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A Family of Linear Programming Algorithms Based onan Algorithm by von NeumannJo~ao P. M. Gon�
alvesMathemati
al S
ien
es Department, IBM T. J. Watson Resear
h Center,Yorktown Heights, NY 10598, USA,jpgon
al�us.ibm.
omRobert H. StorerDepartment of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA,rhs2�lehigh.eduJa
ek GondzioS
hool of Mathemati
s, The University of Edinburgh, Edinburgh, EH9 3JZ, UK,J.Gondzio�ed.a
.ukAbstra
tIn this paper, we present a family of algorithms for linear programming based on analgorithm proposed by von Neumann. The von Neumann algorithm is very attra
tivedue to its simpli
ity but is not pra
ti
al for solving most linear programs to optimalitydue to its slow 
onvergen
e. Our algorithms were developed with the obje
tive of im-proving the pra
ti
al 
onvergen
e of the von Neumann algorithm while maintaining itsattra
tive features. We present results from 
omputational experiments on a set of lin-ear programming problems that show signi�
ant improvements over the von Neumannalgorithm.Keywords: Linear programming; Elementary algorithms; Von Neumann algorithm1 Introdu
tionIn 1948, von Neumann proposed to Dantzig, in a private 
ommuni
ation, an algorithm forlinear programming. The algorithm was �rst published by Dantzig in the early 1990's [5, 6℄and was later studied by Epelman and Freund [9, 10℄ and Be
k and Teboulle [2℄. AlthoughDantzig introdu
es it in [5, 6℄ as an algorithm for �nding a feasible solution to a linear pro-gram with a 
onvexity 
onstraint, the von Neumann algorithm 
an be more generally viewedas an algorithm for solving systems of linear inequalities. Epelman and Freund [9, 10℄ refer1
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to this algorithm as \elementary", in the sense that it performs only simple 
omputationsat ea
h iteration and 
onsequently it is very unsophisti
ated, espe
ially when 
ompared tomodern interior point algorithms. Attra
tive properties of the von Neumann algorithm areits low 
omputational 
ost per iteration, whi
h is dominated by a matrix-ve
tor multipli
a-tion, and the possibility of exploiting the sparsity of the original problem data. As pointedout by Epelman and Freund [9, 10℄, these properties are shared by other elementary algo-rithms for �nding a point in a 
onvex set, su
h as the relaxation method for systems of linearinequalities [1, 19, 8, 15℄ and the per
eptron algorithm [20, 21℄. A des
ription and analysisof the von Neumann algorithm 
an also be found in [3℄.As shown in this paper, the von Neumann algorithm is impra
ti
al for solving linearprograms to a high degree of optimality due to its slow overall 
onvergen
e. However, itusually has a fast initial 
onvergen
e rate that, 
ombined with the other ni
e propertiesmentioned above, 
an make it attra
tive in some 
ontexts. For example, it 
ould possiblybe used to provide a starting solution to another linear programming algorithm su
h as aninterior point method. As given by Epelman and Freund [9, 10℄, a generalization of the vonNeumann algorithm 
ould also, for example, be used for solving 
oni
 linear systems. Theirstudy is theoreti
al and the pra
ti
al viability of their algorithm still remains to be seen.In this paper, we propose three new algorithms designed to over
ome some of the 
onver-gen
e diÆ
ulties of the original von Neumann method. Through 
omputational experimentson a set of linear programming problems, we show that our algorithms provide very signi�-
ant improvements.The outline of the paper is as follows. In se
tion 2, we des
ribe the von Neumannalgorithm and dis
uss its 
omputational 
omplexity. We also present a review of the literaturefo
using on ideas for improving the algorithm. In se
tion 3, we present our new algorithmsfor linear programming based on the von Neumann algorithm. Se
tion 4 in
ludes someimplementation details and in se
tion 5 we des
ribe our 
omputational experiments andpresent the results. Finally, we dis
uss the main 
ontributions of this paper in se
tion 6. Inthe appendix we give more details related to the 
omputational experiments.
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2 The von Neumann AlgorithmWe 
onsider the problem of �nding a feasible solution to the following set of linear 
onstraints:Px = 0;eTx = 1;x � 0; (1)where P 2 Rm�n , x 2 Rn , e 2 Rn is the ve
tor of all ones, and the 
olumns of P havenorm one, i.e., kPjk = 1; j = 1; : : : ; n. Geometri
ally, the 
olumns Pj 
an be viewed aspoints lying on the m-dimensional hypersphere with unit radius and 
enter at the origin (see�gure 1). The above problem 
an then be des
ribed as that of assigning nonnegative weightsxj to the points Pj so that their weighted 
enter of gravity is the origin 0. Note that anylinear programming problem 
an be redu
ed to problem (1). For the details of the ne
essarytransformations, the reader is referred to [16℄.
P

