
HAL Id: hal-00218207
https://hal.science/hal-00218207

Preprint submitted on 25 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Numerical Solution of Parabolic Optimization
Problems by Finite Element Methods

Roland Becker, Dominik Meidner, Boris Vexler

To cite this version:
Roland Becker, Dominik Meidner, Boris Vexler. Efficient Numerical Solution of Parabolic Optimiza-
tion Problems by Finite Element Methods. 2006. �hal-00218207�

https://hal.science/hal-00218207
https://hal.archives-ouvertes.fr

Efficient Numerical Solution of Parabolic Optimization

Problems by Finite Element Methods

Roland Becker†, Dominik Meidner‡, and Boris Vexler¶

We present an approach for efficient numerical solution of optimization problems governed by
parabolic partial differential equations. The main ingredients are: space-time finite element dis-
cretization, second order optimization algorithms and storage reduction techniques. We discuss the
combination of these components for the solution of large scale optimization problems.

Keywords: optimal control, parabolic equations, finite elements, storage reduction

AMS Subject Classification:

1 Introduction

In this paper, we discuss efficient numerical methods for solving optimization
problems governed by parabolic partial differential equations. The optimiza-
tion problems are formulated in a general setting including optimal control as
well as parameter identification problems. Both, time and space discretization
are based on the finite element method. This allows a natural translation of
the optimality conditions from the continuous to the discrete level. For this
type of discretizations, we present a systematic approach for precise computa-
tion of the derivatives required in optimization algorithms. The evaluation of
these derivatives is based on the solutions of appropriate adjoint (dual) and
sensitivity (tangent) equations.

The solution of the underlying state equation is typically required in the
whole time interval for the computation of these additional solutions. If all
data are stored, the storage grows linearly with respect to the number of time

†Laboratoire de Mathématiques Appliquées, Université de Pau et des Pays de l’Adour BP 1155,
64013 PAU Cedex, France
‡Institut für Angewandte Mathematik, Ruprecht-Karls-Universität Heidelberg, INF 294, 69120 Hei-
delberg, Germany. This work has been partially supported by the German Research Foundation
(DFG) through the Internationales Graduiertenkolleg 710 ‘Complex Processes: Modeling, Simula-
tion, and Optimization’
¶Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy
of Sciences, Altenberger Straße 69, 4040 Linz, Austria

2 Roland Becker, Dominik Meidner, and Boris Vexler

intervals in the time-discretization. This makes the optimization procedure
prohibitive for fine discretizations. We suggest an algorithm, which allows to
reduce the required storage. We analyze the complexity of this algorithm and
prove that the required storage grows only logarithmic with respect to the num-
ber of time intervals. Such results are well-known for gradient evaluations in the
context of automatic differentiation, see Griewank [12, 13] and Griewank and
Walther [14]. However, to the authors’ knowledge, the analysis of the required
numerical effort for the whole optimization algorithm is new. The presented ap-
proach is an extension of windowing strategies introduced in Berggren, Glowin-
ski, and Lions [5].

The main contribution of this paper is the combination of the exact compu-
tation of the derivatives based on the space-time finite element discretization
with the storage reduction techniques.

In this paper, we consider optimization problems under constraints of (non-
linear) parabolic differential equations

∂tu+A(q, u) = f

u(0) = u0(q).
(1)

Here, the state variable is denoted by u and the control variable by q. Both,
the differential operator A and the initial condition u0 may depend on q. This
allows a simultaneous treatment of both, optimal control and parameter iden-
tification problems. For optimal control problems, the operator A is typically
given by

A(q, u) = Ā(u) +B(q),

with a (nonlinear) operator Ā and (usually linear) control operator B. In pa-
rameter identification problems, the variable q denotes the unknown parame-
ters to be determined and may enter the operator A in a nonlinear way. The
case of initial control is included via the q-dependent initial condition u0(q).

The target of the optimization is to minimize a given cost functional J(q, u)
subject to the state equation (1).

For covering additional constraints on the control variable, one may seek
q in an admissible set describing, e.g., box constraints on q. For clarity of
presentation, we consider here the case of no additional control contraints.
However, the algorithms discussed in the sequel, can be used as an interior
loop within a primal-dual active set strategy, see, e.g., Bergounioux, Ito, and
Kunisch [6] and Kunisch and Rösch [16].

The paper is organized as follows: In the next section we describe an abstract
optimization problem, with a parabolic state equation written in a weak form
and discuss optimality conditions. Then, the problem is reformulated as an

Finite Elements for Parabolic Optimization Problems 3

unconstrained (reduced) optimization problem and the expressions for the re-
quired derivatives are provided. After that, we describe Newton-type methods
for solution of the problem on the continuous level. In Section 3, we discuss the
space and time discretizations. The space discretization is done by conforming
finite elements and for the time discretization we use two approaches: discontin-
uous Galerkin (dG) and continuous Galerkin (cG) methods, see, e.g., Eriksson,
Johnson, and Thomée [9]. For both, we provide techniques for precise evalua-
tion of the derivatives in the corresponding discrete problems. This allows for
simple translation of the optimization algorithm described in Section 2 from
the continuous to the discrete level. Section 4 is devoted to the storage re-
duction techniques. Here, we present and analyze an algorithm, which we call
Multi-Level Windowing, allowing for drastically reduction of the required stor-
age by the computation of adjoint solutions. This algorithm is then specified
for the computation of the derivatives required in the optimization loop. In the
last section we present numerical results illustrating our approach.

2 Optimization

The optimization problems considered in this paper, are formulated in the fol-
lowing abstract setting: Let Q be a Hilbert space for the controls (parameters)
with scalar product (·, ·)Q. Moreover, let V and H be Hilbert spaces, which
build together with the dual space V ∗ a Gelfand triple: V →֒ H →֒ V ∗. The
duality pairing between the Hilbert space V and its dual V ∗ is denoted by
〈·, ·〉V ∗×V and the scalar product in H by (·, ·)H .

Remark 2.1 By the definition of the Gelfand triple, the space H is dense in
V ∗. Therefore, every functional v∗ ∈ V ∗ can be uniformly approximated by
scalar products in H. That is, we can regard the continuous continuation of
(·, ·)H onto V × V ∗ as new representation formula for the functionals in V ∗.

Let, moreover, I = (0, T) be a time interval and the space X be defined as

X =
{
v

∣∣ v ∈ L2(I, V) and ∂tv ∈ L2(I, V ∗)
}
. (2)

It is well known, that the space X is continuously embedded in C(Ī , H), see,
e.g., Dautray and Lions [8].

After these preliminaries, we pose the state equation in a weak form using the
form a(·, ·)(·) defined on Q×V ×V , which is assumed to be twice continuously
differentiable and linear in the third argument. The state variable u ∈ X is

4 Roland Becker, Dominik Meidner, and Boris Vexler

determined by

∫ T

0
{(∂tu, ϕ)H + a(q, u)(ϕ)} dt =

∫ T

0
(f, ϕ)H dt ∀ϕ ∈ X,

u(0) = u0(q),

(3)

where f ∈ L2(0, T ;V ∗) represents the right hand side of the state equation
and u0 : Q → H denotes a twice continuously differentiable mapping describ-
ing parameter-dependent initial conditions. Note, that the scalar products
(∂tu, ϕ)H and (f, ϕ)H have to be understood according to Remark 2.1. For
brevity of notation, we omit the arguments t and x of time-dependent func-
tions whenever possible.

The cost functional J : Q×X → R is defined using two twice continuously
differentiable functionals I : V → R and K : H → R by:

J(q, u) =

∫ T

0
I(u) dt +K(u(T)) +

α

2
‖q − q̄‖2

Q, (4)

where the regularization (or cost) term involving α ≥ 0 and a reference pa-
rameter q̄ ∈ Q is added.

The corresponding optimization problem is formulated as follows:

Minimize J(q, u) subject to (3), (q, u) ∈ Q×X. (5)

The question of existence and uniqueness of solutions to such optimization
problems is discussed in, e.g., Lions [17], Fursikov [11], and Litvinov [18].
Throughout the paper, we assume problem (5) to admit a (locally) unique
solution.

Furthermore, under a regularity assumption on a′u(q, u) at the solution of (5),
the implicit function theorem ensures the existence of an open subset Q0 ⊂ Q

containing the solution of the optimization problem under consideration, and
of a twice continuously differentiable solution operator S : Q0 → X of the state
equation (3). Thus, for all q ∈ Q0 we have

∫ T

0
{(∂tS(q), ϕ)H + a(q, S(q))(ϕ)} dt =

∫ T

0
(f, ϕ)H dt ∀ϕ ∈ X,

S(q)(0) = u0(q).

(6)

Using this solution operator we introduce the reduced cost functional
j : Q0 → R, defined by j(q) = J(q, S(q)). This definition allows to reformulate

Finite Elements for Parabolic Optimization Problems 5

problem (5) as an unconstrained optimization problem:

Minimize j(q), q ∈ Q0. (7)

If q is an optimal solution of the unconstrained problem above, the first and
second order necessary optimality condition are fulfilled:

j′(q)(τq) = 0, ∀τq ∈ Q,

j′′(q)(τq, τq) ≥ 0, ∀τq ∈ Q.

For the unconstrained optimization problem (7), a second order sufficient
optimality condition is given by the positive definiteness of the second deriva-
tives j′′(q).

To express the first and second derivatives of the reduced cost functional j,
we introduce the Lagrangian L : Q×X ×X ×H → R, defined as

L(q, u, z, z̃) = J(q, u)

+

∫ T

0
{(f − ∂tu, z)H − a(q, u)(z)} dt − (u(0) − u0(q), z̃)H . (8)

With the help of the Lagrangian, we now present three auxiliary equations,
which we will use in the sequel to give expressions of the derivatives of the
reduced functional. Each equation will thereby be given in two formulations,
first in terms of the Lagrangian and then using the concrete form of the opti-
mization problem under consideration.

