
A Nonmonotone Inexact Newton Method ∗

Silvia Bonettini
Dipartimento di Matematica, Università di Modena e Reggio Emilia

Abstract

In this paper we describe a variant of the Inexact Newton method
for solving nonlinear systems of equations. We define a nonmonotone
Inexact Newton step and a nonmonotone backtracking strategy. For
this nonmonotone Inexact Newton scheme we present the convergence
theorems. Finally, we show how we can apply these strategies to In-
exact Newton Interior–Point method and we present some numerical
examples.
Keywords: Nonlinear Systems, Inexact Newton Methods, Nonmono-
tone Convergence, Newton Interior–Point Methods.

1 Introduction

A classical way to solve a system of nonlinear equations

F (x) = 0 (1)

where F : Rn → Rn is continuously differentiable, is the Newton method:
given a starting point x0, at each step k the Newton equation

F ′(xk)sk = −F (xk) (2)

has to be solved, in order to determine the Newton direction sk. Then, the
new iterate is computed by the rule

xk+1 = xk + sk.

Convergence theorems for Newton method can be found for example in
[11]. The main computational task is the solution of (2), which can be very

∗This research was supported by the Italian Ministry for Education, University and
Research (MIUR), FIRB Project RBAU01JYPN.

1

2

expensive if n is large. The idea of Inexact Newton method introduced in
[2] is to substitute (2) with a condition on its residual:

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖,
where ηk ∈ [0, 1) and ‖ · ‖ is an n–dimensional vector norm. In order to
obtain global convergence properties, the Global Inexact Newton method
presented in [5] also requires another condition that guarantees a ”sufficient
decrease” of the norm of F at each iterate. A general scheme for this method
can be written as follows:

Let x0 ∈ Rn and β ∈ (0, 1) be given.
For k = 0, 1, 2, . . .

Find some ηk ∈ [0, 1) and a vector sk that satisfy

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖ (3)
and

‖F (xk + sk)‖ ≤ (1− β(1− ηk))‖F (xk)‖. (4)

Set xk+1 = xk + sk.
A vector that satisfies (3) is called Inexact Newton step at the level ηk and
the parameter ηk is the forcing term. In [5], global convergence theorems
have been established for some particular algorithms following this scheme,
under the assumption that the sequence of the iterates {xk} has a limit point
where the jacobian matrix F ′ is nonsingular.
We observe that condition (3) is a generalization of the Newton equation;
hence, in order to satisfy (3), it may be sufficient to solve (2) inexactly, for
example by means of an iterative solver. Furthermore, the accuracy of the
solution is given by the norm of F at the current iterate, so, when we are
far from the solution, unnecessary computations can be avoided. This is an
advantage of Inexact Newton methods, especially for large scale problems.
Note that, when ‖ · ‖ is the euclidean norm ‖ · ‖2, condition (3) guarantees
that the Inexact Newton step is a descent direction for the scalar function

Φ(x) =
1
2
‖F (x)‖2

2. (5)

Indeed we have the following inequality (we omit the iteration index):

∇Φ(x)ts = F (x)tF ′(x)s
= F (x)t[−F (x) + F ′(x)s + F (x)]
= −‖F (x)‖2

2 + F (x)t(F ′(x)s + F (x))
≤ −(1− η)‖F (x)‖2

2 ≤ 0.

3

Condition (4) provides that at every iteration the norm of F is reduced,
so the sequence {‖F (xk)‖} is monotone nonincreasing. Then, we conclude
that Inexact Newton method with the euclidean norm can be considered as
a descent method with line search (4) for the merit function Φ(x). However,
it can be observed that if x∗ is a root of F (x), it is also a minimizer of the
norm of F , but the converse is not true.
In this paper we present a nonmonotone version of Inexact Newton method,
where both the conditions (3) and (4) have been relaxed. First of all, it is
useful to introduce the following notations. Given N ∈ N and a sequence
{xk}, we denote by x`(k) the element with the following property

‖F (x`(k))‖ = max
0≤j≤min(N,k)

‖F (xk−j)‖. (6)

Note that we have k −min(N, k) ≤ `(k) ≤ k. The modified scheme can be
written as follows:

Let x0 ∈ Rn and β ∈ (0, 1) be given.
For k = 0, 1, 2, . . .

Find some ηk ∈ [0, 1) and a vector sk that satisfy

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (x`(k))‖ (7)
and

‖F (xk + sk)‖ ≤ (1− β(1− ηk))‖F (x`(k))‖. (8)

Set xk+1 = xk + sk.
According to (3), we define the vector sk satisfying (7) nonmonotone Inexact
Newton step at the level ηk. Note that the sequence {‖F (xk)‖} satisfying
(7) and (8) is nonmonotone, but {‖F (x`(k))‖} is a monotone nonincreasing
subsequence of it. Furthermore, the nonmonotone step is not a descent di-
rection for the merit function defined in (5). This fact may be useful in some
cases to avoid local minima of the merit function where F ′ is singular.
In the next section, we present a backtracking algorithm following the non-
monotone scheme, for which, in section 3, we state convergence theorems.
In section 4, as a special case, we consider the Newton Inexact interior–
point method and we show that, by applying nonmonotone strategies, we
can choose the perturbation parameter of the interior methods in a larger
range of values.
Finally, in section 5, we present some numerical experiments related to non-
monotone interior–point method.