1

P
2

P
s

b
k-1

b
k

u
k-1

0
θ

P
3

P
n

Figure 1: Illustration of the von Neumann algorithm.The von Neumann algorithm 
an be stated as follows:3



1. (Initialization) The algorithm 
an be initialized with any approximation to the origin,i.e., b0 = Px0; eTx0 = 1;x0 � 0, where x0 is arbitrary (e.g., xj = 1=n; j = 1; : : : ; n).2. (Computation of dire
tion) At the start of iteration k; k � 1, we have an approximatesolution x = xk�1, su
h that x � 0 and eTx = 1. Letbk�1 = Pxk�1; uk�1 = kbk�1k:Among all ve
tors Pj; j = 1; : : : ; n, �nd a ve
tor Ps whi
h makes the largest angle (�in �gure 1) with the ve
tor bk�1:s = argminj=1;:::;nPTj bk�1:3. (Che
k for infeasibility) Let vk�1 = PTs bk�1. If vk�1 > 0, stop; the problem (1) isinfeasible.4. (Computation of new approximation) The next approximation bk is 
hosen as the
losest point to the origin on the line segment joining bk�1 and Ps (see �gure 1). Thisis done by letting � = 1� vk�1u2k�1 � 2vk�1 + 1 ;bk = �bk�1 + (1� �)Ps;u2k = �vk�1 + (1� �);xk = �xk�1 + (1� �)es:where es is the unit ve
tor 
orresponding to index s. Let k := k + 1 and go to Step 2.In step 3 of the algorithm, if vk�1 > 0, then all points Pj lie on one side of the hyperplanethat passes through the origin and is perpendi
ular to the dire
tion bk�1. This means thatno 
onvex 
ombination of the points Pj 
an be found having the origin as 
enter of gravity.Thus, in su
h a 
ase, we 
an 
on
lude that problem (1) is infeasible.In step 4 of the algorithm, note that, sin
e vk�1 = PTs bk�1 � 0, we have 0 < 1� vk�1 <u2k�1 � 2vk�1 + 1, and therefore, 0 < � < 1. Also note that the new approximation isguaranteed to be 
loser to the origin than the previous one, i.e., uk < uk�1. This 
anbe easily understood from �gure 1, where we see that in the right triangle 0bk�1bk thehypotenuse is uk�1 = 0bk�1 and a leg is uk = 0bk.4



The von Neumann algorithm performs only simple 
omputations at ea
h iteration. Themost expensive 
omputation is the matrix-ve
tor multipli
ation required to sele
t the 
olumnPs in step 2 of the algorithmwhi
h isO(mn). Note that the number of 
omputations requiredto perform this multipli
ation 
an be signi�
antly redu
ed if P is sparse.The rate of 
onvergen
e of the von Neumann algorithm was studied by Dantzig [5, 6℄,by Epelman and Freund [9, 10℄, and by Be
k and Teboulle [2℄. Before presenting their
onvergen
e results, we de�ne an �-solution of (1) as an approximate solution xk su
h that,xk � 0, eTxk = 1, and uk = kbkk = kPxkk � �. We 
an now state the 
onvergen
e resultby Dantzig.Theorem 2.1 (Dantzig [6℄) For � > 0, if problem (1) is feasible, the von Neumann algo-rithm obtains an �-solution of (1) in at most d1=�2e iterations.Note that the 
omplexity bound in theorem 2.1 is independent of the number of rows mand 
olumns n, whi
h is potentially advantageous. Note also that theorem 2.1 only treatsthe 
ase when problem (1) is feasible.The analysis by Epelman and Freund [9, 10℄ 
overs both the feasible and infeasible 
ases.It is based on the quantity r that, when problem (1) has a feasible solution, is de�ned asthe radius of the largest ball 
entered at the origin 0 that is entirely 
ontained in the 
onvexhull of the 
olumns of P. If (1) does not have a feasible solution, then r is the distan
e fromthe origin 0 to the 
onvex hull of the 
olumns of P.Theorem 2.2 (Epelman and Freund [9℄) Suppose that r > 0 and let � > 0. If prob-lem (1) is feasible, then the von Neumann algorithm obtains an �-solution of (1) in at mostd 2r2 ln 1� eiterations. If (1) is infeasible, then the von Neumann algorithm proves infeasibility in atmost b1=r2
 iterations.The result of Be
k and Teboulle [2℄ applies to the 
ase when problem (1) is feasible. Itdi�ers from the Epelman and Freund result for the feasible 
ase only in that r is substitutedby another quantity R that depends on the distan
e between a feasible point and the bound-ary of S = feTx = 1;x � 0g. A