• Dual Equation: For given q ∈ Q0 and u = S(q) ∈ X, find (z, z̃) ∈ X × H

such that

L′
u(q, u, z, z̃)(ϕ) = 0, ∀ϕ ∈ X. (9)

• Tangent Equation: For given q ∈ Q0, u = S(q) ∈ X, and a given direction
δq ∈ Q, find δu ∈ X such that

L′′
qz(q, u, z, z̃)(δq, ϕ) + L′′

uz(q, u, z, z̃)(δu, ϕ) + L′′
qz̃(q, u, z, z̃)(δq, ψ)

+ L′′
uz̃(q, u, z, z̃)(δu, ψ) = 0, ∀(ϕ,ψ) ∈ X ×H. (10)

• Dual for Hessian Equation: For given q ∈ Q0, u = S(q) ∈ X, (z, z̃) ∈ X×H
the corresponding solution of the dual equation (9), and δu ∈ X the solution
of the tangent equation (10) for the given direction δq, find (δz, δz̃) ∈ X×H

6 Roland Becker, Dominik Meidner, and Boris Vexler

such that

L′′
qu(q, u, z, z̃)(δq, ϕ) + L′′

uu(q, u, z, z̃)(δu, ϕ)

+ L′′
zu(q, u, z, z̃)(δz, ϕ) + L′′

z̃u(q, u, z, z̃)(δz̃, ϕ) = 0, ∀ϕ ∈ X. (11)

Equivalently, we may rewrite these equations more detailed in the following
way:

• Dual Equation: For given q ∈ Q0 and u = S(q) ∈ X, find (z, z̃) ∈ X × H

such that

∫ T

0
{−(ϕ, ∂tz)H + a′u(q, u)(ϕ, z)} dt =

∫ T

0
I ′(u)(ϕ) dt, ∀ϕ ∈ X,

z(T) = K ′(u(T)),

z̃ = z(0).

(12)

• Tangent Equation: For q ∈ Q0, u = S(q) ∈ X, and a given direction δq ∈ Q,
find δu ∈ X such that

∫ T

0
{(∂tδu, ϕ)H + a′u(q, u)(δu, ϕ)} dt = −

∫ T

0
a′q(q, u)(δq, ϕ) dt, ∀ϕ ∈ X,

δu(0) = u′0(q)(δq).
(13)

• Dual for Hessian Equation: For given q ∈ Q0, u = S(q) ∈ X, (z, z̃) ∈ X×H
the corresponding solution of the dual equation (12), and δu ∈ X the solution
of the tangent equation (13) for the given direction δq, find (δz, δz̃) ∈ X×H
such that

∫ T

0
{−(ϕ, ∂tδz)H + a′u(q, u)(ϕ, δz)} dt =

∫ T

0
I ′′(u)(δu, ϕ) dt

−

∫ T

0
{a′′uu(q, u)(δu, ϕ, z) + a′′qu(q, u)(δq, ϕ, z)} dt, ∀ϕ ∈ X,

δz(T) = K ′′(u(T))(δu(T)),

δz̃ = δz(0).

(14)

To get the representation (13) of the tangent equation from (10), we only
need to calculate the derivatives of the Lagrangian (8). The derivation of the
representations (12) and (14) for the dual and the dual for Hessian equation
requires more care. Here, we integrate by parts and separate the arising bound-
ary terms by appropriate variation of the test functions.

Finite Elements for Parabolic Optimization Problems 7

In virtue of the dual equation defined above, we can now state an expression
for the first derivatives of the reduced functional:

Theorem 2.1 Let for given q ∈ Q0:

(i) u = S(q) ∈ X be a solution of the state equation (3).
(ii) (z, z̃) ∈ X ×H fulfill the dual equation (12).

Then there holds

j′(q)(τq) = L′
q(q, u, z, z̃)(τq), ∀τq ∈ Q,

which we may expand as

j′(q)(τq) = α(q − q̄, τq)Q −

∫ T

0
a′q(q, u)(τq, z) dt+ (u′0(q)(τq), z̃)H , ∀τq ∈ Q.

(15)

Proof Since condition (i) ensures that u is the solution of the state equa-
tion (3), and due to both, the definition (6) of the solution operator S and the
definition (8) of the Lagrangian, we obtain:

j(q) = L(q, u, z, z̃). (16)

By taking (total) derivative of (16) with respect to q in direction τq, we get

j′(q)(τq) = L′
q(q, u, z, z̃)(τq) + L′

u(q, u, z, z̃)(τu)

+ L′
z(q, u, z, z̃)(τz) + L′

z̃(q, u, z, z̃)(τ z̃),

where τu = S′(q)(τq), and τz ∈ X as well as τ z̃ ∈ H are the derivatives of z
or respectively z̃ with respect to q in direction τq. Noting the equivalence of
condition (i) with

L′
z(q, u, z, z̃)(ϕ) + L′

z̃(q, u, z, z̃)(ψ) = 0, ∀(ϕ,ψ) ∈ X ×H,

and calculating the derivative of the Lagrangian (8) completes the proof. �

To use Newton’s method for solving the considered optimization problems,
we have to compute the second derivatives of the reduced functional. The
following theorem presents two alternatives for doing that. These two versions
lead to two different optimization loops, which are presented in the sequel.

Theorem 2.2 Let for given q ∈ Q0 the conditions of Theorem 2.1 be fulfilled.

(a) Moreover, let for given δq ∈ Q:

8 Roland Becker, Dominik Meidner, and Boris Vexler

(i) δu ∈ X fulfill the tangent equation (13).
(ii) (δz, δz̃) ∈ X ×H fulfill the dual for Hessian equation (14).
Then there holds

j′′(q)(δq, τq) = L′′
qq(q, u, z, z̃)(δq, τq) + L′′

uq(q, u, z, z̃)(δu, τq)

+ L′′
zq(q, u, z, z̃)(δz, τq) + L′′

z̃q(q, u, z, z̃)(δz̃, τq), ∀τq ∈ Q,

which we may equivalently express as

j′′(q)(δq, τq) = α(δq, τq)Q

−

∫ T

0
{a′′qq(q, u)(δq, τq, z) + a′′uq(q, u)(δu, τq, z) + a′q(q, u)(τq, δz)} dt

+ (u′0(q)(τq), δz̃)H + (u′′0(q)(δq, τq), z̃)H , ∀τq ∈ Q. (17)

(b) Moreover, let for given δq, τq ∈ Q:
(i) δu ∈ X fulfill the tangent equation (13) for the given direction δq.
(ii) τu ∈ X fulfill the tangent equation (13) for the given direction τq.
Then there holds

j′′(q)(δq, τq) = L′′
qq(q, u, z, z̃)(δq, τq) + L′′

uq(q, u, z, z̃)(δu, τq)

+ L′′
qu(q, u, z, z̃)(δq, τu) + L′′

uu(q, u, z, z̃)(δu, τu),

which we may equivalently express as

j′′(q)(δq, τq) = α(δq, τq)Q +

∫ T

0
I ′′uu(u)(δu, τu) dt

−

∫ T

0
{a′′qq(q, u)(δq, τq, z) + a′′uq(q, u)(δu, τq, z) + a′′qu(q, u)(δq, τu, z)

+ a′′uu(q, u)(δu, τu, z)} dt +K ′′
uu(u)(δu, τu). (18)

Proof Due to condition (i) of Theorem 2.1, we obtain as before

j′(q)(δq) = L′
q(q, u, z, z̃)(δq) + L′

u(q, u, z, z̃)(δu)

+ L′
z(q, u, z, z̃)(δz) + L′

z̃(q, u, z, z̃)(δz̃),

Finite Elements for Parabolic Optimization Problems 9

and taking (total) derivatives with respect to q in direction τq yields

j′′(q)(δq, τq) =

L′
qq()(δq, τq) + L′

qu()(δq, τu) + L′
qz()(δq, τz) + L′

qz̃()(δq, τ z̃)

+ L′
uq()(δu, τq) + L′

uu()(δu, τu) + L′
uz()(δu, τz) + L′

uz̃()(δu, τ z̃)

+ L′
zq()(δz, τq) + L′

zu()(δz, τu)

+ L′
z̃q()(δz̃, τq) + L′

z̃u()(δz̃, τu)

+ L′
u()(δ2u) + L′

z()(δ
2z) + L′

z̃()(δ
2z̃).

(For abbreviation we have omitted the content of the first parenthesis of the
Lagrangian.) In addition to the notations in the proof of Theorem 2.1, we have
defined δ2u = S′′(q)(δq, τq), and δ2z ∈ X as well as δ2z̃ ∈ H as the second
derivatives of z or respectively z̃ in the directions δq and τq.

We complete the proof applying the stated conditions to this expression. �

In the sequel, we present two variants of the Newton based optimization loop
on the continuous level. The difference between these variants consists in the
way of computing the update. Newton-type methods are used for solving op-
timization problem governed by time-dependent partial differential equations,
see, e.g., Hinze and Kunisch [15] and Tröltzsch [20].

From here on, we consider finite dimensional control space Q with a basis:

{ τqi | i = 1, . . . ,dimQ } . (19)

Both, Algorithm 2.1 and Algorithm 2.3, describe an usual Newton-type
method for the unconstrained optimization problem (7), which requires the
solution of the following linear system in each iteration:

∇2j(q)δq = −∇j(q), (20)

where the gradient ∇j(q) and the Hessian ∇2j(q) are defined as usual by the
identifications:

(∇j(q), τq)Q = j′(q)(τq), ∀τq ∈ Q,

(τq,∇2j(q)δq)Q = j′′(q)(δq, τq), ∀δq, τq ∈ Q.

