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1 IntrodutionThe subjet of this paper is the desription of an algorithm for the approximationof reahable sets of linear ontrol problems. The problem of determining onvexreahable sets an be equivalently desribed by in�nitely many optimal ontrolproblems, where the objetive funtion is adapted. By hoosing only �nitelymany diretions approximations of reahable sets an be obtained. The ouringoptimal ontrol problems are not solved theoretially by use of the Pontryagin'smaximum priniple as in [38℄ but numerially by suitable disretization methods.This allows to treat also time dependent linear problems and even nonlinearones. Non-polyhedral ontrol regions an be treated as nonlinear inequalitiesand equalities. Results onerning the onvergene of disretized optimal ontrolproblems an be found in [30℄, [10℄ and the referenes stated therein.In this ontext, the partiular hoie of the seletion strategy used for ontrolapproximation turns out to be ruial for the order of onvergene and depends onthe hoie of the Runge-Kutta sheme used for the disretization of the underlyingdi�erential equations. In order to illustrate this dependeny several Runge-Kuttamethods with di�erent seletion strategies (pieewise onstant, pieewise linear,independent seletion) are disussed in more detail for two illustrative examples.By this approah umbersome set operations (like Minkowski sums, unionsof sets, . . . ) an be avoided and lead to known optimization methods, whihin addition yield not only the endpoints of optimal trajetories, but the entiretrajetory inluding the orresponding optimal ontrol. Furthermore, this ap-proah is useful for linear ontrol problems with ontrol regions formulated withnonlinear restritions (see (7)) and in nonlinear ontrol problems yielding onvexreahable sets, too. However, the lose onnetion between set-valued analysisand optimal ontrol is shown in Setion 3. A omparison with set-valued methodsas in [12, 4, 3, 41, 8℄ is beyond the sope of this paper.Methods for linear di�erential inlusions based on set-valued quadrature meth-ods or set-valued Runge-Kutta methods are mentioned in [3℄ as well as othermethods, e.g. estimation methods for reahable sets (f. [15℄) and ellipsoidalmethods (f. [23℄ for an overview). Newer developments of these methods ahieveinner approximations ([24℄, [26℄) and outer approximations [25℄ of the reahableset (see also [4℄).The problem of the approximation of reahable sets appears in several disi-plines: ontrol theory, ordinary di�erential equations with unertainties or withdisontinuities in the state, neessary onditions for a minimum in nonsmoothanalysis, di�erential games and viability theory, f. [5℄, [1℄, [33℄, [14℄. The on-vexity of these reahable sets an be guaranteed for linear di�erential inlusions,but may also appear for nonlinear problems.The paper is organized as follows. In Setion 2 basi notations and proper-ties of reahable sets are summarized. Basi fats on the desription of onvexsets and arithmeti set operations are introdued and form the basis for the re-2



sults of Setion 3. In partiular, the Hausdor� and the Demyanov distanes arede�ned, whih are used to measure the speed of onvergene w.r.t. the opti-mal value and the optimal trajetory, respetively. In Setion 3 the problem ofalulating the boundary of the reahable set is reformulated as in�nitely manyoptimal ontrol problems whih di�er only in the objetive funtion. These opti-mal ontrol problems are disretized by use of expliit Runge-Kutta methods andsuitable ontrol approximations resulting in �nite dimensional (linear/nonlinear)optimization problems. Herein, several approximation lasses for the ontrol leadto di�erent seletion strategies in the disretization. The setion ends with aformulation of the proposed method for the approximation of reahable sets andits implementation. Several ombinations of Runge-Kutta methods and sele-tion strategies are disussed in Setion 4 with illustrative examples. Tables withonvergene results and visualizations of reahable sets are inluded. Finally, anoutline for further researh onludes the paper.2 NotationIn this setion, some introdutory de�nitions and results are olleted.The basi underlying problem is the following ontrol problem:Problem 2.1 Let A(�) : Rn ! Rn�n and B(�) : Rm ! Rm�n be two L1-integrablematrix funtions.Let U � Rm be a nonempty, onvex ompat set and I := [t0; tf ℄ be a real interval.For a given ontrol funtion u : I ! Rm with u(�) 2 L1(I;Rm) we are lookingfor a solution x(�) 2 W 1;1(I;Rn) of the di�erential equation_x(t) = A(t)x(t) +B(t)u(t) (a.e. t 2 I); (1a)x(t0) = x0; (1b)u(t) 2 U (a.e. t 2 I). (1)De�nition 2.2 Let us study Problem 2.1 and let t 2 I. Then,R(t; t0; x0) := fy 2 Rn j 9u(�) ontrol funtion and 9x(�) orrespondingsolution of Problem 2.1 with x(t) = ygis alled the reahable set of the orresponding ontrol problem for the time t.In 1965, Aumann disovered the onvexity of the set-valued integral in [2℄whih easily leads to the onvexity of the reahable set for linear ontrol problems.Proposition 2.3 In Problem 2.1, the reahable set R(t; t0; x0) is onvex, om-pat and nonempty for every t 2 I. 3



