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Abstract

As part of Performance World, we describe an automation server
(PAVER: http://www.gamsworld.org/performance/paver) to help facil-
itate reproducible performance analysis of benchmarking data for opti-
mization software. Although PAVER does not solve optimization prob-
lems, it automates the task of performance data analysis and visualization,
taking into account various performance metrics. These include not only
robustness and efficiency, but also quality of solution. This paper dis-
cusses the tools and the performance metrics used, as well as the design
of the server. We give examples of performance data analysis using an
instance of the COPS test case for nonlinear programming to illustrate
the features of the server.

Keywords: Performance data analysis, performance metrics, web-based service

1 Introduction

Benchmarking is an important tool in the evaluation and development of solvers
for mathematical programming problems, in uncovering solver deficiencies, and
in the quality assurance process of mathematical programming software.

Many researchers have devoted considerable work to collecting suitable test
problems, benchmarking, and performance testing of optimization software, see
for example [1, 2, 5, 28, 30, 32], and more notably [16, 26, 27]. Unfortunately,
before the seminal paper by Crowder, Dembo, and Mulvey [10], the first to give
clear guidelines and standards on how to report computational experiments,
little emphasis was placed on the reproducibility of experiments and data anal-
yses.
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Historically, most of the results involve the use of tables listing solver resource
times, number of iterations, and if no optimal solution was found, the solver
return status. While the analysis and interpretation of these tables is the most
factual and objective form of presenting benchmark results (if displayed in full),
large data sets can sometimes be overwhelming. In these cases it would be useful
to obtain a quick and comprehensive overview of the results in more compact
form and in an automated fashion.

As part of Performance World [33], an online forum devoted to all aspects
of performance testing of optimization software, we have developed an online
server to help facilitate and automate performance analysis and visualization
of benchmarking data. This paper describes the goals of this server and the
implementation of the tools. We describe the various performance metrics that
are used and how these are implemented in the provided tools.

This paper is organized as follows: in §2 we give an overview on the design
and implementation of the server itself. In §3 we discuss various performance
metrics that are useful in performance data analysis and in §4 describe the
tools that we provide as part of the server. Section 5 discusses some key issues
in benchmarking and in §6 we give numerical results using the COPS set of
nonlinear models. Finally, in §7 we draw conclusions.

2 PAVER Server Design

The PAVER Server (http://www.gamsworld.org/performance/paver) is a
web-based service for reproducible performance analysis of benchmarking data
obtained via optimization software. While the Network-Enabled Optimization
System (NEOS) [31, 11, 24, 15] is an environment for the solution of optimiza-
tion problems and thus the data collection phase in the benchmarking process,
PAVER seeks to automate and simplify specific tasks in the performance data
analysis phase. PAVER provides simple online tools for automated performance
analysis, visualization, and processing of benchmarking data.

An optimization engine, either a modeling environment such as AMPL [20] or
GAMS [6], or a stand-alone solver, generally provides solution information such
as objective function value, resource time, number of iterations, and the solver
status. The latter gives information of optimality or feasibility of the solution,
or infeasibility or unboundedness of the model. Within GAMS, solve and model
statistics are captured automatically by means of trace files. Benchmark data
obtained by running several solvers over a set of models can be automatically
analyzed via online submission to the PAVER server. A detailed performance
analysis report is returned via e-mail in HTML format and is also initially
available online.

The scripts are also publicly available for download in the form of GAMS
models. This requires however, the use of a GAMS system.
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Figure 1: PAVER: Process Overview

2.1 Data Submission and Processing

PAVER accepts benchmarking data in the form of GAMS trace files or generic
data files, where each data file contains data for a single solver over a model
test set. The file formats are discussed in more detail in the following section.
Data files contain information such as solve statistics, resource time, iterations,
objective function value, as well as model and solver return status codes. The
latter codes are identifiers for specifying solve return states, such as optimal
(globally), locally optimal, infeasible, unbounded, etc. In the server implemen-
tation, we use the model and solver status return codes as used within the
GAMS modeling environment. For more information on GAMS return codes
see [6].

Users submit their data files via the online (World-Wide Web) submission
tool at

http://www.gamsworld.org/performance/paver/pprocess submit.htm

The tool accepts the submission of up to 8 data files, automatically performing
cross comparisons of each solver with respect to every other solver.

