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Abstract. We consider nonlinear optimization programs with matrix inequality constraints, also
known as nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian
method which uses smooth spectral penalty functions. The sufficient second-order no-gap optimality
condition and a suitable implicit function theorem are used to prove local linear convergence without
the need to drive the penalty parameter to 0.
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1. Introduction. We consider mathematical optimization programs of the form

minimize f(x), x ∈ Rn

subject to G(x) � 0(1)

where f : Rn → R is a C2 function, G : Rn → Sm a C2 operator into the space
Sm of m ×m symmetric matrices, and where � 0 means negative semidefinite. The
constraint G(x) � 0 is referred to as a matrix inequality, or as a nonlinear semidefinite
constraint. We study augmented Lagrangian methods to solve (1) and develop a
suitable local convergence theory.

Nonlinear programs (1) with matrix inequality constraints have been intensely
studied since the 1990s. They arise in many applications in automatic control, finance
and design engineering. Semidefinite programming (SDP) is a prominent special case
of (1) which comes with a linear objective f(x) = c>x and a linear matrix inequality
G(x) = A0 +

∑n
i=1 Aixi � 0 in the constraint [44].

During the early 1990s, interior point methods were considered the only true way
to solve (1), but other methods entered the scene from the late 1990s on, including non-
smooth and eigenvalue optimization [32, 33, 17, 26, 18, 38, 1, 2, 3, 4, 28, 29], sequential
semidefinite programming [16, 21, 24, 25], and augmented Lagrangian methods.

The use of augmented Lagrangians for (1) was proposed by Ben-Tal and Zibulevski
in [7, 45]. Mosheyev and Zibulevski [27] studied several augmented Lagrangian mod-
els, and Kocvara and Stingl [22, 23, 40] developed the platforms PENNON and
PENBMI to solve linear and bilinear semidefinite programs [19]. Other approaches
based on the augmented Lagrangian method are [5, 15] and [41, 42, 43]. In the present
paper we obtain a local convergence theory for the methods [22, 23, 40, 7, 45].

The augmented Lagrangian models proposed in [7, 45] are based on the idea of
a spectral penalty function. Consider a convex C2 function φ : R → R ∪ {+∞} with
the following properties

(φ1) φ is strictly convex, increasing and of class C2 on dom(φ), which is open and
contains (−∞, 0].

(φ2) φ(0) = 0.
(φ3) φ′(0) = 1.
(φ4) tφ′(t) = O(1) as t → −∞.
(φ5) t2φ′′(t) = O(1) as t → −∞.
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Typical examples are

φ(t) =
{

t + 1
2 t2, t ≥ −1

2
− 1

4 log(−2t)− 3
8 , t ≤ −1

2

or φ(t) =
{

1
1−t − 1, t < 1
+∞, else

(2)

Now define a matrix function Φ : Sm → Sm associated with φ by setting

Φ(X) = Φ
(
Qdiag λ(X)Q>)

= Qdiag φ (λ(X))Q>,(3)

where X = Qdiag λ(X) Q> is a spectral decomposition of X ∈ Sm, with λ(X) ∈ Rm

the vector of eigenvalues of X in decreasing order, and where φ(λ) = (φ(λ1), . . . , φ(λm))
for λ = (λ1, . . . , λm) ∈ Rm. Observe that the operator Φ is independent of the choice
of the orthonormal basis Q(X) = [q1(X), . . . , qm(X)] of eigenvectors of X, and may
also be written as

Φ(X) =
m∑

i=1

φ (λi(X)) qi(X)qi(X)>.

Operators of this form are called symmetric and have been studied e.g. in [6, 37]. Since
φ(x) = xn gives Φ(X) = Xn, Φ is analytic for analytic φ. It can also be shown that
Φ is of class C2 whenever φ is of class C2, see [36] . Given a penalty parameter p > 0
we define Φp(X) = p Φ

(
p−1X

)
and introduce the augmented Lagrangian function

F (x, U, p) = f(x) + U • Φp (G(x)) ,(4)

where U ∈ Sm with U � 0 is a Lagrange multiplier estimate. For fixed U � 0 and
p > 0 we now consider the unconstrained optimization program

min
x∈Rn

F (x, U, p)(5)

which we also call the tangent program. The augmented Lagrangian method is then
defined as follows.

Augmented Lagrangian Algorithm

Fix 0 < γ < 1, 0 < τ < 1.

1. Choose initial iterate x1 and initial Lagrange multiplier estimate U1 � 0.
Fix penalty p1 > 0.

2. Given the current iterate xk, Lagrange multiplier estimate Uk � 0 and
penalty pk > 0, solve the tangent program

min
x∈Rn

F (x, Uk, pk)

possibly using xk as a starting point for the inner iteration. The solution
is xk+1.

3. Update the Lagrange multiplier estimate by setting
Uk+1 = Φ′

pk
(G(xk+1))Uk

4. Update the penalty parameter by setting

pk+1 =
{

pk, if σ (xk+1, Uk, pk) ≤ τσ(xk, Uk−1, pk−1)
γpk, else

5. Increase counter k, and go back to step 2.
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The mechanism is as follows. It is understood that solving the unconstrained program
(5) is considerably easier than solving (1). We expect the sequence xk to converge to
a local minimum x̄ of (1), while Uk converges to an associated Lagrange multiplier
Ū � 0. The so-called first-order multiplier update rule Uk+1 = Φ′

p (G(xk+1))Uk in
step 3 is used to improve the quality of the multiplier estimate before the next sweep.
Axiom (φ1) gives φ′ > 0, so that the operator Φp is strictly monotone, which means
that Uk+1 � 0 as soon as Uk � 0, and even Uk+1 � 0 as soon as Uk � 0.

In step 4 the penalty parameter pk is decreased when xk+1 does not make sufficient
progress toward feasibility as compared to xk. This progress is measured by a suitable
primal-dual progress measure σ, defined as

σ(x+, U, p) = ‖U − Φ′
p

(
G(x+)

)
U‖ = ‖U − U+‖.

In fact, driving pk → 0 would ultimately force feasibility, but the rationale of the
augmented Lagrangian scheme is that xk may converge to x̄ without forcing pk → 0.
The objective of our local convergence analysis here is to show under what conditions
this is possible, and that a linear rate of convergence can be obtained.

The matrix inequality constrained case has several challenges. Notice for instance
that in contrast with the classical Hestenes-Powell-Rockafellar augmented Lagrangian
[20, 34, 35, 8], technical complications arise due to the fact that (t, p) 7→ pφ(p−1t) has
a singularity at (0, 0). This difficulty leads to the concept of wedge convergence in
Section 7, Definitions 2 and 3, which plays a central role in our convergence analysis.

Yet another technical difficulty arises from the fact that we have to use the suf-
ficient second-order no-gap optimality condition (10); cf. [12]. As we show by way
of an example, it is not appropriate to use the old form of the second order sufficient
optimality condition (12) for matrix inequality constrained programs.

The structure of the paper is as follows. In sections 2, 3, 4 we recall useful facts
from matrix constrained programming, covered essentially by [12]. Sections 5 and 7
prepare our case for the study of the analytic source function φ(t) = (1−t)−1−1. The
main result is presented in Section 6. Sections 8 and 9 are crucial and present technical
results which combine the concept of wedge convergence with the second-order nogap
optimality condition. The implicit function theorem is applied in Section 10 under
a special form given in Lemma 1. The central part of the proof, where the different
threads are put together, is in Section 11. We discuss possible extensions of the main
result in Section 12. We conclude with an example in Section 13, showing that the
nogap optimality condition is of the essence, and that the complications arising from
it can not be avoided.

Our contribution is complementary to papers where global convergence proofs for
augmented Lagrangians have been presented. For instance, [7] considers convergence
of the present method in the convex case, [10] discusses and compares an even larger
class of augmented Lagrangian models. Local convergence theory for the classical
augmented Lagrangian method may be found in [8], while local theory for classical
programs based on smooth generating functions φ is presented in [30].

Notation. The space of m ×m symmetric matrices Sm is equipped with the scalar
product Tr(XY ) = X • Y . The negative cone in Sm is Sm

− = {X ∈ Sm : X � 0}. For
a symmetric expression X = A + A> we shall sometimes write X = A + ∗ in order
to facilitate the presentation. In the algorithm, x,U, p mean the current iterates,
x+, U+, p+ the next iterates, x−, U−, p− those from the previous sweep. Notions
from matrix inequality constrained mathematical programming are covered by [12].
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2. First-order optimality condition. Let x̄ be a local minimum of program
(1) such that Robinson’s constraint qualification [12, p. 72] is satisfied. Let Ū � 0
be a Lagrange multiplier associated with x̄, then the Karush-Kuhn-Tucker conditions
are

f ′(x̄) + G′(x̄)?Ū = 0, G(x̄) � 0, Ū � 0, G(x̄) • Ū = 0.(6)

Here the adjoint operator G′(x)? is defined as follows. Let Gi(x) = ∂G(x)
∂xi

∈ Sm,
i = 1, . . . , n, then G′(x)?Y = (G1(x) • Y, . . . , Gn(x) • Y ) ∈ Rn, see [12, 39].

As is well-known, complementarity G(x̄) ⊥ Ū in (6) implies that Ū and G(x̄)
commute, and may therefore be diagonalized simultaneously. Assuming without loss
that G(x̄) and Ū are already diagonal matrices, we have

G(x̄) =



ḡ1

. . .
ḡs

0
. . .

0


, Ū =



0
. . .

0
ūs+1

. . .
ūm


(7)

where ḡi < 0 and ūj ≥ 0. Strict complementarity is satisfied as soon as ūj > 0 for
j = s + 1, . . . ,m.

3. Second-order optimality condition. Let us now consider the second order
sufficient optimality condition as proposed in [12, 39]. The Lagrangian of program
(1) is

L(x,U) = f(x) + U •G(x).(8)

Following [39, formula (37)], the critical cone at (x̄, Ū) is

C(x̄) =
{
h ∈ Rn : Ū • [G′(x̄)h] = 0, G′(x̄)h ∈ T

(
Sm
− , G(x̄)

)}
,

where T (Sm
− , G) is the tangent cone to Sm

− at G ∈ Sm
− . This tangent cone is of the

form

T (Sm
− , G) =

{
Z ∈ Sm : E>ZE � 0

}
,

where E is a m × (m − s) matrix whose columns form an orthonormal basis of the
null space of G; cf. [12, p. 474]. Due to (7), the null space of Ḡ = G(x̄) is spanned
by the m− s unit vectors es+1, . . . , em. That means, if we partition the matrix Z as

Z =
[

Z11 Z12

Z>
12 Z22

]
, Z11 ∈ Ss, Z22 ∈ Sm−s,

then T (Sm
− , Ḡ) = {Z ∈ Sm : Z22 � 0}. Therefore, the critical cone may be written as

C(x̄) =
{
h ∈ Rn : Ū • [G′(x̄)h] = 0, [G′(x̄)h]22 � 0

}
.