Proof: see e.g. [37, Theorem 1℄ �Some notations from Convex Analysis are realled whih are neessary for theexplanation of the algorithm desribed later.De�nition 2.4 Denote by C(Rn) the set of all nonempty onvex ompat sets inRn and let C 2 C(Rn) and l 2 Rn .Then, Æ�(l; C) := max2C l>is the support funtion of C in diretion l andY (l; C) := f 2 C j l> = Æ�(l; C)gis the set of supporting points of C in diretion l.We need the following property of support funtions:Lemma 2.5 Let C = C1 � C2 2 C(Rn) with onvex sets Ci � Rni , ni 2f1; : : : ; ng, i = 1; 2, and n1 + n2 = n. Then, for given l = (l>1 ; l>2 )> 2 Rnwith li 2 Rni , i = 1; 2, we have:Æ�(l; C) = Æ�(l1; C1) + Æ�(l2; C2):Proof: see e.g. [19, xV, Disussion after Remark 3.3.6℄ �Support funtions resp. supporting points desribe fully a onvex ompatset.Proposition 2.6 Let C 2 C(Rn). Then,C = \klk2=1fx 2 Rn j l>x � Æ�(l; C)g; �C = [klk2=1Y (l; C);C = o( [klk2=1fy(l; C)g) with arbitrary y(l; C) 2 Y (l; C);where �C denotes the boundary of C and o(�) denotes the onvex hull of a set.Proof: see e.g. [19, xV., Theorem 2.2.2℄ and [19, xV., Proposition 3.1.5℄.The last equation follows easily, if one estimates the support funtion of theright-hand side in diretion � by �>y(�; C) = Æ�(�; C) from below. �A ommon arithmeti operations on sets is the salar multipliation and theMinkowski sum whih are realled here.4



De�nition 2.7 Let C;D 2 C(Rn), � 2 R and A 2 Rm�n . Then,�C := f� j  2 Cgde�nes the salar multipliation,AC := fA j  2 Cgthe image of C under the linear map x 7! Ax andC +D := f+ d j  2 C; d 2 Dgthe Minkowski sum.We need the following theoretial result whih states onvexity and ompat-ness of the set operations de�ned above.Lemma 2.8 Let C;D 2 C(Rn), � 2 R and A 2 Rm�n . Then, �C and C + Dare elements of C(Rn) and AC is an element of C(Rm). Furthermore,Æ�(l; �C) = �Æ�(l; C); Y (l; �C) = �Y (l; C) (if � � 0);Æ�(�; AC) = Æ�(A>�; C); Y (�; AC) = AY (A>�; C);Æ�(l; C +D) = Æ�(l; C) + Æ�(l; D); Y (l; C +D) = Y (l; C) + Y (l; D)for all l 2 Rn , � 2 Rm .Proof: To guarantee that the operations give results in C(Rn) and the equationson the support funtions see [19, xV, Theorem 3.3.3(i) and Proposition 3.3.4℄.The equations on the supporting set follow immediately from alulus rules onthe subdi�erential in [19, xVI, Theorem 4.1.1 and equation (3.1)℄ and [32, The-orem 23.9℄, sine [19, xVI, Proposition 2.1.5 and equation (3.1)℄ onnets thesubdi�erential of the support funtion and the supporting set. �De�nition 2.9 Let C;D 2 C(Rn). Then,d(C;D) := max2C mind2D k� dk2;dH(C;D) := maxfd(C;D); d(D;C)gare de�ning the one-sided Hausdor� distane resp. the Hausdor� distane of thetwo sets.The Demyanov distane between two sets is de�ned asdD(C;D) := supl2TC\TD ky(l; C)� y(l; D)k2;where TC is de�ned as set of all normed diretions in Rn for whih the supportingset Y (l; C) onsists of only one point y(l; C) (TD is de�ned analogously for theset D). TC and TD are subsets of the unit sphere of full measure.5