For the remainder of the paper, we denote Nδ(x) = {y ∈ Rn : ‖y− x‖ <
δ} for δ > 0 and we use the following results:

4

Lemma 1.1 [11, 2.3.3] Assume that F ′(x) is invertible. Then, for any
ε > 0 there exists δ > 0 such that F ′(x) is invertible and

‖F ′(x)−1 − F ′(y)−1‖ < ε,

for all y ∈ Nδ(x).

Lemma 1.2 [11, 3.1.5] For any x and ε > 0, there exists δ > 0 such
that

‖F (z)− F (y)− F ′(y)(z − y)‖ ≤ ε‖z − y‖,
for all z, y ∈ Nδ(x).

2 A nonmonotone Inexact Newton method

The nonmonotone Inexact Newton method can be implemented by using a
backtracking strategy. At each step k, we determine a forcing term η̄k and a
vector s̄k that satisfy the nonmonotone condition (7); then, we reduce s̄k by
means of a damping parameter αk obtained by a nonomonotone backtracking
rule; the nonmonotone Inexact Newton step sk = αks̄k satisfies condition
(7) and (8) with ηk = (1 − αk(1 − η̄k)). The algorithm can be stated as
follows.

Algorithm 2.1

Step 1. Set x0 ∈ Rn, β ∈ (0, 1), 0 < θmin < θmax < 1, ηmax ∈ (0, 1), k = 0.

Step 2. Determine η̄k ∈ [0, ηmax], s̄k that satisfy

‖F (xk) + F ′(xk)s̄k‖ ≤ η̄k‖F (x`(k))‖.

Set αk = 1.

Step 3. While ‖F (xk + αks̄k)‖ > (1− αkβ(1− η̄k))‖F (x`(k))‖
Step 3a. Choose θ ∈ [θmin, θmax];

Step 3b. Set αk = θαk.

Step 4. Set xk+1 = xk + αks̄k.
k = k + 1
Go to Step 2.

5

The following lemma shows that if η̄k ∈ [0, ηmax] and s̄k satisfy the condition
at the step 2, then the vector αs̄k is a nonmonotone Inexact Newton step
at the level η(α) = (1 − α(1 − η̄k)) for any α ∈ (0, αmax], where αmax < 1.
Furthermore, in (0, αmax] the condition

‖F (xk + αs̄k)‖ < (1− αβ(1− η̄k))‖F (x`(k))‖
is verified.

Lemma 2.1 Let β ∈ (0, 1); suppose that there exist η̄ ∈ [0, 1), s̄ satis-
fying

‖F (xk) + F ′(xk)s̄‖ ≤ η̄‖F (x`(k))‖.
Then, there exist αmax ∈ (0, 1] and a vector s such that

‖F (xk) + F ′(xk)s‖ ≤ η‖F (x`(k))‖ (9)

‖F (xk + s)‖ ≤ (1− βα(1− η))‖F (x`(k))‖ (10)

hold for any α ∈ (0, αmax], where η ∈ [η̄, 1), η = (1− α(1− η̄)).

Proof. Let s = αs̄. Then we have

‖F (xk) + F ′(xk)s‖ = ‖F (xk)− αF (xk) + αF (xk) + αF ′(xk)s̄‖
≤ (1− α)‖F (xk)‖+ α‖F (xk) + F ′(xk)s̄‖
≤ (1− α)‖F (x`(k))‖+ αη̄‖F (x`(k))‖
= η‖F (x`(k))‖,

so (9) is proved. Now let

ε =
(1− β)(1− η̄)

‖s̄‖ ‖F (x`(k))‖, (11)

and δ > 0 be sufficiently small (see Lemma 1.2) that

‖F (xk + s)− F (xk)− F ′(xk)s‖ ≤ ε‖s‖ (12)

whenever ‖s‖ < δ. Choosing αmax = min(1, δ
‖s̄‖), for any α ∈ (0, αmax]

we have ‖s‖ < δ and then, using (11) and (12), we obtain the following
inequality

‖F (xk + s)‖ ≤ ‖F (xk + s)− F (xk)− F ′(xk)s‖+ ‖F (xk) + F ′(xk)s‖
≤ εα‖s̄‖+ η‖F (x`(k))‖
= ((1− β)(1− η̄)α + (1− α(1− η̄)))‖F (x`(k)‖
= (1− βα(1− η̄))‖F (x`(k))‖
≤ (1− βα(1− η))‖F (x`(k))‖,

6

that completes the proof. ¤

A consequence of the previous lemma is that the while loop at the step 3
terminates. Indeed, at each iterate k the backtracking condition

‖F (xk + αs̄k)‖ ≤ (1− αβ(1− η̄))‖F (x`(k))‖ (13)

is satisfied for α < αmax, where αmax depends on k. Since the value of αk is
reduced by a factor θ < θmax < 1 at the step 3a, then there exists a positive
integer p such that (θmax)p < αmax and so the while loop terminates at
most after p steps. When it is impossible to determine xk+1 we say that the
algorithm breaks down. Then, Lemma 2.1 yields that algorithm 2.1 breaks
down if and only if is impossible to find a nonmonotone inexact Newton step
at any level.