After submission, the data files are analyzed for correctness and formatting.
If a data file does not have the proper format, for example because a data col-
umn is missing or because multiple solvers are specified in a single trace file,
users receive an error message online. Provided the data files are valid, a sched-
uler is invoked, which schedules the performance analysis job for a particular
workstation. The scheduling task takes the form of optimizing a mixed integer
program, taking into account current workstation workloads. The data files
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Table 1: Generic Data File Format

Column Headers Description
Modelname (required) Model Filename
Modeltype (required) LP, MIP, NLP, etc.
Solvername (required)
Direction 0=min, 1=max
Modelstatus GAMS model status
Solverstatus GAMS solver status
Obj Value of objective function
Res used Solver resource time used (sec)

are then sent from the server to the next available workstation specified by the
schedule. The performance analysis is completed and the results returned to
the server. The server then sends the results via e-mail attachment to the user.
The process is illustrated in Figure 1.

Note that although a single performance analysis of 8 data files may only
take 30 seconds, the submission of multiple jobs can result in an untimely back-
log. The scheduler guarantees that jobs are placed from the queue to the next
available workstation, resulting in a more efficient process. Workstations can
be added or removed as needed without any downtime of the PAVER server.

2.2 Data File Format

While initial applications of the server involved models written in GAMS format
and performance data collected using GAMS, the PAVER server provides a free
service and interface which users of other software can make use of. The server
provides the ability to submit both GAMS trace files or generic data files.

Model runs using GAMS can automatically capture performance data in the
form of trace files by using the “trace” and “traceopt=3” options. See [6] for
details. The trace file format consists of comma-delimited text files containing
model and solve statistics and solution information. For more information on
trace files, see for example [8]

Models run with other modeling systems or optimization engines can make
use of the server provided they have the generic data format. The format is
also in the form of comma-delimited text files with column entries as listed in
Table 1. More information, as well as sample input files are also available on
the PAVER website.
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3 Measures of Performance

3.1 Metrics

The main concern in presenting benchmark results is in removing some of the
ambiguity in interpreting results. Metrics should give information on

• solver robustness

• solver efficiciency

• quality of solution

While the first two metrics have long been viewed as standard performance
measures, the latter is becoming more important with recent advances in global
optimization. See for example the algorithms in [34, 36, 37].

In general, performance metrics used to compare solvers should not be dom-
inated by single test cases, as is the case in some results using (arithmetic mean)
averages of all ratios of a solve time of a single solver with respect to the fastest
time of all solvers in the comparison. In [3] Bixby makes use of geometric
mean averages which are less influenced by outliers, but the benchmark omitted
models which were not solved by all solvers in the comparison.

As Dolan and Moré note in [13], metrics should not only consider efficiency,
but also robustness. Unfortunately, some measures of performance are applica-
ble only if all solvers used can solve all problems in the benchmark test case. If
a comparison only considers models which all solvers can solve, then the most
robust solvers may be unduly penalized if they are able to solve more difficult
models that others were not able to solve.

The work of Dolan and Moré [13] using performance profiles has been very
useful in removing some of the ambiguity involved in interpreting benchmark
results. The use of profiles, cumulative distribution functions over a given perfor-
mance metric, presents a descriptive measure providing a wealth of information
such as solver efficiency, robustness, and probability of success in compact form.

The tools available as part of PAVER take into account the various metrics
using the solver square and resource time comparisons, which are described in
detail in §4. Furthermore, we show how the profiles of Dolan and Moré can be
used to include quality of solution information.

3.2 Subjectivity and Model Selection

The choice of test problems for benchmarks is difficult and inherently subjective.
While there is no consensus on choosing appropriate models, many interesting
and diverse model libraries exist which come from a wide variety of application
areas. See for example MIPLIB [4] for mixed integer programs, the COPS
[9] library for nonlinear programs, and the MINLPLib [7] for mixed integer
nonlinear programs.

Nonetheless, even the use of models from standard benchmark libraries, does
not make the process completely objective. For example, it is easily possible to
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Table 2: PAVER Tools Overview

Tool Robustness Efficiency Solution Quality
Square ×
Resource Time × ×
Profiles × × ×

choose a subset of models where one solver outperforms all others and another
subset where another solver outperforms all others. See the example in [35] and
the results in §6.