Well-known properties of the support funtion make it easy to prove thefollowing result for the Hausdor�-distane:Proposition 2.10 Let C;D 2 C(Rn). Then,dH(C;D) = maxklk2=1 jÆ�(l; C)� Æ�(l; D)j � dD(C;D):Proof: see e.g. [19, xV, Theorem 3.3.8℄ and [9, Lemma 4.1℄ �3 NewMethod for the Approximation of Reah-able Sets3.1 Computation of the Reahable Set by Optimal Con-trolSine we know from Proposition 2.3 that the reahable set for problem 2.1 isonvex, it is suÆient to alulate merely the boundary of the reahable set.Proposition 2.6 gives a motivation to alulate at least one support point(whih lies automatially at the boundary) of the reahable set in diretion l 2 IRnwith klk2 = 1. Note that even in the ase that the reahable set is not stritlyonvex and the set of supporting points is a (n� 1)-dimensional fae, for a �xeddiretion l, one supporting point in this diretion is suÆient to reonstrut thereahable set.Thus, to alulate a supporting point x(tf ) on the boundary of the reah-able set R(tf ; t0; x0) in a �xed diretion l we have to �nd an admissible ontrolfuntion u(t) 2 U that maximizes the funtional y 7! l>y (resulting in the sup-port funtion Æ�(l;R(tf ; t0; x0)) as optimal value). This onstitutes the followingspeial optimal ontrol problem of Mayer type:(OCPl) 8<: Maximize l>x(tf )w.r.t. u 2 L1([t0; tf ℄; IRm); x 2 W 1;1([t0; tf ℄; IRn)x(�) orresponding solution to u(�) for (1a){(1).We denote the optimal solution of (OCPl) by x?(t; l) and u?(t; l), where theargument l indiates the dependeny of the diretion l.As already mentioned in Proposition 2.6, the onvexity and ompatness of thereahable set guaranteed by Proposition 2.3 leads to the equivalent representationby onsidering supporting points in all diretions l 2 IRn, klk2 = 1:R(tf ; t0; x0) = ofx?(tf ; l) j l 2 IRn; klk2 = 1g:
6



3.2 Approximation of Reahable Sets by Disretized Op-timal Control ProblemsIn general, for omplex problems neither we an ompute a solution of (OCPl)analytially nor for all diretions l. Hene, we suggest to approximate (OCPl)numerially and onsider only a �nite number of diretions li, i = 1; : : : ;M := Nl.This yields an approximationRM (tf ; t0; x0) � R(tf ; t0; x0)of the reahable set whih will be spei�ed hereafter.For the moment let l be �xed with klk2 = 1.For Nt 2 IN; Nt � 2 we introdue a grid with grid pointsti = t0 + ih 2 [t0; tf ℄; i = 0; 1; : : : ; N := Nt; h = tf � t0Nt : (2)The ontrol funtion u(t) is disretized on eah subinterval [ti; ti+1℄ by the ap-proximation u(i)app(t; û); t 2 [ti; ti+1℄;where û = (u0; u1; : : : ; uP�1)> 2 UP is a �nite dimensional vetor parametriz-ing the seletion strategy for the ontrol in the following expliit Runge-Kuttasheme.Let us �rst de�ne expliit Runge-Kutta shemes before we will disuss parti-ular strategies for the approximation of the ontrol in more details. Eah expliitRunge-Kutta sheme an be haraterized by its Buther array:1 0 � � � � � � 02 �21 0 � � � 0... ... . . . . . . ...s �s1 � � � �s;s�1 0�1 � � � �s�1 �sFor a given ontrol approximation u(i)app(t; û) on [ti; ti+1℄ a state approximationxapp(t; û) is obtained via an expliit s-step Runge-Kutta disretization sheme:xapp(ti+1; û) = xapp(ti; û) + h�(xapp(ti; û); û; h); i = 0; 1; : : : ; Nt � 1;xapp(t0; û) = x0 (3)and�(xapp(ti; û); û; h) := sXj=1 �j �A(ti + jh)�(j)i+1 +B(ti + jh)u(i)app(ti + jh; û)� ;�(j)i+1 := xapp(ti; û) + h j�1Xk=1 �jk �A(ti + kh)�(k)i+1 +B(ti + kh)u(i)app(ti + kh; û)� :7