Naturally, the first of these two conditions may also be written as

Ū • [G′(x̄)h] = Ū22 • [G′(x̄)h]22 = 0.
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Strict complementarity, ūi > 0 for i = s + 1, . . . ,m, in tandem with [G′(x̄)h]22 � 0
implies [G′(x̄)h]22 = 0. In other words, under strict complementarity the critical cone
is the linear subspace

C(x̄) = {h ∈ Rn : [G′(x̄)h]22 = 0} .(9)

Let us now present the so-called no-gap second-order sufficient optimality condi-
tion. It reads

h>
[
Lxx(x̄, Ū) +H(x̄, Ū)

]
h > 0 for every h ∈ C(x̄), h 6= 0,(10)

where Lxx(x̄, Ū) is the Hessian of the Lagrangian (8), and where H(x̄, Ū) is a term
reflecting curvature information of the feasible domain at x̄. According to [39, formula
(40)], this term is of the form[

H(x̄, Ū)
]
ij

= −2Ū •
(
Gi(x̄) [G(x̄)]† Gj(x̄)

)
,

or in a compact notation

H(x̄, Ū) = −2
(

∂G(x̄)
∂x

)> (
Ū ⊗ [G(x̄)]†

) (
∂G(x̄)

∂x

)
,

where M† denotes the pseudo inverse of a matrix M , ⊗ the Kronecker product, and
where ∂G(x)/∂x denotes the n2×m matrix [vec G1(x), . . . , vec Gm(x)]. Consequently,
we obtain for the curvature term

h>H(x̄, Ū)h =
n∑

i,j=1

hihj

(
−2Ū •Gi(x̄)G(x̄)†Gj(x̄)

)

= −2Ū •

 n∑
i,j=1

hihjGi(x̄)G(x̄)†Gj(x̄)


= −2Ū •

 n∑
i=1

hiGi(x̄)G(x̄)†
n∑

j=1

hjGj(x̄)


= −2Ū • [G′(x̄)h]G(x̄)† [G′(x̄)h] .

Due to the special structure (7), we may develop this expression further, which yields

h>H(x̄, Ū)h = −2diag (ūs+1, . . . , ūm) • [G′(x̄)h]>12 diag
(

1
ḡ1

, . . . , 1
ḡs

)
[G′(x̄)h]12 .

(11)

As can be seen, this term is ≥ 0, which means that the no-gap condition (10) is weaker
than the ”classical” second-order sufficient condition:

h>Lxx(x̄, Ū)h > 0 for all h ∈ C(x̄) \ {0}.(12)

In fact, as we shall see later, this condition, which is still used by many authors to
extend results from classical nonlinear programming to matrix inequality constrained
programming in a straightforward way, is too strong to be realistic. Results based on
(12) are therefore of little interest.
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4. Constraint qualification. We need one more element, a generalization of
the linear independence constraint qualification LICQ from classical nonlinear pro-
gramming. Let Ḡ = G(x̄) and let E be a m × (m − s) matrix whose m − s columns
form an orthonormal basis of the null space of Ḡ, then we say that the generalized
LICQ condition holds if

W 7→
(
E>G1(x̄)E •W, . . . , E>Gn(x̄)E •W

)
, Sm−s → Rn is injective.(13)

In the situation (7), condition LICQ is equivalent to the following:

W 7→ (G1(x̄)22 •W, . . . , Gn(x̄)22 •W ) , Sm−s → Rn is injective.(14)

As in classical nonlinear programming, LICQ implies uniqueness of the Lagrange
multiplier Ū . Notice that (14) appears fairly restrictive at first sight, because it
requires in particular that n ≥ (m − s)(m − s + 1)/2. However, as we will see, this
condition reduces to the classical LICQ condition if the operator G is diagonal.

Indeed, suppose more generally that G : Rn → Sm1 ⊕ · · · ⊕ Smb ⊂ Sm has a block
diagonal structure with b blocks, where m1 + · · · + mb = m. Then multipliers U
and partial derivatives Gj(x) have the same structure, and the linear independence
condition can be restricted to that space, i.e., (14) is required injective on the space
of W ∈ Sm−s with this structure. In particular, this means n ≥

∑b
j=1(mj − sj)(mj −

sj +1)/2, where in each block j, we assume that sj eigenvalues are < 0, the remaining
mj − sj eigenvalues are active at 0.

In the special case where G(x) is diagonal, we have mj = 1 and m = b. Assuming
that p constraints are active, we would have s1 = · · · = sp = 0, sp+1 = · · · = sm = 1.
Here the LICQ condition coincides with the classical one, and the dimension condition
simply reduces to

∑m
j=1(mj−sj)(mj−sj +1)/2 = p ≤ n, which is of course necessary

if the p active constraint gradients are to be linearly independent at x̄.

5. Analytic source function φ(t) = 1
1−t − 1. In this section we will start

analyzing the augmented Lagrangian model in the special case of the source function
φ(t) = 1

1−t − 1, which was proposed in [45, 27] and later used to develop the software
tool PENNON [22, 23]. In this case, analyticity of φ allows explicit computations of
the derivatives of the associated Φ. Starting out with Φ(X) = (I −X)−1 − I, we
consider

Φp (G(x)) := p Φ
(
p−1G(x)

)
= p

(
I − p−1G(x)

)−1 − pI.

Expanding the C2 operator G(x + d) = G(x) + G′(x)d + 1
2G′′(x)[d, d] +O(||d||3), we

have

Φp (G(x + d)) = Φp (G(x)) +
(
I − p−1G(x)

)−1
[G′(x)d]

(
I − p−1G(x)

)−1

+
(
I − p−1G(x)

)−1 [
1
2G′′(x)[d, d]

] (
I − p−1G(x)

)−1
+

+p−1
(
I − p−1G(x)

)−1
[G′(x)d]

(
I − p−1G(x)

)−1
[G′(x)d]

(
I − p−1G(x)

)−1

+O(‖d‖3).

Therefore, the expansion of the penalty term U • Φp (G(x)) in (4) is

U • Φp (G(x + d)) = U • Φp (G(x)) + [G′(x)d] • U+(x,U, p) +

+
1
2

{
[G′′(x)[d, d]] + 2p−1 [G′(x)d]

(
I − p−1G(x)

)−1
[G′(x)d]

}
• U+(x, U, p)

+O(‖d‖3),
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where we put U+(x,U, p) :=
(
I − p−1G(x)

)−1
U

(
I − p−1G(x)

)−1. Using the stan-
dard notations

Gi(x) =
∂G(x)
∂xi

∈ Sm, Gij(x) =
∂2G(x)
∂xi∂xj

∈ Sm,

we derive the following formulas:

Fx (x,U, p) = f ′(x) + G′(x)?U+(x, U, p)
= f ′(x) +

(
G1(x) • U+(x,U, p), . . . , Gn(x) • U+(x, U, p)

)
(15)

and

Fxx (x,U, p)ij = f ′′(x)ij + Gij(x) • U+(x,U, p)

+ 2p−1
(
Gi(x)

(
I − p−1G(x)

)−1
Gj(x)(16)

+Gj(x)
(
I − p−1G(x)

)−1
Gi(x)

)
• U+(x,U, p).

Notice that (15) gives the following formula

Lx

(
x, U+(x,U, p)

)
= Fx (x,U, p)(17)

whose analogue in the classical setting is well-known [8, p. 104ff]. It will be of use
later.

The first-order update formula U+ = Φ′
p (G(x+))U takes the following explicit

form

U+ =
(
I − p−1G(x+)

)−1
U

(
I − p−1G(x+)

)−1
.(18)

Finally, we will also make use of the partial derivative FxU , which is readily
obtained as

FxU (x,U, p) δU =


G1(x) •

((
I − p−1G(x)

)−1
δU

(
I − p−1G(x)

)−1
)

...
Gn(x) •

((
I − p−1G(x)

)−1
δU

(
I − p−1G(x)

)−1
)

 ∈ Rn.(19)

Using the notation Zp(x) =
(
I − p−1G(x)

)−1 and the definition of the adjoint oper-
ator G′(x)?, we can write this more compactly as

FxU (x,U, p)δU = G′(x)? [Zp(x)δUZp(x)] .

6. Main Theorem. Let x̄ be a local minimum of (1) which is a KKT-point
with unique associated Lagrange multiplier matrix Ū . We consider the following
hypotheses at x̄:

(H1) Strict complementarity (7).
(H2) The second-order sufficient no-gap optimality condition (10).
(H3) The generalized LICQ condition (14).
Theorem 1. Let x̄ be a local minimum of (1) with associated Lagrange multiplier

Ū such that hypotheses (H1) − (H3) are satisfied. Then there exists a neighborhood
N of Ū , a neighborhood U of x̄, and p > 0 such that the following conditions are
satisfied:
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1. Whenever U1 ∈ N and γp < p1 ≤ p, then the sequences Uk, pk > 0 and xk

generated by the augmented Lagrangian algorithm are well-defined if xk+1 is
the local minimum of minx∈Rn F (x, Uk, pk) in U . The sequence Uk stays in
N , and xk+1 is the unique critical point of (5) in U .

2. The sequence Uk converges to Ū with Q-linear speed, and xk converges to x̄
with R-linear speed.

3. The sequence pk > 0 is constant from some index k1 on.

The proof of this theorem requires the preparations in Sections 2 - 5, while the
principal arguments are covered by Sections 7 - 11.

7. Preparations. In this section we consider technical notions needed for our
convergence proof.

Lemma 1. Let Ω be an open subset of Rn × Rm and let H : Ω → Rn be of class
Ck(Ω) for some k ≥ 1. Let K∗ be a compact subset of Rm and suppose there exists
a vector x∗ ∈ Rn with {x∗} × K∗ ⊂ Ω such that H(x∗, y) = 0 for every y ∈ K∗.
Suppose Hx(x∗, y) is invertible for every y ∈ K∗. Then there exists a neighborhood
W of {x∗} × K∗, a neighborhood V of K∗, and a function x(·) : V → Rn of class
Ck such that H (x(y), y) = 0 for every y ∈ V and x(y) = x∗ for every y ∈ K∗. The
function is unique in the sense that for every (x, y) ∈ W , H(x, y) = 0 if and only if
y ∈ V and x = x(y). Moreover,

x′(y) = − [Hx (x(y), y)]−1
Hy (x(y), y) .

�
This coincides with the usual implicit function theorem when the set K∗ = {y∗} is a
singleton set.

The following technical notion will be helpful in our convergence proof.
Definition 2. The sequence (xk, Uk, pk) ∈ Rn×Sm×R is said to wedge-converge

to (x̄, Ū , 0), noted (xk, Uk, pk) w→ (x̄, Ū , 0) if xk → x̄, Uk → Ū , pk → 0 in such a way
that (xk − x̄)/pk → 0, (Uk − Ū)/pk → 0. Similarly, (xk, pk) wedge converges to (x̄, 0)
in Rn × R if xk → x̄, and pk → 0 such that (xk − x̄)/pk → 0.