Therefore, in order to reduce the risk of bias in benchmark results, it is
sometimes helpful to perform benchmarks on various sets of models and ob-
serving solver performance trends over the whole rather than relying on a single
benchmark test set. The automated performance analysis tools described herein
may simplify the data analysis process and help in obtaining results over various
data sets quickly. Finally, any representation of benchmark data using perfor-
mance tools is only as complete as the data itself and it is important that users
understand the test set, the solvers, and the solver options used.

4 Tools

The tools available in PAVER allow either direct comparisons between two
solvers or comparisons of more than two solvers simultaneously. The solver
square and resource time utilities belong to the former and the performance
profile utility to the latter. An overview of the tools and the (primary) perfor-
mance measure employed by each is given in Table 2.

4.1 Solver Square

Robustness comparisons between two solvers can be achieved using the PAVER
comparison utility we refer to as solver square. Given possible solver outcomes
of optimal (globally), locally optimal, feasible, unbounded, and fail, the utility
displays the number of models that fall into each category for each solver. The
outcome category is determined by the solver and specified in the data file via
the model and solve status codes. Furthermore, the utility gives information on
the number of models that fall into a solver outcome category pair.

For example, a user may be interested in the number of models that were
solved locally optimal by one solver, but were found infeasible by another. The
utility lists the models that fall into a particular outcome pair category and
gives resource times and objective function information for each model in that
category.

The utility allows for quick identification of models where one solver is more
robust than another. It has been used, for example in [17], for fine tuning a new
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solver version.

4.2 Resource Time Comparisons

The resource time utility compares solver resource times of two given solvers.
In order to give information on solver robustness, solvers which do not find a
feasible solution are assigned an infinite time for the particular model. The
utility lists the number of models which were solved in the same amount of
time, where one solver was faster and where one solver was much faster than
the other.

Furthermore, models are disaggregated by objective value as well. Thus,
models in each category are further subdivided into models where both solvers
found the same objective function (within a given tolerance), or where one solver
found a better solution.

Again, this information has been used in [17] for comparisons of solver ver-
sions.

4.3 Performance Profiles

Performance profiles are cumulative distribution functions over a given per-
formance metric and give perhaps the most complete information in terms of
robustness, efficiency and solution quality. We will give a brief overview of per-
formance profiles, much of which comes from [13]. Furthermore, we discuss how
performance profiles can be used to include quality of solution information.

4.3.1 Background

Suppose we have ns solvers which we run over a set P of np problems. Let tp,s

be the solver resource time for solver s on problem p. Now define a performance
ratio as

ρp,s =
tp,s

min{tp,s : 1 ≤ s ≤ ns}
(1)

For solvers s that do not solve problem p, choose a parameter ρM ≥ ρp,s. Now
define

ps(τ) =
1
n

size{p ∈ P : ρp,s ≤ τ} (2)

Then ps(τ) : R 7→ [0, 1] is the probability that a performance ratio ρp,s is within
τ of the best ratio. The function in (2) is a performance profile and is the
cumulative distribution function for the performance ratio in (1). Furthermore,
it is piecewise constant, monotonically increasing and continuous from the right
at each of the breakpoints.

We remark that the performance ratio is not confined to the one chosen in
equation (1), but can be chosen based on the purpose of the profile.
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4.3.2 Interpretation

The profile gives much information including information about solver robust-
ness and efficiency. If a user is only interested in solver efficiency, then the user
can examine profile values ps(τ) for τ = 1 of different solvers s. The values
ps(1) specifies the probability that a solver will “win” over all other solvers. For
the profile given above, we define a “win” as the solver who finds any optimal
solution (local or global) in the least amount of time. It is possible to choose
different definitions of “win” based on different performance ratios.

If a user is only interested in the probability of sucess of a solver for the
problem set P , then the user may examine

lim
τ→∞

ps(τ) (3)

For ratios τ approaching ∞ we are looking at the probability of success of a
solver given unlimited resource time. Again, we remark that success is defined
as finding an optimal (local or global) solution.

4.3.3 Quality of Solution

The performance ratio defined in Equation (1) can be modified if the user is
also interested in information on quality of the solution returned by a solver.
This is of particular interest for nonconvex and discrete models.

