Edinburgh Research Explorer

A family of linear programming algorithms based on an algorithm
by von Neumann

Citation for published version:

Goncalves, JPM, Storer, RH & Gondzio, J 2009, 'A family of linear programming algorithms based on an
algorithm by von Neumann', Optimization Methods & Software, vol. 24, no. 3, pp. 461-478.
https://doi.org/10.1080/10556780902797236

Digital Object Identifier (DOI):
10.1080/10556780902797236

Link:
Link to publication record in Edinburgh Research Explorer

Document Version: _
Early version, also known as pre-print

Published In:
Optimization Methods & Software

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 26. Apr. 2024

https://doi.org/10.1080/10556780902797236
https://doi.org/10.1080/10556780902797236
https://www.research.ed.ac.uk/en/publications/0482eaaa-1be3-4e8c-a495-73587c3bb501

Goncalves, JPM, Storer, RH & Gondzio, J 2009, 'A family of linear programming algorithms based
on an algorithm by von Neumann' Optimization methods & software, vol 24, no. 3, pp. 461-478.

A Family of Linear Programming Algorithms Based on
an Algorithm by von Neumann

Joao P. M. Gongalves

Mathematical Sciences Department, IBM T. J. Watson Research Center,
Yorktown Heights, NY 10598, USA,

jpgoncal@us.ibm.com

Robert H. Storer

Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA,
rhs2@lehigh.edu

Jacek Gondzio
School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK,
J.Gondzio@ed.ac.uk

Abstract

In this paper, we present a family of algorithms for linear programming based on an
algorithm proposed by von Neumann. The von Neumann algorithm is very attractive
due to its simplicity but is not practical for solving most linear programs to optimality
due to its slow convergence. Our algorithms were developed with the objective of im-
proving the practical convergence of the von Neumann algorithm while maintaining its
attractive features. We present results from computational experiments on a set of lin-
ear programming problems that show significant improvements over the von Neumann
algorithm.

Keywords: Linear programming; Elementary algorithms; Von Neumann algorithm

1 Introduction

In 1948, von Neumann proposed to Dantzig, in a private communication, an algorithm for
linear programming. The algorithm was first published by Dantzig in the early 1990’s [5, 6]
and was later studied by Epelman and Freund [9, 10] and Beck and Teboulle [2]. Although
Dantzig introduces it in [5, 6] as an algorithm for finding a feasible solution to a linear pro-
gram with a convexity constraint, the von Neumann algorithm can be more generally viewed

as an algorithm for solving systems of linear inequalities. Epelman and Freund [9, 10] refer

to this algorithm as “elementary”, in the sense that it performs only simple computations
at each iteration and consequently it is very unsophisticated, especially when compared to
modern interior point algorithms. Attractive properties of the von Neumann algorithm are
its low computational cost per iteration, which is dominated by a matrix-vector multiplica-
tion, and the possibility of exploiting the sparsity of the original problem data. As pointed
out by Epelman and Freund [9, 10], these properties are shared by other elementary algo-
rithms for finding a point in a convex set, such as the relaxation method for systems of linear
inequalities [1, 19, 8, 15] and the perceptron algorithm [20, 21]. A description and analysis
of the von Neumann algorithm can also be found in [3].

As shown in this paper, the von Neumann algorithm is impractical for solving linear
programs to a high degree of optimality due to its slow overall convergence. However, it
usually has a fast initial convergence rate that, combined with the other nice properties
mentioned above, can make it attractive in some contexts. For example, it could possibly
be used to provide a starting solution to another linear programming algorithm such as an
interior point method. As given by Epelman and Freund [9, 10], a generalization of the von
Neumann algorithm could also, for example, be used for solving conic linear systems. Their
study is theoretical and the practical viability of their algorithm still remains to be seen.

In this paper, we propose three new algorithms designed to overcome some of the conver-
gence difficulties of the original von Neumann method. Through computational experiments
on a set of linear programming problems, we show that our algorithms provide very signifi-
cant improvements.

The outline of the paper is as follows. In section 2, we describe the von Neumann
algorithm and discuss its computational complexity. We also present a review of the literature
focusing on ideas for improving the algorithm. In section 3, we present our new algorithms
for linear programming based on the von Neumann algorithm. Section 4 includes some
implementation details and in section 5 we describe our computational experiments and
present the results. Finally, we discuss the main contributions of this paper in section 6. In

the appendix we give more details related to the computational experiments.

2 The von Neumann Algorithm

We consider the problem of finding a feasible solution to the following set of linear constraints:

Px =0,
e'x =1, (1)
x > 0,

where P € R™", x € R”, e € R” is the vector of all ones, and the columns of P have
norm one, ie., [|P;|| = 1,5 = 1,...,n. Geometrically, the columns P; can be viewed as
points lying on the m-dimensional hypersphere with unit radius and center at the origin (see
figure 1). The above problem can then be described as that of assigning nonnegative weights
x; to the points P; so that their weighted center of gravity is the origin 0. Note that any
linear programming problem can be reduced to problem (1). For the details of the necessary

transformations, the reader is referred to [16].

Figure 1: Illustration of the von Neumann algorithm.

The von Neumann algorithm can be stated as follows:

1. (Initialization) The algorithm can be initialized with any approximation to the origin,

ie., b =Px’ e"x" = 1,x" > 0, where x° is arbitrary (e.g., 7; = 1/n,j =1,...,n).

2. (Computation of direction) At the start of iteration k, k > 1, we have an approximate

solution x = x*~', such that x > 0 and e"x = 1. Let

bkfl —]‘;;,ka]7 Up_ 1 = ||bk71||

Among all vectors P;,j = 1,...,n, find a vector P, which makes the largest angle (6

in figure 1) with the vector b* %

§ =argmin,;_; ., P7Tbk71.

3. (Check for infeasibility) Let vy = PTb*'. If v;_; > 0, stop; the problem (1) is

infeasible.

4. (Computation of new approximation) The next approximation b* is chosen as the
closest point to the origin on the line segment joining b*~! and P (see figure 1). This

is done by letting

1 — v q

ui =201+ 1
b¥ = AbF 4 (1 - NPy,

up = Mp_1 + (1 —),
xF = A" (1= Ne,.

where e, is the unit vector corresponding to index s. Let k& := k 4+ 1 and go to Step 2.

In step 3 of the algorithm, if v,_; > 0, then all points P; lie on one side of the hyperplane
that passes through the origin and is perpendicular to the direction b*~!. This means that
no convex combination of the points P; can be found having the origin as center of gravity.
Thus, in such a case, we can conclude that problem (1) is infeasible.

In step 4 of the algorithm, note that, since vy ; = PTb* ' <0, we have 0 < 1 — v}, ; <
ui , — 2vr1 + 1, and therefore, 0 < A < 1. Also note that the new approximation is
guaranteed to be closer to the origin than the previous one, i.e., uy < wug_;. This can
be easily understood from figure 1, where we see that in the right triangle Ob*~'b* the

hypotenuse is u;_; = Ob*~! and a leg is u;, = ObF.