The following concept will also be useful. It represents a different way to describe
wedge convergence.

Definition 3. The set

W(ε) =
{
(x, U, p) : ‖x− x̄‖/p ≤ ε, ‖U − Ū‖/p ≤ ε, 0 < p ≤ ε

}
is called a wedge neighborhood of (x̄, Ū , 0). Similarly, the set

W ′(ε) = {(x, p) : ‖x− x̄‖/p ≤ ε, 0 < p ≤ ε}

is a wedge neighborhood of (x̄, 0).

8. Lemmas with wedge convergence I. The results in this section exploit
properties of the augmented Lagrangian function as it relates to wedge convergence.
We can think of this part as collecting prior information, which will enable us later
on (in Section 11) to fix a parameter interval I = [p, p].

Lemma 4. Assume hypotheses (H1) - (H3) are satisfied. Then there exist ε1 > 0
and K1 > 0 such that

‖Fxx(x,U, p)−1‖ ≤ K1(20)
8



for every (x, U, p) ∈ W(ε1). Equivalently, there exists ρ > 0 such that

Fxx(x,U, p) � ρI � 0(21)

for every (x, U, p) ∈ W(ε1).
Proof. 1) It suffices to prove that Fxx(x,U, p) � ρI � 0 on a wedge neighborhood

of (x̄, Ū , 0). Assume on the contrary that there exist xk → x̄, Uk → Ū , pk → 0
such that (xk − x̄)/pk → 0, (Uk − Ū)/pk → 0 but d>k Fxx (xk, Uk, pk) dk ≤ δk → 0 for
certain unit vectors dk. Passing to a subsequence if necessary, we may assume that
dk → d for a unit vector d, and that d>k Fxx (xk, Uk, pk) dk converges to a quantity −ϑ
with ϑ ≥ 0. A priori, we could have ϑ = +∞, but we will see in a moment that this
possibility can be ruled out.

2) Now observe that with (16), writing Zk := Zpk
(xk) =

(
I − p−1

k G(xk)
)−1

, we
obtain

d>k Fxx (xk, Uk, pk) dk =
= d>k f ′′(xk)dk + Uk • Zk [G′′(xk)[dk, dk]]Zk

+2p−1
k Uk • Zk [G′(xk)dk]Zk [G′(xk)dk]Zk(22)

= d>k Lxx (xk, ZkUkZk) dk + 2p−1
k Uk • Zk [G′(xk)dk]Zk [G′(xk)dk]Zk.

Let us show that the term d>k Lxx(. . . )dk on the right hand side of (22) converges
to d>Lxx(x̄, Ū)d. This follows as soon as we show that ZkUkZk converges to Ū .
To prove this, consider a spectral decomposition G(xk) = QkGkQ>

k , where Gk =
diag(gk

1 , . . . , gk
m). Then Zk =

(
I − p−1

k G(xk)
)−1

= QkDkQ>
k , where the diagonal

matrix Dk =
(
I − p−1

k Gk

)−1
has diagonal entries pk

pk−gk
i

. Selecting a convergent

subsequence Qk → Q, we have Zk = QkDkQ>
k → Qdiag(0s, Im−s)Q>, because

(gk
i − ḡi)/pk → 0 by wedge convergence, and ḡi = 0 for i = s + 1, . . . ,m, while

ḡi < 0 for i = 1, . . . , s. Here Q is an orthogonal matrix which gives a spectral
decomposition of G(x̄). According to (7), this means G(x̄) = QḠQ> = Ḡ =
diag(ḡ1, . . . , ḡm). Since Ū and G(x̄) commute, Q also diagonalizes Ū , i.e., with
(7) we have QŪQ> = Ū . Therefore, with Ũk = Q>

k UkQk we have ZkUkZk =

Qk

(
DkŨkDk

)
Q>

k → Qdiag(0s, Im−s)Ūdiag(0s, Im−s)Q> = QŪQ> = Ū as claimed.
The result being the same for any convergent subsequence Qk → Q, the conclusion is
that ZkUkZk → Ū .

3) Let us now look at the second term on the right hand side of (22), which is
nonnegative. Since the first term d>k Lxx(...)dk on the right hand side of (22) converges
to d>Lxx

(
x̄, Ū

)
d ∈ R, non-negativity of the second term on the right hand side of

(22) implies that the limit −ϑ of d>k Fxx(...)dk on the left hand side of (22) must be
finite. In consequence, the limit of the second term on the right hand side of (22) is
also finite and ≥ 0.

This term is of the form 2p−1
k Ξk ≥ 0 with Ξk = Ψk

(
I − p−1

k G(xk)
)−1

Ψk •
U+(xk, Uk, pk), where we have for ease of notation put Ψk := G′(xk)dk. Since 2p−1

k Ξk

converges by what was seen above, and since p−1
k → +∞, it follows that Ξk → 0.

Now as we have seen, U+(xk, Uk, pk) = ZkUkZk → Ū , and ΨkZkΨk → Ψ̄Z̄Ψ̄ =
Ψ̄diag [0s, Im−s] Ψ̄, where Ψ̄ := G′(x̄)d, Z̄ := diag [0s, Im−s]. Therefore we have
Ξk → Ū22 • Ψ̄22Ψ̄22 = 0. Since Ū22 � 0 by strict complementarity and Ψ̄22Ψ̄22 � 0,
we deduce Ψ̄22 = [G′(x̄)d]22 = 0. In other words, d ∈ C(x̄) is a critical direction (9).

Using this information we get back to the convergent term 2p−1
k Ξk, which we

9



write as

2p−1
k Ξk = 2p−1

k ZkΨkZkΨkZk • Uk.

As before let Qk an orthogonal matrix which diagonalizes G(xk), G(xk) = QkGkQ>
k

with Gk = diag(gk
1 , . . . , gk

m). Then Zk =
(
I − p−1

k G(xk)
)−1

= Qk

(
I − p−1

k Gk

)−1
Q>

k .
Let us introduce the matrices Ψ̃k = Q>

k ΨkQk and Ũk = Q>
k UkQk. We decompose

according to (7):

Ψ̃k =

[
Ψ̃k

11 Ψ̃k
12

Ψ̃k>
12 Ψ̃k

22

]
, Ũk =

[
Ũk

11 Ũk
12

Ũk>
12 Ũk

22

]

and expand the term 2p−1
k Ξk as follows:

2p−1
k Ξk = 2p−1

k

(
I − p−1

k Gk

)−1
Ψ̃k

(
I − p−1

k Gk

)−1
Ψ̃k

(
I − p−1

k Gk

)−1 • Ũk

= 2p−1
k Ũk

11 •
((

I − p−1
k Gk

)−1

11
Ψ̃k

11

(
I − p−1

k Gk

)−1

11
Ψ̃k

11

(
I − p−1

k Gk

)−1

11

+
(
I − p−1

k Gk

)−1

11
Ψ̃k

12

(
I − p−1

k Gk

)−1

22
Ψ̃k>

12

(
I − p−1

k Gk

)−1

11

)
+2p−1

k Ũk
12 •

((
I − p−1

k Gk

)−1

22
Ψ̃k>

12

(
I − p−1

k Gk

)−1

11
Ψ̃k

11

(
I − p−1

k Gk

)−1

11
+

+
(
I − p−1

k Gk

)−1

22
Ψ̃k

22

(
I − p−1

k Gk

)−1

22
Ψ̃k>

12

(
I − p−1

k Gk

)−1

11

)
+2p−1

k Ũk>
12 •

((
I − p−1

k Gk

)−1

11
Ψ̃k

11

(
I − p−1

k Gk

)−1

11
Ψ̃k

12

(
I − p−1

k Gk

)−1

22
+

+
(
I − p−1

k Gk

)−1

11
Ψ̃k

12

(
I − p−1

k Gk

)−1

22
Ψ̃k

22

(
I − p−1

k Gk

)−1

22

)
+2p−1

k Ũk
22 •

((
I − p−1

k Gk

)−1

22
Ψ̃k>

12

(
I − p−1

k Gk

)−1

11
Ψ̃k

12

(
I − p−1

k Gk

)−1

22

+
(
I − p−1

k Gk

)−1

22
Ψ̃k

22

(
I − p−1

k Gk

)−1

22
Ψ̃k

22

(
I − p−1

k Gk

)−1

22

)
.

Now observe that Ũk
w→ Ū , so that 2p−1

k Ũk
11 → 0 and 2p−1

k Ũk
12 → 0. Therefore, the first

three of the above expression 2p−1
k Ũk

11 • (. . . ), 2p−1
k Ũk

12 • (. . . ) and 2p−1
k Ũk>

12 • (. . . ) all
converge to 0, and it remains to discuss convergence of the fourth term 2p−1

k Ũk
22•(. . . ).

This term splits into two terms: 2p−1
k Ũk

22 • (. . . ) = τk + σk. The second of those is

σk = 2p−1
k Ũk

22 •
((

I − p−1
k Gk

)−1

22
Ψ̃k

22

(
I − p−1

k Gk

)−1

22
Ψ̃k

22

(
I − p−1

k Gk

)−1

22

)
= 2p−1

k

(
I − p−1

k Gk

)−1

22
Ũk

22

(
I − p−1

k Gk

)−1

22
• Ψ̃k

22

(
I − p−1

k Gk

)−1

22
Ψ̃k

22,

which is nonnegative, because Ũk
22 → Ū22 � 0 and

(
I − p−1

k Gk

)−1

22
� 0 for Gk

22 close
enough to Ḡ22 = 0, a fact which follows from wedge convergence G(xk) w→ G(x̄).
Passing to a subsequence as k → ∞, the term σk therefore converges to some value
σ ≥ 0. Again, σ = +∞ seems a priori possible, but we will be able to rule this out
below.

4) Finally, the first of the terms in 2p−1
k Ũk

22 • (. . . ) is

τk = 2p−1
k Ũk

22 •
((

I − p−1
k Gk

)−1

22
Ψ̃k>

12

(
I − p−1

k Gk

)−1

11
Ψ̃k

12

(
I − p−1

k Gk

)−1

22

)
=

(
I − p−1

k Gk

)−1

22
Ũk

22

(
I − p−1

k Gk

)−1

22
• 2Ψ̃k>

12 p−1
k

(
I − p−1

k Gk

)−1

11
Ψ̃k

12.