Recall that in the original performance ratio we assigned a suitably large
ratio ρM to those problem/solver pairs p, s if a solver s failed to solve problem
p. If we are interested in quality of solution information in the ratio, we can
modify the ratio. If op,s is the solution found by solver s for problem p and bp

is the best solution found by all solvers s ∈ S for problem p, then we define a
new performance ratio as

ρp,s =


tp,s

min{tp,s:1≤s≤ns} if
∣∣∣ op,s−bp

bp

∣∣∣ ≤ δ

ρM if
∣∣∣ op,s−bp

bp

∣∣∣ > δ

 (4)

where δ is a user-defined relative objective function difference threshold and
ρM is again an upper bound on ρp,s over all problems p and solvers s. The
ratio here is similar as before, except that we consider a solver successful only
if the solution returned by a solver is within δ of the best solution found. We
note that the performance ratio defined in Equation (1) is a special case of the
general ratio defined in (4). For the new ratio, the performance profile is the
same as defined previously. We remark that for useful benchmarks the integrity
of the benchmarking data must be validated, i.e. doing an independent solution
verification. See §5 for details.

Note that for small values of bp the division in Equation 4 may be ill-
conditioned. Thus in practice, for smaller values the absolute difference may be
used. In the server implementation, for values bp < 0.1 the absolute difference
|op,s − bp| is computed instead.
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Interpretation of the profile is similar as before. Consider the case for δ = 0:
if we are only interested in the solver that finds the best solution of all solvers
in the fastest time, we consider ps(1) for all solvers. If we are interested in
the probability that a solver will find the best solution over all solvers, then we
consider p(τ) as τ → ∞. Interpretations for other values of δ are analogous.
Note that in practice we usually do not choose δ = 0 but rather some small
positive value, say 10−5.

4.3.4 User Specified Options

The PAVER Server allows users to specify non-default settings for the resource
time and the performance profile tools. These can give additional information
about a particular data set. In particular, the user can specify

• Performance Profile: objective function difference threshold δ (See Equa-
tion 4)

• Resource Time Utility: Threshold - solver faster (in %)

• Resource Time Utility: Threshold - solver much faster (in %)

In particular, δ may have a considerable impact on the final profiles. For
example, a smaller value of δ is more favorable for robust solvers, which give
high-quality solutions at the expense of a longer solve time. On the other hand
a larger value of δ favors solvers which may not be as robust, but can provide
an initial feasible solution much quicker.

5 Benchmarking Issues

Although this paper is about the features of PAVER, it is useful to be aware of
some of the key issues in benchmarking. In particular we discuss solver precision
and solution verification.

Because solvers use different optimality metrics (measurements of optimal-
ity) and feasibility, the comparison of benchmarking data from different solvers
is inherently imprecise. In order to compare solvers in an unbiased manner,
it may be useful to verify the solution independently. In particular the solu-
tion provided by each solver should be verified using the same optimality and
feasibility criterion.

Some work in this direction has been done already. Within the NEOS frame-
work, a benchmark solver exists which determines if the solution satisfies the
user-specified complementarity and optimality tolerances. In particular, the
utility returns the feasibility, complementarity, optimality and scaled optimal-
ity errors. For more information see [31] and [14]. Within GAMS, the Exam-
iner [21] solver can be used to independently verify the solution for feasibility,
complementarity and optimality. Examiner works inbetween the modeling en-
vironment and the solver in a seamless fashion.
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While independent verification is a step in the right direction, it should be
noted that this additional measure still does not guarantee a completely fair
comparison.

In particular, the specification of solver options works to satisfy feasibility
and optimality criteria in the solver frame of reference, whereas verification takes
place in a separate reference frame. Thus, tightening of solver tolerances may
not necessarily lead to tighter solutions in the verification frame of reference.

On the other hand, the choice of sufficiently tight solver options is difficult
to make without choosing a too tight option. In particular, one solver may work
unduly hard to satisfy the verification tolerances, where a lower solver tolerance
may suffice. This can lead to longer resource times than necessary or lead to the
solver not being able to satisfy the tolerances at all, even though some sufficient
tolerance may exist.

Completely fair data comparisons can only occur if solvers have a uniform
stopping criteria. Since access to the actual solver source code is usually not
possible (or practical), the latter criteria is hardly ever satisfied. In the absence
of being able to specify a uniform stopping criteria, solution verification and
convergence testing become increasingly important in ensuring the appropriate-
ness of the benchmarking data. See, for example, [12] for useful convergence
tests.

