. While some MPEC solvers are fairly robust
in practice, there is no guarantee that their computed solutions are globally optimal solutions.
An important reason for this lack of guarantee for global optimality is the fact that these solvers
are all based on local improvement techniques and no global optimization is incorporated in their
implementation. As a special MPEC, the VaR minimization problem is amenable to solution by
any one of the (local) methods. In this paper, we do not stop with this routine adaptation of the
existing MPEC solvers; instead, our goal is to develop a branch-and-cut algorithm for solving the
minimum VaR problem to global optimality.

2 The VaR Minimization Problem

Let y denote an n-dimensional random vector whose components represent the random losses of
some financial instruments. Let X ⊆ ℜn be a closed convex set (polyhedral in many practical
applications) representing the set of feasible investments. For a given x ∈ ℜn, z ≡ xT y is therefore
the random loss associated with the investment vector x. For a given scalar β ∈ (0, 1), which
denotes a confidence threshold of sustainable loss, the CVaR and VaR associated with the random
variable z is given, as proved in [32, 33], by the following two deterministic quantities, respectively:

CVaRβ(x) ≡ min
m∈ℜ

[

m+
1

1− β
IEy(x

T y −m )+

]

,

VaRβ(x) ≡ min{m : m ∈ Mβ(x) },

where IEy denotes the expectation with respect to the random vector y, the subscript plus sign
denotes the nonnegative part of a scalar (i.e., the plus function t+ ≡ max(0, t)), and Mβ(x)
denotes the set of minimizers in the definition of CVaRβ(x). By the results in the cited references,
CVaRβ(x) and VaRβ(x) are well-defined finite scalars for very general loss distributions. Clearly,
we have

CVaRβ(x) = VaRβ(x) +
1

1− β
IEy(x

T y −VaRβ(x))+ ≥ VaRβ(x), ∀x.

The CVaR and VaR minimization problems are, respectively,
{

minimize CVaRβ(x)

subject to x ∈ X

}

and

{

minimize VaRβ(x)

subject to x ∈ X

}

.

Clearly, the CVaR minimization problem can be cast equivalently as the following convex program
in the joint variable (m,x):

minimize m+
1

1− β
IEy(x

T y −m )+

subject to (m,x ) ∈ ℜ ×X.

Nevertheless, the VaR problem is not a convex program; this fact is an acknowledged drawback
of using the VaR as a criterion in portfolio selection. Our main goal in this paper is to develop
remedies to this drawback.
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2.1 An LPEC Formulation

In the rest of the paper, we take X to be a compact polyhedron. We adopt a scenario approach
to discretize the random vector y. With this approach, the CVaR minimization problem becomes
a linear program (LP) and the VaR becomes a bilevel linear program, which we reformulate as
an LPEC using the optimality conditions of the lower-level LP. Specifically, let {y1, · · · , yk} be
the finite set of scenario values of y, and let {p1, · · · , pk} be the associated probabilities of the
respective scenarios, which, summing to one, are assumed to be all positive. The discretized CVaR
minimization problem is

minimize m+
1

1− β

k
∑

i=1

pi (x
T yi −m)+

subject to (m,x ) ∈ ℜ ×X,

which is equivalent to the linear program in the variables (m,x, τ):

minimize m+
1

1− β

k
∑

i=1

pi τi

subject to x ∈ X

and

{

τi ≥ 0

τi ≥ xT yi −m

}

∀ i = 1, . . . , k.

(1)

For a given x ∈ X, CVaRβ(x) is the minimum objective value of the following simple LP in the
variable (m, τ) ∈ ℜ1+k:

minimize m+
1

1− β

k
∑

i=1

pi τi

subject to

{

τi ≥ 0

τi ≥ xT yi −m

}

∀ i = 1, . . . , k.

(2)

By letting λi denote the dual variable of the ith functional constraint in (2), the above LP can be
solved trivially via its dual:

maximize
k

∑

i=1

λi x
T yi

subject to 0 ≤ λi ≤ pi/(1 − β), ∀ i = 1, . . . , k

and

k
∑

i=1

λi = 1,

(3)

which is a bounded knapsack problem that can in turn be solved by a simple sorting procedure.
The optimal objective value of either (2) or (3) yields CVaRβ(x); this shows in particular that
CVaRβ(x) is a convex combination of the portfolio losses {xT y1, · · · , xT yk}.

In general, by solving either of the LPs (2) or (3), we are not guaranteed to obtain VaRβ(x)
right away; to obtain the latter value, we can solve another simple LP in the variable (m, τ), with
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x remaining fixed:

minimize m

subject to m+
1

1− β

k
∑

i=1

pi τi ≤ CVaR(x)

and

{

τi ≥ 0

τi ≥ xT yi −m

}

∀ i = 1, . . . , k,

which is simply the problem of finding the least element of the argmin Mβ(x).
The optimality conditions of (2) are











0 ≤ τi ⊥ pi
1− β

− λi ≥ 0

0 ≤ λi ⊥ si ≡ m+ τi − xT yi ≥ 0











∀ i = 1, . . . , k

and
k

∑

i=1

λi = 1,

where the ⊥ denotes the well-known complementary slackness condition. Employing these optimal-
ity conditions, we can reformulate the VaR minimization problem as the following linear program
with linear complementarity constraints in the variables (m,x, τ, λ), that is, an LPEC, which in
turn is a special subclass of the class of mathematical programs with equilibrium constraints [22]:

minimize m

subject to x ∈ X










0 ≤ τi ⊥ pi
1− β

− λi ≥ 0

0 ≤ λi ⊥ si ≡ m+ τi − xT yi ≥ 0











∀ i = 1, . . . , k

and

k
∑

i=1

λi = 1.