10



Now observe that
(
I − p−1

k Gk

)−1

22
→ I22 under wedge convergence (xk, pk) w→ (x̄, 0),

so that the term on the left of • in τk converges to Ū22. As for the term on the right
of •, observe that

p−1
k

(
I − p−1

k Gk

)−1

11
= (pkI −Gk)−1

11 → diag
(
− 1

ḡ1
, . . . ,− 1

ḡs

)
,

which means that the term to the right of • converges to 2Ψ̄>
12

(
−G(x̄)†

)
11

Ψ̄12. Con-
sequently, τk → 2Ψ̄>

12

(
−G(x̄)†

)
11

Ψ̄12•Ū22 = d>H(x̄, Ū)d, using (11). We have shown
that 2p−1

k Ξk = σk + τk → σ + d>H(x̄, Ū)d.
Altogether, in (22), passing to the limit in each of the terms, we have the following

situation:

−ϑ = d>Lxx(x̄, Ū)d + d>H(x̄, Ū)d + σ

with ϑ ≥ 0, σ ≥ 0. Since d 6= 0 is a critical direction by part 3), the second order
sufficient no-gap optimality condition implies d>

(
L′′(x̄, Ū) +H(x̄, Ū)

)
d > 0. This is

clearly a contradiction and therefore proves the result.

Remark. The result could be summarized by saying that Fxx(x, U, p)−1 remains
bounded as p → 0, x → x̄, U → Ū as long as convergence takes place in a controlled
fashion, namely, as long as (x,U, p) w→ (x̄, Ū , 0). This is what originally motivated the
definition of wedge convergence.

Recall the definition Zp(x) =
(
I − p−1G(x)

)−1. We have the following

Lemma 5. Suppose (x, p) w→ (x̄, 0), then Zp(x) → Z̄, where Z̄ = diag(0s, Im−s).
Proof. We prove that (x, p) w→ (x̄, 0) implies G(x) w→ G(x̄), which in turn

gives gi(x) w→ ḡi. In other words, (gi(x)− ḡi) /p → 0. This is a consequence
of the fact that eigenvalue functions of symmetric matrices are locally Lipschitz:∣∣λi(X)− λi(X̄)

∣∣ ≤ K‖X − X̄‖. Since the operator G is locally Lipschitz, we de-
duce |λi (G(x))− λi (G(x̄))| ≤ K ′‖x− x̄‖, which is |gi(x)− ḡi| ≤ K ′‖x− x̄‖, proving
wedge convergence gi(x) w→ ḡi, that is, (gi(x)− ḡi) /p → 0 as (x, p) w→ (x̄, 0).

Now the eigenvalues of Zp(x) =
(
I − p−1G(x)

)−1 are zi(x) = p/(p− gi(x)). This
clearly gives zi(x) → z̄i under wedge convergence, where z̄i = 1 for i = 1, . . . , s and
z̄i = 0 for i = s + 1, . . . ,m. Using the above argument backwards, convergence of the
eigenvalues zi(x) → z̄i under wedge convergence (x, p) w→ (x̄, 0) implies convergence
of the matrices Zp(x) → Z̄. Here we use ‖X‖ = ‖QXQ>‖ for orthogonal Q.

Lemma 6. Assuming (H1) - (H3), there exists ε2 > 0 and K2 > 0 such that

‖FxU (x,U, p)‖ ≤ K2,(23)

for every (x, U, p) ∈ W(ε2).
Proof. It suffices to write

FxU (x, U, p) δU = G′(x)?
[(

I − p−1G (x)
)−1

δU
(
I − p−1G (x)

)−1
]

for a test vector δU ∈ Sm. This shows of course that FxU does not depend on U . Then
convergence Zp(x) =

(
I − p−1G (x)

)−1 → Z̄ as (x, p) w→ (x̄, 0) proved in Lemma 5
above readily implies boundedness of FxU as (x,U, p) w→ (x̄, Ū , 0).

Let us collect some more facts about wedge convergence. We need a refinement of
Lemma 5. Let x+ ∈ Rn and write G(x+) = QG+Q> for G+ = diag(g1(x+), . . . , gm(x+)).
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Then Q also diagonalizes Zp(x+), that is, Zp(x+) = QDp(x+)Q>, where Dp(x+) =
diag(z1(x+), . . . , zm(x+)). We have the following

Lemma 7. Decomposing Q according to (7), there exists ε3 > 0 and a constant
K3 > 0 such that for all (x+, p) ∈ W ′(ε3),

1. The blocks of Q satisfy the following estimates:

‖Q>
22Q22 − I‖ ≤ K3‖x+ − x̄‖, ‖Q>

11Q11 − I‖ ≤ K3‖x+ − x̄‖,
‖Q12Q

>
12‖ ≤ K3‖x+ − x̄‖, ‖Q22Q

>
12‖ ≤ K3‖x+ − x̄‖,

‖Q21Q
>
21‖ ≤ K3‖x+ − x̄‖, ‖Q11Q

>
21‖ ≤ K3‖x+ − x̄‖.

(24)

2. The blocks of Zp(x+) satisfy the following estimates:

‖Zp(x+)11‖ ≤ K3p, ‖Zp(x+)12‖ ≤ K3‖x+ − x̄‖
‖Zp(x+)22 − I‖ ≤ K3p

−1‖x+ − x̄‖.(25)

Proof. Let us start by writing

G(x+)−G(x̄) = Q
(
G+ − Ḡ

)
Q> + QḠQ> − Ḡ,

where Q diagonalizes G(x+) with diagonal matrix G+. We can see that the first term
on the right hand side is O (G(x+)−G(x̄)), because eigenvalue functions are locally
Lipschitz, and because ‖X‖ = ‖QXQ>‖. Subtracting this term, shows QḠQ>− Ḡ =
O (G(x+)−G(x̄)). But G is locally Lipschitz, so we have QḠQ>−Ḡ = O (‖x+ − x̄‖).
Expanding this term gives

QḠQ> − Ḡ =
[

Q11Ḡ11Q
>
11 − Ḡ11 Q11Ḡ11Q

>
21

Q21Ḡ11Q
>
11 Q21Ḡ11Q

>
21

]
using (7). This implies three estimates, namely Q21Ḡ11Q

>
21 = O (‖x+ − x̄‖) for the

(2, 2) block, Q21Ḡ11Q
>
11 = O (‖x+ − x̄‖) for the off-diagonal blocks, and Q11Ḡ11Q

>
11−

Ḡ11 = O (‖x+ − x̄‖) for the (1, 1) block.
Since Ḡ11 ≺ 0, Q21Ḡ11Q

>
21 = O (‖x+ − x̄‖) implies Q21Q

>
21 = O (‖x+ − x̄‖). For

the same reason, Q11Ḡ11Q
>
11−Ḡ11 = O (‖x+ − x̄‖) implies Q11Q

>
11−I = O (‖x+ − x̄‖)

and similarly, Q21Ḡ11Q
>
11 = O (‖x+ − x̄‖) implies Q21Q

>
11 = O (‖x+ − x̄‖).

From orthogonality of Q we can deduce three more things. Namely, Q11Q
>
11 +

Q12Q
>
12 = I implies Q12Q

>
12 = O (‖x+ − x̄‖), Q21Q

>
11 +Q22Q

>
12 = 0 implies Q22Q

>
12 =

O (‖x+ − x̄‖), and thirdly Q21Q
>
21 +Q22Q

>
22 = I implies Q22Q

>
22− I = O (‖x+ − x̄‖).

That completes the list of statements in (24).
Consider item 2. Recall that Zp(x+) → Z̄ under wedge convergence (x+, p) w→

(x̄, 0) by Lemma 5. Looking at the diagonal matrix Dp(x+) associated with Zp(x+),
we can see that Dp(x+)11 → 0 with speed Dp(x+)11 = O(p). This follows from the
estimate

|zi(x+)| = p

p− gi(x+)
≤ p

−gi(x+)
≤ Kp, i = 1, . . . , s,

which uses gi(x+) → ḡi < 0 for i = 1, . . . , s.
Similarly, we have Dp(x+)22 → I under wedge convergence (x+, p) w→ (x̄, 0) with

speed Dp(x+)22 − I = O
(
p−1‖x+ − x̄‖

)
. Here we use the estimate

|zi(x+)− 1| ≤ |gi(x+)|
p− gi(x+)

=
|gi(x+)− ḡi| /p

1− (gi(x+)− ḡi) /p
, i = s + 1, . . . ,m,
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where ḡi = 0 for i = s + 1, . . . ,m. Then the denominator is bounded on a wedge
neighborhood, while the nominator is of the order O

(
p−1‖x+ − x̄‖

)
.

Using these estimates, observe now that we have Zp(x+)11 = Q11D11Q
>
11 +

Q12D22Q
>
12. Since Q12Q

>
12 = O(‖x+ − x̄‖) and D22 → I under wedge convergence

(x+, p) w→ (x̄, 0), the second term on the right is O(‖x+ − x̄‖). Since Q11Q
>
11 − I =

O(‖x+−x̄‖), the first term on the right is O(‖D11‖) = O(p) under wedge convergence.
That proves the estimate Zp(x+)11 = O(p + ‖x+− x̄‖). Under wedge convergence we
have ‖x+−x̄‖ = p(‖x+−x̄‖/p) = o(p), so the dominant expression is Zp(x+)11 = O(p)
as claimed. This proves the first estimate in item 3.

Next observe that we have Zp(x+)12 = Q11D11Q
>
21 + Q12D22Q

>
22. The first term

is O (p‖x+ − x̄‖), because as we have seen D11 = O(p), and Q11Q
>
21 = O (‖x+ − x̄‖)

according to item 1. The second term Q12D22Q
>
22 on the other hand can be written

as Q12 (D22 − I)Q>
22 +Q12Q

>
22. Here Q12 (D22 − I)Q>

22 = O (D22 − I)O
(
Q12Q

>
22

)
=

O
(
p−1‖x+ − x̄‖2

)
. On the other hand, Q12Q

>
22 = I − Q11Q

>
11 = O (‖x+ − x̄‖) by

orthogonality of Q and by item 1. Since ‖x+ − x̄‖/p → 0 by the definition of wedge
convergence, the dominant term for Zp(x+)12 is of the order O (‖x+ − x̄‖) as claimed.

Finally, we have Zp(x+)22−I = Q21D11Q
>
21+Q22D22Q

>
22−I. Since Q11Q

>
11−I =

O (‖x+ − x̄‖), orthogonality gives Q21Q
>
21 = O (‖x+ − x̄‖), so that the first term is

O (p‖x+ − x̄‖). Let us write the second term as Q22(D22− I)Q>
22 +Q22Q

>
22− I. Here

the left hand term is O(p−1‖x+− x̄‖), while the right hand term is O(‖x+− x̄‖). The
dominant expression is the first one, proving the estimate.

Recall that U+(x+, U, p) = Zp(x+)UZp(x+). We have the following
Lemma 8. There exists a wedge neighborhood W(ε4) and a constant K4 > 0 such

that

‖U+
11(x

+, U, p)‖ ≤ K4

(
p2‖U − Ū‖+ ‖x+ − x̄‖2

)
,(26)

and

‖U+
12(x

+, U, p)‖ ≤ K4

(
p‖U − Ū‖+ ‖x+ − x̄‖

)
.(27)

for every (x+, U, p) ∈ W(ε4).
Proof. Notice first that

U+
11 = Zp(x)11

(
U11Zp(x)11 + U12Zp(x)>12

)
+ Zp(x)12

(
U>

12Zp(x)11 + U22Zp(x)>12
)
.