In both algorithms, the required gradient ∇j(q) is computed using represen-
tation (15) from Theorem 2.1. However, the algorithms differ in the way how

10 Roland Becker, Dominik Meidner, and Boris Vexler

they solve the linear system (20) to obtain a correction δq for the current con-
trol q. Algorithm 2.1 treats the computation of this system using the conjugate
gradients method. It basically necessitates products of the Hessian with given
vectors and does not need the entire Hessian.

Algorithm 2.1 Optimization Loop without building up the Hessian:

1: Choose initial q0 ∈ Q0 and set n = 0.
2: repeat

3: Compute un ∈ X, i.e. solve the state equation (3).
4: Compute (zn, z̃n) ∈ X ×H, i.e. solve the dual equation (12).
5: Build up the gradient ∇j(qn). To compute its i-th component (∇j(qn))i,

evaluate the right hand side of representation (15) for τq = τqi.
6: Solve

∇2j(qn)δq = −∇j(qn)

by use of the method of conjugate gradients.(For the computation of
the required matrix-vector products, apply the procedure described in
Algorithm 2.2.)

7: Set qn+1 = qn + δq.
8: Increment n.
9: until ‖∇j(qn)‖ < TOL

The computation of the required matrix-vector products can be done with
the representation given in Theorem 2.2(a) and is described in Algorithm 2.2.
We note that in order to obtain the product of the Hessian with a given vector,
we have to solve one tangent equation and one dual for Hessian equation. This
has to be done in each step of the method of conjugate gradients.

Algorithm 2.2 Computation of the matrix-vector product ∇2j(qn)δq:

Require: un, zn, and z̃n are already computed for the given qn

1: Compute δun ∈ X, i.e. solve the tangent equation (13).
2: Compute (δzn, δz̃n) ∈ X×H, i.e. solve the dual for Hessian equation (14).
3: Build up the product ∇2j(qn)δq. To compute its i-th component

(∇2j(qn)δq)i, evaluate the right hand side of representation (17) for
τq = τqi.

In contrast to Algorithm 2.1, Algorithm 2.3 builds up the whole Hessian.
Consequently we may use every linear solver to the linear system (20). To
compute the Hessian, we use the representation of the second derivatives of
the reduced functional given in Theorem 2.2(b). Thus, in each Newton step we
have to solve the tangent equation for each basis vector in (19).

Algorithm 2.3 Optimization Loop with building up the Hessian:

Finite Elements for Parabolic Optimization Problems 11

1: Choose initial q0 ∈ Q0 and set n = 0.
2: repeat

3: Compute un ∈ X, i.e. solve the state equation (3).
4: Compute { τun

i | i = 1, . . . ,dimQ } ⊂ X for the chosen basis of Q, i.e.
solve the tangent equation (13) for each of the basis vectors τqi in (19).

5: Compute zn ∈ X, i.e. solve the dual equation (12).
6: Build up the gradient ∇j(qn). To compute its i-th component (∇j(qn))i,

evaluate the right hand side of representation (15) for τq = τqi.
7: Build up the Hessian ∇2j(qn). To compute its ij-th entry (∇2j(qn))ij ,

evaluate the right hand side of representation (18) for δq = τqj τq = τqi,
δu = τuj , and τu = τui.

8: Compute δq as the solution of

∇2j(qn)δq = −∇j(qn)

by use of an arbitrary linear solver.
9: Set qn+1 = qn + δq.

10: Increment n.
11: until ‖∇j(qn)‖ < TOL

We now compare the efficiency of the two presented algorithms. For one
step of Newton’s method, Algorithm 2.1 requires the solution of two linear
problems (tangent equation and dual for Hessian equation) for each step of the
CG-iteration, whereas for Algorithm 2.3 it is necessary to solve dimQ tangent
equations. Thus, if we have to perform nCG steps of the method of conjugate
gradients per Newton step, we should favor Algorithm 2.3, if

dimQ

2
≤ nCG. (21)

In Section 4, we will discuss a comparison of these two algorithms in the
context of windowing.

3 Discretization

In this section, we discuss the discretization of the optimization problem (5).
To this end, we use finite element method in time and space to discretize the
state equation. This allows us to give a natural computable representation
of the discrete gradient and Hessian. The use of exact discrete derivatives is
important for the convergence of the optimization algorithms.

We discuss the corresponding (discrete) formulation of the auxiliary prob-
lems (dual, tangent and dual for Hessian) introduced in Section 2. The first

12 Roland Becker, Dominik Meidner, and Boris Vexler

subsection is devoted to semi-discretization in time by continuous Galerkin
(cG) and discontinuous Galerkin (dG) methods. Subsection 3.2 deals with the
space discretization of the semi-discrete problems arising from the time dis-
cretization. We also present the form of the required auxiliary equations for
one concrete realization of the cG and the dG discretization respectively.

3.1 Time Discretization

To define a semi-discretization in time, let us partition the time interval Ī =
[0, T] as

Ī = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM

with subintervals Im = (tm−1, tm] of size km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T.

We define the parameter k as a piecewise constant function by setting k
∣∣
Im

=
km for m = 1, . . . ,M .

3.1.1 Discontinuous Galerkin (dG) Methods. We introduce for r ∈ N0 the
discontinuous trial and test space

Xr
k =

{
vk ∈ L2(I, V)

∣∣∣ vk

∣∣
Im

∈ Pr(Im, V), m = 1, . . . ,M, vk(0) ∈ H
}
.

(22)
Here, we denote Pr(Im, V) the space of polynomial of degree r defined on Im
with values in V . Additionally, we will use the following notations for functions
vk ∈ Xr

k :

v+
k,m = lim

t→0+
vk(tm + t), v−k,m = lim

t→0+
vk(tm − t), [vk]m = v+

k,m − v−k,m.

Finite Elements for Parabolic Optimization Problems 13

The dG discretization of the state equation (3) now reads: Find u ∈ Xr
k such

that

M∑

m=1

∫

Im

{(∂tuk, ϕ)H + a(q, uk)(ϕ)} dt +
M∑

m=1

([uk]m−1, ϕ
+
m−1)H

=

M∑

m=1

∫

Im

(f, ϕ)H dt, ∀ϕ ∈ Xr
k ,

u−k,0 = u0(q).

(23)

For the analysis of the discontinuous finite element time discretization we refer
to Estep and Larsson [10] and Eriksson, Johnson, and Thomée [9].

The corresponding semi-discrete optimization problem is given by:

Minimize J(q, uk) subject to (23), (q, uk) ∈ Q×Xr
k , (24)

with the cost functional J from (4).
Similar to the continuous case, we introduce a semi-discrete solution oper-

ator Sk : Qk,0 → Xr
k such that Sk(q) fulfills for q ∈ Qk,0 the semi-discrete

state equation (23). As in Section 2, we define the semi-discrete reduced cost
functional jk : Qk,0 → R as

jk(q) = J(q, Sk(q)),

and reformulate the optimization problem (24) as unconstrained problem:

Minimize jk(q), q ∈ Qk,0.

To derive a representation of the derivatives of jk, we define the semi-discrete
Lagrangian Lk : Q×Xr

k ×Xr
k ×H → R, similar to the continuous case, as

Lk(q, uk, zk, z̃k) = J(q, uk) +
M∑

m=1

∫

Im

{(f − ∂tuk, zk)H − a(q, uk)(zk)} dt

−
M∑

m=1

([uk]m−1, z
+
k,m−1)H − (u−k,0 − u0(q), z̃k)H .

With these preliminaries, we obtain similar expressions for the three auxiliary
equations in terms of the semi-discrete Lagrangian as stated in the section
before. However, the derivation of the explicite representations for the auxiliary

14 Roland Becker, Dominik Meidner, and Boris Vexler

equations requires some care due to the special form of the Lagrangian Lk for
the dG discretization:

• Dual Equation for dG : For given q ∈ Qk,0 and uk = Sk(q) ∈ Xr
k , find

(zk, z̃k) ∈ Xr
k ×H such that

M∑

m=1

∫

Im

{−(ϕ, ∂tzk)H + a′u(q, uk)(ϕ, zk)} dt −

M−1∑

m=1

(ϕ−
m, [zk]m)H

+ (ϕ−
M , z−k,M)H =

M∑

m=1

∫

Im

I ′(uk)(ϕ) dt +K ′(u−k,M)(ϕ−
M), ∀ϕ ∈ Xr

k ,

z̃k = z+
k,0.

(25)

• Tangent Equation for dG : For q ∈ Qk,0, uk = Sk(q) ∈ Xr
k , and a given

direction δq ∈ Q, find δuk ∈ Xr
k such that

M∑

m=1

∫

Im

{(∂tδuk, ϕ)H + a′u(q, uk)(δuk, ϕ)} dt +

M∑

m=1

([δuk]m−1, ϕ
+
m−1)H

= −

M∑

m=1

∫

Im

a′q(q, uk)(δq, ϕ) dt, ∀ϕ ∈ Xr
k ,

δu−k,0 = u′0(q)(δq).

(26)

• Dual for Hessian Equation for dG : For given q ∈ Qk,0, uk = Sk(q) ∈ Xr
k ,

(zk, z̃k) ∈ Xr
k ×H the corresponding solution of the dual equation (25), and

δuk ∈ Xr
k the solution of the tangent equation (26) for the given direction

δq, find (δzk, δz̃k) ∈ Xr
k ×H such that

M∑

m=1

∫

Im

{−(ϕ, ∂tδzk)H + a′u(q, uk)(ϕ, δzk)} dt −

M−1∑

m=1

(ϕ−
m, [δzk]m)H

+ (ϕ−
M , δz−k,M)H = −

M∑

m=1

∫

Im

{a′′uu(q, uk)(δuk, ϕ, zk)

+ a′′qu(q, uk)(δq, ϕ, zk)} dt +

M∑

m=1

∫

IM

I ′′(uk)(δuk, ϕ) dt

+K ′′(u−k,M)(δu−k,M , ϕ−
M), ∀ϕ ∈ Xr

k ,

δz̃k = δz+
k,0.