Suitable values for the oeÆients �jk, �j and j, 1 � j; k � s an be found in[7℄. Let us now onsider examples for seletion strategies used in Setion 4.(i) Continuous and pieewise linear approximation:u(i)app(t; û) := ui + t� tih (ui+1 � ui) for t 2 [ti; ti+1℄; i = 0; 1; : : : ; N � 1;with P = N + 1.(ii) Pieewise onstant approximation:u(i)app(t; û) := ui for t 2 [ti; ti+1℄; i = 0; 1; : : : ; N � 1;with P = N .(iii) Independent seletions at intermediate grid points ti + jh:u(i)app(ti + jh; û) := ui�s+j�1; i = 0; 1; : : : ; N � 1; j = 1; : : : ; s; (4)with P = s �N . Here, eah grid point reates a new independent seletionfor eah subinterval. For modi�ed Euler's method (see Setion 4 and Figure4 in Example 4.2) 1 = 0, 2 = 12 so that two independent seletions u2iand u2i+1 are hosen from U for this method in eah subinterval [ti; ti+1℄.For Heun's method (see Setion 4 and Figure 3 in Example 4.2) 1 = 0,2 = 1 so that two independent seletions u2i and u2i+1 are also hosen fromU for this method in eah subinterval [ti; ti+1℄, although ti+2h = ti+1+1hfor i = 0; : : : ; N � 1.Please notie, that further seletion strategies are possible, e.g. independent se-letions with additional ontinuity onstraints at the inner grid points ti, i =1; : : : ; N � 1, or additional equality onstraints at those intermediate grid pointsti + jh where di�erent indies j produe the same intermediate grid point (i.e.,points where j = k with j 6= k).Thus, by this disretization the in�nite dimensional optimal ontrol problem(OCPl) is approximated by the �nite dimensional onvex programming problem
(CP1l ) 8>>>>>><>>>>>>:

Maximize l>xapp(tNt; û)w.r.t. û 2 UPsubjet to xapp(ti+1; û) = xapp(ti; û) + h�(xapp(ti; û); û; h);i = 0; 1; : : : ; Nt � 1xapp(t0; û) = x0;û 2 UP : (?)Notie, that û impliitly de�nes a ontrol approximation u(i)app(�; û) on eah subin-terval [ti; ti+1℄, ompare the examples (i)-(iii).8



We denote the optimal solution of (CP 1l ) by û?.If the onditions (?) an be written with a �nite number of aÆne inequalities,(CP 1l ) is a linear programming problem and alled (LP 1l ), otherwise a nonlinear(onvex) programming problem.In the sequel, we investigate the simplest ase, the Euler's method In the se-quel, we investigate the simplest ase, the Euler's method with pieewise onstantontrol approximation, sine it is then easier possible to derive expliit solutionsfor the �nite dimensional problems (CP 1l ). Nevertheless, every expliit Runge-Kutta methods with the seletion strategies (i){(iii) will give a similar (moreompliated) representation. The expliit formulae for the solution stress thestrong onnetion to set-valued methods e.g. in [12, 4, 41℄ via support funtionsresp. supporting points.In the ase of Euler, (3) redues to�(xapp(ti; û); û; h) = A(ti)xapp(ti; û) +B(ti)ui:The reursive evaluation in (3) for Euler's method yieldsxapp(tNt; û) =  Nt�1Yi=0 Qi! x0 + h Nt�1Xk=0  Nt�1Yi=k+1Qi!Bkuk (5)with Qi := I + hA(ti), Bk := B(tk) and the n� n-identity matrix I. The matrixprodut Q is de�ned as jYi=kQi := Qj �Qj�1 � � �Qk:Introduing this expression for xapp(tf ; û) in (LP 1l ) yields the linear program(LP2l ) 8><>: Maximize l> Nt�1Xk=0  Nt�1Yi=k+1Qi!Bkuk!subjet to uk 2 U; k = 0; 1; : : : ; Nt � 1:Note that this linear program has the same solution û as (LP 1l ), whereas theoptimal objetive funtion values are di�erent, sine we negleted onstant terms.To ompute the objetive funtion in (LP 2l ) very eÆiently we introdue ad-ditional arti�ial variables�>Nt := l>;�>i := �>i+1Qi = �>i+1 + h�>i+1Ai:These arti�ial variables are alulated bakward in time and orrespond to thedisretized adjoint variable of the optimal ontrol problem (OCPl).9