Theorem 2.1 Let {xk} a sequence such that limk→∞ F (xk) = 0 and
for each k the following conditions hold:

‖F (xk) + F ′(xk)sk‖ ≤ η‖F (x`(k))‖, (14)

‖F (xk+1)‖ ≤ ‖F (x`(k))‖, (15)

where sk = xk+1 − xk and η < 1. If x∗ is a limit point of {xk}, then
F (x∗) = 0 and if F ′(x∗) is nonsingular, then the sequence {xk} converges
to x∗.

Proof. If x∗ is a limit point of the sequence {xk}, there exists a subsequence
{xkj

} of {xk} convergent to x∗. By the continuity of F , we obtain

F (x∗) = F

(
lim

j→∞
xkj

)
= lim

j→∞
F (xkj

) = 0.

Furthermore, since {x`(k)} is a subsequence of {xk}, also the sequence {F (x`(k))}
converges to zero when k diverges. Denote K = ‖F ′(x∗)−1‖ and δ > 0 be
sufficiently small that F ′(y)−1 exists whenever y ∈ Nδ(x∗); thus we can
suppose

‖F ′(y)−1‖ ≤ 2K, (16)

‖F (y)− F (x∗)− F ′(x∗)(y − x∗)‖ ≤ 1
2K

‖y − x∗‖.

7

Then for any y ∈ Nδ(x∗) we have

‖F (y)‖ = ‖F ′(x∗)(y − x∗) + F (y)− F (x∗)− F ′(x∗)(y − x∗)‖
≥ ‖F ′(x∗)(y − x∗)‖ − ‖F (y)− F (x∗)− F ′(x∗)(y − x∗)‖
≥ 1

K ‖y − x∗‖ − 1
2K ‖y − x∗‖

= 1
2K ‖y − x∗‖.

Then
‖y − x∗‖ ≤ 2K‖F (y)‖ (17)

holds for any y ∈ Nδ(x∗). Now let ε ∈ (0, δ
4) and since x∗ is a limit point of

{xk}, there exists a k sufficiently large that

xk ∈ N δ
2
(x∗)

and

x`(k) ∈ Sε ≡
{

y : ‖F (y)‖ <
ε

K(1 + η)

}
.

Note that since x`(k) ∈ Sε then also xk+1 ∈ Sε because ‖F (xk+1)‖ ≤
‖F (x`(k))‖. For the direction sk, by (14), (15) and (16), the following in-
equality holds:

‖sk‖ ≤ ‖F ′(xk)−1‖(‖F (xk)‖+ ‖F (xk) + F ′(xk)sk‖)
≤ 2K(‖F (x`(k))‖+ η‖F (x`(k))‖)
= 2K(1 + η)‖F (x`(k))‖ < 2ε < δ

2 .

Since sk = xk+1 − xk, the previous inequality implies ‖xk+1 − x∗‖ < δ and
from (17) we obtain

‖xk+1 − x∗‖ ≤ 2K‖F (xk+1)‖ < 2K
ε

K(1 + η)
<

δ

2

that implies xk+1 ∈ N δ
2
(x∗). Therefore x`(k+1) ∈ Sε, since ‖F (x`(k+1))‖ ≤

‖F (x`(k))‖. It follows that, for any j sufficiently large, xj ∈ Nδ(x∗), and
from (17)

‖xj − x∗‖ ≤ 2K‖F (xj)‖.
Since F (xj) converges to 0 we can conclude that xj converges to x∗. ¤

Lemma 2.2 Suppose that Algorithm 2.1 does not break down. If x∗ is a
limit point of {xk} such that F ′(x∗) is nonsingular then there exist infinitely
many k such that αk > τ > 0.

8

Proof. Denoting ‖F ′(x∗)−1‖ = K, we can find δ > 0 such that

(i) F ′(x)−1 exists whenever x ∈ Nδ(x∗),

(ii) ‖F ′(x)−1‖ ≤ 2K ∀x ∈ Nδ(x∗)

(iii) ‖F (x) − F (y) − F ′(y)(x − y)‖ ≤ (1−β)(1−ηmax)
2K(1+ηmax) ‖y − x‖ ∀x, y ∈

N2δ(x∗).

Since x∗ is a limit point, there exist infinitely many k such that xk ∈ Nδ(x∗)
for which the following condition holds:

‖s̄k‖ ≤ ‖F ′(xk)−1‖(‖F ′(xk)s̄k + F (xk)‖+ ‖F (xk)‖)
≤ 2K(1 + ηmax)‖F (x`(k))‖. (18)

Since sk = αs̄k, formula (18) can be written as

‖sk‖ ≤ Γα‖F (x`(k))‖ (19)

where Γ = 2K(1 + ηmax).
Now we show that if α ≤ δ

Γ‖F (x`(k))‖ , then the while loop terminates. We can
write by means of condition (ii), Lemma 2.1 and formula (19)

‖F (xk + sk)‖ ≤ ‖F (xk) + F ′(xk)sk‖+ ‖F (xk + sk)− F (xk)− F ′(xk)sk‖
≤ η‖F (x`(k))‖+ (1−β)(1−ηmax)

Γ ‖sk‖
≤ ((1− α)(1− η̄) + (1− β)α(1− η̄))‖F (x`(k))‖.