(27)

As on the continuous level, the tangent equation can be obtained directly
by calculating the derivatives of the Lagrangian, and for the dual equations,

Finite Elements for Parabolic Optimization Problems 15

we additionally integrate by parts. But, since the test functions are piecewise
polynomials, we can not separate the terms containing ϕ−

M as we did it for the
boundary terms in the continuous formulation before. However, because the
support of ϕ0 is just the point 0, separation of the equation to determine z̃k
or δz̃k is still possible.

Now, the representations from Theorem 2.1 and Theorem 2.2 can be trans-
lated to the semi-discrete level: We have

j′k(q)(τq) = α(q − q̄, τq)Q

−

M∑

m=1

∫

Im

a′q(q, uk)(τq, zk) dt + (u′0(q)(τq), z̃k)H , ∀τq ∈ Q, (28)

and, depending on whether we use version (a) or (b) of Theorem 2.2,

j′′k (q)(δq, τq) = α(δq, τq)Q

−
M∑

m=1

∫

Im

{a′′qq(q, uk)(δq, τq, zk)+a′′uq(q, uk)(δuk, τq, zk)+a′q(q, uk)(τq, δzk)} dt

+ (u′0(q)(τq), δz̃k)H + (u′′0(q)(δq, τq), z̃k)H , ∀τq ∈ Q, (29)

or

j′′k (q)(δq, τq) = α(δq, τq)Q +

M∑

m=1

∫

Im

I ′′uu(uk)(δuk, τuk) dt

−

M∑

m=1

∫

Im

{a′′qq(q, uk)(δq, τq, zk)+a′′uq(q, uK)(δuk, τq, zk)+a′′qu(q, uk)(δq, τuk, zk)

+ a′′uu(q, uk)(δuk, τuk, zk)} dt +K ′′
uu(uk)(δuk, τuk). (30)

3.1.2 Continuous Galerkin (cG) Methods. In this subsection, we discuss
the time discretization by Galerkin methods with continuous trial functions
and discontinuous test functions, the so called cG methods. For the test space,
we use the space Xr

k defined in (22), and additionally, we introduce a trial
space given by:

Y s
k =

{
vk ∈ C(Ī , V)

∣∣∣ vk

∣∣
Im

∈ Ps(Im, V), m = 1, . . . ,M
}
.

To simplify the notation, we will use in this subsection the same symbols for
the Lagrangian and the several solutions as in the subsection above for the dG

16 Roland Becker, Dominik Meidner, and Boris Vexler

discretization.
In virtue of these two spaces, we state the semi-discrete state equation in

the cG context: Find uk ∈ Y s
k , such that

∫ T

0
{(∂tuk, ϕ)H + a(q, uk)(ϕ)} dt =

∫ T

0
(f, ϕ)H dt, ∀ϕ ∈ Xr

k

uk(0) = u0(q).

(31)

Similarly to the previous subsection, we define the semi-discrete optimization
problem

Minimize J(q, uk) subject to (31), (q, uk) ∈ Q× Y s
k , (32)

and the Lagrangian Lk : Q× Y s
k ×Xr

k ×H → R as

Lk(q, uk, zk, z̃k) = J(q, uk)

+

∫ T

0
{(f − ∂tuk, zk)H − a(q, uk)(zk)} dt − (uk(0) − u0(q), z̃k)H .

Now, we can recall the process described in the previous subsection for the
dG discretization to obtain the solution operator Sk : Qk,0 → Y s

k , the reduced
functional jk, and the unconstrained optimization problem.

For the cG discretization, the three auxiliary equations read as follows:

• Dual Equation for cG : For given q ∈ Qk,0 and uk = Sk(q) ∈ Y s
k , find

(zk, z̃k) ∈ Xr
k ×H such that

M∑

m=1

∫

Im

{−(ϕ, ∂tzk)H + a′u(q, uk)(ϕ, zk)} dt −
M−1∑

m=1

(ϕ(tm), [zk]m)H

+ (ϕ(T), z−k,M)H =

M∑

m=1

∫

Im

I ′(uk)(ϕ) dt +K ′(uk(T))(ϕ(T))

+ (ϕ(0), z+
k,0 − z̃k)H , ∀ϕ ∈ Y s

k . (33)

• Tangent Equation for cG : For q ∈ Qk,0, uk = Sk(q) ∈ Y s
k , and a given

Finite Elements for Parabolic Optimization Problems 17

direction δq ∈ Q, find δuk ∈ Y s
k such that

∫ T

0
{(∂tδuk, ϕ)H + a′u(q, uk)(δuk, ϕ)} dt =

−

∫ T

0
a′q(q, uk)(δq, ϕ) dt, ∀ϕ ∈ Xr

k ,

δuk(0) = u′0(q)(δq).

(34)

• Dual for Hessian Equation for cG : For given q ∈ Qk,0, uk = Sk(q) ∈ Y s
k ,

(zk, z̃k) ∈ X
r
k ×H the corresponding solution of the dual equation (33), and

δuk ∈ Y s
k the solution of the tangent equation (34) for the given direction

δq, find (δzk, δz̃k) ∈ Xr
k ×H such that

M∑

m=1

∫

Im

{−(ϕ, ∂tδzk)H + a′u(q, uk)(ϕ, δzk)} dt −
M−1∑

m=1

(ϕ(tm), [δzk]m)H

+ (ϕ(T), δz−k,M)H = −

M∑

m=1

∫

Im

{a′′uu(q, uk)(δuk , ϕ, zk)

+ a′′qu(q, uk)(δq, ϕ, zk)} dt +
M∑

m=1

∫

IM

I ′′(uk)(δuk, ϕ) dt

+K ′′(uk)(δuk(T), ϕ(T)) + (ϕ(0), z+
k,0 − z̃k)H , ∀ϕ ∈ Y s

k . (35)

The derivation of the tangent equation (34) is straightforward and similar to
the continuous case. However, the dual equation (33) and the dual for Hessian
equation (35) contain jump terms such as [zk]m or [δzk]m due to the interval-
wise integration by parts. As for the case of dG semi-discretization described
in the previous subsection, the initial conditions can not be separated as in the
continuous case, cf. (12) and (14). In contrast to the dG semi-discretization,
we also can not separate the conditions to determine z̃k or δz̃k here, since for
the cG methods the test functions of the dual equations are continuous, see
the discussion for a concrete realization of the cG method in the next section.

Again, Theorem 2.1 and Theorem 2.2 are translated to the semi-discrete level
by replacing the equations (12), (13) and (14) by the semi-discrete equations
(33), (34) and (35). The representations of the derivatives of jk for the cG
discretization have then the same form as in the dG case. Therefore, one should
use formulas (28), (29) and (30), where uk, δuk, zk, δzk, z̃k and δz̃k are now
determined by (31), (33), (34), and (35).

18 Roland Becker, Dominik Meidner, and Boris Vexler

3.2 Space-time Discretization

In this subsection, we first describe the finite element discretization in space.
To this end, we consider two or three dimensional shape-regular meshes, see,
e.g., Ciarlet [7]. A mesh consists of cells K, which constitute a non-overlapping
cover of the computational domain Ω ⊂ R

d, d ∈ {2, 3}. The corresponding
mesh is denoted by Th = {K}, where we define the parameter h as a cellwise
constant function by setting h

∣∣
K

= hK with the diameter hK of the cell K.
On the mesh Th we construct a finite element space Vh ⊂ V in standard way:

Vh =
{
v ∈ V

∣∣∣ v
∣∣
K

∈ Q̃l(K) for K ∈ Th

}
.

Here, Q̃l(K) consists of shape functions obtained via (bi-)linear transforma-

tions of functions in Ql(K̂) defined on the reference cell K̂ = (0, 1)2.
Now, the time-discretized schemes developed in the two previous subsections

can be transfered to the full discretized level. For doing this, we use the spaces

Xr
hk =

{
vhk ∈ L2(I, Vh)

∣∣∣ vhk

∣∣
Im

∈ Pr(Im, Vh), m = 1, . . . ,M, vhk(0) ∈ Vh

}

and

Y s
hk =

{
vhk ∈ C(Ī , Vh)

∣∣∣ vhk

∣∣
Im

∈ Ps(Im, Vh), m = 1, . . . ,M
}

instead of Xr
k and Y s

k .

Remark 3.1 Often, by solving problems with complex dynamical behavior, it
is desirable to use time-dependent meshes Thm

. Then, hm describes the mesh
used in time interval Im and we can use the same definition of Xr

hmk as be-
fore, because of the discontinuity in time. Consequently, dG discretization is
directly applicable to time-dependent space discretizations. The definition of
Y s

hmk requires more care due to the request for continuity in time. An approach
overcoming this difficulty can be found in Becker [1].

In the sequel, we present one concrete time-stepping scheme for the dG and
the cG discretization combined with the finite element space discretization.
These schemes correspond to the implicit Euler scheme and the Crank-Nicolson
scheme, respectively.