(4)

As an LPEC, the feasible region of (4) is the union of finitely many polyhedra. Exploiting its special
structure, we state and prove in the result below that (4) attains a finite minimum objective value.

Proposition 2.1 Let X be a compact polyhedron in ℜn. The LPEC (4) attains a finite minimum
objective value.

Proof. Since X is compact by assumption, one can easily show that m must be bounded below on
the feasible region of (4). In fact, if (mν , τ

ν , xν) is a sequence of feasible solutions with mν → −∞,
then τνi → ∞ for every i. Consequently, λν

i = pi/(1 − β); but this contradicts the last constraint,
which requires that the sum of the λ’s be equal to unity. �

Let (mVaR, x
VaR, τVaR, λVaR) denote an optimal solution of (4). Note that whereas mVaR must

be unique, the triple (xVaR, τVaR, λVaR) is not necessarily so. Our goal is to compute mVaR as best
as possible. Although a theoretical guarantee of global optimality is not easy to obtain, we derive
valid upper and lower bounds for mVaR and develop ways to tighten these bounds; obviously, when
the upper and bounds coincide, then mVaR is obtained.
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3 Upper and Lower Bounds

In this section, we develop valid upper and lower bounds for mVaR. While upper bounds are not
difficult to compute, sharp lower bounds are less obvious to derive. We formally describe these
bounds in the next two subsections. Here, we note that if mVaR ∈ [mLB,mUB], then

0 ≤ max

(

mUB −mVaR

mVaR
,
mVaR −mLB

mVaR

)

≤ mUB −mLB

mLB
,

which gives relative accuracies of the upper and lower bound values, mUB and mLB, respectively,
with respect to the exact minimum VaR mVaR.

3.1 LP Upper Bounds

In essence, upper bounds for mVaR are obtained by “breaking” the complementary slackness in (4)
(i.e., restricting the feasible region) according to a given feasible solution. Let x0 ∈ X be given. The
scalar m0 ≡ VaRβ(x

0) provides an upper bound for mVaR. (For instance, we may take x0 = xCVaR

to be an optimal solution of the CVaR linear program (1).) We wish to improve on the bound m0

by considering a restriction of the constraints in (4). Specifically, associated with the pair (m0, x
0),

let (τ0, λ0) satisfy











0 ≤ τ0i ⊥ pi
1− β

− λ0
i ≥ 0

0 ≤ λ0
i ⊥ s0i ≡ m0 + τ0i − (x0 )T yi ≥ 0











∀ i = 1, . . . , k

and

k
∑

i=1

λ0
i = 1.

Define the index sets

α0
τ ≡

{

i : τ0i > 0 =
pi

1− β
− λ0

i

}

β0
τ ≡

{

i : τ0i = 0 =
pi

1− β
− λ0

i

}

γ0τ ≡
{

i : τ0i = 0 <
pi

1− β
− λ0

i

}

and
α0
λ ≡

{

i : λ0
i > 0 = m0 + τ0i − (x0 )T yi

}

β0
λ ≡

{

i : λ0
i = 0 = m0 + τ0i − (x0 )T yi

}

γ0λ ≡
{

i : λ0
i = 0 < m0 + τ0i − (x0 )T yi

}

.
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Let δ0τ and δ0λ be arbitrary subsets of β0
τ and β0

λ, respectively. Consider the following linear program
in the variables (m,x, τ, λ):

minimize m

subject to x ∈ X

τi ≥ 0 =
pi

1− β
− λi, ∀ i ∈ α0

τ ∪ δ0τ

τi = 0 ≤ pi
1− β

− λi, ∀ i ∈ γ0τ ∪ (β0
τ \ δ0τ )

λi ≥ 0 = m+ τi − xT yi, ∀ i ∈ α0
λ ∪ δ0λ

λi = 0 ≤ m+ τi − xT yi, ∀ i ∈ γ0λ ∪ (β0
λ \ δ0λ )

and

k
∑

i=1

λi = 1,

(5)

which is obtained by restricting the complementarity constraints in (4) based on the above index
sets. Obviously, (5) is equivalent to a simplified LP in the variables (m, τ) only, with the λ variable
being removed, that is,

minimize m

subject to x ∈ X

τi ≥ 0, ∀ i ∈ α0
τ ∪ δ0τ

τi = 0, ∀ i ∈ γ0τ ∪ (β0
τ \ δ0τ )

m+ τi − xT yi = 0, ∀ i ∈ α0
λ ∪ δ0λ

m+ τi − xT yi ≥ 0, ∀ i ∈ γ0λ ∪ (β0
λ \ δ0λ ).

(6)

It is clear that (m0, x
0, τ0) is feasible to (6). In general, if (m,x, τ) is feasible to (6), then (m,x, τ, λ0)

is feasible to (5), and hence to (4). Consequently, (6) attains a finite global minimum. Moreover,

if

(

m
1+

1
2
, x1, τ1

)

denotes an optimal solution of (6), we must have m
1+

1
2
∈ Mβ(x

1). Hence, with

m1 ≡ VaRβ(x
1), we have

m0 ≥ m
1+

1
2
≥ m1 ≥ mVaR.

One of two cases must occur: (a) m0 = m1 (no improvement), or (b)m0 > m1 (strict improvement).
In case (a), no improvement is obtained with the particular choice of the pair of index sets (δ0τ , δ

0
λ).