The von Neumann algorithm performs only simple computations at each iteration. The
most expensive computation is the matrix-vector multiplication required to select the column
P, in step 2 of the algorithm which is O(mn). Note that the number of computations required
to perform this multiplication can be significantly reduced if P is sparse.

The rate of convergence of the von Neumann algorithm was studied by Dantzig [5, 6],
by Epelman and Freund [9, 10], and by Beck and Teboulle [2]. Before presenting their
convergence results, we define an e-solution of (1) as an approximate solution x* such that,
xF >0, e’x" = 1, and u; = ||b¥|| = |Px*|| < e. We can now state the convergence result

by Dantzig.

Theorem 2.1 (Dantzig [6]) For e > 0, if problem (1) is feasible, the von Neumann algo-

rithm obtains an e-solution of (1) in at most [1/€%] iterations.

Note that the complexity bound in theorem 2.1 is independent of the number of rows m
and columns n, which is potentially advantageous. Note also that theorem 2.1 only treats
the case when problem (1) is feasible.

The analysis by Epelman and Freund [9, 10] covers both the feasible and infeasible cases.
It is based on the quantity r that, when problem (1) has a feasible solution, is defined as
the radius of the largest ball centered at the origin O that is entirely contained in the convex
hull of the columns of P. If (1) does not have a feasible solution, then r is the distance from

the origin 0 to the convex hull of the columns of P.

Theorem 2.2 (Epelman and Freund [9]) Suppose that r > 0 and let ¢ > 0. If prob-

lem (1) is feasible, then the von Neumann algorithm obtains an e-solution of (1) in at most

2 1
[In—]
r €
iterations. If (1) is infeasible, then the von Neumann algorithm proves infeasibility in at

most |1/r%] iterations.

The result of Beck and Teboulle [2] applies to the case when problem (1) is feasible. It
differs from the Epelman and Freund result for the feasible case only in that r is substituted
by another quantity R that depends on the distance between a feasible point and the bound-
ary of S = {elx = 1,x > 0}. According to the authors, the inequality » > R holds for any

feasible point.

In practice, the von Neumann algorithm is usually fast during the early iterations but
then its convergence rate becomes slow. The practical slow convergence was observed by
Dantzig [6], who developed a variant of the von Neumann algorithm that yields an exact
solution to (1). Dantzig’s algorithm is based on the assumption that the value of r is known.
However, in general, we do not know r in advance, which makes the algorithm impractical.

Other algorithms that can be seen as variants of the von Neumann algorithm have been
proposed in the literature. They were developed in the context of the Frank-Wolfe al-
gorithm [12], which reduces to the von Neumann algorithm when applied to a particular
problem form. We implemented and tested three of those algorithms, namely the away step
introduced by Wolfe [22], the parallel tangents (PARTAN) method [11, 18], and the algo-
rithm introduced by Fukushima [13]. We briefly describe the basic idea of each of these
algorithms. The reader is referred to [16] for a full description.

The basic idea of the modification proposed by Wolfe is to consider an alternative feasible
direction from the current iterate. This direction is called an “away direction” since it is
determined by the vector P, that makes the smallest (rather than largest) angle with the
vector b*~1. If [PTb*!| > |v;_| and 2F~' > 0, the algorithm performs the away step, which
consists of finding the point b* that is closest to the origin along the line connecting P, and
b*~1. Otherwise, the algorithm performs the normal von Neumann iteration.

The PARTAN method aims at correcting the zigzag behavior responsible for the slow
convergence of the von Neumann algorithm. This behavior is characterized by the zigzag
movement of successive iterates of the algorithm, making small progress towards the solution.
The basic idea of the PARTAN method is to define a feasible direction (PARTAN direction)
by connecting the current iterate b¥~! and the iterate from two iterations ago b*~3. The
algorithm alternates between the original von Neumann direction and the PARTAN direction.

The Fukushima algorithm considers at each iteration an alternative feasible direction
formed by the current iterate b*~! and a convex combination of vectors P, that have been
selected in previous iterations. The number of vectors P, from previous iterations used in
the convex combination is chosen by the user and the weights are the same for all vectors.
The direction actually used in each iteration is the best of the above direction and the von

Neumann direction.

3 New Algorithms

In this section, we describe three new algorithms that are based on the von Neumann algo-
rithm and that were developed in an attempt to improve its convergence. These algorithms
have been named weight-reduction, optimal pair adjustment, and projection. They all apply
to problem (1).

Our main focus is on the optimal pair adjustment algorithm. This is the algorithm that
performed better in our computational experiments. Also, it is a generalization of the von
Neumann and weight-reduction algorithms. The other algorithms are given with different
levels of detail. In particular, the projection algorithm is described very briefly and the

reader is referred elsewhere for its details.

3.1 The Weight-Reduction Algorithm

The weight-reduction algorithm is based on the idea that a current approximation b*~! can
be moved closer to the origin 0 by increasing the weights x; assigned to some of the columns
P; and decreasing the weights z; assigned to other columns P;. In particular, we expect the
new approximation b* to be closer to the origin 0 than the previous one, if we increase the
weight corresponding to the vector P, that has the largest angle with b*~! and decrease the
weight assigned to the vector P, that has the smallest angle with b*~!. This corresponds to
moving from b*~! in the direction P, — P;. The new point b* is the one that minimizes the
distance to the origin 0 along that line. Of course, the minimization of the distance to the
origin is constrained on the maximum possible decrease of ;. Since we have x; > 0, Vj, we
can only decrease x; until it becomes zero.

We now state the weight-reduction algorithm by specifying the steps that are different
from the von Neumann algorithm described in the previous section. In step 2, in addition to
finding the vector P, which makes the largest angle with the vector b*~!, we also find the

vector P, which makes the smallest angle with the vector b*~! and such that z; > 0:

_) Ty k—1
t = argmaxj—1,..n P; b"".

z;>0
In step 4, we let d =P, — P; and
) 7d7“bk71
A= mln{W, [L't}

The next approximation is computed as
b* = b+ Ad,
uy, = [|b*],
xF = x4 Ae, — e),

where e; and e; are unit vectors with one in position j = s and j = ¢, respectively.

Finally, we let k := k£ + 1 and go to Step 2.

An iteration of the weight-reduction algorithm is not guaranteed to improve as much
as an iteration of the von Neumann algorithm. However, the weight-reduction algorithm
can easily be modified such that a weight-reduction iteration is replaced by a von Neumann
iteration when the latter provides a larger improvement.

The work per iteration of the weight-reduction algorithm is dominated by the matrix-
vector multiplication required for the selection of the columns Py and P, which is O(mn).

This is the same bound as in the von Neumann algorithm.

3.2 The Optimal Pair Adjustment Algorithm

The optimal pair adjustment algorithm is a generalization of the weight-reduction algorithm
designed to give the maximum possible freedom to two of the weights x;. Similar to the
weight-reduction algorithm, we start by identifying the vectors Py and P, that have the
largest and the smallest angle with b*~! respectively. We then find the values of z* 2% and
A, where xé“ = Ax?’l for all j # s and j # ¢, that minimize the distance from b* to the origin
0 while satisfying the convexity and nonnegativity constraints. This optimization problem
has an easily computable solution found by examination of the Karush-Kuhn-Tucker (KKT)
conditions. The main difference between the weight-reduction algorithm and the optimal
pair adjustment algorithm is that in the former only the weights of P, and P; are changed
while in the latter all other weights are also changed.