To obtain the standard implicit Euler scheme as a special case of dG dis-
cretization, we choose r = 0 and approximate the integrals arising by the box
rule. Furthermore, we define Um = uhk

∣∣
Im

, ∆Um = δuhk

∣∣
Im

, Zm = zhk

∣∣
Im

, and

∆Zm = zhk

∣∣
Im

for i = 1, . . . ,M , and U0 = u−hk,0, ∆U0 = δu−hk,0, Z0 = z̃hk, and

Finite Elements for Parabolic Optimization Problems 19

∆Z0 = δz̃hk. With this, we obtain the following schemes for the dG-discretized
state and auxiliary equations, which should be fulfilled for all ϕ ∈ Vh:

• State Equation for dG :
◦ m = 0:

(U0, ϕ)H = (u0(q), ϕ)H

◦ m = 1, . . . ,M :

(Um, ϕ)H + kma(q, Um)(ϕ) = (Um−1, ϕ)H + km(f(tm), ϕ)H

• Dual Equation for dG :
◦ m = M :

(ϕ,ZM)H + kMa′u(q, UM)(ϕ,ZM) = K ′(UM)(ϕ) + kMI
′(UM)(ϕ)

◦ m = M − 1, . . . , 1:

(ϕ,Zm)H + kma
′
u(q, Um)(ϕ,Zm) = (ϕ,Zm+1)H + kmI

′(Um)(ϕ)

◦ m = 0:

(ϕ,Z0)H = (ϕ,Z1)H

• Tangent Equation for dG :
◦ m = 0:

(∆U0, ϕ)H = (u′0(q)(δq), ϕ)H

◦ m = 1, . . . ,M :

(∆Um, ϕ)H +kma
′
u(q, Um)(∆Um, ϕ) = (∆Um−1, ϕ)H −kma

′
q(q, Um)(δq, ϕ)

• Dual for Hessian Equation for dG :
◦ m = M :

(ϕ,∆ZM)H + kMa′u(q, UM)(ϕ,∆ZM) =

K ′′(UM)(∆UM , ϕ) + kM I ′′(UM)(∆UM , ϕ)

− kM

{
a′′uu(q, UM)(∆UM , ϕ, ZM) + a′′qu(q, UM)(δq, ϕ, ZM)

}

20 Roland Becker, Dominik Meidner, and Boris Vexler

◦ m = M − 1, . . . , 1:

(ϕ,∆Zm)H + kma
′
u(q, Um)(ϕ,∆Zm) =

(ϕ,∆Zm+1)H + kmI
′′(Um)(∆Um, ϕ)

− km

{
a′′uu(q, Um)(∆Um, ϕ, Zm) + a′′qu(q, Um)(δq, ϕ, Zm)

}

◦ m = 0:

(ϕ,∆Z0)H = (ϕ,∆Z1)H

Remark 3.2 The implicit Euler scheme is known to be a first order strongly
A-stable method. The resulting schemes for the auxiliary equations have ba-
sically the same structure and lead consequently to first order approximation,
too. However, the precise a priori error analysis for the optimization problem
requires more care and depends on the given structure of the problem under
consideration.

The Crank-Nicolson scheme can be obtained in the context of cG discretiza-
tion by choosing r = 0, s = 1 and approximating the integrals arising by the
trapezoidal rule. Using the representation of the Crank-Nicolson scheme as a
cG-scheme, allows us directly to give a concrete form of the auxiliary equations
leading to the exact computation of the discrete gradient and Hessian.

We set Um = uhk(tm), ∆Um = δuhk(tm), Zm = zhk

∣∣
Im

, and ∆Zm = zhk

∣∣
Im

for i = 1, . . . ,M , and U0 = uhk(0), ∆U0 = δuhk(0), Z0 = z̃hk, and ∆Z0 = δz̃hk.
With this, we obtain the following schemes for the cG-discretized state and
auxiliary equations, which should be fulfilled for all ϕ ∈ Vh:

• State Equation for cG :
◦ m = 0:

(U0, ϕ)H = (u0(q), ϕ)H

◦ m = 1, . . . ,M :

(Um, ϕ)H +
km

2
a(q, Um)(ϕ) = (Um−1, ϕ)H

−
km

2
a(q, Um−1)(ϕ) +

km

2

{
(f(tm−1), ϕ)H + (f(tm), ϕ)H

}

• Dual Equation for cG :

Finite Elements for Parabolic Optimization Problems 21

◦ m = M :

(ϕ,ZM)H +
kM

2
a′u(q, UM)(ϕ,ZM) = K ′(UM)(ϕ) +

kM

2
I ′(UM)(ϕ)

◦ m = M − 1, . . . , 1:

(ϕ,Zm)H +
km

2
a′u(q, Um)(ϕ,Zm) = (ϕ,Zm+1)H

−
km+1

2
a′u(q, Um)(ϕ,Zm+1) +

km + km+1

2
I ′(Um)(ϕ)

◦ m = 0:

(ϕ,Z0)H = (ϕ,Z1)H −
k1

2
a′u(q, U0)(ϕ,Z1) +

k1

2
I ′(U0)(ϕ)

• Tangent Equation for cG :
◦ m = 0:

(∆U0, ϕ)H = (u′0(q)(δq), ϕ)H

◦ m = 1, . . . ,M :

(∆Um, ϕ)H +
km

2
a′u(q, Um)(∆Um, ϕ) =

(∆Um−1, ϕ)H −
km

2
a′u(q, Um−1)(∆Um−1, ϕ)

−
km

2

{
a′q(q, Um−1)(δq, ϕ) + a′q(q, Um)(δq, ϕ)

}

• Dual for Hessian Equation for cG :
◦ m = M :

(ϕ,∆ZM)H +
kM

2
a′u(q, UM)(ϕ,∆ZM) =

K ′′(UM)(∆UM , ϕ) +
kM

2
I ′′(UM)(∆UM , ϕ)

−
kM

2

{
a′′uu(q, UM)(∆UM , ϕ, ZM) + a′′qu(q, UM)(δq, ϕ, ZM)

}

22 Roland Becker, Dominik Meidner, and Boris Vexler

◦ m = M − 1, . . . , 1:

(ϕ,∆Zm)H +
km

2
a′u(q, Um)(ϕ,∆Zm) = (ϕ,∆Zm+1)H

−
km+1

2
a′u(q, Um)(ϕ,∆Zm+1) +

km + km+1

2
I ′′(Um)(∆Um, ϕ)

−
km

2

{
a′′uu(q, Um)(∆Um, ϕ, Zm) + a′′qu(q, Um)(δq, ϕ, Zm)

}

−
km+1

2

{
a′′uu(q, Um)(∆Um, ϕ, Zm+1) + a′′qu(q, Um)(δq, ϕ, Zm+1)

}

◦ m = 0:

(ϕ,∆Z0)H = (ϕ,∆Z1)H −
k1

2
a′u(q, U0)(ϕ,Z1) +

k1

2
I ′′(U0)(∆U0, ϕ)

−
k1

2

{
a′′uu(q, U0)(∆U0, ϕ, Z1) + a′′qu(q, U0)(δq, ϕ, Z1)

}

The resulting Crank-Nicolson scheme is known to be of second order. How-
ever, in contrast to the implicit Euler scheme, this method does not possess
the strong A-stability property. The structure of the time-steps for the dual
and the dual for Hessian equations is quite unusual. In the first and in the last
steps, “half-steps” occur, and in the other steps, terms containing the sizes of
two neighboring time intervals km and km+1 appear. This complicates the a
priori error analysis for the dual scheme, which can be found in Becker [1].

4 Windowing

When computing the gradient of the reduced cost functional as described in
the algorithms in Section 2, we need to have access to the solution of the state
equation at all points in space and time while computing the dual equation.
Similarly, we need the solution of the state, tangent, and dual equations to
solve the dual for Hessian equation when computing matrix-vector products
with the Hessian of the reduced functional. For large problems, especially in
three dimensions, storing all the necessary data might be impossible. However,
there are techniques to reduce the storage requirements drastically, known as
checkpointing techniques.

In this section, we present an approach, which relies on ideas from Berggren,
Glowinski, and Lions [5]. In the sequel, we extend these ideas to obtain two
concrete algorithms and present an extension to apply the algorithms to the

Finite Elements for Parabolic Optimization Problems 23

whole optimization loops showed in Section 2. Due to its structure, we call this
approach Multi-Level Windowing.

4.1 The Abstract Algorithm

First, we consider the following abstract setting: Let two time stepping schemes
be given:

xm−1 7→ xm, for m = 1, . . . ,M,

(ym+1, xm) 7→ ym, for m = M − 1, . . . , 0,

together with a given initial value x0 and the mapping xM 7→ yM . All time
stepping schemes given for dG and cG discretization in the previous section
are concrete realizations of these abstract schemes.

Additionally, we assume that the solutions xm as well as ym require for all
m = 0, . . . ,M the same amount of storage. However, if this is not the case,
the windowing technique presented in the sequel can be applied to clusters of
time steps similar in size instead of single time steps. Such clustering is, e.g.,
important by using dynamical meshes, since in this case, the amount of storage
for a solution xm depends on the current mesh.

The trivial approach to perform the forward and backwards iterations is to
compute and store the whole forward solution {xm}M

m=0, and use these values
to compute the backwards solution {ym}M

m=0. The required amount of storage
S0 in terms of the size of one forward solution xm to do this is S0 = M + 1.
The number of forward steps W0 necessary to compute the whole backwards
solution is W0 = M .

The aim of the following windowing algorithms is to reduce the needed stor-
age by performing some additional forward steps. To introduce the windowing,
we additionally assume that we can factorize the number of given time steps
M as M = PQ with positive integers P and Q. With this, we can separate the
set of time points {0, . . . ,M} in P slices each containing Q− 1 time steps and
P + 1 sets containing one element as

{0, . . . ,M} = {0} ∪ {1, . . . , Q− 1} ∪ {Q} ∪ · · ·

· · · ∪ {(P − 1)Q} ∪ {(P − 1)Q+ 1, . . . , PQ− 1} ∪ {PQ}.

The algorithm now works as follows: First, we compute the forward solution
xm for m = 1, . . . ,M and store the P + 1 samples {xQl}

P
l=0. Additionally,

we store the Q − 1 values of x in the last slice. Now, we have the necessary
information on x to compute ym for m = M, . . . , (P − 1)Q + 1. Thus, the

24 Roland Becker, Dominik Meidner, and Boris Vexler

values of x in the last slice are not longer needed. We can replace them with
the values of x in the next-last slice, which we can directly compute using
the time stepping scheme since we stored the value x(P−2)Q in the first run.
Thereby, we can compute ym for m = (P − 1)Q, . . . , (P − 2)Q + 1. This can
now be done iteratively till we have computed y in the first slice and finally
obtain the value y0. This so called One-Level Windowing is presented on detail
in Algorithm 4.1.