Then, (LP 2l ) an be replaed by(LP3l ) 8><>: Maximize Nt�1Xk=0 �>k+1Bkuksubjet to uk 2 U; k = 0; 1; : : : ; Nt � 1:Lemma 2.8 gives usNt�1Xk=0 Æ�(�k+1; BkU) = Nt�1Xk=0 Æ�(B>k �k+1; U)as optimal value of (LP 3l ) and hene, (u0; u1; : : : ; uNt�1) with the supportingpoints uk 2 Y (B>k �k+1; U) as one solution.In the speial of box onstraints, that is U = fu 2 IRm j u � u � �ug, wede�ne S>k := (S1k; : : : ; Smk ) := �>k+1Bk 2 IRm. Sine the objetive funtionNt�1Xk=0 Skuk = Nt�1Xk=0 mXj=1 Sjk � ujkis maximized, if eah term Sjk �ujk is maximized, the solution of (LP 3l ) is given byujk = 8>>><>>>: uj; if Sjk < 0;�uj; if Sjk > 0;arbitrary; else:for j = 1; : : : ; m; k = 0; : : : ; Nt � 1.3.3 Disrete reahable setsDisrete reahable sets are the reahable sets of the disretized equations andould be de�ned as endpoints of disrete solutions of the following problem.Given the data in Problem 2.1, the disretized problem depends on the hoieof the set Uapp of all disretized ontrol funtions and on the Runge-Kutta sheme.Problem 3.1 For a time disretization (2) with step-size h = tf�t0Nt and a givendisretized ontrol funtion uapp(�; û) we are looking for a solution xapp(�; û) atthe grid-points ti, i = 0; 1; : : : ; Nt, withxapp(ti+1; û) = xapp(ti; û) + h�(xapp(ti; û); û; h) (6a)for i = 0; 1; : : : ; Nt � 1;xapp(t0; û) = x0; (6b)ui 2 U; i = 0; 1; : : : ; Nt; (6)uapp(�; û) 2 Uapp: 10



De�nition 3.2 Consider Problem 3.1 with a time disretization (2) and let i 2f0; 1; : : : ; Ntg. Then,RN(ti; t0; x0) := fy 2 Rn j 9uapp(�; û) disretized ontrol funtion and9xapp(�; û) orresponding solution of Problem 3.1with xapp(ti; û) = ygis alled the disrete reahable set of the orresponding disretized ontrol problemfor the time ti.The de�nition above shows that eah optimizer of problem (CP 1l ) (resp. the refor-mulation (LP 3l )) is a supporting point of the disrete reahable set RN (tf ; t0; x0)in diretion l. The optimal value of problem (CP 1l ) oinides with the supportfuntion Æ�(l;RN (tf ; t0; x0)). Proposition 2.6 shows thatRN (tf ; t0; x0) = \klk2=1fx 2 Rn j l>x � l>xapp(tf ; û?)g;RN (tf ; t0; x0) = o( [klk2=1fxapp(tf ; û?)g):In pratie, only a �nite number of di�erent normed diretions li, i = 1; : : : ;M ,are hosen.Proposition 3.3 Consider Problem 3.1 with a time disretization (2) and let i 2f0; 1; : : : ; Ntg. Then, the orresponding disrete reahable set is onvex, ompatand nonempty.Proof: For a hosen disretized ontrol funtion uapp(�; û), the disrete solutionis de�ned by (5). The disrete reahable set oinides with the union of all suhdisrete solutions for all feasible disretized ontrol funtions. In the ase of Eulerand linear approximation of the ontrols, this orresponds to the union over allvetors û 2 Rm(N+1) . De�nition 2.7 shows that the disrete reahable setRN (tf ; t0; x0) =  Nt�1Yi=0 Qi! x0 + h Nt�1Xk=0 ( Nt�1Yi=k+1Qi!Bk)Uis a saled Minkowski sum of linearly transformed onvex sets U . Lemma 2.8proves the wanted properties of the disrete reahable set. �3.4 ImplementationIn the sequel, we briey disuss some numerial methods, whih are suitable forsolving the disretized optimal ontrol problem (CP 1l ). Of ourse, the hoie11