The optimal pair adjustment algorithm differs from the von Neumann algorithm in steps
2 and 4. Step 2 is the same as for the weight-reduction algorithm.

In step 4, which is the computation of the new approximation, we solve the problem
minimize ||b*||? = ||\ (b — 2F TP, — 2FTTP)) + AP, 4+ APy
subject to A(1— 2" ' —aF)y + Xy + A5 =1, (2)
A >0, Ay >0, A3 >0.

The next approximation is now computed as

b* = A\ (b — 2P, — 2FTTP)) + AP, + APy,

S

up = |[b*]),

Mzl j# sand j £t
7;]; -)\25] =S,

)\37 7 =1t.

We finally let k := k + 1 and go to Step 2.
In order to solve problem (2), we first simplify it by eliminating the variable A\;. We do
this by rewriting the equality constraint as

1— X — A3

k=1 _ k]
1 — a8 Ty

)\]:

and substituting this expression where appropriate. The problem reduces to

1— X — A
minimize ||b*||> = | 2 (b TP PP+ AP+ P
1 — k-1 —a;
subject to 1—X— A3 >0, (3)
)\2 2 03)\3 2 0.

This problem can be easily solved by writing the Karush-Kuhn-Tucker (KKT) necessary
and sufficient conditions and finding a feasible solution that satisfies those conditions. The
details of this process are given in [16].

The work per iteration of the optimal pair adjustment algorithm is of the same order as
the work per iteration of the von Neumann algorithm. Moreover, the improvement in the

former is at least as good as the improvement in the latter as it is shown in the next theorem.

Theorem 3.1 Suppose that b*~! is the residual at the beginning of iteration k,k > 1. Also,
suppose that b¥ ., is the residual after an iteration of the optimal pair adjustment algorithm

and bk, is the residual after an iteration of the von Neumann algorithm. Then,
k k
Ibopall < byl

Proof. Let k., k > 1 be given and let b¥*~! be the residual at the beginning of iteration k. Let
P, and P, be the vectors that make the largest and smallest angle with b*~! respectively.

After iteration k of the optimal pair adjustment algorithm we will have
bips = M (b" — 2P, - 2P 4+ P, + APy,

9

where (A1, Ay, A3) is the optimal solution to problem (2). Let (Ayn, Aynaf ' +1—Ayn, Aynar 1),
where Ayy is the A of a von Neumann iteration, be a feasible solution to (2). Then, we can

write

[Avxb* !+ (1 = Avn) Pyl = (DYl > [bGpall-

The above theorem allows us to show that the convergence results for the von Neumann
algorithm presented in section 2 also apply to the optimal pair adjustment algorithm. As an
example, we show next that the convergence result by Epelman and Freund (see theorem 2.2)
when problem (1) is feasible is valid for the optimal pair adjustment algorithm.

We start by stating the following proposition derived by Epelman and Freund for the

von Neumann algorithm.

Proposition 3.1 (Epelman and Freund [9]) Suppose that problem (1) has a feasible so-

lution, and that r > 0. At every iteration k,k > 1, of the von Neumann algorithm
(> < [Ib*%e

Given theorem 3.1, proposition 3.1 is also valid if k£ is an iteration of the optimal pair
adjustment algorithm. Applying this inequality inductively, we can bound the size of the
residual ||b*|| by

||bk|| < ||b0||€7kr2/2 < efkr2/2‘

Recall that for an e-solution, ||b¥|| < e. Given the above bound for the size of the residual

|b¥||, we are guaranteed to have an e-solution for
2
e kr /2 S €.

Rearranging the above expression, we obtain

2 1
k'Z—an—.
r €

Thus, if (1) is feasible, the optimal pair adjustment algorithm needs only

(2 I

r2 €

iterations to find an e-solution.

10

3.3 The Projection Algorithm

The structure of the projection algorithm is similar to the von Neumann algorithm. The
main difference is that, at each iteration of the projection algorithm, the new approximation
b* is computed as a convex combination of the previous approximation b*~! and of a point
b that is itself a convex combination of some of the columns of the matrix P. Recall that
in the von Neumann algorithm, the new approximation b* is a convex combination of the
previous approximation b*~! and of the vector P,. The motivation for using a vector b
instead of P, is to try to make more progress at each iteration. The vector b is constructed
by solving an auxiliary problem using the von Neumann algorithm. The auxiliary problem

is created as follows:
1. We define a hyperplane through the origin and orthogonal to the vector b¥~!.

2. We take the vectors P, that lie on the opposite side of the above hyperplane (in relation

to b*~ ') and project them onto the same hyperplane.

3. We create a linear programming feasibility problem using the projected vectors and

the origin.

Any approximate solution to the auxiliary problem can be mapped back to the original
problem, i.e., the weights that define the convex combination of the projected points can
be used to define a convex combination of the points in the original problem (i.e., before
projecting). The point resulting from that convex combination is designated by b and is used
to compute the new approximate solution to the original problem. When the approximate
solution in the auxiliary problem is close enough to the origin 0, we expect the corresponding
point in the original problem b to be better than P, in the sense that it will produce a smaller
5]

The details of the algorithm are given in [16]. The work per iteration depends on the
work done solving the auxiliary problem. In practice, it is of the same order as the von
Neumann algorithm. The convergence bounds of the von Neumann algorithm presented in

section 2 are also valid for the projection algorithm.

11

4 Implementation

The von Neumann algorithm, the three algorithms presented in section 2 (away step, PAR-
TAN, and Fukushima) resulting from the modifications proposed in the literature to the
Frank-Wolfe algorithm, and all the new algorithms described in the previous section have
been implemented in ANSI-standard Fortran 77. The codes use routines from the linear
programming solver HOPDM developed by Gondzio [17]. In particular, they use the rou-
tines to read the problem data in MPS format, to perform presolve analysis, and to scale
the problem. For efficiency, the upper bound constraints in the primal problem are treated

separately from the other constraints.

4.1 Acceleration Strategies

For all but one of the algorithms implemented, the selection of the column(s) P, to use
in each iteration is the most time-consuming computation. An obvious way to reduce the
computation associated with the selection of the column(s) is to consider only a subset of
the columns at each iteration. We have implemented two strategies based on ideas used
in practical implementations of the simplex method known as partial and multiple pricing.
Since the number of columns that we need to select at each iteration is not the same for
all algorithms, the actual implementation of these strategies depends on the algorithm.
However, the main concept of these strategies is the same throughout and therefore we focus

only on the implementation of these strategies for the von Neumann algorithm.

4.1.1 Partial Pricing

The idea of partial pricing is to divide the matrix P into blocks of columns and consider only
the columns from one of those blocks at each iteration. More specifically, in step 2 of the
algorithm (see section 2), the column Py is chosen from among a subset of the columns of
P, rather than among all its columns. In our implementation, we divide the matrix P in ten
blocks. Each block contains a subset of the columns associated with each set of variables.
For example, the set of variables x; is divided into ten subsets and the columns associated
with each subset are assigned to a different block.