Algorithm 4.1 OneLevelWindowing(P,Q,M):

Require: M = PQ.
1: Store x0.
2: Take x0 as initial value for x.
3: for m = 1 to (P − 1)Q do

4: Compute xm.
5: if m is a multiple of Q then

6: Store xm.
7: end if

8: end for

9: for n = (P − 1)Q downto 0 step Q do

10: Take xn as initial value for x.
11: for m = n+ 1 to n+Q− 1 do

12: Compute xm.
13: Store xm.
14: end for

15: if n = M −Q then

16: Compute xM .
17: Store xM .
18: end if

19: for m = n+Q downto n+ 1 do

20: Compute ym in virtue of xm.
21: Delete xm from memory.
22: end for

23: if n = 0 then

24: Compute y0.
25: Delete x0 from memory.
26: end if

27: end for

During the Execution of Algorithm 4.1, the needed amount of memory is not
exceeding (P + 1) + (Q − 1) forward solutions. Each of the ym’s is computed
exactly once, so we need M solving steps to obtain the whole solution y. To
compute the necessary values of xm, we have to solve M + (P − 1)(Q − 1)
forward steps, since we have to compute each of the values of x in the first

Finite Elements for Parabolic Optimization Problems 25

P − 1 slices. We summarize:

S1(P,Q) = P +Q, W1(P,Q) = 2M − P −Q+ 1,

where again S1 denotes the required amount of memory in terms of the size of
one forward solution and W1 the number of time steps to provide the forward
solution x needed to compute the whole backwards solution y.

Here, the subscript 1 suggests that we can extend this approach to factor-
izations of M in L + 1 factors for L ∈ N. This extension can be obtained
via the following inductive argumentation: Assuming M = M0M1 · · ·ML with
positive integers Ml, we can apply the algorithm described above to the factor-
ization M = PQ with P = M0 and Q = M1M2 · · ·ML, and then recursively
to each of the P slices. This so called Multi-Level Windowing is described
in Algorithm 4.2. It has to be started with the call MultiLevelWindow-

ing(0, 0, L,M0,M1, . . . ,ML,M). Of course, there holds by construction

OneLevelWindowing(P,Q,M)

= MultiLevelWindowing(0, 0, 1, P,Q,M).

Algorithm 4.2 MultiLevelWindowing(s, l, L,M0 ,M1, . . . ,ML,M):

Require: M = M0M1 · · ·ML.
1: Set P = Ml and Q = Ml+1 · · ·ML.
2: if l = 0 and s = 0 then

3: Store x0.
4: end if

5: Take xs as initial value for x.
6: for m = 1 to (P − 1)Q do

7: Compute xs+m.
8: if m is a multiple of Q then

9: Store xs+m.
10: end if

11: end for

12: for n = (P − 1)Q downto 0 step Q do

13: if l + 1 < L then

14: Call MultiLevelWindowing(s + n, l + 1, L,M0,M1, . . . ,ML,M).
15: else

16: Take xs+n as initial value for x.
17: for m = n+ 1 to n+Q− 1 do

18: Compute xs+m.
19: Store xs+m.
20: end for

26 Roland Becker, Dominik Meidner, and Boris Vexler

21: if s+ n = M −Q then

22: Compute xM .
23: Store xM .
24: end if

25: for m = n+Q downto n+ 1 do

26: Compute ys+m in virtue of xs+m.
27: Delete xs+m from memory.
28: end for

29: if s+ n = 0 then

30: Compute y0.
31: Delete x0 from memory.
32: end if

33: end if

34: end for

Remark 4.1 The presented approach can be extended to cases where a suitable
factorization M = M0M1 · · ·ML does not exist. We then consider a representa-
tion of M as M = (M0−1)Q0 +R0 with positive integers M0, Q0 and R0 with
Q0 ≤ R0 < 2Q0 and apply this idea recursively to the generated subintervals of
length Q0 or R0. This can easily be done, since by construction, the reminder
interval of length R0 has at least the same length as the regular subintervals.

In the following theorem, we calculate the necessary amount of storage and
the number of needed forward steps to perform the Multi-Level Windowing
described in Algorithm 4.2 for a given factorization M = M0M1 · · ·ML of
length L+ 1:

Theorem 4.1 For given L ∈ N0 and a factorization of the number of time
steps M as M = M0M1 · · ·ML with Ml ∈ N, the required amount of memory
in the Multi-Level Windowing to perform all backwards solution steps is

SL(M0,M1, . . . ,ML) =
L∑

l=0

(Ml − 1) + 2.

To achieve this storage reduction, the number of performed forward steps en-
hances to

WL(M0,M1, . . . ,ML) = (L+ 1)M −

L∑

l=0

M

Ml

+ 1.

Proof We prove the theorem by mathematical induction:

• L = 0: Here we use the trivial approach where the entire forward solution

Finite Elements for Parabolic Optimization Problems 27

x is saved. As considered in the beginning of this subsection, we then have
S0(M) = M + 1 and W0(M) = M .

• L − 1 L: We consider the factorization M = M0M1 · · ·ML−2(ML−1ML)
of length L additionally to the given one of length L+ 1. Then we obtain in
the same way as for the One-Level Windowing, where we reduce the storage
mainly from PQ− 1 to (P − 1) + (Q− 1),

SL(M0,M1, . . . ,ML−1,ML)

= SL−1(M0,M1, . . . ,ML−1ML)−(ML−1ML−1)+(ML−1−1)+(ML−1).

In virtue of the induction hypothesis for SL−1, it follows

SL(M0,M1, . . . ,ML−1,ML) =
L−2∑

l=0

(Ml − 1) + (ML−1 − 1) + (ML − 1) + 2

=

L∑

l=0

(Ml − 1) + 2.

Now, we prove the assertion for WL. For this, we justify the equality

WL(M0,M1, . . . ,ML−1,ML)

= WL−1(M0,M1, . . . ,ML−1ML) +
M

ML−1ML

(ML−1 − 1)(ML − 1).

This follows directly from the fact that we divide each of the M
ML−1ML

slices

{s + 1, . . . , s+ML−1ML − 1} of length ML−1ML − 1 as

{s+ 1, . . . , s+ML−1ML − 1} = {s+ 1, . . . , s+ML − 1} ∪ {s+ML} ∪ · · ·

· · ·∪{s+(ML−1−1)ML}∪{s+(ML−1−1)ML +1, . . . , s+ML−1ML−1}.

Since we just need to compute the forward solution in the first ML−1 − 1
subslices when we change from the factorization of length L to the one of
length L+ 1, the additional work is

M

ML−1ML

(ML−1 − 1)(ML − 1)

28 Roland Becker, Dominik Meidner, and Boris Vexler

as stated. Then we obtain in virtue of the induction hypothesis for WL−1

WL(M0,M1, . . . ,ML−1,ML) = LM +M −

L−2∑

l=0

M

Ml

−
M

ML−1
−

M

ML

+ 1

= (L+ 1)M −
L∑

l=0

M

Ml

+ 1.

�

If M
1

L+1 ∈ N, the minimum of S̃L of all possible factorizations of length L+1
is

S̃L = SL(M
1

L+1 , . . . ,M
1

L+1) = (L+ 1)(M
1

L+1 − 1) + 2.

The numbers of forward steps for the memory-optimal factorization then re-
sults in

W̃L = WL(M
1

L+1 , . . . ,M
1

L+1) = (L+ 1)(M −M
L

L+1) + 1.

If we choose L ≈ log2M , then we obtain for the optimal factorization from
above logarithmic growth of the necessary amount of storage:

S̃L = O(log2M), W̃L = O(M log2M).

Remark 4.2 If we consider time stepping schemes which depend not only on
the immediate but on p predecessors, i.e.

(xm−p, xm−p+1, . . . , xm−1) 7→ xm, for m = p, . . . ,M

with given initial values x0, x1,. . . , xp−1, the presented windowing approach
can not be used directly. One possibility to extend this concept to such cases
is to save p values of x instead of one at each checkpoint. Then, during the
backwards run, we will always have access to the necessary information on x
to compute y.

4.2 Application to Optimization

In this subsection, we consider the Multi-Level Windowing, described in the
previous subsection, in the context of nonstationary optimization. We give
a detailed estimate of the number of steps and the amount of memory re-
quired to perform one Newton step for a given number of levels L ∈ N. For

Finite Elements for Parabolic Optimization Problems 29

brevity, we will just write WL and SL instead of WL(M0,M1, . . . ,ML) and
SL(M0,M1, . . . ,ML).

4.2.1 Optimization Loop without Building up the Hessian. First, we treat
the variant of the optimization algorithms, which does not build up the entire
Hessian of the reduced functional and is given in Algorithm 2.1. As stated in
this algorithm, it is necessary to compute the value of the reduced functional
and the gradient one time per Newton step. To apply the derived windowing
techniques, we set x = u, y = z and note, that Algorithm 4.2 can easily be
extended to compute the necessary terms for evaluating the functional and the
gradient during the forward or backwards computation, respectively. Thus,
the total number of times steps needed to do this, is W grad = WL +M . The
required amount of memory is Sgrad = SL.

Additionally to the gradient, we need to compute one matrix-vector product
of the Hessian times a given vector in each of the nCG steps of the conjugate
gradient method. This is done as described in Algorithm 2.2. For avoiding the
storage of u or z in all time steps, we have to compute u, δu, z, and δz again
in every CG step. Consequently, we set here x = (u, δu) and y = (z, δz). We
obtain W hess = 2(WL +M) and Shess = 2SL.