of an appropriate method depends on the expliit representation of the ontrolregion U . Hene, we restrit the disussion to onvex ontrol regions U de�nedby U = fu 2 X j gi(u) � 0; i = 1; : : : ; rg; (7)where X := fu 2 IRm j eAu = b; u � 0g with a matrix eA 2 Rp�m and thefuntions gi(�), i = 1; : : : ; r, ould be either linear or nonlinear.Remark 3.4 In the ase, that the support funtion or the supporting points ofthe onvex ontrol set U are known, general ontrol regions U an be approximatedin another way. Proposition 2.6 suggests to use the approximationU � \i=1;:::;Mfx 2 Rm j �i>x � Æ�(�i; U)gresp. U � o( [i=1;:::;Mfy(�i; U)g) with arbitrary y(�i; U) 2 Y (�i; U):Herein, the M di�erent normed diretions �i 2 Rm should be hosen in an appro-priate way in order to approximate the unit sphere. One method is to parametrizethem by spherial oordinates and use equidistant partitions on the parameter in-tervals for the angles (see [3, Subsetion 3.1.2℄).If the funtions gi in (7) are aÆne linear, then problem (CP 1l ) is a linearoptimization problem and an be solved by the well-known simplex method orsome interior point method, f. [42℄, suitable for linear programs. In the speialase of an Euler approximation and U de�ned by box onstraints only, a veryeÆient method is desribed in Setion 3.2.If the funtions gi are onvex and smooth, i.e. at least ontinuously di�eren-tiable, then the resulting problem (CP 1l ) is a onvex but nonlinear programmingproblem and the sequential quadrati programming (SQP) method is appropri-ate provided the funtions gi are de�ned for infeasible points, f. [34℄, [35℄, [18℄.Alternatively, the method of feasible diretions is appliable, espeially, if thefuntions gi are only de�ned for admissible points, f. [43℄.If the funtions gi are onvex but nonsmooth, the bundle method respetivelythe bundle trust region method (BT-method) is suitable, f. [28℄, [31℄, [21℄, [22℄,[36℄. In addition, Kelly's utting plane method is also appliable, f. [20℄. Notie,that the BT-method and the utting plane method are losely related, f. [21℄,[36℄.
12



4 ExamplesIn the sequel we refer to the optimal ontrol problem (OCP1), the di�erentialequation (1a)-(1b), the ontrol onstraint (1), and the ontrol approximationsdisussed in (i)-(iii) in Setion 3.2.The following Runge-Kutta methods are used for the numerial omputationof reahable sets:0 01Euler's method 0 0 01 1 01=2 1=2Heun's method 0 0 01=2 1=2 00 1Modi�ed Euler's methodFor all numerial experiments the number of diretions M in Remark 3.4 ishosen as 1200???. For simpliity, the methods with di�erent seletion strategiesare tested for time-independent two-dimensional problems (in whih one ouldeven alulate a theoretial solution for referene purposes). Nevertheless, theframework presented before is still valid and the methods ould be used alsoin more ompliated problems (time dependent and higher dimensional) met inpratie.From De�nition 2.9 of the Hausdor� distane, it is lear that the approxi-mation of the reahable set orresponds to a uniform onvergene of the optimalvalue funtions, whereas the approximation of trajetories orresponds to theuniform onvergene of the maximizers and the Demyanov distane.Example 4.1 (see [39, Example in setion 4℄) Let us onsider the followingexample with n = 2, m = 1, x0 = (0; 0)>, I = [0; 1℄, U = [0; 1℄, andA(t) = � 0 10 0 � ; B(t) = � 01 � :In Figure 1 approximations to the reahable set R(1; 0; x0) are shown, in theleft piture approximations with Euler's method with pieewise onstant seletionsare shown (�rst order of onvergene), in the right one the orresponding onesfor Heun's method with ontinuous and pieewise linear ontrol approximation(seond order of onvergene) are depited. In both ases the set with the solid lineshows the referene set (alulated with the orresponding method for N = 1280).The dashed lines show the approximations for N = 10; 20; 40 for Euler's methodon the left piture (please note the halfening of the distane of the upper rightorner of the sets when the number of subintervals is doubled). At the right one,the dashed lines show the approximations for N = 1; 2; 4 for Heun's method (asmaller number of subintervals are hosen so that one ould still see in Figure 1a di�erene of the orresponding approximations). Please notie the more rapid13