Thus
‖F (xk + αs̄k)‖ ≤ (1− αβ(1− η̄))‖F (x`(k))‖

This inequality shows that the backtracking condition (13) is satisfied for
α ≤ δ

Γ‖F (x`(k))‖ and since α is reduced at every step by a factor θ ≤ θmax <

1 the while loop terminates. Suppose now that the while loop has been
executed at least once, let denote αk the final value (i.e. the value of α for
which (13) is satisfied) and ᾱk the previous one. At the penultimate step
the condition (13) is not satisfied, so necessarily we have

ᾱk >
δ

Γ‖F (x`(k))‖

and so
αk = θᾱk >

δθmin

Γ‖F (x`(k))‖
≥ δθmin

Γ‖F (x0)‖ .

9

Hence Lemma (2.2) has been proved with τ = min(1, δθmin
Γ‖F (x0)‖). ¤

From Lemma 2.2 we can derive the following corollary, which is used in
the proof of the convergence theorem.

Corollary 2.1 Suppose that Algorithm 2.1 does not break down. If
x∗ is a limit point of {xk} such that F ′(x∗) is nonsingular and {xkj} is a
subsequence converging to x∗ then the sequence {αkj} is bounded away from
zero.

Now we can state the convergence theorem. The proof is similar to the one
of theorem in section 3 of [7].

Theorem 2.2 Suppose that Algorithm 2.1 does not break down and
that the norm of inexact Newton step is bounded for every k by a positive
constant M

‖s̄k‖ ≤ M. (20)

Assume also that one of the two following properties holds:

F is Lipschitz continuous; (21)
the set Ω(0) = {x ∈ Rn : ‖F (x)‖ ≤ ‖F (x0)‖} is compact. (22)

If x∗ is a limit point of xk such that F ′(x∗) is invertible then F (x∗) = 0 and
{xk} converges to x∗ when k diverges.

Proof. Since ‖F (x`(k))‖ is a monotone nonincreasing, bounded sequence,
then there exists L ≥ 0 such that

L = lim
k→∞

‖F (x`(k))‖.

Thus, writing the backtracking condition (13) for the iterate `(k), we obtain

‖F (x`(k))‖ ≤ (1− α`(k)−1β(1− η̄`(k)−1))‖F (x`(`(k)−1))‖. (23)

When k diverges, we can write

L ≤ L− L · lim
k→∞

α`(k)−1β(1− η̄`(k)−1). (24)

Since β is a constant and 1− η̄j ≥ 1− ηmax > 0 for any j, (24) yields

L · lim
k→∞

α`(k)−1 ≤ 0

10

that implies
L = 0

or
lim

k→∞
α`(k)−1 = 0. (25)

Suppose that L 6= 0, so that (25) holds. Let ˆ̀(k) = `(k + N + 1) so that
k + N + 1ˆ̀(k) > k and we show by induction that for any j ≥ 0 we have

lim
k→∞

αˆ̀(k)−j = 0 (26)

and
lim

k→∞
‖F (xˆ̀(k)−j)‖ = L. (27)

For j = 1, since {αˆ̀(k)−1} is a subsequence of {α`(k)−1}, (25) implies (26).
From (20) we also obtain

lim
k→∞

‖xˆ̀(k) − xˆ̀(k)−1‖ = 0. (28)

If (21) holds, from |‖F (x)‖ − ‖F (y)‖| ≤ ‖F (x)− F (y)‖ and (28) we obtain

lim
k→∞

‖F (xˆ̀(k)−1)‖ = L. (29)

If, instead of (21), (22) holds, then, exploiting the uniform continuity of F
in Ω(0), we can again derive (29). Assume now that (26) and (27) hold for
a given j. We have

‖F (x`(k)−j)‖ ≤ (1− α`(k)−(j+1)β(1− η`(k)−(j+1)))‖F (x`(`(k)−(j+1)))‖.
Using the same arguments employed above, since L > 0, we obtain

lim
k→∞

αˆ̀(k)−(j+1) = 0

and so
lim

k→∞
‖xˆ̀(k)−j − xˆ̀(k)−(j+1)‖ = 0,

lim
k→∞

‖F (xˆ̀(k)−(j+1))‖ = L.

Thus, we conclude that (26) and (27) hold for any j ≥ 1. Now, for any k,
we can write

‖xk+1 − xˆ̀(k)‖ ≤
ˆ̀(k)−k−1∑

j=1

αˆ̀(k)−j‖s̄ˆ̀(k)−j‖

11

so that, since we have ˆ̀(k)− k − 1 ≤ N , we have

lim
k→∞

‖xk+1 − xˆ̀(k)‖ = 0. (30)

Furthermore, we have

‖xˆ̀(k) − x∗‖ ≤ ‖xˆ̀(k) − xk+1‖+ ‖xk+1 − x∗‖ (31)

Since x∗ is a limit point of {xk+1} and (30) holds, (31) implies that x∗ is
a limit point for the sequence {xˆ̀(k)}. From (28) we conclude that x∗ is a
limit point also for the sequence {xˆ̀(k)−1}, which contradicts the Corollary
2.1. Indeed, there exists a τ > 0 such that αˆ̀(k)−1 > τ for infinitely many
k. Hence, we necessarily have L = 0, that implies

lim
k→∞

‖F (xk)‖ = 0.