At each iteration, if there is not a column from the current block for which P7Tb*"' <0,
then we move on to consider the columns of the following block. At every new iteration we

start by considering the block following the last block used in the previous iteration. In the

12

first iteration, we consider all columns from matrix P. We do that because we have observed
that the improvement of ||b*|| in the first iteration of the von Neumann algorithm when
considering all columns is often very good.

Note that we divide the matrix P into a fixed number of blocks for all problems. This
is a simple way of dividing the matrix but it goes without saying that one could use other

ways which would possibly lead to better results.

4.1.2 Multiple Pricing

The multiple pricing strategy uses the same division of the matrix P in blocks of columns as
partial pricing. In addition, a list of candidate columns is kept from one iteration to another.
At each iteration, we consider first the columns in the candidate list. If for all the columns
in the list we have PJTb"“*1 > (, then we switch to the partial pricing strategy and look for
a suitable column in one of the blocks of columns. The strategy for choosing the blocks is
exactly as described in the previous section. After we find a suitable column, we replace the
columns in the candidate list by columns j from the last block examined for which P]-Tb"“*1
is smallest. In our implementation, the candidate list contains ten columns.

For the algorithms that, at each iteration, require the columns that make the largest and
smallest angles with b*~!, we fill the candidate list with the five columns for which P]b*"!

is smallest and the five columns for which P7b*! is largest.

5 Computational Experiments

In our computational experiments, we used a collection of 145 linear programming instances.
The set is divided into 91 Netlib instances [14], 15 Kennington instances [4], and 39 other
instances which are not available publicly but can be made available upon request. Note that
four Netlib instances (scsd1, scsd6, woodlp, woodw) and one Kennington instance (pds-20)
were removed from this study because at least one of the algorithms stopped prematurely
on those problems. That happened because some of our codes do not avoid all possible
solutions where the variable corresponding to the last column of matrix P becomes zero. If
that happens, we have a solution for problem (1) but not for the original primal and dual
problems (see the problem transformations in [16]). Since we only observed these difficulties
for a few instances, we did not correct our codes in order to avoid them. However, the changes

needed are fairly straightforward and should not affect the performance of the algorithms.

13

The names of the instances in the three subsets are given in a table in the appendix
where the subsets appear ordered as above. In that same table, we also give the sizes of all
the problems after presolve, as well as ||b°||, i.e., the norm of the vector of residuals for the
starting solution. The starting solution is the same for all algorithms and corresponds to
setting all variables equal to 1/N, where N is the total number of variables in the problem.

The main objective of our computational experiments was to compare the performance of
the new algorithms proposed in this paper with the performance of the von Neumann algo-
rithm and of those resulting from the modifications to the Frank-Wolfe algorithm proposed
in the literature. We recall that the three modifications to the Frank-Wolfe algorithm that
we have applied to the von Neumann algorithm are the away step introduced by Wolfe [22],
the parallel tangents (PARTAN) method [11, 18], and the idea introduced by Fukushima [13].
In terms of the algorithms that we propose in this paper, we tested the weight-reduction
algorithm as described in section 3.1 and also a version where at each iteration we select
the best step between the weight-reduction step and the von Neumann step. We tested the
other algorithms (optimal pair adjustment algorithm and projection algorithm) as described
in sections 3.2 and 3.3. In the case of the projection algorithm, we stop the auxiliary problem
when the relative improvement in two consecutive iterations is less than a certain percentage
(rd) specified by the user. We chose to use rd = 50%, 5%, and 0.5%. In addition to testing
the original algorithms, we also tested the versions that use partial pricing and multiple
pricing.

In our experiments, we first ran the von Neumann algorithm on all test problems and, for
each problem, recorded the time #; (CPU seconds) and the norm of the vector of residuals
|b*|| when the relative difference between |[[b*~!|| and ||b*|| was less than 0.5%. We also
recorded ||b*|| at four other times t,,t3,¢, and t5 (CPU seconds). Times to,t3,t, and t;
correspond to 3, 5, 10 and 20 times the number of iterations at ¢;. We then ran all other
algorithms and, for each problem, recorded ||b*|| at times t;,7 = 1,...,5. In table 1, we
give the percentage of problems that were winning, i.e., that had smaller ||b¥||, at times
t; through t5. For each algorithm, we give the results for the original version, as well as
for the versions with partial and multiple pricing. Note that the measure of time used is
CPU seconds. The algorithm that wins for a larger percentage of the problems at times ¢,
through t5 is the optimal pair adjustment algorithm with multiple pricing. It is followed by
the optimal pair adjustment with partial pricing. In third place is the original optimal pair

adjustment algorithm except for time ¢5 where the weight-reduction algorithm with multiple

14

pricing has a larger number of winnings.

Table 1: Percentage of winning problems for each algorithm at five different times.

Algorlthm tl tQ t3 t4 t5

Von Neumann (VN) 0.7% | 0.0% | 0.0% | 0.0% | 0.0%
w/ pp 0.0% | 0.0% | 0.0%| 0.0% | 0.0%
w/ mp 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
VN w/ away step 0.0% | 0.0% | 0.0%| 0.0%]| 0.0%
w/ pp 0.0% | 0.0% | 0.0%]| 0.0% | 0.7%
w/ mp 0.0% | 0.0% | 0.0% | 0.0%]| 0.0%
PARTAN 0.0% | 0.0% | 0.0% | 0.7% | 0.7%
w/ pp 0.0% | 0.7% | 0.7% | 0.0% | 0.0%
w/ mp 0.0% | 1.4% | 21% | 21% | 2.8%
Fukushima, 0.0% | 0.0%| 00% | 0.0%| 0.0%
w/ pp 0.0% | 0.0% | 0.0% | 0.0%| 0.0%
w/ mp 1.4% | 0.0% | 0.0% | 0.0% | 0.0%
Weight-reduction 0.0% | 0.0% | 0.0%| 0.0%| 0.7%
w/ pp 0.0% | 0.7% | 0.0% | 1.4% | 2.8%
w/ mp 28% | 9.7% | 11.0% | 14.5% | 18.6%
Weight-reduction w/ VN | 0.0% | 0.7% | 0.7% | 0.7% | 0.7%
w/ pp 0.7% | 21% | 21% | 1.4% | 21%
w/ mp 21% | 1.4% | 21% | 3.4% | 2.8%
Projection (rd = 50%) | 4.1% | 3.4% | 41% | 4.1% | 4.8%
w/ pp 28% | 1.4% | 2.8% | 0.7% | 0.0%
w/ mp 0.0% | 0.7% | 0.0% | 0.0% | 0.0%
Projection (rd = 5%) 2.8% | 2.8% | 3.4% | 21% | 0.7%
w/ pp 14% | 0.7% | 0.0% | 0.0% | 0.7%
w/ mp 0.0% | 0.0% | 0.0% | 0.0%]| 0.0%
Projection (rd = 0.5%) 0.0% | 1.4% | 0.0% | 0.7% | 0.7%
w/ pp 0.0% | 1.4% | 0.0% | 0.0% | 0.0%
w/ mp 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
Optimal pair adjustment | 14.5% | 11.7% | 13.1% | 15.2% | 13.1%
w/ pp 22.8% | 21.4% | 20.0% | 18.6% | 20.7%
w/ mp 44.1% | 38.6% | 37.9% | 34.5% | 27.6%