ording to the authors, the inequality r � R holds for anyfeasible point. 5



In pra
ti
e, the von Neumann algorithm is usually fast during the early iterations butthen its 
onvergen
e rate be
omes slow. The pra
ti
al slow 
onvergen
e was observed byDantzig [6℄, who developed a variant of the von Neumann algorithm that yields an exa
tsolution to (1). Dantzig's algorithm is based on the assumption that the value of r is known.However, in general, we do not know r in advan
e, whi
h makes the algorithm impra
ti
al.Other algorithms that 
an be seen as variants of the von Neumann algorithm have beenproposed in the literature. They were developed in the 
ontext of the Frank-Wolfe al-gorithm [12℄, whi
h redu
es to the von Neumann algorithm when applied to a parti
ularproblem form. We implemented and tested three of those algorithms, namely the away stepintrodu
ed by Wolfe [22℄, the parallel tangents (PARTAN) method [11, 18℄, and the algo-rithm introdu
ed by Fukushima [13℄. We brie
y des
ribe the basi
 idea of ea
h of thesealgorithms. The reader is referred to [16℄ for a full des
ription.The basi
 idea of the modi�
ation proposed by Wolfe is to 
onsider an alternative feasibledire
tion from the 
urrent iterate. This dire
tion is 
alled an \away dire
tion" sin
e it isdetermined by the ve
tor Pt that makes the smallest (rather than largest) angle with theve
tor bk�1. If jPTt bk�1j > jvk�1j and xk�1t > 0, the algorithm performs the away step, whi
h
onsists of �nding the point bk that is 
losest to the origin along the line 
onne
ting Pt andbk�1. Otherwise, the algorithm performs the normal von Neumann iteration.The PARTAN method aims at 
orre
ting the zigzag behavior responsible for the slow
onvergen
e of the von Neumann algorithm. This behavior is 
hara
terized by the zigzagmovement of su

essive iterates of the algorithm, making small progress towards the solution.The basi
 idea of the PARTAN method is to de�ne a feasible dire
tion (PARTAN dire
tion)by 
onne
ting the 
urrent iterate bk�1 and the iterate from two iterations ago bk�3. Thealgorithm alternates between the original von Neumann dire
tion and the PARTAN dire
tion.The Fukushima algorithm 
onsiders at ea
h iteration an alternative feasible dire
tionformed by the 
urrent iterate bk�1 and a 
onvex 
ombination of ve
tors Ps that have beensele
ted in previous iterations. The number of ve
tors Ps from previous iterations used inthe 
onvex 
ombination is 
hosen by the user and the weights are the same for all ve
tors.The dire
tion a
tually used in ea
h iteration is the best of the above dire
tion and the vonNeumann dire
tion.
6