In total we achieve

W (1) = W grad + nCGW
hess = (1 + 2nCG)(WL +M),

S(1) = max(Sgrad, Shess) = 2SL.

Remark 4.3 The windowing algorithm 4.2 can be modified to reduce the neces-
sary forward steps under acceptance of increasing the needed amount of storage
as follows: We do not to delete u while computing z at the points where u is
saved before starting the computation of z. Additionally, we save z at these
checkpoints. These saved values of u and z can be used to reduce the neces-
sary number of forward steps to provide the values of u and δu for computing
one matrix-vector product with the Hessian. Of course, when saving additional
samples of u and z, the needed amount of storage increases. For one Newton

step we obtain the total work W̃ (1) and storage S̃(1) as

W̃ (1) = W (1) − 2nCG min(SL,M) and S̃(1) = S(1) + 2SL −M0 − 2.

This modified algorithm includes the case of not using windowing for L = 0,
while the original algorithm also for L = 0 deletes u during the computation
of z.

30 Roland Becker, Dominik Meidner, and Boris Vexler

4.2.2 Optimization Loop with Building up the Hessian. For using Algo-
rithm 2.3, it is necessary to compute u, δui (i = 1, . . . ,dimQ), and z. Again,
the evaluation of the reduced functional is done during the first forward com-
putation, and the evaluation of the gradient and the Hessian is done during
the computation of z. So, we set x = (u, δu1, δu2, . . . , δudim Q) and y = z. The
required number of steps and the needed amount of memory are

W (2) = (1 + dimQ)WL +M and S(2) = (1 + dimQ)SL.

Remark 4.4 If we apply globalization techniques as line search to one of the
presented optimization algorithms, we have to compute the solution of the state
equation and the value of the cost functional several times without computing
the gradient or the Hessian. The direct approach for doing this, is to compute
the state solution, evaluate it and delete it afterwards. This might be not
optimal, since for the following computation of the gradient (and the Hessian)
via windowing, the needful preparations are not done. So, the better way of
doing this is to run Algorithm 4.2 until line 23, and break so after completing
the forward solution. If after that, the value of the gradient is needed, it is
possible to restart directly on line 25 with the computation of the backwards
solutions. If we consider the version presented in the actual subsection with
building up the Hessian, we have to compute the tangent solutions in an extra
forward run in which we can also use the saved values of the state solution.

4.2.3 Comparison of the Two Variants of the Optimization Algorithm.

For dimQ ≥ 1, we obtain directly S(2) ≥ S(1). The relation between W (1)

and W (2) depends on the factorization of M . A simple calculation leads to the
following condition:

W (2) ≤W (1) ⇐⇒
dimQ

2
≤ nCG

(
1 +

M

WL

)
.

If we choose L such that WL ≈M log2M , we can express the condition above
just in terms of M as

W (2) .W (1) ⇐⇒
dimQ

2
. nCG

(
1 +

1

log2M

)
.

This means, that even thought the required memory for the second algorithm
with building up the Hessian is greater, this algorithm needs only then fewer
steps than the first one, if the necessary numbers of CG steps performed in
each Newton step is greater than half of the dimension of Q times a factor
depending logarithmic on the number of time steps M .

Finite Elements for Parabolic Optimization Problems 31

5 Numerical Results

In this last section, we present some illustrative numerical examples. Through-
out, the spatial discretization is done with piecewise bilinear/trilinear finite
elements on quadrilateral or hexahedral cells in two respectively three dimen-
sions. The resulting nonlinear state equations are solved by Newton’s method,
whereas the linear sub-problems are treated by a multigrid method. For time
discretization, we consider the variants of the cG and dG methods which we
have presented in Section 3. Throughout this section, we only present results
using the variant of the optimization loop building up the entire Hessian, de-
scribed in Algorithm 2.3 since the results of the variant without building up
the Hessian are mainly the same.

All computations are done based on the software packages RoDoBo [4] and
Gascoigne [2]. To depict the computed solutions, the visualization software
VisuSimple [3] was used.

We consider the following two example problems on the space-time domain
Ω × (0, T) with T = 1.

• Example 1 : In the first example we, discuss an optimal control problem with
terminal observation, where the control variable enters the initial condition
of the (nonlinear) state equation. We choose Ω = (0, 1)3 ⊂ R

3 and pose the
state equation as

∂tu− ν∆u+ u2 = 0 in Ω × (0, T),

∂nu = 0 on ∂Ω × (0, T),

u(0, ·) = g0 +

8∑

i=1

giqi on Ω,

(36)

where ν = 0.1, g0 = (1 − 2‖x − x̄0‖)
30 with x̄0 = (0.5, 0.5, 0.5)T and gi =

(1 − 0.5‖x − x̄i‖)
30 with x̄i ∈ {0.2, 0.8}3 for i = 1, . . . , 8 are given.

For an additionally given reference solution

ūT (x) =
3 + x1 + x2 + x3

6
, x = (x1, x2, x3)

T ,

the optimization problem now reads as:

Minimize
1

2

∫

Ω
(u(T, ·) − ūT)2 dx+

α

2
‖q‖Q subject to (36), (q, u) ∈ Q×X,

where Q = R
8 and X is chosen in virtue of (2) with V = H1(Ω) and

32 Roland Becker, Dominik Meidner, and Boris Vexler

H = L2(Ω). The regularization parameter α is set to 10−4.

• Example 2 : In the second example, we choose Ω = (0, 1)2 ⊂ R
2 and consider

a parameter estimation problem with the state equation given by

∂tu− ν∆u+ q1∂1u+ q2∂2u = 2 + sin(10πt) in Ω × (0, T),

u = 0 on ∂Ω × (0, T),

u(0, ·) = 0 on Ω,

(37)

where we again set ν = 0.1.
We assume to be given measurements ūT,1, . . . , ūT,5 ∈ R of the point

values u(T, pi) for five different measurement points pi ∈ Ω. The unknown
parameters (q1, q2) ∈ Q = R

2 are estimated using a least squares approach
resulting in the following optimization problem:

Minimize
1

2

5∑

i=1

(u(T, pi) − ūT,i)
2 subject to (37), (q, u) ∈ Q×X.

The consideration of point measurements does not fulfill the assumption
on the cost functional in (4), since the point evaluation is not bounded
as a functional on H = L2(Ω). Therefore, the point functionals here may
be understood as regularized functionals defined on L2(Ω). For an a priori
error analysis of an elliptic parameter identification problems with pointwise
measurements we refer to Rannacher and Vexler [19].

5.1 Validation of the Compututation of Derivatives

To verify the computation of the gradient ∇jhk and the Hessian ∇2jhk of the
reduced cost functional, we consider the first and second difference quotients

jhk(q + εδq) − jhk(q − εδq)

2ε
= (∇jhk, δq) + e1,

jhk(q + εδq) − 2jhk(q) + jhk(q − εδq)

ε2
= (δq,∇2jhkδq) + e2.

We obtain using standard convergence and stability analysis the concrete form
of the errors e1 and e2 as

e1 ≈ c1ε
2∇3jhk(ξ1) + c2ε

−1, e2 ≈ c3ε
2∇4jhk(ξ2) + c4ε

−2,

where ξ1, ξ2 ∈ (q − εδq, q + εδq) is an intermediate point and the constants ci
do not depend on ε.

Finite Elements for Parabolic Optimization Problems 33

The Tables 1 and 2 show the errors between the values of the derivatives
computed by use of the difference quotients above and by use of the approach
presented in the Sections 2 and 3, for the considered examples. The values of
these errors and the orders of convergence of the reduction of these errors for
ε→ 0 are given in the Tables 1 and 2. Note, that the values of the derivatives
computed via the approach based on the ideas presented in Section 2 do not
depend on ε.

The content of these tables does not considerably depend on the discretiza-
tion parameters h and k, so we have the exact discrete derivatives also on
coarse meshes or when using large time steps.

Table 1. Convergence of the difference quotients for the gradient and the Hessian of the reduced

cost functional for Example 1 with q = (0, . . . , 0)T and δq = (1, . . . , 1)T

Discontinuous Galerkin Continuous Galerkin

Gradient Hessian Gradient Hessian

ε e1 Conv. e2 Conv. e1 Conv. e2 Conv.

1.0e-00 8.56e-01 — 6.72e-01 — 7.96e-01 — 5.97e-01 —
1.0e-01 5.37e-03 2.20 4.32e-03 2.19 5.28e-03 2.17 4.08e-03 2.16
1.0e-02 5.35e-05 2.00 4.27e-05 2.00 5.26e-05 2.00 4.05e-05 2.00
1.0e-03 5.34e-07 2.00 3.28e-05 0.11 5.26e-07 2.00 3.27e-05 0.09
1.0e-04 5.30e-09 2.00 8.49e-05 -0.41 5.41e-09 1.98 8.47e-05 -0.41
1.0e-05 2.91e-10 1.25 9.16e-05 -0.03 3.24e-10 1.22 7.25e-05 0.06

Table 2. Convergence of the difference quotients for the gradient and the Hessian of the reduced

cost functional for Example 2 with q = (6, 6)T and δq = (1, 1)T

Discontinuous Galerkin Continuous Galerkin

Gradient Hessian Gradient Hessian

ε e1 Conv. e2 Conv. e1 Conv. e2 Conv.

1.0e-00 1.44e-01 — 8.09e-02 — 2.80e-01 — 1.33e-01 —
1.0e-01 1.36e-03 2.02 7.76e-04 2.01 2.59e-03 2.03 1.27e-03 2.02
1.0e-02 1.36e-05 2.00 7.75e-06 2.00 2.59e-05 2.00 1.27e-05 2.00
1.0e-03 1.36e-07 1.99 4.32e-07 1.25 2.59e-07 1.99 3.97e-07 1.50
1.0e-04 2.86e-09 1.67 5.01e-05 -2.06 2.83e-09 1.96 5.56e-06 -1.14
1.0e-05 5.94e-08 -1.31 2.18e-02 -2.63 9.95e-08 -1.54 2.00e-02 -3.55

5.2 Optimization

In this subsection, we apply the two optimization algorithms described in Sec-
tion 2 to the two considered optimization problems. For both examples, we
present the results for the two time discretization schemes presented in Sec-
tion 3.