We also analyze the performance of the algorithms using performance profiles, which were
introduced by Dolan and Moré [7] as a tool for comparing optimization software. Dolan and
Moré call the performance profile for a solver “the distribution function of a performance
metric”. It basically provides a measure of the performance of a solver s as compared to a
group of solvers S on a set of problems P. In order to construct a performance profile, we

first select +, 5, which is a performance measure of solver s on problem p. The performance on

15

problem p by solver s is compared with the best performance by any solver on this problem
using the performance ratio

Vp,s
minseS ’Yp,s

The performance profile for solver s is given by

p7s

{p € Plrps <}
ps(T) - ’)
1P|

i.e., it is the fraction of instances for which the performance ratio r, s is within a factor of 7
of the best ratio. The comparison of the plots of p,(7) for the different solvers gives a way of
comparing the relative performance between solvers. The performance profile plots that we
present in this paper have 7 as the x-axis and p,(7) as the y-axis. The solvers that perform
better are those for which the plots are “higher”.

In our case, we construct performance profiles for the different algorithms at each time
ti, i =1,...,5. Our performance measure of algorithm s on problem p (7, ;) is the distance to
the origin ||b*|| at time ¢;. In figure 2, we give the performance profiles for the von Neumann
algorithm and our algorithms at time #;. For the optimal pair adjustment algorithm, we
plot the performance profiles for the three versions tested, i.e., the original version and the
versions with partial and multiple pricing. For the other algorithms, we just plot one of the
versions that is representative of their performance. The versions chosen are: the original
von Neumann algorithm, the weight-reduction algorithm with multiple pricing, the multiple
pricing version of the algorithm where at each iteration we select the best of the weight-
reduction and the von Neumann steps, and the projection algorithm with rd = 50% and
multiple pricing. In this graph, ps(1) is the percentage of problems that were winning at
time #;. It is clear from the graph that the three versions of the optimal pair adjustment
algorithm perform much better than any of the other algorithms. It can also be seen that
the von Neumann algorithm performs at least as well as any of the other algorithms that we
have developed.

When we compare each of our algorithms with the von Neumann algorithm, we conclude
that the three versions of the optimal pair adjustment algorithm perform better than any
of the other algorithms. For example, at time ¢, there are 91.7%, 97.2%, and 95.2% of
winnings for the original version of the optimal pair adjustment, the version with partial
pricing, and the version with multiple pricing, respectively. At the same time, the weight-

reduction algorithm with multiple pricing and the projection algorithm (rd = 50%) win

16

only for 31% and 40.7% of the problems, respectively. Furthermore, in the cases where the
von Neumann algorithm performs better than some version of the optimal pair adjustment
algorithm, the value of |b*|| obtained with the latter is at most 2.4 times larger than the
value of ||b*|| obtained with the former (i.e., |b¥{|opa < 2.4|b|lyx). In contrast, when the
weight-reduction algorithm with multiple pricing and the projection (rd = 50%) lose against
the von Neumann algorithm, the values of ||b¥|| can be within a factor of up to 156 and 124,
respectively, of the value of ||b¥|| obtained with the von Neumann algorithm.

At time t5, the three versions of the optimal pair adjustment algorithm win for 97.2%
of the problems when comparing with the von Neumann algorithm. When the optimal
pair adjustment loses, the norm of the residuals vector is at most twice as large as that
corresponding to the solution obtained with the von Neumann algorithm.

The percentage of winnings of the weight-reduction algorithm with multiple pricing
against the von Neumann algorithm increases with time. At time #5, it wins for 78.6%
of the problems. However, when it looses, the ratio of the norms of the vectors of residuals
can still be very large (up to 162).

The performance of the projection algorithm (rd = 50%) also improves with time when

compared to the von Neumann algorithm. In this case, not only the number of winnings

VN
Weight-reduction_MP =======
Weight-reduction_VN_MP =+=+=---
Projection_rd=50%_MP -

OPA =i=i=i=:

OPA_PP =i=i==

|OPA—MP

OSF R P | . M |

1 10 100 1000

Figure 2: Performance profile of best algorithms tested at time #; (z-axis: 7; y-axis: ps(7)).

17

increases (up to 95.9% at time ¢5) but also the ratio of the norms of the vectors of residuals
(|[D*{[projection /|| bl|vx) decreases (at time 5, the maximum ratio is smaller than 1.1).

For detailed results, including the values of ||b*|| at different points in time for several
algorithms, the reader is referred to the appendix and to [16].

In figure 3, we give the convergence for some of the algorithms tested when applied to
the Netlib problem 80bau3b which was selected as representative of performance as a whole.
Similar to the behavior of the von Neumann algorithm, our algorithms start with a fast initial
convergence (some faster than others) but later the convergence becomes slow. However, the
significant improvement of the optimal pair adjustment algorithm when compared to the

von Neumann algorithm can clearly be seen in the figure.

1.0E+00
1.0E-01 {\
\\ VN
; Loeoz 1 - —— Proj_ection (rd - 50%)
= | — - - —Weight-reduction + VN
- Optimal pair adjustment
1.0E-03 1L
1.0E-04 ‘ ‘
0 0.2 0.4 0.6
Time (s)

Figure 3: Comparison between the von Neumann algorithm and some of the other algorithms
tested when applied to problem 80bau3b.

In figure 4, we present performance profiles for the von Neumann algorithm, the three
algorithms described in the literature that were developed in the context of the Frank-Wolfe
algorithm, and the optimal pair adjustment algorithm at time #;. This figure illustrates the
consistent improvement of the optimal pair adjustment algorithm over those presented in
the literature.

We end this section with an illustration of the typical residuals obtained after transform-

18

y
PARTAN srereess
Fukushima s
OPAI ———

0‘ L L PR | L L PR R | L L L
1 10 100 1000

Figure 4: Performance profiles of the von Neumann algorithm, the three algorithms devel-
oped to improve the Frank-Wolfe algorithm, and the optimal pair adjustment algorithm,
tested at time #; (z-axis: 7; y-axis: p(7)).

ing the approximate solutions for problem (1) to the original form of the linear programs.
In table 2 we show the norms of the residuals of the primal constraints, upper bounds, dual
constraints, and duality gap for a sample of problem instances selected to illustrate the range
of behavior observed. In the first four lines we show the norms of the residuals for the initial
solution. In the following four lines we show the norms of the residuals after running the
von Neumann algorithm, and in the last four lines we show the norms of the residuals after
running the optimal pair adjustment algorithm with multiple pricing. The results presented
in the table give a good idea of the range of accuracies that can be achieved with the algo-
rithms studied. As it can be seen, the accuracies can vary considerably. For example, for the
solutions obtained by the optimal pair adjustment, the norm of the primal residual ranges
from 10" in problem kb2 to 10® in problem CO5. Nevertheless, the final accuracies obtained
by the optimal pair adjustment algorithm represent, in most cases, an improvement over the

accuracies of the initial solutions of at least two orders of magnitude.