Now Theorem 2.1 completes the proof. ¤

Theorem 2.3 Under the hypothesis of Theorem 2.2 we have that the
sequence {‖F (xk)‖} converges and

lim
k→∞

‖F (xk)‖ = lim
k→∞

‖F (x`(k))‖.

Proof. If limk→∞ ‖F (x`(k))‖ = 0, then limk→∞ ‖F (xk)‖ = 0.
If limk→∞ ‖F (x`(k))‖ = L > 0, using the same arguments in the first part of
the proof of Theorem 2.2, we can conclude that (30) holds. If (21) or (22)
holds, then limk→∞ ‖F (xk)‖ = L = limk→∞ ‖F (x`(k))‖. ¤

3 An application: a nonmonotone Inexact Newton
Interior–Point Method

First, we recall the basic concepts of Newton Inexact interior–point method,
as a special case of Inexact Newton method. For the details we refer to [4].
Here and for the remainder, we assume ‖ · ‖ = ‖ · ‖2.
Consider now the nonlinear programming problem

min f(x)
g1(x) = 0
g2(x) ≥ 0

(32)

12

where x ∈ Rn, f : Rn → R, g1 : Rn → Rneq, g2 : Rn → Rp; by introducing
the slack variables s on the inequality constraints, the Karush–Kuhn–Tucker
(KKT) optimality conditions for problem (32) are given by the following
system of nonlinear equations:

H(v) ≡




∇f(x)−∇g1(x)λ−∇g2(x)w
−g1(x)
−g2(x) + s
WSep


 = 0, (33)

with
s, w ≥ 0,

where λ ∈ Rneq s, w ∈ Rp and W = diag(w);S = diag(s). Here λ and w
are the Lagrange multipliers related to the equality and inequality constraint
respectively; the vector ej indicates the vector of j components whose values
are equal to 1. Furthermore we set v = (xt, λt, wt, st)t and ñ ≡ n+neq +2p
(the size of the system (33)). The first n+neq +p components of the vector
H(v),

G(v) =



∇f(x)−∇g1(x)λ−∇g2(x)w
−g1(x)
−g2(x) + s




represent the gradient of the lagrangian function of the minimum problem,
while the last p equations in (33),

SWep = 0,

are called complementarity conditions.
In the framework of Newton interior–point method, instead of (33), we con-
sider the perturbed KKT conditions

H(v) = ρẽ
s, w > 0,

(34)

with ρ > 0 and ẽ = (0t
n+neq+p, e

t
p)

t and, given a starting point v0 with
(s0, w0) > 0, at the iteration k we have to solve the perturbed Newton
equation

H ′(vk)∆v = −H(vk) + ρkẽ, (35)

so that the iterates satisfy the positivity condition on (sk, wk). The pertur-
bation parameter ρk can be defined as

ρk = σkµk, (36)

13

with σk ∈ (0, 1) and µk > 0.
Now we will briefly recall the conditions that enable us to view the Newton
interior–point method as an Inexact Newton method applied to the the
system (33). Consider the Newton equation for (33):

H ′(vk)∆vk = −H(vk). (37)

The residual vector rk ∈ Rñ for (37) can be written as

rk = H ′(vk)∆vk + H(vk). (38)

If we suppose that rk is given by the following expression

rk =
(

0n+neq+p

ρkσkep

)
, (39)

then we obtain
‖rk‖ = ρk‖ep‖ = ρk

√
p.

Note that if we choose
µk ≤ ‖H(vk)‖√

p
, (40)

as in [3], and if ∆vk satisfies (38) where rk is given by (39), then ∆vk is an
inexact Newton step at the level σk for the system (33). In interior–point
methods a suitable choice of µk is µk = st

kwk

p ; we have st
kwk

p ≤ ‖H(vk)‖√
p , so

(40) is satisfied. Furthermore, a sufficient condition for (39) is that ∆vk is
an exact solution for the perturbed equation (35), so (40) guarantees that
the vector computed at every step of the interior–point method by solving
(35) exactly is an Inexact Newton step.
Suppose now that the residual of (37) at the iteration k has the following
expression, instead of (39):

rk =
(

r̄k

ρkep

)
, (41)

where r̄k ∈ Rn+neq+p satisfies the condition

‖r̄k‖ ≤ δk‖H(vk)‖. (42)

Now, if (40) and (42) hold and σk + δk < 1, then ∆vk in (38) is an Inexact
Newton step at the level σk + δk for the system (33). Indeed, we have

‖rk‖2 = pρ2
k + δ2

k‖r̄k‖2 ≤ (σ2
k + δ2

k)‖H(vk)‖2 ≤ (σk + δk)2‖H(vk)‖2,

14

which implies
‖rk‖ ≤ (δk + σk)‖H(vk)‖.

In order to obtain a residual vector as in (41), one may solve the equation
(35) inexactly on the first n + neq + p equations, by means of an iterative
solver, using condition (42) as inner stopping criterion. So, the conditions
on ‖r̄k‖, δk, σk and µk allow us to calculate only an inexact solution of (35),
obtaining again an Inexact Newton step. This approach is useful when ñ is
large and the computation of an exact solution can be too expensive.
If we replace (40) and (42) with

µk ∈
[
sk

twk

p
,
‖H(v`(k))‖√

p

]
(43)

and
‖r̄k‖ ≤ δk‖H(v`(k))‖ (44)

then it is easy to verify, using the same observations employed above, that
a vector ∆v for which the residual rk has the form in (41) is a nonmono-
tone Inexact Newton step. After the computation of the direction ∆vk, the
following iterate in an interior–point method is determined by the updating
rule

vk+1 = vk + αk∆vk,

where αk ∈ (0, 1] has to be chosen in order to guarantee the positivity of
the components of sk+1 and wk+1. Furthermore the parameter αk ∈ (0, 1]
must be selected so that the centrality conditions (see e.g. [6]) are satisfied.
Finally, we include in the method the nonmonotone backtracking strategy
seen in the previous section. Now we present the nonmonotone Newton
Inexact interior–point method.