onvergene even for these small numbers of subintervals in omparision withEuler's method.
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set bRref(0; x0;). By omparing the di�erent values based on the optimal valuefuntion resp. the maximizers, the order of onvergene is estimated. The angle' for the diretion l 2 R2 , in whih the maximum in (8) resp. (9) is attained, isshown in the most right olumn.Hausdor� estim.N distane order angle10 0.05000000 NaN 0.0050020 0.02500000 1.00000 0.0050040 0.01250000 1.00000 0.0050080 0.00625000 1.00000 0.00500160 0.00312500 1.00000 0.00500320 0.00156250 1.00000 0.00500640 0.00078125 1.00000 0.00500
Demyanov estim.N distane order angle10 0.13702925 NaN 5.5550020 0.06806368 1.00953 5.5550040 0.03392323 1.00461 5.5150080 0.01731662 0.97012 5.53500160 0.00861479 1.00727 5.53500320 0.00426388 1.01465 5.53500640 0.00209303 1.02657 5.62500Table I: order of onvergene for Euler's method (left table: approximation ofthe reahable set, right table: approximation of the trajetories).Table I shows the expeted order of onvergene 1 for reahable set and thetrajetories. As remarked above the Hausdor� distane is attained at the upperright orner. This table shows the approximated valuesmaxi=1;:::;MjÆ�(li;R(1; 0; x0))� Æ�(li; bRref(0; x0; ))j (8)resp. maxi=1;:::;MkY (li;R(1; 0; x0))� Y (li; bRref(0; x0; ))k2 (9)at the hosen diretions li, i = 1; : : : ;M , for the two distanesdH(R(1; 0; x0);RN(1; 0; x0)) resp. dD(R(1; 0; x0);RN (1; 0; x0)):Hausdor� estim.N distane order angle10 0.00124700 NaN 3.0950020 0.00031111 2.00295 3.1200040 0.00007788 1.99805 6.2750080 0.00001947 1.99990 3.14000160 0.00000488 1.99688 6.26000320 0.00000122 1.99929 3.14500640 0.00000030 2.00266 6.22500
Demyanov estim.N distane order angle10 0.06636590 NaN 5.5550020 0.03273184 1.01975 5.5550040 0.01668369 0.97226 2.4000080 0.00848003 0.97630 5.53500160 0.00419649 1.01488 5.53500320 0.00205473 1.03024 5.53500640 0.00099208 1.05042 5.62500Table II: order of onvergene for Heun's method (left table: approximation ofthe reahable set, right table: approximation of the trajetories)For Heun's method with ontinuous, pieewise linear ontrol approximation,Table II shows order of onvergene 2 for the reahable set and only order 1 forthe trajetories. 15



Example 4.2 (see [4, Example 4.4℄) Let us onsider the following examplewith n = 2, m = 2, x0 = (0; 0)>, I = [0; 2℄, U = fx 2 IR2 j kxk2 � 1g, andA(t) = � 0 1�2 �3 � ; B(t) = � 1 00 1 � :This example introdues the nonlinear onstraintu21 + u22 � 1for the ontrol variable u = (u1; u2)>.The seond order approximations to the reahable set R(2; 0; x0) alulatedby Heun's method with pieewise onstant ontrols resp. with independent ontrolseletion in ti and ti+1 (see (4)) are shown in Figure 3.
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N Hausdor� Order angledistane5 0.10328935 NaN 1.3700010 0.02307167 2.16250 1.5300020 0.00521186 2.14625 1.5750040 0.00123195 2.08086 4.7350080 0.00029922 2.04164 1.60000160 0.00007372 2.02105 4.74500
N Demyanov Order angledistane trajetory5 0.37223126 NaN 0.9050010 0.07159599 2.37825 0.8850020 0.01535558 2.22112 4.0250040 0.00355544 2.11066 4.0250080 0.00085565 2.05493 4.02500160 0.00020992 2.02719 4.02500Table III: Order of Convergene for Heun's method with pieewise onstant on-trol approximation.N Hausdor� Order angledistane5 0.04517018 NaN 1.7200010 0.00772443 2.54787 4.2350020 0.00203009 1.92789 4.3000040 0.00051385 1.98211 4.3350080 0.00012897 1.99429 1.21000160 0.00003229 1.99784 1.22000
N Demyanov Order angledistane trajetory5 0.16781544 NaN 1.1850010 0.04611042 1.86371 0.8750020 0.01077148 2.09788 4.0150040 0.00257389 2.06520 0.8750080 0.00062808 2.03492 0.87500160 0.00015506 2.01802 4.01500Table IV: Order of Convergene for Heun's method with independent seletionstrategy (iii).destroys order of onvergene 2 of the Runge-Kutta method. This is veri�ed inthe Tables V (order O(h2)) and VI (only order O(h)) for the onvergene to thereahable set and the trajetories.N Hausdor� Order angledistane5 0.10328935 NaN 1.3700010 0.02307167 2.16250 1.5300020 0.00521186 2.14625 1.5750040 0.00123195 2.08086 4.7350080 0.00029922 2.04164 1.60000