19

Table 2: Norms of residuals in the original problem form at time t5 for several instances

tested.

Algorithm | Norm of residual | 25fv47 kb2 ship12l tuff COb5

Initial Primal 5.56E+405 | 4.03E403 | 2.69E+05 | 1.65E+05 | 2.16E+08
Upper bound 2.28E405 | 2.41E403 | 1.61E+405 | 3.64E404 | 3.11E+407
Dual 3.65E+05 | 5.64E+03 | 1.09E+05 | 3.03E+04 | 8.52E+07
Duality gap 8.91E+06 | 7.14E+03 | 1.33E+07 | 5.21E+05 | 3.62E+09

VN Primal 5.44E+03 | 3.57TE+01 | 2.45E+03 | 8.79E+02 | 1.79E+07
Upper bound 3.30E+03 | 8.85E+00 | 1.23E403 | 4.72E4+02 | 1.70E+07
Dual 5.24E+403 | 1.18E+402 | 7.24E+02 | 6.95E4+02 | 2.04E+07
Duality gap 8.53E+01 | 1.19E-02 | 5.72E+01 | 3.70E+01 | 2.38E+05

OPA Primal 5.07E4+03 | 7.90E-01 | 3.84E+02 | 2.00E+01 | 5.18E+06

w/ mp Upper bound 9.01E402 | 2.43E-01 | 2.64E+402 | 3.43E4+00 | 4.33E+06
Dual 3.56E+03 | 3.80E400 | 8.47TE+02 | 3.84E+01 | 5.93E+06
Duality gap 2.76E+01 | 7.09E-04 | 2.66E+00 | 7.48E-01 | 5.28E+03

6 Conclusions

In this paper, we presented three new algorithms for linear programming based on the von
Neumann algorithm. These algorithms can be considered elementary since they perform
only simple computations.

We presented computational results that showed that our algorithms can provide sig-
nificant improvements when compared to the von Neumann algorithm. In particular, the
optimal pair adjustment algorithm consistently provides solutions significantly closer to op-
timal than the von Neumann algorithm in the same amount of time.

In spite of the improvements over the von Neumann algorithm, our algorithms are still
impractical for solving linear programs to optimality. However, they could be useful in
some situations and future research is needed to understand the practical impact that these
algorithms can have. Although we have presented results on some quite large and very
sparse linear programming instance (e.g., ken-18 and osa-60), more research should be done
on even larger instances where the simplicity of these methods may give them an advantage
over interior point methods and the simplex method. Also, the fast initial convergence rate of
these methods could be used to help enhance the performance of interior point methods. This

idea is especially attractive when considering the use of our algorithms in conjunction with

an infeasible primal-dual path following algorithm, which is the type of interior point method

20

most commonly implemented in software. Since our algorithms provide an infeasible solution
and since those interior point methods start with an infeasible solution and, in general, reduce
the infeasibility at each iteration, we could easily switch between our algorithms and the
interior point method. Finally, generalizations of these algorithms, such as the one studied

by Epelman and Freund [9, 10] for solving conic linear systems, could be studied.

Acknowledgements

The authors thank the anonymous referees for their suggestions for improving this paper.

A Appendix

In table 3, we give the names of the 145 linear programming instances in our computational
experiments. We also give the sizes of all the problems after presolve, as well as ||bY|], i.e.,
the norm of the vector of residuals for the starting solution.

In the last two columns of table 3, we provide the values of the norms of the vectors of
residuals (||b*||) at time ¢; obtained with the von Neumann algorithm and with the optimal
pair adjustment algorithm. For more detailed results, including the values of ||b¥|| at other

points in time and for other algorithms, the reader is referred to [16].

Table 3: Sizes of problems after presolve, norm of initial resid-
ual vectors, and norm of residual vectors at time #; for von
Neumann and Optimal Pair Adjustment algorithms.

Problem m n nub nnz 6O | [|b*||vx at t1 | [b°||opa at #y
25fv47 769 1821 513 10245 | 1.64E-1 9.40E-3 4.28E-3
80bau3db 1965 | 10701 5141 | 21013 | 2.70E-1 3.49E-3 6.28E-4
adlittle 93 134 60 404 | 1.86E-1 2.46E-2 4.90E-3
afiro 25 48 6 97 | 7.69E-2 3.14E-2 2.08E-2
agg 319 404 21 1838 | 2.19E-2 1.81E-2 1.79E-2
agg?2 455 689 16 4351 | 4.26E-2 1.57E-2 1.33E-2
agg3 455 689 16 4367 | 4.27E-2 1.57E-2 1.33E-2
bandm 211 366 271 1654 | 1.31E-1 1.68E-2 6.10E-3
beaconfd 73 148 27 561 | 2.69E-1 2.15E-2 5.56E-3
blend 66 101 o7 416 | 1.05E-1 2.76E-2 1.20E-2
bnll 9b8 1439 1002 4949 | 2.56E-1 6.97E-3 3.50E-3
bnl2 1848 3800 2303 13251 | 1.95E-1 4.50E-3 1.16E-3
boeingl 294 660 333 3020 | 1.37E-1 1.16 E-2 1.48E-3