One can then try a new pair and solve a new LP (6), hoping to obtain a strictly improved bound
for mVaR. In case (b), we can replace (m0, x

0) by the pair (m1, x
1) and repeat the above procedure.

The following result shows that if strict improvement is obtained at each iteration, then in a finite
number of steps the exact minimum VaR is found.

Theorem 3.1 Let {xν} ⊂ X be a sequence of feasible vectors such that for each ν, xν+1 is obtained
from xν by solving a certain restricted LP as described above. If VaRβ(x

ν) > VaRβ(x
ν+1) for every

ν, then a finite ν0 exists such that VaRβ(x
ν0) = mVaR.

Proof. The feasible region of (4) is the union of finitely many polyhedra, each being the feasible
set of (5) corresponding to a particular tuple of index sets (α0

τ , δ
0
τ , γ

0
τ , α

0
λ, δ

0
λ, γ

0
λ). Since VaRβ(x

ν) >
VaRβ(x

ν+1) for every ν, the tuples of index sets used to produce the sequence {xν} cannot repeat.
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Since there are only finitely many such tuples of index sets, in generating the sequence {xν} we
must have encountered all of them; in other words, we must have searched over the entire feasible
region of (4). Consequently, we must have VaRβ(x

ν0) = mVaR for some ν0. �

The above result is mainly of theoretical interest because rarely is one so lucky that strict
improvement can be obtained with each trial choice of (δ0τ , δ

0
λ). Notice that the procedure described

herein is based on the premise that the set β0
τ ∪β0

λ is nonempty, which means that the pair (m0, x
0)

is a degenerate feasible solution of (4), degenerate with reference to the complementarity conditions.
When (m0, x

0) is nondegenerate, we will not able to continue the procedure. Consequently, this is
one of the rare instances in mathematical programming where degeneracy actually helps: it enables
one to continue the search for an improvement in a global optimization procedure.

3.2 NLP Upper Bounds

An alternative approach to obtain an upper bound is to form the equivalent nonlinear program
(NLP) of the LPEC (4)

minimize m

subject to x ∈ X










0 ≤ τi,
pi

1− β
− λi ≥ 0

0 ≤ λi, si ≡ m+ τi − xT yi ≥ 0











∀ i = 1, . . . , k

k
∑

i=1

λi = 1,

and
k

∑

i=1

[

τi

(

pi
1− β

− λi

)

+ λisi

]

≤ 0,

(7)

and solve this NLP using standard solvers. The last constraint in this problem is the complemen-
tarity constraint. Note that we do not require a lower bound on the complementarity constraint in
(7) because all terms in this expression are nonnegative.

It is well known that the NLP (7) fails the Mangasarian-Fromovitz constraint qualification
(MFCQ) [23, 25] at any feasible point. This fact implies that the multiplier set of (7) is un-
bounded, the central path fails to exist, and active constraint normals are linearly dependent. As
a consequence, solving MPECs as NLPs has been commonly regarded as numerically unsafe. Re-
cently, however, it has been demonstrated that standard NLP solvers can be employed to solve
the equivalent NLPs of MPECs reliably and efficiently. The convergence of sequential quadratic
programming methods to a “stationary point” of an MPEC is analyzed in [2, 10], and the exten-
sion of interior point methods to MPECs is described in [21, 31]. For other related methods, see
[7, 9, 11, 13, 15, 16], and the monographs [22, 28].

Unfortunately, solving the equivalent NLP (7) does not in itself guarantee global optimality,
despite the practical success of NLP solvers. The reason is that the nonconvex nature of the
complementarity constraint implies that NLP solvers may fail to find the global minimum, or even
a feasible point. Nevertheless, NLP solvers have been shown to provide good solutions for many
practical MPECs [9, 30], and this is the feature we wish to exploit here. In fact, for the numerical
example reported in Section 5, an NLP solver finds a solution, which we show through additional
techniques is a global minimum. We note that the latter proof is demonstrated not by NLP but
rather by exhibiting an upper bound for mVaR that coincides with a lower bound.

7



3.3 LP Lower Bounds

Upper bounding alone is not enough to verify global optimality of a nonconvex problem. In this
subsection, we develop some valid lower bounds for mVaR. As a first remark, we note that the
simple LP relaxation of (4) is

minimize m

subject to x ∈ X










0 ≤ τi,
pi

1− β
− λi ≥ 0

0 ≤ λi, m+ τi − xT yi ≥ 0











∀ i = 1, . . . , k

and

k
∑

i=1

λi = 1,

(8)

which does not have a finite optimal solution because we can make m tend to −∞ with each
τi → ∞. Therefore, we need to tighten this relaxation. The following lemma gives a preliminary
lower bound for mVaR.

Lemma 3.2 For any feasible tuple (m,x, τ, λ) to (4), an index i exists such that m ≥ xT yi for at
least one index i. Consequently,

m ≥ min
1≤j≤k

min
x∈X

xT yj ≡ m.

Proof. Let (m,x, τ, λ) be an arbitrary feasible tuple to (4). We must have

τi = max(0, xT yi −m), ∀ i = 1, . . . , k.

From the first complementarity constraint in (4), we obtain

τi λi =
pi

1− β
τi, (9)

which, when used in the second complementarity constraint, yields

0 = mλi +
pi

1− β
τi − λi x

T yi. (10)

Since the sum of the λi is equal to unity, we deduce

m =

k
∑

j=1

[

λj x
T yj − pj

1− β
τj

]

. (11)

which yields

m+
k

∑

j=1

pj
1− β

max(0, xT yj −m) =
k

∑

j=1

λj x
T yj .