6 Illustrative Example: COPS Models

In order to illustrate the features of the PAVER performance analysis tools we
chose the COPS [9] library of nonlinear test problems. Our selection of solvers
include two solvers run through AMPL (using the GAMS/AMPL interface) and
two through GAMS directly.

Our experiments involve two test sets. One uses the complete COPS test set
except for the flowchan models, and the other a subset of models, illustrating
the subjectivity in model selection. In particular, we show that depending on the
performance metric of interest any of the four solvers can be deemed “superior.”

Note that we did not verify the solution independently for the reasons dis-
cussed in the previous section. While some work in the verification of the
solution makes sense for precise benchmarks, our intent rather is to illustrate
the features of PAVER.

6.1 COPS NLP Models

Although the COPS models were originally in AMPL format, we chose an im-
plementation of the models in the GAMS modeling language. The models come
from 17 different application areas and exhibit multiple maxima and minima.
Our test instance consists of four sizes of each of the COPS models, varying
a parameter in the application. The parameter can, for example, specify the
number of grid points in a discretization. All of the models used are available
as part of the GLOBALLib [23] library of models. We omitted the family of
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Table 3: COPS Model Statistics. Number of models in COPS benchmark set
having specified number of variables (Vars), number of nonzeros (NZ) and num-
ber of nonlinear nonzeros (NLNZ). NLNZ refers to the number of nonzero co-
efficients of nonlinear variables. For example, 21 of the 64 COPS models have
between 100−999 variables. Only 10 models have NLNZ between 10000−99999.

10-99 100-999 1000-9999 10000-99999
# Models (Vars) 2 21 37 4
# Models (NZ) 0 6 37 21
# Models (NLNZ) 0 10 44 10

flowchan models, as their implementation in GAMS is as a constrained non-
linear system (CNS), where objective function comparisons are not of interest.
This resulted in a total of 64 models in the benchmark test set. Table 3 gives
an overview of the model sizes. For full model statistics information see [23].

6.2 Solvers and Experimental Conditions

We chose CONOPT3 [18] (Library 301F), KNITRO [39] (version 2.1 08/01/02),
IPOPT [25] (version 2.0.1), and SNOPT [22] (version 5.3-5(2)) as our solvers.
CONOPT3 and SNOPT were run through GAMS, while KNITRO and IPOPT
were run through AMPL, employing the GAMS/AMPL interface so that all
solvers make use of the COPS implementation in the GAMS modeling language.
For the AMPL solvers, we additionally wrote scripts to parse the log output in
order to obtain additional performance data necessary for input to PAVER. This
additional data is not available directly through the GAMS/AMPL interface.

All benchmark runs were obtained by running the tests on an Ultra60 with
dual 450 MHz Ultrasparc 2 processors and 2 Gb of memory, running Solaris 8.
We set a resource time limit of 3, 600 seconds for each model for each solver. To
ensure consistency, we have verified that solver resource times can be reproduced
to within 10% accuracy. Solvers were run in default mode, except for SNOPT,
where we increased the superbasics limit to 10, 000. The AMPL solvers were
run with specific output options to get the desired log information needed to
create data files.

6.3 Results - All Models

We show the results using PAVER with all 64 COPS models and all four solvers.
The complete results of this benchmark are available online at

http://www.gamsworld.org/performance/cops/
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Figure 2: Summary File

Figure 2 lists the performance analysis summary HTML file returned by PAVER.
The first part under Data files used provides links to the data files that were
submitted. The second part under Performance profile summary gives a link
to the performance profiles obtained from the submitted data. The plots show
the results for all solvers in a single plot.

The next part under Solver square summary gives links to the solver square
for two solvers at a time. The matrix shown gives the solver square results for
all possible combinations of two solvers. In this case we have 6 different solver
square tables.

Similarly, under the Resource time summary, we have links to the resource
time comparison tables for all possible combinations of solvers (a total of 6
different tables).

Figure 3: Solver Square

Figure 3 shows the results of the solver square utility. We only show results for
the comparisons between CONOPT3 and KNITRO, although comparisons for
all solver pairs are computed automatically by PAVER (see the online results).
The utility gives solver robustness information of two solvers in compact form
and allows quick cross comparisons of two solvers. The results for CONOPT3
are listed in the white cells and the results for KNITRO in the dark grey-shaded
cells. The intersection (denoted by light grey cells) lists the number of models
falling into a given outcome pair.