There are four terms to discuss here. Using (25) in the previous lemma, and observing
Ū11 = 0, we have U11 = O(‖U − Ū‖), so the first term Z11U11Z11 is O

(
p2‖U − Ū‖

)
.

Using Ū12 = 0 and (25), the second term Z11U12Z
>
12 is O

(
p‖U − Ū‖‖x+ − x̄‖

)
.

Since ‖x+ − x̄‖/p → 0 under wedge convergence, the second term is therefore even
o
(
p2‖U − Ū‖

)
. By symmetry, the same applies to the third term. As for the fourth

term Z12U22Z
>
12, notice that U22 → Ū22 � 0, so U22 = O(1). From (25) we therefore

obtain an expression of the form O
(
‖x+ − x̄‖2

)
. That proves the first estimate (26).

Similarly, the second estimate comprises four terms:

U+>
12 = Zp(x)>12

(
U11Zp(x)11 + U12Zp(x)>12

)
+ Zp(x)22

(
U>

12Zp(x)11 + U22Zp(x)>12
)
.

Using again Ū11 = 0, Ū12 = 0, so that U11 = O(‖U − Ū‖) and U12 = O(‖U − Ū‖),
while U22 = O(1), the previous Lemma 7 gives O

(
p‖x+ − x̄‖‖U − Ū‖

)
for the first

term, which is o
(
p2‖U − Ū‖

)
under wedge convergence. The second term Z>

12U12Z
>
12

is O
(
‖x+ − x̄‖2‖U − Ū‖

)
= o

(
p2‖U − Ū‖

)
under wedge convergence. The third

term Z22U
>
12Z11 is O

(
p‖U − Ū‖

)
, because Z22 = O(1). The last term Z22U22Z

>
12

is O (‖x+ − x̄‖), because U22 = O(1). This gives the two dominant terms in (27).
13



9. Lemmas with wedge convergence II. In this section we consider two more
technical results, which use the concept of wedge convergence, in tandem with the
no-gap second order optimality condition.

Lemma 9. Assume hypotheses (H1) - (H3), let U+(x+, U, p) = Zp(x+)UZp(x+),
and write U+ for short. There exists a wedge neighborhood W(ε5), a neighbor-
hood N of Ū , and a constant K5 > 0 such that the following condition is satis-
fied. Suppose (x+, U, p) ∈ W(ε5), U+ ∈ N , and δU ∈ Sm with ‖δU‖ = 1, and put
h = p−1F−1

xx (x+, U, p)FxU (x+, U, p)δU . Suppose the exotic equation

h>Lxx

(
x+, U+

)
h + p−1

[
G′(x+)h

]
•

([
I − p−1G

(
x+

)]−1
δU

[
I − p−1G

(
x+

)]−1
)

+

+2p−1
[
G′(x+)h

]
•

([
I − p−1G

(
x+

)]−1 [
G′(x+)h

] [
I − p−1G

(
x+

)]−1

U
[
I − p−1G

(
x+

)]−1
)

= 0

(28)

is satisfied. Then ‖h‖ ≤ K5.
Proof. Suppose contrary to the statement that there exist (x+

k , Uk, pk) w→ (x̄, Ū , 0)
and U+

k → Ū along with unit vectors δUk such that equation (28) is satisfied,
but‖hk‖ → ∞, where

hk = p−1
k F−1

xx (x+
k , Uk, pk)FxU (x+

k , Uk, pk)δUk.

Put dk = hk/‖hk‖. Passing to a subsequence, we may assume that dk → d for a unit
vector d, and also δUk → δU for a unit vector δU .

Dividing (28) by ‖hk‖2 gives

d>k Lxx

(
x+

k , U+
k

)
dk +

[
G′(x+

k )dk

]
•

([
I − p−1

k G
(
x+

k

)]−1 δUk

pk‖hk‖
[
I − p−1

k G
(
x+

k

)]−1
)

+2p−1
k

[
G′(x+

k )dk

]
•

([
I − p−1

k G
(
x+

k

)]−1 [
G′(x+

k )dk

] [
I − p−1

k G
(
x+

k

)]−1

Uk

[
I − p−1

k G
(
x+

k

)]−1
)

= 0.

(29)

There are now two cases to be discussed. Case 1 is when pk‖hk‖ ≥ µ > 0 for some µ
and a subsequence of k ∈ K. Case 2 is when pk‖hk‖ → 0.

Let us discuss case 1 first. Considering the subsequence k ∈ K only, the term

Θk =
[
G′(x+

k )dk

]
•

([
I − p−1

k G
(
x+

k

)]−1 δUk

pk‖hk‖
[
I − p−1

k G
(
x+

k

)]−1
)

is bounded above by µ−1
[
G′(x+

k )dk

]
•

([
I − p−1

k G
(
x+

k

)]−1
δUk

[
I − p−1

k G
(
x+

k

)]−1
)
,

which is bounded on a wedge neighborhood. Passing to yet another subsequence, and
using Lemma 5, we may therefore assume Θk → Θ for some Θ ∈ R. Going back with
this information to (29), we see that the identity is now of the form

d>k Lxx(x+
k , U+

k )dk + Θk + 2p−1
k Ξk = 0,

where the two leftmost terms converge. Consequently, 2p−1
k Ξk has no choice, it con-

verges, and given the fact that p−1
k →∞, this implies Ξk → 0. Now

Ξk =
[
G′(x+

k )dk

]
•

(
Zpk

(x+
k )

[
G′(x+

k )dk

]
Zpk

(x+
k )UkZpk

(x+
k )

)
14



converges to

Ξ = [G′(x̄)d]22 • [G′(x̄)d]22 Ū22 = 0,

where we use Zpk
(x+

k ) → Z̄ = diag(0s, Im−s) by Lemma 5. Since Ū22 � 0 by strict
complementarity, we deduce [G′(x̄)d]22 = 0, that is, d is a critical direction (9).

Let us analyze the term Θk in (29) a little further. Writing Zk := Zpk
(x+

k ) and
using (19) in tandem with the definition dk = p−1

k ‖hk‖−1F−1
xx FxUδUk gives

Θk = p−2
k ‖hk‖−2

[
G′(x+

k )F−1
xx G′(x+

k )?(ZkδUkZk)
]
• (ZkδUkZk).

Since the quadratic form G′(x+
k )F−1

xx G′(x+
k )? is positive semidefinite by Lemma 4, this

implies Θk ≥ 0. Passing to a subsequence, we may therefore assume that Θk → Θ,
where Θ ≥ 0.

As we know from the proof of Lemma 4, the term 2p−1
k Ξk = 2p−1

k ZkΨkZkΨkZk •
Uk in (29) may be decomposed as σk + τk, where σk ≥ 0, and τk → d>H(x̄, Ū)d. We
therefore have the following situation:

d>k Lxx

(
x+

k , U+
k

)
dk + Θk + σk + τk = 0.

Passing to the limit, we find that

d>Lxx(x̄, Ū)d + Θ + σ + d>H(x̄, Ū)d = 0.

Since Θ+σ ≥ 0 and d is a critical direction, this contradicts the second order sufficient
no-gap optimality condition (hypothesis (H2)) and settles case 1.

Let us now consider case 2, where ‖hk‖ → ∞, but pk‖hk‖ → 0. Multiplying (29)
with pk‖hk‖ gives the identity

pk‖hk‖d>k Lxx

(
x+

k , U+
k

)
dk +

[
G′(x+

k )dk

]
•

([
I − p−1

k G
(
x+

k

)]−1
δUk

[
I − p−1

k G
(
x+

k

)]−1
)

+2‖hk‖
[
G′(x+

k )dk

]
•

([
I − p−1

k G
(
x+

k

)]−1 [
G′(x+

k )dk

] [
I − p−1

k G
(
x+

k

)]−1

Uk

[
I − p−1

k G
(
x+

k

)]−1
)

= 0.

(30)

Here the first term converges to 0, the second term Θ̃k = [G′(x+
k )dk] • (. . . ) converges

to Θ̃ := [G′(x̄)d]22 • δU22. Therefore, the rightmost term in (30) is also convergent.
This term is now of the form 2‖hk‖Ξk, where Ξk is as before, and ‖hk‖ → ∞.

Therefore we must have Ξk → 0. But Ξk → Ξ = Ψ̄ • Z̄Ψ̄Z̄Ū Z̄ = Ū22 • Ψ̄22Ψ̄22 = 0.
Since Ū22 � 0 by strict complementarity, this implies Ψ̄22 = [G′(x̄)d]22 = 0, so that d
is a critical direction (9).

Using this information, we now go back to (29). Here the third term is of the form
2p−1

k Ξk. Using the argument in the proof of Lemma 4, we have 2p−1
k Ξk = σk + τk,

where σk ≥ 0 and τk → d>H(x̄, Ū)d. Let us examine the second term of (29), which
is Θk = p−1

k ‖hk‖−1Ψk • ZkδUkZk. Substituting backwards, using dk = hk/‖hk‖, the
definition of hk, and representing FxU as in (19), we have

Θk = p−2
k ‖hk‖−2

[
G′(x+

k )h
]
• ZkδUkZk

= p−2
k ‖hk‖−2

[
G′(x+

k )Fxx(x+
k , Uk, pk)−1G′(x+

k )? (ZkδUkZk)
]
• (ZkδUkZk)

≥ 0,

15



the latter, because the quadratic form G′(x+
k )F−1

xx G′(x+
k )? is positive semidefinite by

Lemma 4. This means Θk ≥ 0. We therefore find the following situation:

d>k Lxx(x+
k , U+

k )dk + Θk + τk + σk = 0,

which after passing to a subsequence converges to the limit d>Lxx(x̄, Ū)d + Θ +
d>H(x̄, Ū)d+σ = 0. This contradicts the second order optimality condition, because
Θ + σ ≥ 0, and since d was recognized as a critical direction. This ends case 2, and
thereby completes the proof.

Recall the notation U+ = U+(x+, U, p) = Zp(x+)UZp(x+) in (18), where Zp(x+) =(
I − p−1G(x+)

)−1. We have the following technical
Lemma 10. Under hypotheses (H1) - (H3), there exist ε6 > 0 and a constant

K6 > 0, such that the following condition is satisfied: Suppose (x+, U, p) ∈ W(ε6) and
δU ∈ Sm with ‖δU‖ = 1 are such that

h := p−1Fxx(x+, U, p)−1FxU (x+, U, p)δU,

and

H := p−1Zp(x+)δUZp(x+) + p−1U+
[
G′(x+)h

]
Zp(x+) + ∗

satisfy the equation

Lxx

(
x+, U+

)
h + G′(x+)?H = 0.(31)

Then ‖H22‖ ≤ K6 (‖h‖+ 1).
Proof. Let us write (31) as

Lxx(x+, U+)h +
(
G1(x+) •H, . . . , Gn(x+) •H

)
= 0.