Algorithm 3.1

Step 1. Fix v0 such that (s0, w0) > 0 and choose the positive parameters as
follows:

- τ1 < 1 and τ1 ≤ p (mini=1,...,p(s0)i(w0)i) /st
0w0;

- τ2 ≤ (st
0w0)/‖G(v0)‖;

- δ̃, β, θ, tol ∈ (0, 1);

- δmax + σmax < 1 and σmax ≥
√

2τ2δmax/min(1, τ2) + δ̃

- δ̃ ≤ σmin < σmax.

15

Set k ← 0.

Step 2. If ‖H(vk)‖ ≤ tol then stop, else choose the positive parameters σk, δk, µk

such that:

- 0 ≤ δk;

- σmin ≤ σk ≤ σmax and σk ≥ δ̃ +
√

2δk/min(1, τ2);

- µk ∈
[

sk
twk
p ,

‖H(v`(k))‖√
p

]
as in (43).

Step 3. Find ∆vk = (∆xt
k, ∆λt

k, ∆wt
k, ∆st

k)
t such that (35) hold with rk defined

in (41) and
‖r̄k‖ ≤ δk‖H(v`(k))‖

as in (44).

Step 4. Compute α̃k = min
(
α

(1)
k , α

(2)
k

)
, where α

(1)
k and α

(2)
k are the largest

numbers in (0, 1] such that the following centrality conditions hold for
any α ∈ (0, α(1)

k] and α ∈ (0, α(2)
k] respectively:

min
i=1,...,p

sk(α)iwk(α)i ≥ (τ1/p)sk(α)twk(α), (45)

sk(α)twk(α) ≥ τ2‖G(v(α))‖, (46)

where v(α) = vk + α∆vk.

Step 5. If

‖H(vk + α̃k∆vk)‖ ≤ (1− α̃β(1− (δk + σk))‖H(v`(k))‖, (47)

go to Step 6, else update α̃ = θα̃. and go to Step 5.
Denote αk the last value of α̃k.

Step 6. Update vk+1 = vk + αk∆vk.
Set k ← k + 1.
Go to Step 2.

Step 2, 3, 5 and 6 enable us to consider Algorithm 3.1 as a special case
of Algorithm 2.1. At the first step all the parameters are set, while at the
step 4 the centrality conditions are stated. One can observe that conditions
(45) and (46) avoid the last p components of the vector H(v) (related to

16

complementarity equations) to become smaller than ‖G(v)‖ at every iterate.
For the analysis of the convergence, it is useful to introduce the set

Ω(ε) = {v ∈ Rñ : ε ≤ ‖H(v)‖ ≤ ‖H(v0)‖,
s.t. v satisfies conditions (45) and (46)}. (48)

We observe that all the iterates vk belong to Ω(0). For the convergence of
Algorithm 3.1 we make the following assumptions:

A1. In Ω(0) f(x), g1(x), g2(x) are twice continuously differentiable and the
derivative of G(v) is Lipschitz continuous. Moreover the columns of
∇g1(x) are linearly independent.

A2. Ω(0) is a compact set.

A3. The matrix H ′(vk) is nonsingular for any k ≥ 0.

The assumption A2 implies that the iteration sequence {vk} is bounded.
First we prove some lemmas used in the proof of the convergence theorem
presented below.

Lemma 3.1 Let {vk} generated by Algorithm 3.1. Under the assump-
tion A1–A3 there exists a positive constant M such that

‖∆vk‖ ≤ M.

Proof. Recalling that the direction ∆vk computed at the step 3 is a non-
monotone Inexact Newton step at the level σk + δk, we obtain the following
inequality:

‖∆vk‖ ≤ ‖H ′(vk)−1‖ · (‖H ′(vk)∆vk + H(vk)‖+ ‖H(vk)‖)
≤ ‖H ′(vk)−1‖ · (1 + σk + δk)‖H(v`(k))‖. (49)

Denoting M =
(
maxv∈Ω(0) ‖H(v)−1‖) (1+σmax + δmax)‖H(v0)‖, (49) yields

‖∆vk‖ ≤ M.

¤
For the proof of the following lemma we refer to [4]: tacking into account
Lemma 3.1 and (43), it is possible to use the same arguments.

17

Lemma 3.2 Let {vk} generated by Algorithm 3.1, so that the settings
at the step 1 and 2 hold. Assume that {vk} ⊂ Ω(ε)with ε > 0. Then α̃k

computed at the step 4 is bounded away from zero.

Now we prove the following convergence result.

Theorem 3.1 Under the assumptions A1–A3, the Algorithm 3.1 with
tol = 0 generates a sequence {vk} such that {‖H(vk)‖} converges to zero
and each limit point of {vk} satisfies the KKT conditions for (32). Further-
more, if v∗ is a limit point of {vk} such that H ′(v∗) is nonsingular, then the
sequence {vk} converges to v∗.