If no index i exists such that xT yi ≤ m, then m < xT yj for all j, and the above identity yields

m =
1− β

β

k
∑

j=1

(

pj
1− β

− λj

)

xT yj,

8



which shows thatm is a convex combination of the family {xT y1, · · · , xT yk}. This is a contradiction.
The last assertion of the lemma is obvious. �.

In essence, the lower bounding procedure described below aims at removing the three nonlinear
terms mλi, τλi, and λix in (9) and (10), which are the result of the complementarity constraints,
while maintaining some form of these two equations. It turns out that the first two nonlinear terms
can be completely removed through some suitable substitution, whereas the third one cannot. The
relaxation of (4) then employs a single variable zi to substitute for λix and to remove the identity
zi = λix when λi is strictly between its lower and upper bounds. Note that the change of variables
implies

x =

k
∑

i=1

zi.

Furthermore, if x ≥ 0 in the set X, it follows that 0 ≤ zi ≤ (pi/(1− β))x for all i. More generally,
if |x| ≤ a for all x ∈ X, where a is a given nonnegative vector and the absolute sign is meant
componentwise, then |zi| ≤ (pi/(1 − β))a for all i.

From the identity (10), we deduce that for any feasible tuple (m,x, τ, λ) to (4),

m ≥ 0 ⇒ ∀ i,
[

0 ≤ ( zi )T yi − pi
1− β

τi ≤ pi
1− β

m

]

m ≤ 0 ⇒ ∀ i,
[

0 ≥ ( zi )T yi − pi
1− β

τi ≥ pi
1− β

m

]

.

Assume for the moment that m ≥ 0. This gives rise to the following LP relaxation of (4) (we
assume that |x| ≤ a for all x ∈ X):

minimize m

subject to x ≡
k

∑

j=1

zj ∈ X,

m =
k

∑

j=1

[

( zj )T yj − pj
1− β

τj

]















































si ≡ m+ τi − xT yi ≥ 0

0 ≤ ( zi )T yi − pi
1− β

τi ≤ pi
1− β

m

τi ≥ 0

| zi | ≤ pi
1− β

a















































, ∀ i = 1, . . . , k.

(12)

We are also interested in investigating the behavior of this lower bound if we branch on a disjunction.
It follows from (4) that there are three possible branches for λi. Each branch in turn gives rise to
a particular implication:

0 = λi ⇒ [ zi = 0 and τi = 0 ]

λi =
pi

1− β
⇒

[

zi =
pi

1− β
x and si = 0 ]

0 < λi <
pi

1− β
⇒ [ τi = 0 and si = 0 ].

9



Based on the above implications, we define three LPs by adding the implications to the lower
bounding LP (12), respectively. In what follows, i0 is a fixed but arbitrary index in {1, . . . , k}.

(LP+
I,i0

) This corresponds to the case where λi0 = 0 and m ≥ 0 and consists of the LP relaxation
(12) with the following additional constraints:

zi0 = 0 and τi0 = 0. (13)

(LP+
II,i0

) This corresponds to the case where λi0 = pi0/(1 − β) and m ≥ 0 and consists of the LP
relaxation (12) with the following additional constraints:

zi0 =
pi0

1− β
x and si0 = 0. (14)

(LP+
III,i0

) This corresponds to the case where λi0 ∈ (0, pi0/(1− β)) and m ≥ 0 and consists of the
LP relaxation (12) with the following additional constraints:

τi0 = si0 = 0. (15)

Let LP+,opt
I,i0

, LP+,opt
II,i0

, and LP+,opt
III,i0

denote the optimal objective values of the above three LPs,
respectively. Consistent with a standard convention in optimization, we define the minimum ob-
jective value of an infeasible LP to be ∞. The next result summarizes the fundamental role of the
above LPs for solving the VaR minimization problem (4).

Proposition 3.3 For any index i0, the following five statements (a)–(e) are valid.

(a) If (m,x, τ, λ) is feasible to (4) and m ≥ 0, then with zi ≡ λix for all i, the tuple (m,x, z, τ)
is feasible to (12). It also satisfies the additional constraints (13) if λi0 = 0, (14) if λi0 =
pi0/(1− β), and (15) if 0 < λi0 < pi0/(1 − β).

(b) If mVaR ≥ 0, then at least one of the three LPs obtained by adding to (12) the cuts (13), or
(14), or (15), must be feasible and, hence, solvable; in this case,

mVaR ≥ min
(

LP+,opt
I,i0

, LP+,opt
II,i0

, LP+,opt
III,i0

)

. (16)

(c) If mUB ≥ mVaR ≥ 0 and ∞ > LP+,opt
I,i0

> mUB, then for any optimal solution (xVaR, τVaR, λVaR)

of (4), we must have λopt
i0

> 0, and thus, sVaRi0
≡ τVaRi0

+mVaR − (xVaR)T yi0 = 0.

(d) If mUB ≥ mVaR ≥ 0 and ∞ > LP+,opt
II,i0

> mUB, then for any optimal solution (xVaR, τVaR, λVaR)

of (4), we must have λVaR
i0

< pi0/(1 − β), and thus, τVaRi0
= 0.

(e) If mUB ≥ mVaR ≥ 0 and ∞ > LP+,opt
III,i0

> mUB, then for any optimal solution (xVaR, τVaR, λVaR)

of (4), we must have λVaR
i0

= 0 or λVaR
i0

= pi0/(1− β).