21

Table 3: continued

Problem m n nub nnz B | Ib*[vx at t1 | [BO]lopa at #
boeing?2 125 264 108 922 | 6.63E-2 2.08E-2 1.23E-2
boredd 64 90 60 405 | 2.11E-1 2.30E-2 2.02E-2
brandy 116 216 154 1557 | 1.69E-1 2.03E-2 1.06E-2
capri 235 421 239 1448 | 1.69E-1 1.58E-2 2.24E-3
cycle 1400 2749 1301 14462 | 6.54E-2 8.59E-3 8.12E-3
czprob 661 2705 2141 5393 | 1.90E-1 6.63E-3 6.39E-3
d2q06¢ 2012 9561 1515 | 30860 | 1.89E-1 5.77E-3 5.60E-4
d6cube 403 5443 8| 32523 | 4.59E-1 9.32E-3 9.33E-3
degen2 444 757 0 4199 | 1.56E-1 1.42E-2 1.32E-2
degend 1503 2604 0| 25149 | 1.11E-1 1.08E-2 1.07E-2
dfloo1 5907 | 12065 5126 | 35021 | 1.51E-1 5.66E-3 6.42E-4
€226 161 392 243 2301 | 1.26E-1 1.70E-2 1.47E-2
etamacro 331 666 411 1972 | 1.30E-1 1.76E-2 1.65E-3
800 313 817 101 4542 | 1.08E-1 1.75E-2 1.93E-2
finnis 359 775 174 1809 | 1.52E-1 1.23E-2 4.11E-3
fitld 24 1047 1024 13381 | 2.90E-1 1.32E-2 1.34E-2
fitlp 678 1706 399 9948 | 2.51E-1 8.11E-3 8.60E-3
fit2d 25 10387 | 10363 | 127784 | 2.80E-1 3.06E-3 3.00E-3
fit2p 3170 13695 7500 | 50624 | 3.62E-1 2.36E-3 1.19E-3
forplan 104 411 7 4066 | 2.66E-1 1.82E-2 1.61E-2
ganges 840 1197 428 5512 | 7.04E-2 1.46E-2 1.81E-4
gfrd-pnc 590 1134 258 2393 | 2.76E-1 7.63E-3 2.64E-4
greenbea 1872 4081 o81 23334 | 4.73E-2 1.04E-2 3.56E-3
greenbeb 1865 4065 754 | 23225 | 5.77E-2 1.02E-2 3.37E-3
growl1d 300 645 600 5620 | 1.80E-1 1.14E-2 8.35E-3
grow22 440 946 880 8252 | 1.80E-1 9.54E-3 7.89E-3
grow7 140 301 280 2612 | 1.81E-1 1.63E-2 8.94E-3
israel 166 307 4 2425 | 3.81E-2 2.30E-2 2.13E-2
kb2 43 68 9 292 | 6.21E-2 2.59E-2 3.86E-3
lotfi 117 329 16 643 | 1.63E-1 2.16E-2 3.05E-3
maros 626 1365 93 6156 | 6.38E-2 1.30E-2 8.14E-3
maros-r7 2152 6578 0| 80167 | 3.41E-1 3.88E-3 2.76E-4
modszk1 658 1405 0 2863 | 1.90E-1 9.22E-3 1.18E-3
nesm 646 2850 1560 13100 | 1.90E-1 1.34E-2 1.72E-3
perold 580 1412 490 6298 | 9.43E-2 1.27E-2 2.53E-3
pilot 1350 4506 1292 | 41683 | 5.95E-2 1.26E-2 1.19E-3
pilot4 389 1069 349 6606 | 9.39E-2 1.59E-2 1.46E-3
pilot87 1968 6367 1908 | 72133 | 6.57E-2 1.06 E-2 2.14E-3
pilot_ja 795 1834 713 12032 | 9.57E-2 1.62E-2 4.37E-4
pilot_we 691 2621 560 8553 | 5.53E-2 1.84E-2 6.21E-3
pilotnov 830 2089 895 11694 | 9.62E-2 1.57E-2 2.97E-4
recipe 61 120 96 392 | 8.48E-2 2.58E-2 1.78E-2
sc105 104 162 0 339 | 3.23E-2 2.79E-2 2.79E-2
sc205 203 315 13 663 | 2.56E-2 1.94E-2 7.28E-3
schla 49 7 0 159 | 4.68E-2 3.31E-2 3.23E-2

22

Table 3: continued

Problem m n nub nnz B | Ib*[vx at t1 | [BO]lopa at #
schb0b 48 76 0 146 | 4.72E-2 3.10E-2 2.94E-2
scagr2d 344 543 127 1364 | 1.45E-1 1.16E-2 9.81E-4
scagr7 92 147 37 356 | 1.63E-1 2.21E-2 3.14E-3
scfxm1 268 526 201 2263 | 1.41E-1 1.60E-2 2.16E-3
scfxm?2 536 1052 402 4531 | 1.40E-1 1.17E-2 2.32E-3
scfxm3 804 1578 603 6799 | 1.40E-1 9.60E-3 2.27E-3
scorpion 180 239 28 608 | 1.53E-1 2.12E-2 1.81E-2
scrs8 418 1183 622 2819 | 1.87TE-1 9.84E-3 3.27E-3
scsd8 397 2750 0 8584 | 4.25E-1 2.14E-2 1.71E-2
sctapl 269 608 339 1713 | 2.66E-1 1.70E-2 1.64E-2
sctap?2 977 2303 1326 6694 | 2.75E-1 1.61E-2 1.61E-2
sctap3 1346 3113 1767 8986 | 2.70E-1 1.65E-2 1.64E-2
seba 2 9 8 12 | 4.20E-1 4.16E-2 1.64E-2
sharelb 107 243 31 1016 | 7.59E-2 3.01E-2 2.16E-2
share2b 92 158 76 711 | 1.16E-1 2.75E-2 1.01E-2
shell 487 1450 188 2904 | 3.33E-1 7.30E-3 7.41E-5
ship041 292 1905 1672 4290 | 4.24E-1 8.63E-3 1.75E-3
ship04s 216 1281 1052 2875 | 4.21E-1 9.77E-3 1.69E-3
ship08l 470 3121 2664 7122 | 4.28E-1 6.53E-3 1.66E-3
ship08s 276 1604 1155 3644 | 4.22E-1 7.94E-3 1.67E-3
ship121 610 4171 3510 9254 | 3.95E-1 6.75E-3 2.89E-3
ship12s 340 1943 1282 4297 | 3.89E-1 8.15E-3 2.99E-3
sierra 1129 2618 2008 7566 | 3.43E-1 4.28E-3 1.64E-4
stair 356 931 42 3811 | 3.18E-2 1.72E-2 1.34E-2
standata 292 582 358 1167 | 2.39E-1 1.08E-2 6.19E-3
standgub 292 582 358 1167 | 2.39E-1 1.08E-2 6.01E-3
standmps 388 1146 984 2491 | 3.22E-1 7.50E-3 5.52E-3
stocforl 94 142 80 405 | 7.7T7TE-2 2.39E-2 1.01E-2
stocfor2 1968 2856 1286 8066 | 5.58E-2 5.61E-3 2.56E-3
stocfor3 15336 | 22202 9667 | 62908 | 4.62E-2 2.07E-3 4.78E-4
truss 1000 8806 0| 27836 | 4.42E-1 9.42E-3 9.36E-3
tuff 246 553 380 3737 | 1.60E-1 3.38E-2 3.55E-2
vtp_base 46 82 43 205 | 1.33E-1 2.79E-2 1.00E-2
cre-a 2994 6692 302 16552 | 1.89E-1 5.24E-3 3.43E-4
cre-b 5336 | 36382 506 | 111637 | 2.32E-1 8.09E-3 2.55E-4
cre-c 2375 5412 132 13346 | 1.87E-1 6.23E-3 1.20E-4
cre-d 4102 | 28601 203 | 86353 | 2.57E-1 8.99E-3 2.60E-4
ken-07 1427 2603 2603 5494 | 5.84E-3 5.51E-3 5.04E-3
ken-11 10061 16709 16709 35578 | 2.22E-3 2.12E-3 1.94E-3
ken-13 22519 | 36546 | 36546 | 80148 | 1.58E-3 1.39E-3 1.30E-3
ken-18 78823 | 128395 | 128395 | 286183 | 9.63E-4 7.51E-4 6.69E-4
0sa-07 1047 | 24911 23864 | 65138 | 4.76E-1 8.24E-3 9.89E-3
osa-14 2266 54535 52269 | 143777 | 4.76E-1 5.87E-3 8.20E-3
osa-30 4279 | 103978 | 99699 | 276565 | 4.77TE-1 4.37E-3 6.90E-3
osa-60 10209 | 242411 | 232202 | 614537 | 4.76E-1 3.05E-3 7.00E-3