Proof. Denote L = limk→∞ ‖H(v`(k))‖. From Lemma 3.1 and Theorem 2.3
we obtain that limk→∞ ‖H(vk)‖ = L. Suppose now that L > 0. This im-
plies that {vk} ⊂ Ω(ε), with ε > 0 (at least for k large). Consequently, from
Lemma 3.2, α̃k is bounded away from zero. If v∗ is a limit point of {vk},
then {v∗} ∈ Ω(ε) and H ′(v∗) is a nonsingular matrix. Then, from Theorem
2.2, we deduce that L = 0 and this is a contradiction. Notice that we can
use Theorem 2.2 even if the starting value of the backtracking procedure is
α̃k instead of 1 because α̃k is bounded away from zero. Then {‖H(vk)‖}
has to converge to zero. So, if v∗ is a limit point of {vk} such that H ′(v∗)
is nonsingular, using Theorem 2.1, then the sequence {vk} converges to v∗. ¤

4 Numerical examples

In this section we report some numerical experiments, obtained by coding
Algorithm 3.1 in FORTRAN90 using double precision on a Compaq XP1000
workstation. In particular we set β = 10−4, θ = 0.5, tol = 10−8. We declare
the failure of the algorithm when the tolerance tol is not satisfied after
500 iterations or when at some step the backtracking reductions are more
than 10. Furthermore we set µk = st

kwk

p as in [6]. The aim of the numerical
experiments is to compare the behaviour of the monotone and nonmonotone
algorithms; for the nonmonotone one, the parameter N has been chosen
equal to 2, 4 and 9. Furthermore, the comparison has been performed in
two different cases. In the first one, δk is set equal to 0: this means that
the perturbed Newton equation (35) is solved exactly at each iteration.
The solution of the linear system is computed by the MA27 subroutine of
the Harwell library that performs a LU factorization. In the second case,
Hestenes multipliers scheme has been adopted as iterative inner solver (see

18

Table 1: References and starting points
P Reference (x0)i direct (x0)i iterative χ
P1 Example 5.5 in [8] 1 1 107 − 108

P2 Example 5.6 in [8] 0.01 2 106 − 107

P3 Example 5.7 in [8] 0.5 1.5 106 − 107

P4 Example 5.8 in [8] 3.995 2 ; 7 106 − 107

P5 Example 4 in [9] 0 ; 3 106 − 107

P6 Example 5 in [9] 0 ; 3 106 − 107

P7 Example 4.2, M = 1, K = 0.8 in [10] 1.75 ; 5 107 − 108

P8 Example 4.2, M = 0, K = 1 in [10] 3 107 − 108

[1]), so an inexact solution of (35) is calculated. The nonlinear programming
problems considered here arise from the discretization by finite difference of
elliptic control problems described in [8], [9] and [10]. The references are
listed in Table 1. In the third and fourth column of Table 1, the starting
points for the two choices of solver, direct and iterative, have been reported;
when two different values are listed on the same row, the first one is the value
of the components of x0 related to the state variables, while the second one
is related to the control variable. Only the value of the variable x0 are
reported, while the other components of the vector v0 are always been set
equal to 1. In the last column of Table 1 is specified the interval which the
parameter χ in [1] belongs to. In Table 2 the results of the monotone and
nonmonotone algorithms with the direct inner solver are compared in terms
of number of iterations (it.) and total number of backtracking reductions
(b.). Each test problem has been executed three times, by changing the
meshsize: the values on the first column indicate the number of meshpoints
on the x and y axis. In this case, since an exact solver has been adopted, the
nonmonotone scheme differs to the monotone one only on the backtracking
rule. From the results, in some cases the two algorithms seem to behave
in a similar way. In more critical cases, in order to satisfy the monotone
backtracking rule the damping parameter is reduced to a very small value;
this fact yields the failure of the algorithm, while the nonmonotone rule
allows to accept larger values of the damping parameter, avoiding in many
cases the stagnation of the iterates. In general, a reduction of the number
of the backtracking steps can be observed.
Figure 1 illustrates the decrease of ‖H(vk)‖ for P1 with n = 10593. The
results Table 3 have been obtained employing the iterative solver, so the
number of the inner iterations (inn.) is reported. Now the difference be-
tween the monotone and the nonmonotone schemes are not only in the
backtracking rule, but in the stopping criterion of the inner solver too. In
the last column are listed the final values of the objective function (obj.). A

19

Figure 1

0 5 10 15 20 25 30 35 40 45 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Mon.
Nonm.

general reduction of the number of inner iterations can be observed, and in
many cases the number of external iterations (ext.) and of the backtracking
reductions (b.) is also reduced.

5 Conclusions

We proposed a variant of Inexact Newton Method in which monotonicity
requirements have been relaxed. For the modified scheme we devised con-
ditions under which we proved the convergence theorems. Then we applied
the nonmonotone techniques to the inexact interior–point method, as spe-
cial case of Inexact Newton Method, and we proved the convergence of the
whole scheme. As shown in the tables 2 and 3, the nonmonotone approach
can reduce the number of the backtracking steps and of the inner iterations
when an iterative solver is employed.