Using the decomposition (7), and shifting (1, 1) and (1, 2)-terms to the right, this
becomes

Gj(x+)22 •H22 = −e>j Lxx(x+, U+)h−Gj(x+)11 •H11 − 2Tr
(
Gj(x+)12H>

12

)
where ej is the jth coordinate unit vector. Therefore each Gj(x+)22 • H22 is of the
form O (‖h‖+ ‖H12‖+ ‖H11‖), because U+ is bounded on a wedge neighborhood by
Lemma 8. Now by the LICQ hypothesis (H3), the operator (14) is injective, and there-
fore W 7→ (G1(x+)22 •W, . . . , Gn(x+)22 •W ) is injective at x+ in a neighborhood of
x̄. In other words, ‖ (G1(x+)22 •W, . . . , Gn(x+)22 •W ) ‖ ≥ κ‖W‖ for some κ > 0, all
W , and all x+ sufficiently close to x̄. This proves H22 = O (‖h‖+ ‖H12‖+ ‖H11‖).

Next observe that by the definition of H,

H11 =
(
p−1Zp(x+)δUZp(x+)

)
11

+
(
p−1U+

[
G′(x+)h

]
Zp(x+)

)
11

+ ∗
= p−1Zp(x+)11δU11Zp(x+)11 + p−1

(
U+

11Ψ11Zp(x+)11 + U+
12Ψ

>
12Zp(x+)11

)
+ ∗,

where we have put Ψ = G′(x+)h for brevity. According to (26) we have U+
11 =

O(1), while p−1Zp(x+)11 = O(1) under wedge convergence by (25). Similarly U+
12 =

O(1) by (27). Putting these together therefore gives H11 = O (1 + ‖h‖) under wedge
convergence. The same applies to H12:

H12 = p−1Zp(x+)11δU12Zp(x+)22 + p−1
(
Zp(x+)11Ψ12U

+
22 + Zp(x+)11Ψ11U

+
12

)
+ ∗.

This completes the proof.
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10. Application of the implicit function theorem. Let us now put ε7 =
min{ε1, ε2, ε3, ε4, ε5, ε6}. Then all the properties collected over the previous Lemmas
will be valid on the wedge neighborhood W(ε7).

Next consider the system of nonlinear equations

Fx(x,U, p) = 0,

based on formula (15). Notice that (x̄, Ū , p) is solution for every p > 0. Let us fix
an interval I = [p1, p2] such that 0 < p1 < p2 ≤ ε7. We apply the implicit function
theorem Lemma 1 where the H in the Lemma becomes Fx, the compact set is K∗ =
{Ū} × I, the variable y is (U, p) ∈ Sm × R, while x is x. The invertibility hypothesis
on Hx in Lemma 1 therefore reduces to invertibility of Fxx, which is guaranteed by
Lemma 4 (21). Consequently, there exists an open neighborhood Mp1,p2 ⊂ Rn×Sm×
R of {x̄} × {Ū} × [p1, p2], an open neighborhood Np1,p2 of {Ū} × [p1, p2] in Sm × R,
and a C1 function x+(·, ·) : Np1,p2 → Rn such that Fx (x+(U, p), U, p) = 0 for every
(U, p) ∈ Np1,p2 , x+(Ū , p) = x̄ for all p ∈ [p1, p2], and such that the function x+(·, ·)
is unique in the sense that (x,U, p) ∈ Mp1,p2 together with Fx(x, U, p) = 0 implies
x = x+(U, p). This may also be expressed by

{(x,U, p) ∈Mp1,p2 : Fx(x, U, p) = 0} = {
(
x+(U, p), U, p

)
: (U, p) ∈ Np1,p2}.(32)

We may assume without loss that

Mp1,p2 ⊂ W(ε7) for every I = [p1, p2] having p2 ≤ ε7,(33)

becauseW(ε7) is a neighborhood of {x̄}×{Ū}×[p1, p2]. Moreover, by further shrinking
Mp1,p2 and Np1,p2 if required, we may arrange that{

Mp1,p2 is of the form Mp1,p2 = Up1,p2 ×Np1,p2

for an open neighborhood Up1,p2 of x̄.
(34)

and similarly that Np1,p2 is of the form Np1,p2 = Np1,p2 × Ip1,p2 for a convex open
neighborhood Np1,p2 of Ū and an open interval Ip1,p2 containing
I = [p1, p2] .

(35)

In our notation x+(U, p) we have suppressed the dependence of the implicit func-
tion on the choice of I = [p1, p2], but we will say that x+(U, p) is associated with the
choice of some I. This slight abuse of notation is justified by the following

Lemma 11. Under the standing assumptions (H1) - (H3), we have the following
uniqueness statements:

1. Suppose 0 < p1 < p2 ≤ ε7 and (U, p) ∈ Np1,p2 . Then x+(U, p) is the unique
local minimum (even the unique critical point) of program minx∈Rn F (x,U, p)
in the neighborhood Up1,p2 of x̄.

2. Suppose 0 < p′ < p2 and 0 < p′′ < p2, p2 ≤ ε7 and that we have (U, p) ∈
Np′,p2 ∩Np′′,p2 . Then the values x+(U, p) of the two implicit functions asso-
ciated with [p′, p2] and [p′′, p2] agree.

Proof. Let us prove statement (1). We first show that x+(U, p) is a local minimum
of F . Clearly it is a critical point by the implicit function theorem, but in addition, we
have Fxx (x+(U, p), U, p) � ρI � 0, because (x+(U, p), U, p) ∈ W(ε7) by construction,
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so Lemma 4(21) applies. Now the sufficient second order optimality condition for
program (5) is satisfied at x+(U, p), which is therefore a local minimum.

Suppose now x is a critical point of program minx∈Rn F (x,U, p) in Up1,p2 . Then
(x,U, p) ∈ Up1,p2 × Np1,p2 = Mp1,p2 , and of course Fx(x,U, p) = 0. Due to formula
(32), this implies x = x+(U, p).

The proof of statement (2) is based on the same argument.
We will make use of the derivative formula for the implicit function, which is part

of the statement of the implicit function theorem (Lemma 1). Using (19), we have

x+
U (U, p)δU = −Fxx

(
x+(U, p), U, p

)−1
FxU

(
x+(U, p), U, p

)
δU

= −Fxx

(
x+(U, p), U, p

)−1
G′(x)?

[(
I − p−1G

(
x+(U, p)

))−1

δU
(
I − p−1G

(
x+(U, p)

))−1
]
,(36)

whenever the implicit terms are defined.
Let us introduce a second implicit function U+(U, p) defined on Np1,p2 by

U+(U, p) =
(
I − p−1G

(
x+(U, p)

))−1
U

(
I − p−1G

(
x+(U, p)

))−1
.

In other words, U+(U, p) = U+ (x+(U, p), U, p), where the right hand term uses the
function U+ introduced in Section 8. We then have the following

Lemma 12. Let 0 < p1 < p2 ≤ ε7. Then the implicit function x+(U, p) associated
with the interval I = [p1, p2] satisfies

‖x+
U (U, p)‖ ≤ K5p,(37)

for every (U, p) ∈ Np1,p2 . Similarly, the implicit function U+(U, p) associated with I
satisfies

‖
(
U+

U (U, p)
)
22
‖ ≤ K6(K5 + 1)p(38)

for every (U, p) ∈ Np1,p2 .
Proof. 1) We start out with formula (36). Write for brevity x+ = x+(U, p) and

put h = p−1x+
U (U, p)δU = p−1Fxx (x+, U, p)−1

FxU (x+, U, p) δU . The construction of
the implicit function guarantees that (x+, U, p) ∈ W(ε7) for (U, p) ∈ Np1,p2 .

2) We claim that the exotic equation (28) is satisfied. This can be seen as follows.
We consider the identities:

Lx (x+(U, p), U+(U, p)) = 0(
I − p−1G (x+(U, p))

)−1
U

(
I − p−1G (x+(U, p))

)−1 − U+(U, p) = 0
(39)

based on (17), Fx = 0, and (18). We differentiate these equations with respect to U .
For the first equation in (39) we obtain

Lxx

(
x+(U, p), U+(U, p)

)
x+

U (U, p)δU + G′ (x(U, p))? [
U+

U (U, p)δU
]

= 0.(40)

Differentiating the second equation in (39) gives[
I − p−1G

(
x+(U, p)

)]−1
δU

[
I − p−1G

(
x+(U, p)

)]−1
+

+U+(U, p)
[
p−1G′ (x+(U, p)

) {
x+

U (U, p)δU
}] [

I − p−1G
(
x+(U, p)

)]−1
+

+
[
I − p−1G

(
x+(U, p)

)]−1 [
p−1G′ (x+(U, p)

) {
x+

U (U, p)δU
}]

U+(U, p)−
−U+

U (U, p)δU = 0.(41)
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Substituting (41) into (40) gives

Lxx

(
x+, U+

)
xUδU + G′(x+)?

([
I − p−1G

(
x+

)]−1
δU

[
I − p−1G

(
x+

)]−1
)

+2p−1G′(x+)?
([

I − p−1G
(
x+

)]−1 {
G′(x+)xUδU

} [
I − p−1G

(
x+

)]−1

U
[
I − p−1G

(
x+

)]−1
)

= 0,(42)

where we write x+ = x+(U, p), U+ = U+(U, p) and where we suppress the arguments.
Multiplying (42) from the left with h defined in part 1) above, and dividing by

p2, we obtain indeed the exotic equation (28). In consequence, Lemma 9 applies and
gives p−1‖x+

U (U, p)‖ = ‖h‖ ≤ K5 on Np1,p2 .
3) Let us proceed in a similar way for the implicit function U+. Observe that

(42) is nothing else but equation (30), when we substitute the expression for h used
in 1), and when we put H = p−1U+

U (U, p)δU . Therefore, Lemma 10 implies

‖p−1
(
U+

U (U, p)
)
22
‖ = ‖H22‖ ≤ K6 (‖h‖+ 1) ≤ K6(K5 + 1).

This proves the second part of the statement.

Remark. The important fact about the constants collected over the past Lemmas
is that they are independent of the choice of the interval I = [p1, p2], as long as
p2 ≤ ε7 is respected. We refer to this as prior information, because it is needed before
we ultimately fix the interval I. This will become clear in Section 11.

We are now ready to obtain the following major step toward the local convergence
of the AL algorithm.

Lemma 13. Under hypotheses (H1) - (H3), there exists ε7 > 0 and K7 > 0 such
that for all 0 < p1 < p2 ≤ ε7 the implicit functions x+ and U+ associated with the
interval I = [p1, p2] satisfy the estimates

(43)
(a) ‖x+(U, p)− x̄‖ ≤ K7p‖U − Ū‖, (b) ‖U+(U, p)− Ū‖ ≤ K7p‖U − Ū‖

for every (U, p) ∈ Np1,p2 .
Proof. Given the fact that x+(Ū , p) = x̄ for every p and each of the implicit

functions, we can integrate and obtain

‖x+(U, p)− x̄‖ =
∥∥∥∥∫ 1

0

x+
U (Ū + τ(U − Ū), p)(U − Ū) dτ

∥∥∥∥
≤ K5p‖U − Ū‖,

using estimate (37) in Lemma 12, (Ū , p), (U, p) ∈ Np1,p2 , and the fact that Np1,p2 is
convex. This proves estimate (a) with constant K5.