N Demyanov Order angledistane trajetory5 0.37223121 NaN 0.9050010 0.07159599 2.37825 0.8850020 0.01535559 2.22112 4.0250040 0.00355571 2.11056 4.0250080 0.00085566 2.05503 0.88500Table V: Order of Convergene for the modi�ed Euler's method with pieewiseonstant ontrol approximation.

17



N Hausdor� Order angledistane5 0.83583108 NaN 4.0300010 0.33319435 1.32685 0.8550020 0.15333206 1.11970 5.3400040 0.07575471 1.01725 5.3600080 0.03762644 1.00959 2.22500
N Demyanov Order angledistane trajetory5 1.03202096 NaN 0.7300010 0.36562913 1.49702 3.8500020 0.16060144 1.18690 3.7600040 0.07933801 1.01740 4.7200080 0.03952243 1.00534 4.72000Table VI: Order of Convergene for the modi�ed Euler's method with free sele-tion.
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5 Outline of Further ResearhIt is known that set valued quadrature methods in [4℄ ould lead to a order ofonvergene greater than two, if the problem satis�es additional smoothness on-ditions, f. [3℄. In this ase, seletion strategies with pieewise onstant ontrolsare no longer appropriate. Preliminary omputer experiments with the lassialRunge-Kutta method show that order of onvergene greater than two is attain-able. But for these Runge-Kutta methods suitable seletion strategies have tobe studied in more detail. In this ontext, additional diÆulties arise if stateonstraints are present, beause these onstraints should be ful�lled also at theintermediate stages of the Runge-Kutta sheme (as in [8℄).Further researh an be onduted towards the study of Runge-Kutta shemesas in [29℄, [13℄, [27℄, where the seletion strategy is motivated by multiple ontrolintegrals. In the speial ase of two seletions per Runge-Kutta step this leads toalternative seletion sets of type �u(i)app(ti + 1h; û); u(i)app(ti + 2h; û)� 2 Û � U �U , where U �U orresponds to ase (iii) of independent seletions in Setion 3.2.This set Û an be desribed by �nitely many nonlinear inequalities and equalities,whih an be easily imposed as additional onstraints in the disretized optimalontrol problems.The proposed method itself an be easily adapted to the alulation of onvexreahable sets for nonlinear di�erential inlusions. For the numerial solution ofdisretized optimal ontrol problems eÆient algorithms are available, f., e.g.,[6℄, [16, 17℄. In the more general ase of nononvex reahable sets suitable modi-�ations of our approah have to be studied. Theoretial results in this diretionan be found in [12℄, [41℄, [40℄ for Runge-Kutta methods of order one and two.A survey of other methods is given in [11℄ and [8℄.However, those Runge-Kutta methods with appropriate seletion strategies,whih show higher order of onvergene in the linear ase, are worth being in-vestigated also in the nonlinear ase. In addition, these methods have to beompared with set-valued Runge-Kutta methods based on set arithmetis, f. [8℄,whih work also on the general nonlinear ase. First steps in this diretion anbe found in [8, Example 5.3.1℄.Referenes[1℄ J.-P. Aubin and A. Cellina. Di�erential Inlusions, volume 264 ofGrundlehren der mathematishen Wissenshaften. Springer Verlag, Berlin{Heidelberg{New York{Tokyo, 1984.[2℄ R. J. Aumann. Integrals of Set-Valued Funtions. J. Math. Anal. Appl.,12(1):1{12, 1965. 19
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