34 Roland Becker, Dominik Meidner, and Boris Vexler

In Table 3 and Table 4, we show the progression of the norm of the gradient
of the reduced functional ‖∇jhk‖2 and the reduction of the cost functional jhk

during the Newton iteration for Example 1 and Example 2, respectively.
The computations for Example 1 were done on a mesh consisting of 4096

hexahedral cells with diameter h = 0.0625. The time interval (0, 1) is split into
100 slices of size k = 0.01.

Table 3. Results of the optimization loop with dG and cG discretization

for Example 1 starting with initial guess q0 = (0, . . . , 0)T

Discontinuous Galerkin Continuous Galerkin

Step nCG ‖∇jhk‖2 jhk nCG ‖∇jhk‖2 jhk

0 — 1.21e-01 2.76e-01 — 1.21e-01 2.76e-01
1 2 4.99e-02 1.34e-01 2 4.98e-02 1.34e-01
2 2 2.00e-02 6.28e-02 2 1.99e-02 6.33e-02
3 3 7.61e-03 2.94e-02 3 7.62e-03 3.00e-02
4 3 2.55e-03 1.64e-02 3 2.57e-03 1.70e-02
5 3 6.03e-04 1.32e-02 3 6.21e-04 1.37e-02
6 3 5.72e-05 1.29e-02 3 6.18e-05 1.34e-02
7 3 6.37e-07 1.29e-02 3 7.62e-07 1.34e-02
8 3 1.75e-10 1.29e-02 3 1.21e-10 1.34e-02

Uncontrolled:

Controlled:

Reference solution ūT :

Figure 1. Solution of example problem 1 for time t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 before and after
optimization

For Example 2, we chose a quadrilateral mesh with mesh size h = 0.03125
consisting of 1024 cells. The size of the time steps was set as k = 0.005 corre-
sponding to 200 time steps. In Table 4, we additionaly show the value of the
estimated parameters during the optimization run. The values of “measure-
ments” are taken from a solution of the state equation on a fine mesh consisting
of 65536 cells with 5000 time steps for the “exact” values of parameters chosen
as qexact = (7, 9)T .

Finite Elements for Parabolic Optimization Problems 35

Table 4. Results of the optimization loop with dG and cG discretization for Example 2

Discontinuous Galerkin Continuous Galerkin

Step nCG ‖∇jhk‖2 jhk q nCG ‖∇jhk‖2 jhk q

0 — 1.54e-02 1.73e-03 (6.00, 6.00)T — 1.25e-02 1.23e-03 (6.00, 6.00)T

1 2 5.37e-04 4.53e-04 (5.97, 7.72)T 2 4.35e-04 3.07e-03 (6.06, 7.43)T

2 2 1.65e-04 7.85e-05 (6.80, 8.52)T 2 1.29e-04 4.75e-05 (6.48, 8.37)T

3 2 3.44e-05 5.56e-06 (7.18, 9.19)T 2 2.48e-05 2.35e-06 (6.87, 8.84)T

4 2 2.54e-06 9.20e-07 (7.35, 9.39)T 2 1.47e-06 9.29e-09 (6.99, 8.98)T

5 2 1.66e-08 8.91e-07 (7.36, 9.41)T 2 6.10e-09 2.04e-10 (6.99, 8.99)T

6 2 7.35e-13 8.91e-07 (7.36, 9.41)T 1 5.89e-11 2.04e-10 (6.99, 8.99)T

We note that due to condition (21), for Example 1 the variant of the opti-
mization algorithm, which only uses matrix-vector products of the Hessian is
the more efficient one, whereas for Example 2 one should use the variant which
builds up the entire Hessian.

5.3 Windowing

This subsection is devoted to the practical verification of the presented Multi-
Level Windowing. For this, we consider Example 1 with dG time discretization
on a grid consisting of 32768 cells performing 500 time steps. Table 5 demon-
strates the reduction of the storage requirement described in Section 4. We can
achieve a storage reduction about the factor 30 for both variants of the opti-
mization loop. Thereby total number of steps only growths about the factor
3.2 for the algorithm with, and 4.0 for the algorithm without building up the
entire Hessian.

Table 5. Reduction of the storage requirement due to Windowing in Example 1 with

dG discretization and 32768 cells in each time step

With Hessian Without Hessian

Factorization Memory in MB Time Steps Memory in MB Time Steps

500 1236 45000 274 35000

5 · 100 259 80640 58 87948
10 · 50 148 84690 32 90783

2 · 2 · 5 · 25 78 120582 17 118503
5 · 10 · 10 59 114174 13 113463
4 · 5 · 5 · 5 41 136512 9 130788

2 · 2 · 5 · 5 · 5 39 146646 9 138663

We remark that although the factorization 2 ·2 ·5 ·25 consists of more factors
than the factorization 5 · 10 · 10, both, the storage requirement and the total
number of time steps are greater for first factorization than for the second
one. The reason for this is the imbalance of the size of the different factors in
2 · 2 · 5 · 25. As showed in Section 4, in the optimal factorization are all factors

36 REFERENCES

the same. So, it is evident, that a factorization as 5 · 10 · 10 is more efficient
than one where the size factors varies very much.

Table 5 also proves the asserted dependence of the condition when to use
which variant of the optimization loop on the considered factorization on M .
For the factorizations 5 · 100 and 10 · 50 the variant with building up the
Hessian needs less forward steps than the other variant without building up
the Hessian. However, for the remaining factorizations the situation is the
opposite way around.

References

[1] Becker, R., 2001. Adaptive Finite Elements for Optimal Control Prob-
lems. Habilitationsschrift, Institut für Angewandte Mathematik, Univer-
sität Heidelberg.

[2] Becker, R., Braack, M., Meidner, D., Richter, T., Schmich, M., and
Vexler, B., 2005. The finite element toolkit Gascoinge. URL
http://www.gascoigne.uni-hd.de.

[3] Becker, R., Dunne, T., and Meidner, D., 2005. VisuSimple: An inter-
active VTK-based visualization and graphics/mpeg-generation program.
URL http://www.visusimple.uni-hd.de.

[4] Becker, R., Meidner, D., and Vexler, B., 2005. RoDoBo: A C++ li-
brary for optimization with stationary and nonstationary PDEs based on
Gascoigne [2]. URL http://www.rodobo.uni-hd.de.

[5] Berggren, M., Glowinski, R., and Lions, J.-L., 1996. A computational
approach to controllability issues for flow-related models. (I): Pointwise
control of the viscous burgers equation. Int. J. Comput. Fluid Dyn., 7(3),
237–253.

[6] Bergounioux, M., Ito, K., and Kunisch, K., 1999. Primal-dual strategy for
constrained optimal control problems. SIAM J. Control Optim., 37(4),
1176–1194.

[7] Ciarlet, P. G., 2002. The Finite Element Method for Elliptic Problems,
volume 40 of Classics Appl. Math. SIAM, Philadelphia.

[8] Dautray, R. and Lions, J.-L., 1992. Mathematical Analysis and Numeri-
cal Methods for Science and Technology: Evolution Problems I, volume 5.
Springer-Verlag, Berlin.

[9] Eriksson, K., Johnson, C., and Thomée, V., 1985. Time discretization
of parabolic problems by the discontinuous Galerkin method. RAIRO
Modelisation Math. Anal. Numer., 19, 611–643.

[10] Estep, D. and Larsson, S., 1993. The discontinuous Galerkin method for
semilinear parabolic problems. RAIRO Modelisation Math. Anal. Numer.,
27(1), 35–54.

REFERENCES 37

[11] Fursikov, A. V., 1999. Optimal Control of Distributed Systems: Theory and
Applications, volume 187 of Transl. Math. Monogr. AMS, Providence.

[12] Griewank, A., 1992. Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation. Optim. Methods Softw.,
1(1), 35–54.

[13] Griewank, A., 2000. Evaluating Derivatives, Principles and Techniques of
Algorithmic Differentiation, volume 19 of Frontiers Appl. Math. SIAM,
Philadelphia.

[14] Griewank, A. and Walther, A., 2000. Revolve: An implementation of
checkpointing for the reverse or adjoint mode of computational differenti-
ation. ACM Trans. Math. Software, 26(1), 19–45.

[15] Hinze, M. and Kunisch, K., 2001. Second order methods for optimal
control of time-dependent fluid flow. SIAM J. Control Optim., 40(3),
925–946.

[16] Kunisch, K. and Rösch, A., 2002. Primal-dual active set strategy for a
general class of constrained optimal control problems. SIAM J. Optim.,
13(2), 321–334.

[17] Lions, J.-L., 1971. Optimal Control of Systems Governed by Partial Differ-
ential Equations, volume 170 of Grundlehren Math. Wiss. Springer-Verlag,
Berlin.

[18] Litvinov, W. G., 2000. Optimization in Elliptic Problems With Applica-
tions to Mechanics of Deformable Bodies and Fluid Mechanics, volume
119 of Oper. Theory Adv. Appl. Birkhäuser Verlag, Basel.

[19] Rannacher, R. and Vexler, B., 2004. A priori error estimates for the finite
element discretization of elliptic parameter identification problems with
pointwise measurements. SIAM J. Control Optim. To appear.

[20] Tröltzsch, F., 1999. On the Lagrange-Newton-SQP method for the optimal
control of semilinear parabolic equations. SIAM J. Control Optim., 38(1),
294–312.