To prove estimate (b) for the multiplier update, U+, we first apply the same
argument to the (2, 2)-block of U+. Since U+(Ū , p) = Ū for every p, we have

‖U+(U, p)22 − Ū22‖ ≤ K6(K5 + 1)p‖U − Ū‖,

using integration, now based on estimate (38). For the (1, 1) and (1, 2) blocks we use
directly (26) and (27) in Lemma 8. We only have to notice that for every interval
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I = [p1, p2] with p2 ≤ ε7, picking (U, p) ∈ Np1,p2 implies (x+(U, p), U, p) ∈ W(ε7) by
(33), so that

‖U+
(
x+(U, p), U, p

)
11
‖+ ‖U+

(
x+(U, p), U, p

)
12
‖

≤ K4

(
p2‖U − Ū‖+ ‖x+(U, p)− x̄‖2 + p‖U − Ū‖+ ‖x+(U, p)− x̄‖

)
≤ 2K4p‖U − Ū‖

by estimates (26) and (27), estimate (43) (a) with constant K5, and the fact that we
may render 1+p+K2

5p‖U−Ū‖+K2
5‖U−Ū‖ ≤ 2 by reducing ε7 > 0 if necessary. This

takes into account that U+(U, p) = U+ (x+(U, p), U, p). Altogether we have shown
‖U+(U, p)− Ū‖ ≤ (2K4 + K6(K5 + 1)) p‖U− Ū‖, proving the second part of estimate
(43). If we put K7 = max{K5, 2K4 + K6(K5 + 1)}, we clearly obtain both estimates
in (43) with the same constant K7.

Remark. As a consequence of Lemma 13, we see that if we allow the penalty
parameter pk to shrink to 0, we obtain local superlinear convergence Uk → Ū , while
xk → x̄ converges R-superlinearly. See also [40] for a proof of this fact. Naturally,
allowing the penalty parameter to converge to 0 leads to numerical ill-conditioning in
the tangent program (5), and has to be avoided in practice. It is mandatory to freeze
p at a decent positive value. During the following section, we show that the algorithm
then still converges linearly if the initial U is sufficiently close to Ū .

11. Progress measure. Recall that the progress measure σ(x,U, p) used in step
4 of our algorithm is given as:

σ(x, U, p) = ‖U −
(
I − p−1G(x)

)−1
U

(
I − p−1G(x)

)−1 ‖.(44)

Then in fact σ(x+, U, p) = ‖U−U+‖. The test in step 4 therefore becomes ‖U−U+‖ ≤
τ‖U− − U‖, where U = U+(x,U−, p−). This is indeed a primal-dual progress test,
because it takes the full information x,U, p from two consecutive sweeps into account.

Lemma 14. Suppose hypotheses (H1) − (H3) are satisfied at (x̄, Ū). Then there
exists ε7 > 0, 0 < p < p < ε7, a neighborhood N of Ū and a neighborhood U of x̄ such
that for all p1 and U1 satisfying pγ < p1 ≤ p and U1 ∈ N :

1. The sequences pk, Uk and xk+1 = x+(Uk, pk) generated by the augmented
Lagrangian algorithm are well defined, and Uk ∈ N for every k.

2. xk+1 ∈ U for all k.
3. The sequence pk stays in the interval I = [p, p], and is therefore constant

from some index k1 on.
Proof. Let ε7 and the wedge neighborhood W(ε7) be as in the proof of Lemma

13. Choose p ≤ ε7 such that K7p < 1. For later use put

K8 := K3ε7 + ‖Im−s‖+ K3K7ε
2
7 + K3K7ε

3
7

and

K9 := ‖Ū22‖K2
3K2

7 ε27 + 2K3K7ε7‖Ū22‖+ K3K7

and define

p := min
{

γ2p,
γ2τ

K7 (1 + K2
8 + K9 + τ)

}
(45)
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where τ, γ are the parameters used in the algorithm, and where the constants Ki, εi

are as in the previous sections. Recall that these constants are available before p is
defined, because they have been collected as part of the prior information.

Now we define the neighborhoods in question by setting U = Up,p and N = Np,p,
N = Np,p. See section 10, formulas (32) - (35), for their definitions. Notice that
by Lemma 11 we have xk+1 = x+(Uk, pk) for the implicit function associated with
[p, p] for all k with pk ∈ I = [p, p]. In particular, the sequences xk+1, Uk and pk are
well-defined for these k. This is because Uk+1 stays in the neighborhood Np,p in view
of estimate (43) (b) and K7p < 1, so that the procedure can be continued at the next
step. In particular, from the uniqueness part of the implicit function theorem (32) we
then know that xk+1 stays in U = Up,p and is the unique local minimum (even unique
critical point) of tangent program (5) in U .

Suppose the sequence pk does not stay in the interval I = [p, p]. Then there exists
a smallest index k1 such that pk1 ∈ I, but pk1+1 = γpk1 < p. We will show that this
leads to a contradiction.

Notice first that pk1 < p1, so that k1 ≥ 2. Indeed, pk1 = p1 > γp would give
p > pk1+1 = γpk1 = γp1 > γ2p, contradicting the definition of p. Hence indeed
k1 ≥ 2.

Let Zk :=
(
I − p−1

k G(xk+1)
)−1

, where xk+1 = x+(Uk, pk), Z̄ = diag(0s, Im−s).
Then Zk = Zpk

(x+(Uk, pk)). We have

‖Uk − Ū‖ ≤ pkε7 ≤ pε7 ≤ ε27.

Using this, (25), and (43) (a) we have

‖Zk‖ ≤ ‖(Zk)11‖+ ‖(Zk)22‖+ 2‖(Zk)12‖
≤ ‖(Zk)11‖+ ‖Im−s‖+ ‖(Zk)22 − Im−s‖+ 2‖(Zk)12‖
≤ K3pk + ‖Im−s‖+ K3p

−1
k ‖xk+1 − x̄‖+ 2K3‖xk+1 − x̄‖

≤ K3ε7 + ‖Im−s‖+ K3K7‖Uk − Ū‖+ 2K3K7ε7‖Uk − Ū‖
≤ K3ε7 + ‖Im−s‖+ K3K7ε

2
7 + 2K3K7ε

3
7 = K8(46)

according to the definition of K8. Next consider the matrix expression

Ū − ZkŪZk =
[
−Zk

12Ū22Z
k>
12 −Zk

12Ū22Z
k
22

−Zk
22Ū22Z

k>
12 Ū22 − Zk

22Ū22Z
k
22

]
.

Using again (25), we have

‖Ū − ZkŪZk‖ ≤ ‖
(
Ū − ZkŪZk

)
11
‖+ 2‖

(
Ū − ZkŪZk

)
12
‖+ ‖

(
Ū − ZkŪZk

)
22
‖

= ‖Zk
12Ū22Z

k>
12 ‖+ 2‖Zk

12Ū22Z
k
22‖+ ‖Ū22 − Zk

22Ū22Z
k
22‖

≤ ‖Ū22‖ (K3 ‖xk+1 − x̄‖)2 + 2K3 ‖Ū22‖ ‖xk+1 − x̄‖+ K3p
−1
k ‖xk+1 − x̄‖

≤
(
‖Ū22‖K2

3K2
7 ε27 + 2K3K7ε7‖Ū22‖+ K3K7

)
‖Uk − Ū‖

= K9‖Uk − Ū‖(47)

using the definition of K9. Combining (46) and (47) gives the estimate

σ(xk+1, Uk, pk) = ‖Uk − ZkUkZk‖
≤ ‖Uk − Ū‖+ ‖Ū − ZkŪZk‖+ ‖ZkŪZk − ZkUkZk‖
≤ ‖Uk − Ū‖+ ‖Ū − ZkŪZk‖+ ‖Zk‖2‖Uk − Ū‖
≤ (1 + K2

8 + K9)‖Uk − Ū‖.(48)
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On the other hand, using estimate (43) (b) we have for k ≥ 2:

‖Uk − Ū‖ ≤ K7pk−1‖Uk−1 − Ū‖
≤ K7pk−1

(
‖Uk−1 − Uk‖+ ‖Uk − Ū‖

)
and therefore

‖Uk − Ū‖ ≤
(
(K7pk−1)

−1 − 1
)−1

‖Uk−1 − Uk‖,(49)

where we have (K7pk−1)−1 > 1 for all k ≥ 2 by assumption. Combining (48) and (49)
gives

σ(xk+1, Uk, pk) ≤ 1 + K2
8 + K9

(K7pk−1)−1 − 1
‖Uk−1 − Uk‖

=
1 + K2

8 + K9

(K7pk−1)−1 − 1
σ(xk, Uk−1, pk−1)

=: τk σ(xk, Uk−1, pk−1).(50)

Since the pk are decreasing, the sequence τk defined by (50) decreases as well. Conse-
quently, if we can find an index k2 such that τk2 ≤ τ , where τ is the parameter used
in the algorithm, then we have τk ≤ τ for every k ≥ k2. According to step 4 of the
algorithm, and due to (50), the parameter pk would then be unchanged for k ≥ k2.
In consequence, an index k2 of this type could not possibly occur before k1. Namely,
suppose we had k2 ≤ k1, then pk = pk2 for k ≥ k2, contradicting the definition of k1,
where we have pk1+1 = γpk1 .

What we therefore know is k2 > k1. In other words, τk > τ for every k < k2,
meaning τk > τ for every k ≤ k1. In particular τk1 > τ . Setting K10 := 1 + K2

8 + K9,
this becomes

τk1 =
K10

(K7pk1−1)−1 − 1
> τ

if we plug in the expression (50) for τk1 . This is now the same as

pk1−1 >
τ

K7(K10 + τ)
.

Since p+ ∈ {p, γp} at each step of the algorithm, we deduce

pk1 ≥ γpk1−1 >
γτ

K7(K10 + τ)
.

Using pk1+1 = γpk1 then gives

pk1+1 >
γ2τ

K7(K10 + τ)
.

On the other hand, pk1+1 < p by construction, which means

p >
γ2τ

K7(K10 + τ)
=

γ2τ

K7(1 + K2
8 + K9 + τ)

.

This contradicts the definition (45) of p.
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Remark. If the sequences xk, Uk and pk generated by the augmented Lagrangian
algorithm are started with initial p1 > p, then, as the pk are reduced, there will be a
smallest k0 with pk0 ≤ p. Then pk0 > γp, and the conclusions of Lemma 14 are still
valid for the sequence (Uk, pk), k ≥ k0, if Uk0 ∈ U for the neighborhood U found in
Lemma 14. Naturally, as we prove a local convergence result, such a restriction has
to be expected.