3 New AlgorithmsIn this se
tion, we des
ribe three new algorithms that are based on the von Neumann algo-rithm and that were developed in an attempt to improve its 
onvergen
e. These algorithmshave been named weight-redu
tion, optimal pair adjustment, and proje
tion. They all applyto problem (1).Our main fo
us is on the optimal pair adjustment algorithm. This is the algorithm thatperformed better in our 
omputational experiments. Also, it is a generalization of the vonNeumann and weight-redu
tion algorithms. The other algorithms are given with di�erentlevels of detail. In parti
ular, the proje
tion algorithm is des
ribed very brie
y and thereader is referred elsewhere for its details.3.1 The Weight-Redu
tion AlgorithmThe weight-redu
tion algorithm is based on the idea that a 
urrent approximation bk�1 
anbe moved 
loser to the origin 0 by in
reasing the weights xj assigned to some of the 
olumnsPj and de
reasing the weights xj assigned to other 
olumns Pj. In parti
ular, we expe
t thenew approximation bk to be 
loser to the origin 0 than the previous one, if we in
rease theweight 
orresponding to the ve
tor Ps that has the largest angle with bk�1 and de
rease theweight assigned to the ve
tor Pt that has the smallest angle with bk�1. This 
orresponds tomoving from bk�1 in the dire
tion Ps�Pt. The new point bk is the one that minimizes thedistan
e to the origin 0 along that line. Of 
ourse, the minimization of the distan
e to theorigin is 
onstrained on the maximum possible de
rease of xt. Sin
e we have xj � 0; 8j, we
an only de
rease xt until it be
omes zero.We now state the weight-redu
tion algorithm by spe
ifying the steps that are di�erentfrom the von Neumann algorithm des
ribed in the previous se
tion. In step 2, in addition to�nding the ve
tor Ps whi
h makes the largest angle with the ve
tor bk�1, we also �nd theve
tor Pt whi
h makes the smallest angle with the ve
tor bk�1 and su
h that xt > 0:t = argmaxj=1;:::;nxj>0 PTj bk�1:In step 4, we let d = Ps �Pt and� = minf�dTbk�1kdk2 ; xtg7



The next approximation is 
omputed asbk = bk�1 + �d;uk = kbkk;xk = xk�1 + �(es � et);where es and et are unit ve
tors with one in position j = s and j = t, respe
tively.Finally, we let k := k + 1 and go to Step 2.An iteration of the weight-redu
tion algorithm is not guaranteed to improve as mu
has an iteration of the von Neumann algorithm. However, the weight-redu
tion algorithm
an easily be modi�ed su
h that a weight-redu
tion iteration is repla
ed by a von Neumanniteration when the latter provides a larger improvement.The work per iteration of the weight-redu
tion algorithm is dominated by the matrix-ve
tor multipli
ation required for the sele
tion of the 
olumns Ps and Pt whi
h is O(mn).This is the same bound as in the von Neumann algorithm.3.2 The Optimal Pair Adjustment AlgorithmThe optimal pair adjustment algorithm is a generalization of the weight-redu
tion algorithmdesigned to give the maximum possible freedom to two of the weights xj. Similar to theweight-redu
tion algorithm, we start by identifying the ve
tors Ps and Pt that have thelargest and the smallest angle with bk�1, respe
tively. We then �nd the values of xks ; xkt , and�, where xkj = �xk�1j for all j 6= s and j 6= t, that minimize the distan
e from bk to the origin0 while satisfying the 
onvexity and nonnegativity 
onstraints. This optimization problemhas an easily 
omputable solution found by examination of the Karush-Kuhn-Tu
ker (KKT)
onditions. The main di�eren
e between the weight-redu
tion algorithm and the optimalpair adjustment algorithm is that in the former only the weights of Ps and Pt are 
hangedwhile in the latter all other weights are also 
hanged.The optimal pair adjustment algorithm di�ers from the von Neumann algorithm in steps2 and 4. Step 2 is the same as for the weight-redu
tion algorithm.In step 4, whi
h is the 
omputation of the new approximation, we solve the problemminimize kbkk2 = k�1(bk�1 � xk�1s Ps � xk�1t Pt) + �2Ps + �3Ptk2subje
t to �1(1� xk�1s � xk�1t ) + �2 + �3 = 1;�1 � 0; �2 � 0; �3 � 0: (2)8