For example, in Figure 3, 41 models were solved locally optimal by both
solvers. KNITRO found 45 locally optimal solutions and another 11 feasible
solutions (see the row total AMPL/KNITRO). Of the 45 locally optimal models,
CONOPT3 found 4 of them infeasible. On the other hand, CONOPT3 found
locally optimal solutions for 6 models, where KNITRO failed. The square utility
also lists resource times and objective value information for all models (not
shown here). The table entries are links to the models falling into a particular
category. Models found to have a better objective function value are listed in
boldface.

Figure 4: Performance Profiles (Efficiency)

Figure 4 shows the performance profile of all solvers using the performance
ratio in Equation (1), where we are interested only in solver efficiency. For
example, the fastest solver is KNITRO, which solves roughly 45% of the models
the fastest, followed by CONOPT3 at 25%. (See the profile for a Time Factor
of 1). If we are interested in overall probability of success, then SNOPT has
the highest probability of success at roughly 95%, even though it had the lowest
profile for efficiency alone. KNITRO and CONOPT3 followed with success
rates of roughly 87% and 82%. (see the profile as Time Factor→∞). Note the
profile of CAN SOLVE, which is the probability of success that any solver in the
comparison can solve the problem.
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Figure 5: Performance Profiles (Quality of Solution)

Figure 5 shows the profile using the performance ratio given in Equation (4),
where we take into account the solver quality of solution. We used the server
default value of δ = 10−5, indicating that the relative objective function error
can be no greater than 10−5 with respect to the best solution found.

In terms of quality of solution, CONOPT3 is the fastest solver overall in
finding the best solution, solving roughly 37% of the models in the most efficient
manner. KNITRO follows at about 32%. (See the profile for a Time Factor
of 1). If we are interested in probability of success in finding the best solution,
then SNOPT and CONOPT3 “win” most of the time (at about 69% and 66%)
followed closely by KNITRO and IPOPT at roughly 45%. (See the profile as
Time Factor →∞).

6.4 Results - Subset of Models

In this example we will illustrate the subjectivity in the selection of models,
showing that care must be taken when choosing sets of models for benchmarking.
In particular, using PAVER, it is easy to choose a subset of models where any
one solver performs the best subject to a given performance metric. In this case,
the metric is based on efficiency only.

Figure 6: Resource Times (IPOPT Best)

In order to choose a subset we make use of the Resource Time Utility. We
will choose a subset of models where IPOPT performs best in terms of solver
efficiency. In Figure 6 we show results for resouce time comparisons between
CONOPT3 and IPOPT for all COPS models in the benchmark. For example
in column Total we can see that for 6 models IPOPT was faster, for 8 much
faster and for 2 infinitely faster. Using the server default settings, a solver is
considered faster, if it is 10% faster with respect to the faster time, much faster
if it is 50% faster, and inifinitely faster if one of them finds a solution whereas
the other does not. These threshold settings can be modified by the user as
needed.

We can thereby choose a subset of models, for example the 6 + 8 + 2 models
which gurantees that IPOPT will perform better than CONOPT. In particular,
we will choose these 16 models plus the 5 models where both solvers perform
the same and show in the next figure that IPOPT performs the “best” for this
model test set. The numbers are links to the models that fall into a particular
category.

Models are further categorized by objective function value. As the square
utility, the resource time utility gives detailed objective function value and tim-
ing information for individual models (not shown).
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Figure 7: Performance Profiles - Efficiency (IPOPT Best)

For this plot we choose the 21 models as defined from the previous resource time
results. If we look at the performance profile plot in Figure 7 we can see that
IPOPT is the fastest solver, finding a solution the fastest for more than 60%
of the models. Note that for each of the other two profile plots (efficiency and
quality of solution) in Figures 4 and 5 IPOPT appeared to look less effective
than the other solvers. If we look at probability of success, then IPOPT again
is the “best” and can find a solution to all models.

So although initial results appeared to indicate that the other solvers are
more effective, for almost one third of the models, IPOPT still outperforms the
other solvers.

Discussion of Results

The results indicate that given the metric of interest each of the solvers can
outperform the others. Furthermore, we have illustrated how model selection
plays an important role in benchmark analysis and that users must be careful to
consider the test set. Any unbiased benchmark should therefore include multiple
test sets so that general trends over multiple data sets can be analyzed, thereby
minimizing the risk of subjective interpretation of results.