Remark. The initial parameter p1 must fall in the range (γp, p], which appears
small. However, since p+ ∈ {γp, p} at each step, some pk always falls within this range
as the pk, starting large, get smaller. On the other hand, if we feel uncomfortable
with this initial condition, we can easily replace it by p1 ∈ (γap, p] for some large
a > 1, so that γap � p, by adapting the definition (45) of p in the proof.

Assembling the findings of the previous sections leads to the following local con-
vergence theorem.

Theorem 1. Let x̄ be a local minimum of (1) with associated Lagrange multiplier
Ū such that the hypotheses (H1)−(H3) are satisfied. Then there exists a neighborhood
N of Ū , a neighborhood U of x̄, and p > 0 such that the following conditions are
satisfied:

1. Whenever U1 ∈ N and γp < p1 ≤ p, then the sequences Uk, pk > 0 and xk+1

generated by the augmented Lagrangian algorithm are well-defined if xk+1 is
the local minimum of minx∈Rn F (x, Uk, pk) in U . The sequence Uk stays in
N , and xk+1 is the unique critical point of (5) in U .

2. The sequence Uk converges to Ū with Q-linear speed, and xk converges to x̄
with R-linear speed.

3. The sequence pk > 0 is constant from some index k1 on.
Proof. We choose p, p, and then U and N as in the proof of Lemma 14. Then we

know that the sequence pk does not leave the interval [p, p]. Since it is decreasing, it
is eventually constant with value p̂ ∈ [p, p].

Now xk+1 = x+(Uk, p̂) and Uk+1 = U+(Uk, p̂), so estimate (43) (b) immediately
shows that Uk converges Q-linearly with speed K7p̂ ≤ K7p < 1. By (43) (a), xk then
converges R-linearly.

12. Extensions. Let us consider the following extension of the main theorem,
motivated by practical considerations. It seems interesting to stop the tangent pro-
gram (5) at a suboptimal solution x+, otherwise using the same overall scheme. We
would replace step 2 of the algorithm by the following. Accept xk+1 as a solution of
program minx∈Rn F (x,Uk, pk) if

‖Fx(xk+1, Uk, pk)‖ ≤ ωk,(51)

where ωk → 0+ is a suitable sequence of tolerances. Let us indicate in which way the
analysis of the previous sections could be extended to this case.

Let us consider the system of nonlinear equations

Fx (x,U, p)− a = 0,(52)

with variables x, a ∈ Rn, U ∈ Sm, p ∈ R. We know that (x̄, Ū , p, ā) with ā = 0
is solution of (52) for all p > 0. We apply the implicit function theorem Lemma
1 again separately with respect to every reference interval I = [p1, p2]. We obtain
implicit functions x+(U, p, a) and U+(U, p, a) such that Fx (x+(U, p, a), U, p)− a = 0,
x+(Ū , p, 0) = x̄, and U+(U, p, a) = U+ (x+(U, p, a), U, p). That means, the update

23



formula is the same as in the exact algorithm. On the other hand, as we shall see,
the update of p has to be modified.

The central mechanism of the proof of estimates (43) was based on bounding the
partial derivatives x+

U and U+
U in (36) and (38) independently of the choice of I. We

now proceed in the same way and obtain estimates of the form (a) ‖x+(U, p, a)− x̄‖ ≤ K
(
‖a‖+ p‖U − Ū‖

)
,

(b) ‖U+(U, p, a)− Ū‖ ≤ K
(
‖a‖+ p‖U − Ū‖

)
.

(53)

To prove (53) (a), we decompose ‖x+(U, p, a) − x̄‖ ≤ ‖x+(U, p, a) − x+(U, p, 0)‖ +
‖x+(U, p, 0) − x+(Ū , p, 0)‖. Since ā = 0 corresponds to the case discussed in the
previous sections, the second term is handled precisely as in Lemma 13, and is bounded
by Kp‖U − Ū‖. What is new is the first term, which is treated by way of bounding
x+

a , the partial derivative of x+ with respect to a ∈ Rn. Omitting arguments, we have

x+
a = F−1

xx ,

which means x+
a is bounded on its domain Np1,p2 for each reference I = [p1, p2]. The

argument is in fact based on the prior estimate in Lemma 4 and needs reasoning
similar to Lemma 9. Integration leads to estimate (53) (a).

For estimate (53) (b), we compute

U+
a δa = p−1Zp(x+)

[
G′(x+)x+

a δa
]
Zp(x+)UZp(x+) + ∗

valid for any test vector δa ∈ Rn. Now we argue as in Lemma 4. We have p−1Zp(x+)11 →(
G(x̄)†

)
11

, while p−1U11 → 0 and p−1U12 → 0 under wedge convergence. We there-
fore proceed as for the estimation of 2p−1Ξ in the proof of Lemma 4 and conclude
that U+

a is bounded on each Np1,p2 .
The next step is to find an analogue of Lemma 14. Assuming ak ∈ Rn solves (52),

and therefore (51) with ‖ak‖ ≤ ωk, we have the following estimate

σ(xk+1, Uk, pk) = ‖Uk − ZkUkZk‖
≤ K

(
‖Uk − Ū‖+ ‖xk+1 − x̄‖

)
≤ K ′ (‖Uk − Ū‖+ ‖ak‖

)
,

where the second line uses the analogue of (50), while the last line uses (53) (a). Now
we complement this estimate with the following:

‖Uk − Ū‖ ≤ Kpk−1‖Uk−1 − Ū‖+ K‖ak−1‖
≤ Kpk−1‖Uk−1 − Uk‖+ Kpk−1‖Uk − Ū‖+ K‖ak−1‖

based on (53), (b), which gives

‖Uk − Ū‖ ≤ Kpk−1

1−Kpk−1
‖Uk−1 − Uk‖+

K

1−Kpk−1
‖ak−1‖.(54)

Then, using σ(xk, Uk−1, pk−1) = ‖Uk−1 − Uk‖, we get

σ(xk+1, Uk, pk) ≤ KK ′pk−1

1−Kpk−1
σ(xk, Uk−1, pk−1) +

KK ′

1−Kpk−1
‖ak−1‖+ K ′‖ak‖.

(55)
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Putting τk = KK′pk−1
1−Kpk−1

, we see that τk → 0, so that eventually τk < τ . This part is
therefore treated in much the same way as in the nominal case a = 0. The presence
of the two terms ‖ak‖ and ‖ak−1‖ now suggests a new update rule for pk, namely

(56)

pk+1 =
{

pk if σ(xk+1, Uk, pk) ≤ τσ(xk, Uk−1, pk−1) + M
(
‖ak−1‖1/2 + ‖ak‖1/2

)
γpk else,

where M > 0 is any fixed constant. Then indeed, the term KK′

1−Kpk−1
‖ak−1‖+ K ′‖ak‖

in (55) will become smaller than M
(
‖ak−1‖1/2 + ‖ak‖1/2

)
as ak → 0, independently

of the choice of M , and in particular, independently of K, K ′, whose numerical values
are not known in practice. Put differently, the validity of (55) implies that the upper
branch in (56) will ultimately be satisfied, giving pk+1 = pk from some index k
onwards, in analogy with the proof of Lemma 14. Altogether, we propose the following

Inexact Augmented Lagrangian Algorithm

Fix 0 < γ < 1, 0 < τ < 1, M > 0, and a monotone null sequence ωk.

1. Choose initial iterate x1 and initial Lagrange multiplier estimate
U1 � 0. Fix penalty p1 > 0.

2. Given the current iterate xk, Lagrange multiplier estimate Uk � 0
and penalty pk > 0, solve the tangent program

min
x∈Rn

F (x, Uk, pk)

approximately, using xk as a starting point for the inner iteration.
xk+1 is accepted if ‖Fx (xk+1, Uk, pk) ‖ ≤ ωk.

3. Update the Lagrange multiplier estimate by setting
Uk+1 = Φ′

pk
(G(xk+1))Uk

4. Update the penalty parameter by setting

pk+1 =


pk, if σ (xk+1, Uk, pk) ≤ τσ(xk, Uk−1, pk−1)+

+M
(
ω

1/2
k−1 + ω

1/2
k

)
γpk, else

5. Increase counter k, and go back to step 2.

We have the following
Theorem 2. Let x̄ be a local minimum of (1) such that (H1) - (H3) are satisfied.

There exist neighborhoods U of x̄, N of Ū , and p > 0 such that for U1 ∈ N and
γp < p1 < p, ωk+1 ≤ ωk ≤ p, ωk → 0, the following conditions are satisfied.

1. If xk+1 in step 2 of the inexact algorithm is picked in the neighborhood U of
x̄, satisfying (51), then the sequences Uk, pk and xk+1 are well-defined. The
sequence Uk stays in N .

2. The sequence pk is frozen from some index onwards.
3. Uk converges to Ū with speed

‖Uk+1 − Ū‖ ≤ Kp‖Uk − Ū‖+ Kωk,

where Kp < 1.
4. The sequence xk+1 converges to x̄ with speed

‖xk+1 − x̄‖ ≤ Kp‖Uk − Ū‖+ Kωk.
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The question which remains is whether we can steer ωk to force linear convergence.
In view of estimate (54), this seems possible if we choose ωk ∼ pk−1σ(xk, Uk−1, pk−1).

13. Example. Let us indicate by way of an example that condition (12) is too
strong in general. Consider the program

minimize f(x) = 1
2

(
−x2

1 − x2
2

)
subject to G(x) =

 −1 1− x1 0
1− x1 −1 −x2

0 −x2 −1

 � 0

whose unique minimum is x̄ = (2, 0). The Hessian of the Lagrangian is Lxx(x, U) =[
−1 0
0 −1

]
, because G′′ = 0. That already means that (12) has no chance to be

true. Observe that G′(x̄)?U = (−2u12,−2u23), so that the KKT-conditions read[
−x1

x2

]
+

[
−2u12

−2u23

]
=

[
0
0

]
along with complementarity, which gives

Ū =

 1 −1 0
−1 1 0
0 0 0

 .

The matrix Q which diagonalizes G(x̄) and Ū in the sense that Ū = QdiagŪQ> is

Q =

 1√
2

− 1√
2

0
1√
2

1√
2

0
0 0 1

 .

The curvature term is therefore

H(x̄, Ū) =
[

0 0
0 2

]
.

The final link is obtained by computing the critical cone. According to (9), we obtain
C(x̄) = R(0, 1) here. And it can indeed be verified that

h>
(
Lxx(x̄, Ū) +H(x̄, Ū)

)
h = [0 h2]

[
−1 0
0 1

] [
0
h2

]
= h2

2 > 0

whenever h ∈ C(x̄), h 6= 0. That means the second-order no-gap sufficient optimality
condition (10) is satisfied, even though Lxx(x̄, Ū) ≺ 0.
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