Proof. Part (a) does not require a proof. For part (b), we need only to prove the bound (16).
Let (xVaR, τVaR, λVaR) be an arbitrary optimal solution of (4) corresponding to mVaR. the tuple
(mVaR, x

VaR, zVaR, τVaR), where zVaR,i ≡ λVaR
i xVaR, is feasible to the one of the three LPs formed

from (12) plus (13), or (14), or (15). Hence (16) follows readily. To prove (c), one need only note
that if λVaR

i0
= 0, then (mVaR, x

VaR, zVaR, τVaR), where zVaR,i ≡ λVaR
i xVaR, is feasible to (13); hence

mVaR ≥ LP+,opt
I,i0

, which easily yields a contradiction. The proof of (d) and (e) is similar and not
repeated. �
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We can similarly set up three other LPs to handle the case mVaR ≤ 0. It suffices to reverse the
inequality signs in

0 ≤ ( zi )T yi − pi
1− β

τi ≤ pi
1− β

m

and use instead
0 ≥ ( zi )T yi − pi

1− β
τi ≥ pi

1− β
m. (17)

Letting LP−,opt
I,i0

, LP−,opt
II,i0

, and LP−,opt
III,i0

denote the optimal objective values of the resulting LPs,
respectively, we can obtain a result similar to Proposition 3.3. Combining these two results, we
arrive at a desired lower bound for mVaR.

Corollary 3.4 It holds that

mVaR ≥ min

{

max
1≤j≤k

min
(

LP+,opt
I,j , LP+,opt

II,j , LP+,opt
III,j

)

, max
1≤j≤k

min
(

LP−,opt
I,j , LP+,opt

II,j , LP+,opt
III,j

)

}

.

�

The practical value of the cuts (13), (14), and (15), and their analogs with the reverse inequalities
(17) built in, lies in their ability to improve the lower bound obtained from (12) making it easier
to fathom nodes in the branch-and-cut framework that is described in Section 4.

3.4 Convex Hull Relaxations

Alternative lower bounds can be derived by observing that the only difference between the simple
LP (8) and the LPEC (4) is the absence of the complementarity constraint. Thus, to tighten the
former LP relaxation, we form a linear relaxation of the complementarity constraint,

0 =
k

∑

i=1

{

τi
pi

1− β
− τiλi + λiτi + λim− λix

T yi
}

= m+

k
∑

i=1

{

τi
pi

1− β
− λix

T yi
}

, (18)

where we have used the fact that
∑

λi = 1. Observe that the only nonlinear term in this expression
is given by λix

T yi. Next we show how to construct the convex hull relaxation of this constraint.
We introduce new linear variables γi = xT yi and then replace the nonlinear terms λiγi by wi.

Since wi = λiγi is a simple bilinear expression, we can strengthen this LP relaxation by adding the
convex hull of wi = λiγi. Let Li and Ui be valid lower and upper bounds on γi, respectively (these
can be obtained by solving 2k LPs for instance); the convex hull of wi = γiλi is then given by

wi ≥ Li λi

wi ≥ pi
1− β

γi + Ui λi −
pi

1− β
Ui

wi ≤ Ui λi

wi ≤ pi
1− β

γi + Li λi −
pi

1− β
Li,











































; (19)
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see, for example [39]. This gives rise to the LP relaxation

minimize m

subject to x =
k

∑

i=1

zi ∈ X











0 ≤ τi,
pi

1− β
− λi ≥ 0

0 ≤ λi, m+ τi − xT yi ≥ 0











∀ i = 1, . . . , k

k
∑

i=1

λi = 1

γi = xT yi ∈ [Li, Ui ], ∀ i = 1, . . . , k

wi ≥ Li λi

wi ≥ pi
1− β

γi + Ui λi −
pi

1− β
Ui

wi ≤ Ui λi

wi ≤ pi
1− β

γi + Li λi −
pi

1− β
Li,











































∀ i = 1, . . . , k

and 0 = m+
k

∑

i=1

{

τi
pi

1− β
− wi

}

.

(20)

Since this LP includes the convex hull relaxation of wi = γiλi, it follows that the LP is bounded
whenever the original LPEC (4) is bounded.

The two LP bounds (12) and (20) are nondominating; the quality of the bounds differs from
problem instance to problem instance. This is confirmed by the numerical example in Section 5,
where, in one case, (12) yields a sharper lower bound, and in the other case, it is (20) that yields
a better bound. Next, we show how the bounds (12) and (20) can be employed within a branch-
and-cut framework to prove the optimality of a candidate solution of the LPEC (4).

4 Verifying Optimality by Branch-and-Cut

We briefly outline our approach to prove the optimality of a given candidate solution to the MPEC
(4). There are two main ideas: the first is to construct as small as possible a branch-and-bound
tree corresponding to a given candidate solution, and the second is to exploit the logical implica-
tions from the complementarity constraint to strengthen the LP relaxation as in Proposition 3.3.
Section 5 shows how the approach works for a numerical example.

The use of branch-and-bound to solve MPECs is not new. It has been used in [3] to solve some
bilevel convex programs. However, the scheme proposed here employs the special bounds derived
in the preceding section that are tailored to the minimum VaR problem and that are used to define
cuts that restrict the feasible region of the problem.

In general, the LPEC is initially solved with the complementarity constraint relaxed. If this
problem yields a solution that is complementary, then it is also optimal. Otherwise there exists a
complementarity that is violated and we can branch on this complementarity. Branching introduces
two (or three in our case) child problems where the complementarity is broken. The procedure
continues to solve relaxations and branch until an LPEC feasible solution is found, a problem is
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infeasible, or its solution is dominated by an upper bound. This process is best envisioned as a tree
search where nodes correspond to LP relaxations and edges correspond to branches.