7 Conclusions

We have introduced an online server for reproducible and automated perfor-
mance analysis and visualization of benchmarking data. While the original
intent was for analyzing benchmark data of linear and nonlinear optimization
software, the server can be utilized for other algorithmic software, for example,
solvers for problems in numerical linear algebra, ordinary or partial differential
equations. Provided users supply solve information in the generic data file for-
mat, the server can perform similar performance analyses on non-optimization
engines. Future work may focus on expanding PAVER to use a more general
format such as XML as data input.
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[14] E. D. Dolan, J. J. Moré, and T. S. Munson (2002). Mea-
sures of optimality for constrained optimization, [www http://www-
neos.mcs.anl.gov/neos/ftp/optimality.pdf].

[15] E. D. Dolan (2001). The NEOS Server 4.0 Administrative Guide, Techni-
cal Memorandum ANL/MCS-TM-250, Mathematics and Computer Science
Division, Argonne National Laboratory.
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[24] W. Gropp and J. J. Moré (1997). Optimization Environments and the
NEOS Server, In: M. D. Buhmann and A. Iserles (Eds.), Approxima-
tion Theory and Optimization, 167–182, Cambridge University Press, Cam-
bridge.

[25] IPOPT: An interior point algorithm for large-scale nonlinear optimization,
[www http://www-124.ibm.com/developerworks/opensource/coin/Ipopt].

[26] H. D. Mittelmann and P. Spellucci (2003). Decision Tree for Optimization
Software, [www http://plato.la.asu.edu/guide.html].

[27] H. D. Mittelmann (2003). An independent benchmarking of SDP and SOCP
solvers, Math. Programming Ser. B, 95, 407–430.

16



[28] H. D. Mittelmann (1999). Benchmarking interior point LP/QP solvers, Opt.
Meth. Software, 12, 655–670.

[29] B. A. Murtagh and M. A. Saunders (1998). MINOS 5.5 User’s Guide, Stan-
ford Univ. Dept. Op. Research, Rpt. SOL 83-20R.

[30] S. G. Nash and J. Nocedal (1991). A numerical study of the limited memory
BFGS method and the truncated Newton method for large scale optimiza-
tion. SIAM J. Optim., 1, 358–372.

[31] NEOS (1997). [www http://www-neos.mcs.anl.gov].

[32] A. Neumaier (2000). [www http://www.mat.univie.ac.at/˜neum/glopt.html].

[33] Performance World (2004). [www http://www.gamsworld.org/performance].

[34] J. D. Pintér (2002), LGO - A Model Development System for Continu-
ous Global Optimization. User’s Guide. (Current revised edition), Pintér
Consulting Services, Halifax, NS.

[35] A. Pruessner (2002). Automated Performance Testing and
Analysis, Informs 2002, San Jose, Session on “Benchmark-
ing & Performance Testing of Optimization Software.” [www
http://www.gams.com/presentations/present automation.pdf.]

[36] M. Tawarmalani and N. V. Sahinidis (2002). Convexification and Global
Optimization in Continuous and Mixed-Integer Nonlinear Programming:
Theory, Algorithms, Software, and Applications, Kluwer Academic Pub-
lishers, Dordrecht.

[37] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti (2002).
A multistart scatter search heuristic for smooth NLP and MINLP problems,
INFORMS J. Comp., to appear.

[38] R. J. Vanderbei (1999). LOQO user’s manual - Version 3.10, Opt. Meth.
Software, 12, 231–252

[39] R. A. Waltz and J. Nocedal (2002). KNITRO 2.0 User’s Manual, [www
http://www.ziena.com/knitro/manual.htm].

17



Figure 2: PAVER Summary (All models).
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Figure 3: PAVER Square Utility Results (All models. Solvers: CONOPT,
KNITRO).
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Figure 4: PAVER Performance Profile. Time Factor τ is in log10 scale
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Figure 5: PAVER Performance Profile (Quality of Solution). Time Factor τ is
in log10 scale.
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Figure 6: PAVER Resource Time Utility Results - IPOPT Best.

22



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  10  100  1000

P
er

ce
nt

 O
f M

od
el

s 
S

ol
ve

d

Time Factor

Performance Profile

CONOPT3
AMPL/KNITRO

AMPL/IPOPT
SNOPT

CAN_SOLVE

Figure 7: PAVER Performance Profile (Efficiency - IPOPT Best). Time Factor
τ is in log10 scale.
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