The next approximation is now 
omputed asbk = �1(bk�1 � xk�1s Ps � xk�1t Pt) + �2Ps + �3Pt;uk = kbkk;xkj = 8><>:�1xk�1j ; j 6= s and j 6= t;�2; j = s;�3; j = t:We �nally let k := k + 1 and go to Step 2.In order to solve problem (2), we �rst simplify it by eliminating the variable �1. We dothis by rewriting the equality 
onstraint as�1 = 1� �2 � �31� xk�1s � xk�1tand substituting this expression where appropriate. The problem redu
es tominimize kbkk2 = k 1� �2 � �31� xk�1s � xk�1t (bk�1 � xk�1s Ps � xk�1t Pt) + �2Ps + �3Ptk2subje
t to 1� �2 � �3 � 0;�2 � 0; �3 � 0: (3)This problem 
an be easily solved by writing the Karush-Kuhn-Tu
ker (KKT) ne
essaryand suÆ
ient 
onditions and �nding a feasible solution that satis�es those 
onditions. Thedetails of this pro
ess are given in [16℄.The work per iteration of the optimal pair adjustment algorithm is of the same order asthe work per iteration of the von Neumann algorithm. Moreover, the improvement in theformer is at least as good as the improvement in the latter as it is shown in the next theorem.Theorem 3.1 Suppose that bk�1 is the residual at the beginning of iteration k; k � 1. Also,suppose that bkOPA is the residual after an iteration of the optimal pair adjustment algorithmand bkVN is the residual after an iteration of the von Neumann algorithm. Then,kbkOPAk � kbkVNk:Proof. Let k; k � 1 be given and let bk�1 be the residual at the beginning of iteration k. LetPs and Pt be the ve
tors that make the largest and smallest angle with bk�1, respe
tively.After iteration k of the optimal pair adjustment algorithm we will havebkOPA = ��1(bk�1 � xk�1s Ps � xk�1t Pt) + ��2Ps + ��3Pt;9



where (��1; ��2; ��3) is the optimal solution to problem (2). Let (�VN; �VNxk�1s +1��VN; �VNxk�1t ),where �VN is the � of a von Neumann iteration, be a feasible solution to (2). Then, we 
anwrite k�VNbk�1 + (1� �VN)Psk = kbkVNk � kbkOPAk: �The above theorem allows us to show that the 
onvergen
e results for the von Neumannalgorithm presented in se
tion 2 also apply to the optimal pair adjustment algorithm. As anexample, we show next that the 
onvergen
e result by Epelman and Freund (see theorem 2.2)when problem (1) is feasible is valid for the optimal pair adjustment algorithm.We start by stating the following proposition derived by Epelman and Freund for thevon Neumann algorithm.Proposition 3.1 (Epelman and Freund [9℄) Suppose that problem (1) has a feasible so-lution, and that r > 0. At every iteration k; k � 1, of the von Neumann algorithmkbkk2 � kbk�1k2e�r2:Given theorem 3.1, proposition 3.1 is also valid if k is an iteration of the optimal pairadjustment algorithm. Applying this inequality indu
tively, we 
an bound the size of theresidual kbkk by kbkk � kb0ke�kr2=2 � e�kr2=2:Re
all that for an �-solution, kbkk � �. Given the above bound for the size of the residualkbkk, we are guaranteed to have an �-solution fore�kr2=2 � �:Rearranging the above expression, we obtaink � 2r2 ln 1� :Thus, if (1) is feasible, the optimal pair adjustment algorithm needs onlyd 2r2 ln 1� eiterations to �nd an �-solution. 10