Unfortunately, searching the entire branch-and-bound tree is likely to be inefficient. Instead,
we will exploit the branch-and-cut methodology to construct the smallest tree that can be used to
establish optimality of a given feasible solution. Specifically, let (m∗, x

∗, λ∗, τ∗) be a feasible point of
the LPEC (4) whose optimality we wish to prove. Note that m∗ is an upper bound on the optimal
value of the LPEC. We then perform several rounds of bound tightening to fix complementary
expressions by solving LP relaxations. For instance, if we postulate that λ∗

i = pi/(1 − β), then we
solve the two remaining LP relaxations in the disjunction. If they produce bounds that are larger
than the given upper bound m∗, then we can fix λ∗

i = pi/(1 − β). Similar conclusions are possible
for the other bounds and variables. This generates one hopes a short branch-and-bound tree. The
numerical example presented next illustrates the idea.

5 Numerical Example

The numerical example has the following data: n = 3, k = 27, β = 0.9, pi = 1/27 for all i,

X ≡
{

x ∈ ℜn
+ :

n
∑

i=1

xi = 1,

n
∑

i=1

ri xi ≥ f

}

,

where r ≡ (−1/3, 2/3,−1) and f = 1/10. The vectors yi are generated as follows. We generate
three vectors







d1

d2

d3






≡







5 0 −6

7 0 −5

2 0 −5






;

and then we set
yj1 = d 1(i1), yj2 = d 2(i2), yj3 = d 3(i3),

where j = 6(i1 − 1) + 3(i2 − 1) + i3 for i1, i2, i3 = 1, 2, 3.

5.1 Finding an Upper Bound

We first solve the CVaR LP (2) and obtain the solution: CVaR = 5.0644, mCVaR = 4.8613,
xCVaR = (0.1097, 0.6161, 0.2742), τ1 > 0, τi = 0 for all i ≥ 2, si = 0 for i = 1, 2, 10, and si > 0 for
all other i. The value mCVaR is then verified to be the least element of Mβ(x

CVaR). Based on the
pair (mCVaR, x

CVaR), we solve the LP (5) by setting

α0
τ ∪ δ0τ = {1, 2}, γ0τ ∪ (β0

τ \ δ0τ ) = {1, . . . , 27} \ α0
τ ,

α0
λ ∪ δ0λ = {1, 2, 10}, γ0λ ∪ (β0

λ \ δ0λ) = {1, . . . , 27} \ α0
λ.

The optimal solution for this LP is as follows: m1 = 4.2652; τ1 and τ2 are both positive, and the
remaining τi are zero; si = 0 for i = 1, 2, 3, 10, and the other si are all positive. This solution yields
λ1 = λ2 at their common upper bound, which is 0.37037, implying that λ3 ≥ 0 and λ10 ≥ 0 satisfy
λ3 + λ10 = 1− 2 ∗ 0.37037 = .26926.

The pair (mCVaR, x
CVaR) also belongs to several other pieces of the feasible region of (4). For

example, one such piece corresponds to the index set partitions:

α0
τ ∪ δ0τ = {1, 10}, γ0τ ∪ (β0

τ \ δ0τ ) = {1, . . . , 27} \ α0
τ ,

α0
λ ∪ δ0λ = {1, 2, 10}, γ0λ ∪ (β0

λ \ δ0λ) = {1, . . . , 27} \ α0
λ;

13



nevertheless, solving the associated LPs (5) on these other pieces does not yield a lower objective
value than 4.2652. The same upper bound mUB = 4.2652 is also obtained by solving the single
equivalent NLP (7).

5.2 Branching to Verify Global Optimality

Our next task is to determine whether the value mUB = 4.2652 is globally optimal. First, we verify
that mVaR ≥ 0 by solving the LP

minimize m

subject to x ≡
k

∑

j=1

zj ∈ X,

m =

k
∑

j=1

[

( zj )T yj − pj
1− β

τj

]































si ≡ m+ τi − xT yi ≥ 0

0 ≥ ( zi )T yi − pi
1− β

τi ≥ pi
1− β

m

τi ≥ 0, 0 ≤ zi ≤ pi
1− β

x































, ∀ i = 1, . . . , k.

This LP is infeasible, and we can therefore conclude that mVaR ≥ 0.

4.6

.......

5.3

3.5

4.6

5.3

λ
2

λ
1

...

4.3

τ
27

τ
3

Figure 1: Branch-and-bound tree for the numerical example

Figure 1 shows the branch-and-bound tree that we construct for this example. Each node
corresponds to an LP relaxation, with additional constraints included according to (13), (14), or
(15). The root node shows the value of the LP relaxation (12) (all values are rounded to two digits).
The variable names on the left indicate the branching variable. For each λi there are three branches
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(which are ordered from left to write as λi = 0, λi ∈ (0, pi/(1 − β)), λi =, pi/(1 − β)). For each τi
there are two branches (from left to right τi = 0, and τi > 0).

The lower bounds alone do not allow us to conclude optimality of the candidate solution. Hence,
we start the construction of the branch-and-bound tree by proving that λ1 and λ2 must be at their
upper bounds at an optimal solution. For this purpose, we solve two LPs by adding the cuts (13)
and (15) to (12). These LPs have an optimal value of 5.3, which is larger than mUB; we can
therefore consider those nodes as fathomed. This is illustrated in the tree in Figure 1 by the bold
horizontal lines under the node. Hence, we can fix λ1 at its upper bound. Next, this process is
repeated for λ2, and we also find that λ2 can be fixed at its upper bound.