References

[1] S. Bonettini, E. Galligani and V. Ruggiero (2003). A Newton Inex-
act Interior–Point method combined with Hestenes’ multipliers scheme,
Technical Report n.334, Dipartimento di Matematica dell’Università di
Ferrara.

20

Table 2: Numerical results: direct inner solver

Monotone Nonmonotone
N = 0 N = 2 N = 4 N = 9

Grid n P it b. it b. it b. it b.
P1 27 1 26 0 26 0 26 0

50 2793 P2 30 15 – – 26 2 26 2
P3 – – 25 0 25 0 25 0
P4 33 6 – – – – 34 2
P1 46 55 – – – – 33 0

100 10593 P2 – – – – – – 32 13
P3 – – 26 1 27 0 27 0
P4 31 0 31 0 31 0 31 0
P1 – – – – – – – –

150 23393 P2 – – – – – – 41 19
P3 – – 26 1 27 0 27 0
P4 29 2 32 1 32 1 32 1

Table 3: Numerical results: iterative inner solver

Monotone Nonmonotone
N = 0 N = 2 N = 4 N = 9

P Grid n ext. inn. b. ext. inn. b. ext. inn. b. ext. inn. b. obj.
50 2793 25 27 1 22 22 0 22 22 0 22 22 0 .5479649

P1 100 10593 35 36 1 29 29 1 29 29 1 29 29 1 .5522459
200 41193 – – – 53 53 1 53 53 1 53 53 1 .5543686
50 2793 23 24 0 23 23 0 23 23 0 22 23 0 .0140651

P2 100 10593 31 33 0 31 31 0 31 31 0 31 31 0 .0150786
150 23393 – – – 39 39 0 39 39 0 39 39 0 .0154262
50 2793 17 19 0 18 18 0 18 18 0 18 18 0 .2575581

P3 100 10593 24 26 0 23 23 0 23 23 0 23 23 0 .2638984
200 41193 31 34 0 32 32 0 32 32 0 32 32 0 .2671221
50 2793 18 19 0 18 18 0 18 18 0 18 18 0 .1539771

P4 100 10593 26 28 0 26 26 0 26 26 0 26 26 0 .1616639
200 41193 39 41 0 37 37 0 37 37 0 37 37 0 .1657634
50 4998 17 18 0 17 17 0 17 17 0 17 17 0 .0773888

P5 100 19998 17 18 0 17 17 0 17 17 0 17 17 0 .0780638
200 79998 20 23 0 19 19 0 19 19 0 19 19 0 .0784259
50 4998 29 30 0 29 29 0 29 29 0 29 29 0 .0521892

P6 100 19998 41 42 0 41 41 0 41 41 0 41 41 0 .0526638
200 79998 69 72 0 59 59 0 59 59 0 59 59 0 .0529328
50 4998 21 21 0 21 21 0 21 21 0 21 21 0 -6.4857811

P7 100 19998 27 28 0 27 27 0 27 27 0 27 27 0 -6.5764272
200 79998 46 47 0 46 46 0 46 46 0 46 46 0 -6.6200922
50 4998 28 28 0 28 28 0 28 28 0 28 28 0 -18.4825400

P8 100 19998 42 43 0 42 42 0 42 42 0 42 42 0 -18.7361482
200 79998 51 96 0 51 66 0 51 51 0 51 51 0 -18.8633116

21

[2] R. S. Dembo, S. C. Eisenstat and T. Steihaug(1982). Inexact Newton
methods, SIAM Journal on Numerical Analysis, 19, 400–408.

[3] C. Durazzi (2000) On the Newton interior–point method for nonlinear
programming problems, Journal of optimization Theory and Applica-
tions, 104, 73-90.

[4] C. Durazzi and V. Ruggiero (2003). A Newton Inexact Interior–
Point method for large scale nonlinear optimization problems, Annali
dell’Università di Ferrara, Sezione VII Scienze Matematiche, 49, 333-
357.

[5] S. C. Eisenstat and H. F. Walker (1994). Globally convergent Inexact
Newton methods, SIAM Journal on Optimization, 4, 393–422.

[6] A. S. El Backry, R. A. Tapia, T. Tsuchiya and Y. Zhang (1996). On the
Formulation and Theory of Newton Interior–Point Method for Nonlin-
ear Programming, Journal of Optimization Theory and Applications,
89, 507–541.

[7] L. Grippo, F. Lampariello and S. Lucidi (1986). A Nonmonotone line
search technique for Newton’s method, SIAM Journal on Numerical
Analysis 23, 707–716.

[8] H. D. Mittelmann and H. Maurer (1999). Optimization techiques for
solving elliptic control problems with control and state constraints: Part
1. Boundary control, Computational Optimization and Applications,
16, 29–55.

[9] H. D. Mittelmann and H. Maurer (2001). Optimization techiques for
solving elliptic control problems with control and state constraints: Part
2. Distributed control, Computational Optimization and Applications,
18, 141–160.

[10] H. D. Mittelmann and H. Maurer (2000). Solving elliptic control prob-
lems with Interior Point and SQP Methods: control and state con-
straints, Journal of Computational and Applied Mathematics, 120,
175–195.

[11] J. M. Ortega and W. C. Rheimboldt (1970). Iterative solution of non-
linear equations in several variables, Academic Press, New York.