23

Table 3: continued

Problem m n nub nnz BY| [6¥|[vn at ¢ | [[b%opa at ¢
pds-02 2603 7333 4440 | 15682 | 2.50E-1 7.42E-3 1.32E-3
pds-06 9119 | 28435 18835 | 60676 | 2.77E-1 3.19E-3 1.02E-3
pds-10 15587 | 48719 | 33076 | 104038 | 2.81E-1 2.26E-3 8.70E-4
BL 5468 12038 2253 | 32699 | 1.73E-1 3.42E-3 9.66E-4
BL2 5480 | 12063 2263 | 32837 | 1.73E-1 3.46E-3 1.07E-3
COb5 4471 10318 1029 | 49028 | 1.34E-1 5.42E-3 3.90E-3
CcO9 8510 | 19276 1844 | 92450 | 1.31E-1 4.22E-3 2.36E-3
CQI9 7073 17806 1893 | 82802 | 1.08E-1 5.26E-3 3.30E-3
GE 8361 14096 1359 | 39167 | 9.58E-2 3.64E-3 9.02E-4
NL 6478 14393 3213 | 44437 | 2.03E-1 2.95E-3 1.18E-3
al 42 73 72 284 | 1.16E-1 2.21E-2 1.81E-2
fort4s 1037 1467 1402 6077 | 1.26E-1 6.33E-3 4.86E-4
fort46 1037 1467 1402 6077 | 1.25E-1 6.31E-3 6.16E-4
fort47 1037 1467 1402 6077 | 1.37E-1 6.52E-3 4.08E-4
fort48 1037 1467 1402 6077 | 1.29E-1 6.58E-3 2.31E-4
fort49 1037 1467 1402 6077 | 1.27E-1 6.43E-3 4.01E-4
forthb1 1042 1473 1402 8359 | 1.77E-1 5.84E-3 1.10E-3
fort52 1041 1471 1402 7957 | 1.57E-1 6.10E-3 2.04E-4
fort53 1041 1471 1402 7957 | 1.57E-1 5.94E-3 2.02E-4
fortb4 1041 1471 1402 7730 | 1.34E-1 5.74E-3 2.70E-4
fortb55 1041 1471 1402 7730 | 1.34E-1 5.71E-3 2.7T7E-4
forth6 1041 1471 1402 8027 | 1.60E-1 6.09E-3 2.04E-4
forth7 1041 1471 1402 8027 | 1.60E-1 5.88E-3 2.02E-4
forth8 1041 1471 1402 7957 | 1.25E-1 6.41E-3 2.13E-4
fort59 1041 1471 1402 7957 | 1.25E-1 6.36E-3 2.17E-4
fort60 1041 1471 1402 7958 | 1.34E-1 6.31E-3 2.12E-4
fort61 1041 1471 1402 7958 | 1.34E-1 6.24E-3 2.13E-4
x1 983 1413 1412 o873 | 1.40E-1 6.42E-3 4.36E-4
x2 983 1413 1412 5873 | 1.08E-1 6.50E-3 9.03E-4
pata0l 122 1241 0 2443 | 7.19E-2 2.80E-2 2.46E-2
pata02 122 1241 0 2443 | 7.19E-2 2.80E-2 3.74E-2
patb01 57 143 0 277 | 7.00E-2 3.02E-2 1.49E-2
patb02 a7 143 0 277 | 7.00E-2 3.02E-2 1.48E-2
vschna(2 122 1363 0 2565 | 6.73E-2 2.96E-2 2.90E-2
vschnb(1 a7 144 0 278 | 7.10E-2 2.97E-2 2.36E-3
vschnb(2 58 202 0 338 | 5.93E-2 3.49E-2 2.13E-2
willett 184 588 0 2403 | 5.02E-2 4.10E-2 1.69E-2
ex01 234 1555 1325 9091 | 1.95E-1 1.01E-2 1.44E-4
ex(2 226 1547 1324 8899 | 2.13E-1 1.31E-2 1.76 E-2
ex05 831 7747 6923 | 46038 | 1.93E-1 1.79E-2 3.42E-3
ex06 824 778 6961 | 44370 | 3.36E-1 8.71E-3 59.29E-4
ex(9 1818 18120 16309 | 104559 | 2.04E-1 2.22E-2 1.20E-3

24

References

1]

2]

S. Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathe-

matics, 6(3):382 392, 1954.

A. Beck and M. Teboulle. A conditional gradient method with linear rate of convergence
for solving linear systems. Mathematical Methods of Operations Research, 59:235-247,
2004.

D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-

tific, Belmont, Massachusetts, 1997.

W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann. An empir-
ical evaluation of the KORBX algorithms for military airlift applications. Operations

Research, 38(2):240-248, 1990.

G. B. Dantzig. Converting a converging algorithm into a polynomially bounded algo-

rithm. Technical Report SOL 91-5, Stanford University, 1991.

G. B. Dantzig. An e-precise feasible solution to a linear program with a convexity
constraint in 1/e? iterations independent of problem size. Technical Report SOL 92-5,

Stanford University, 1992.

E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance

profiles. Mathematical Programming, 91:201 213, 2002.

B. C. Eaves. Piecewise linear retractions by reflexion. Linear Algebra and its Applica-

tions, 7:93-99, 1973.

M. Epelman and R. M. Freund. Condition number complexity of an elementary algo-
rithm for resolving a conic linear system. Working Paper OR 319-97, Massachusetts

Institute of Technology, 1997.

M. Epelman and R. M. Freund. Condition number complexity of an elementary algo-
rithm for computing a reliable solution of a conic linear system. Mathematical Program-

ming, 88:451 485, 2000.

25

[11]

[12]

[13]

[14]

[17]

[18]

[19]

[20]

[21]

[22]

M. Florian, J. Guélat, and H. Spiess. An efficient implementation of the PARTAN vari-
ant of the linear approximation method of the network equilibrium problem. Networks,

17:319-339, 1987.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1 and 2):95 110, 1956.

M. Fukushima. A modified Frank-Wolfe algorithm for solving the traffic assignment
problem. Transportation Research, 18B(2):169-177, 1984.

D. M. Gay. Electronic mail distribution of linear programming test problems. Mathe-

matical Programming Society COAL Newsletter, 13:10 12, 1985.

J. L. Goffin. The relaxation method for solving systems of linear inequalities. Mathe-

matics of Operations Research, 5(3):388-414, 1980.

J. P. M. Goncalves. A Family of Linear Programming Algorithms Based on the von

Neumann Algorithm. PhD thesis, Lehigh University, Bethlehem, PA, 2004.

J. Gondzio. HOPDM (version 2.12) - a fast LP solver based on a primal-dual interior
point method. FKuropean Journal of Operational Research, 85:221 225, 1995.

L. J. LeBlanc, R. V. Helgason, and D. E. Boyce. Improved efficiency of the Frank-Wolfe

algorithm for convex network programs. Transportation Science, 19:445-462, 1985.

T. S. Motzkin and 1. J. Schoenberg. The relaxation method for linear inequalities.

Canadian Journal of Mathematics, 6(3):393 404, 1954.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65:386-408, 1958.
F. Rosenblatt. Principles of Neurodynamics. Spartan Books, Washington, DC, 1962.

P. Wolfe. Convergence theory in nonlinear programming. In J. Abadie, editor, Integer

and Nonlinear Programmin, pages 1-36. North-Holland, Amsterdam, 1970.

26