Next, we consider proving that τ3 = . . . = τ27 = 0. First note that τi can be either zero or
positive. If τi > 0, then λi = pi/(1− β) is at its upper bound and τi = xT yi −m in (4). However,
since 1− λ1 − λ2 < pi/(1− β), it follows that the LP corresponding to τi > 0 must be inconsistent
for all i = 3, . . . , 27. This is represented in Figure 1 by the grey nodes. In practice, the preprocessor
in AMPL detects that these LPs are inconsistent, and no solves are necessary. Hence, we conclude
that τ3 = . . . = τ27 = 0. Solving the LP relaxation (12) with these τi fixed at zero and also
s1 = s2 = 0 (since λ1 and λ2 are at their upper bounds), we obtain a lower bound of 4.2652, which
means that our candidate solution is globally optimal.

All in all, we solved only six LPs to prove the global optimality of the candidate solution. The
empty nodes are never solved, while the grey nodes can be eliminated by the preprocessor.

For this example, we have compared the two lower bounds (12) and (20) with β = 0.8 and
β = 0.9. With β = 0.8, the LP relaxation gives a lower bound of m = 0.61, which is poorer than the
convex hull relaxation, which gives m = 1.24. However, with β = 0.9, the LP relaxation (12) gives
the tighter bound with m = 3.48, while (20) gives only m = 2.45. Hence, we use the LP relaxation
(12) in the above report. (For this example, both lower bounds would actually generate identical
trees except for the value at the root.) We have also used the same branch-and-cut procedure
to verify global optimality in the problem with β = 0.8. Apart from the fact that the details
are similar, with β = 0.8, the vector xCVaR obtained by solving the CVaR minimization problem
produced a VaR that is already globally optimal, as verified by the branch-and-cut procedure. In
other words, the upper bounding refinement is not needed in the case where β = 0.8; for this reason,
we omit the details. �

6 Approximation by Smoothing

In two pioneering papers [4, 5], Mangasarian and his then-Ph.D. student Chen developed a class of
smoothing methods for solving complementarity problems. The basis of their methods is a family
of smooth functions that approximate the plus function t+. A summary of these functions can be
found in [8, Subsection 11.8.2]. In what follows, we show how a smoothing approach can be applied
to the VaR minimization problem.

Let ρε be any nonnegative-valued, twice continuously differentiable, strictly convex function
defined on the real line such that |ρ ′

ε(t)| ≤ 1 and ρ ′′
ε (t) > 0 for all t, and for some constant c > 0,

| t+ − ρε(t) | ≤ c ε, ∀ t ∈ ℜ, (21)

for all ε > 0 sufficiently small. The latter approximating property has several consequences; among
these, we have

lim
t→∞

ρε(t) = ∞ and lim
t→−∞

ρε(t) = 0. (22)

Two examples of such a smoothing function are

ρε,1(t) ≡ ε log(1 + et/ε) and ρε,2(t) ≡
√
t2 + 4ε2 + t

2
.
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We leave it to the reader to verify that these functions satisfy the assumed properties.
In general, given a smoothing function ρε with the cited properties, consider the ε-approximate

CVaR and VaR minimization problems:
{

minimize CVaRβ,ε(x)

subject to x ∈ X

}

and

{

minimize VaRβ,ε(x)

subject to x ∈ X

}

,

where

CVaRβ,ε(x) ≡ min
m∈ℜ

[

m+
1

1− β

k
∑

i=1

pi ρε(x
T yi −m)

]

,

and VaRβ,ε(x) is the unique minimizer in the definition of CVaRβ,ε(x). It follows from the assumed
properties of ρε that the minimand in CVaRβ,ε(x) is a coercive function of m, for fixed x, that is,

lim
m→±∞

[

m+
1

1− β

k
∑

i=1

pi ρε(x
T yi −m)

]

= ∞.

(Use the second limit in (22) to show the case m → ∞ and the first limit and the nonexpansiveness
of ρε, which in turn is implied by the condition |ρ ′

ε(t)| ≤ 1 for all t, to show the other case
m → −∞.) Therefore, CVaRβ,ε(x) is a well-defined, finite scalar. Moreover, by the strict convexity
of ρε, it follows that VaRβ,ε(x) is uniquely defined. The latter is a significant difference from the
original CVaRβ(x) where the minimizing set Mβ(x) is often not a singleton. Another important
consequence with using the smooth function ρε is that VaRβ,ε(x) can be characterized as the unique
scalar m that satisfies the smooth equation:

1− β =

k
∑

i=1

pi ρ
′
ε(x

T yi −m).

This implies, by the implicit-function theorem, that the VaRβ,ε(x) is a continuously differentiable
function of x with gradient given by

∇VaRβ,ε(x) =

k
∑

i=1

pi ρ
′′
ε (x

T yi −VaRβ,ε(x)) y
i

k
∑

i=1

pi ρ
′′
ε (x

T yi −VaRβ,ε(x))

.

The upshot of these properties is that VaRβ,ε(x) has much nicer analytic properties than VaRβ(x);
furthermore, the ε-approximate VaR minimization problem is a smooth, albeit still nonconvex,
linearly constrained nonlinear program in the sole variable x. As such, there are a host of efficient
algorithms that one can use for computing the minimum value (to be precise, stationary values) of
the ε-approximate value-at-risk.

An important question that arises is what happens to the convergence of the ε-approximation
problems as ε ↓ 0. Although such a question has been partially studied in a general context (see,
e.g., [17]), we give a self-contained treatment to such a convergence issue for our special problem.
For this purpose, we establish a preliminary boundedness lemma.

Lemma 6.1 Let {εν} be a sequence of sufficiently small positive scalars, and let {xν} be an
arbitrary sequence of vectors in X, both of which are necessarily bounded. The sequence {mν},
where mν ≡ VaRβ,εν (x

ν) for every ν, is bounded. Moreover, if the pair (m∞, x∞) is the limit of
a convergent subsequence {(mν , x

ν) : ν ∈ κ} corresponding to a sequence {εν} of positive scalars
tending to zero, then m∞ is an element of Mβ(x

∞).
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Proof. We have, for any m ∈ ℜ and any ν,

mν +
1

1− β

k
∑

j=1

pj ρεν ((x
ν)T yj −mν) ≤ m+

1

1− β

k
∑

j=1

pj ρεν ((x
ν)T yj −m),

which implies, by the uniform approximation property (21),

mν +
1

1− β

k
∑

j=1

pj ((x
ν)T yj −mν)+ ≤ m+

1

1− β

k
∑

j=1

pj ((x
ν)T yj −m)+ +

2 c εν
1− β

.

Since the right-hand side is bounded, the boundedness of the sequence {mν} follows readily. More-
over, the second assertion of the lemma also follows easily from the last inequality. �

We introduce the notation for our next result, which addresses the main convergence issue of the
ε-smoothing procedure. Specifically, let {εν} be an arbitrary sequence of positive scalars converging
to zero. For each ε > 0, let xε be a (globally) optimal solution of the smooth optimization problem:

minimize VaRβ,ε(x)

subject to x ∈ X,
(23)

which is clearly equivalent to

minimize m

subject to x ∈ X

and 1− β =

k
∑

i=1

pi ρ
′
ε(x

T yi −m).

Let mε ≡ VaRβ,ε(x
ε).

Proposition 6.2 Suppose that the VaR minimization problem has a minimizer xVaR such that
Mβ(x

VaR) is the singleton {mVaR}. It holds that

lim
ε↓0

mε = min
x∈X

VaRβ(x). (24)

Consequently, for any sequence of positive scalars {εν} converging to zero, every accumulation
point of {xεν} is a minimizer of VaRβ(x) on X.

Proof. Let {εν} be an arbitrary sequence of positive scalars tending to zero. We have, for every ν,

mεν ≤ VaRβ,εν (x
VaR).

By Lemma 6.1, every accumulation point of the right-hand side is an element ofMβ(x
VaR), which by

assumption is the singleton {mVaR}. Consequently, the right-hand side converges to mVaR as εν ↓ 0.
If (m∞, x∞) is the limit of a convergent subsequence {(mεν , x

εν ) : ν ∈ κ}, then m∞ ∈ Mβ(x
∞),

and, from the above inequality,

m∞ ≤ mVaR = VaRβ(x
VaR);

this shows that x∞ is a minimizer of VaRβ(x) on X and also establishes the desired limit (24). �

Proposition 6.2 is theoretically very desirable; its practical drawback is that there is no guarantee
that a globally optimal solution to (23) can be computed. We have implemented the two smoothing
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functions ρε,1 and ρε,2 using ε = 10−3 for the example of the previous section. To solve the smoothed
problem, we used five state-of-the-art NLP solvers: filter, knitro 3.0, loqo 6.06, minos 5.5, and snopt
6.6-1, which are all available on the NEOS server [6, 26]. The MPEC solver required 5 iterations
to produce an upper bound for the example on hand, which turns out to be globally optimal. In
contrast, the NLP solvers fail for ρε,1 because the exponentials cannot be evaluated or blow up
during the computation. The situation is slightly better for the square root formulation. Filter
produces an optimal solution m = 4.265827 (which is slightly higher than the minimum VaR of
4.2652); knitro produces a local optimum m = 4.74277. All other solvers fail to produce a feasible
point (minos and snopt), while loqo fails because it reached its iteration limit.

7 Conclusion

In this paper, we have investigated the minimization problem of the VaR as a nonconvex LPEC
and developed bounding schemes that can be used to verify the global optimality of a candidate
feasible solution. We have also established the convergence of a smoothing approach to compute
an approximate VaR. Whereas the VaR minimization problem is special (and yet important in its
own right), we maintain that the bounding schemes can be extended to more general LPECs, and
possibly even to other “convex” MPECs, namely, MPECs whose only nonconvexity is the comple-
mentarity constraint. Indeed, the extension of the upper bounding scheme is fairly straightforward;
it is the lower bounding scheme that is very much problem dependent. Nevertheless, we believe
that for special classes of MPECs, tight lower bounds can be obtained, which can then be used in
a branch-and-cut scheme either for verifying the global optimality of a candidate solution obtained
from a local MPEC solver or for computing a globally optimal solution to the problem directly.

A lesson we have learned from the computational experiments in this paper is that while the NLP
solvers are generally very robust, one still requires a proof such as the one given in Subsection 5.2
to ascertain the quality of the solutions they produce. For MPECs, we believe that the time is
now ripe for combining existing local methods with some global branch-and-cut schemes in order
to obtain solutions with proven global optimality.

Acknowledgment. Professor Stanislav Uryasev has kindly alerted us to his paper with Larsen
and Mausser [19] in which CVaR-based algorithms are proposed for solving the VaR-minimization
problem.
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