3.3 The Proje
tion AlgorithmThe stru
ture of the proje
tion algorithm is similar to the von Neumann algorithm. Themain di�eren
e is that, at ea
h iteration of the proje
tion algorithm, the new approximationbk is 
omputed as a 
onvex 
ombination of the previous approximation bk�1 and of a point�b that is itself a 
onvex 
ombination of some of the 
olumns of the matrix P. Re
all thatin the von Neumann algorithm, the new approximation bk is a 
onvex 
ombination of theprevious approximation bk�1 and of the ve
tor Ps. The motivation for using a ve
tor �binstead of Ps is to try to make more progress at ea
h iteration. The ve
tor �b is 
onstru
tedby solving an auxiliary problem using the von Neumann algorithm. The auxiliary problemis 
reated as follows:1. We de�ne a hyperplane through the origin and orthogonal to the ve
tor bk�1.2. We take the ve
tors Pj that lie on the opposite side of the above hyperplane (in relationto bk�1) and proje
t them onto the same hyperplane.3. We 
reate a linear programming feasibility problem using the proje
ted ve
tors andthe origin.Any approximate solution to the auxiliary problem 
an be mapped ba
k to the originalproblem, i.e., the weights that de�ne the 
onvex 
ombination of the proje
ted points 
anbe used to de�ne a 
onvex 
ombination of the points in the original problem (i.e., beforeproje
ting). The point resulting from that 
onvex 
ombination is designated by �b and is usedto 
ompute the new approximate solution to the original problem. When the approximatesolution in the auxiliary problem is 
lose enough to the origin 0, we expe
t the 
orrespondingpoint in the original problem �b to be better thanPs, in the sense that it will produ
e a smallerkbkk.The details of the algorithm are given in [16℄. The work per iteration depends on thework done solving the auxiliary problem. In pra
ti
e, it is of the same order as the vonNeumann algorithm. The 
onvergen
e bounds of the von Neumann algorithm presented inse
tion 2 are also valid for the proje
tion algorithm.
11



4 ImplementationThe von Neumann algorithm, the three algorithms presented in se
tion 2 (away step, PAR-TAN, and Fukushima) resulting from the modi�
ations proposed in the literature to theFrank-Wolfe algorithm, and all the new algorithms des
ribed in the previous se
tion havebeen implemented in ANSI-standard Fortran 77. The 
odes use routines from the linearprogramming solver HOPDM developed by Gondzio [17℄. In parti
ular, they use the rou-tines to read the problem data in MPS format, to perform presolve analysis, and to s
alethe problem. For eÆ
ien
y, the upper bound 
onstraints in the primal problem are treatedseparately from the other 
onstraints.4.1 A

eleration StrategiesFor all but one of the algorithms implemented, the sele
tion of the 
olumn(s) Pj to usein ea
h iteration is the most time-
onsuming 
omputation. An obvious way to redu
e the
omputation asso
iated with the sele
tion of the 
olumn(s) is to 
onsider only a subset ofthe 
olumns at ea
h iteration. We have implemented two strategies based on ideas usedin pra
ti
al implementations of the simplex method known as partial and multiple pri
ing.Sin
e the number of 
olumns that we need to sele
t at ea
h iteration is not the same forall algorithms, the a
tual implementation of these strategies depends on the algorithm.However, the main 
on
ept of these strategies is the same throughout and therefore we fo
usonly on the implementation of these strategies for the von Neumann algorithm.4.1.1 Partial Pri
ingThe idea of partial pri
ing is to divide the matrix P into blo
ks of 
olumns and 
onsider onlythe 
olumns from one of those blo
ks at ea
h iteration. More spe
i�
ally, in step 2 of thealgorithm (see se
tion 2), the 
olumn Ps is 
hosen from among a subset of the 
olumns ofP, rather than among all its 
olumns. In our implementation, we divide the matrix P in tenblo
ks. Ea
h blo
k 
ontains a subset of the 
olumns asso
iated with ea
h set of variables.For example, the set of variables xj is divided into ten subsets and the 
olumns asso
iatedwith ea
h subset are assigned to a di�erent blo
k.At ea
h iteration, if there is not a 
olumn from the 
urrent blo
k for whi
h PTj bk�1 � 0,then we move on to 
onsider the 
olumns of the following blo
k. At every new iteration westart by 
onsidering the blo
k following the last blo
k used in the previous iteration. In the12



�rst iteration, we 
onsider all 
olumns from matrix P. We do that be
ause we have observedthat the improvement of kbkk in the �rst iteration of the von Neumann algorithm when
onsidering all 
olumns is often very good.Note that we divide the matrix P into a �xed number of blo
ks for all problems. Thisis a simple way of dividing the matrix but it goes without saying that one 
ould use otherways whi
h would possibly lead to better results.4.1.2 Multiple Pri
ingThe multiple pri
ing strategy uses the same division of the matrix P in blo
ks of 
olumns aspartial pri
ing. In addition, a list of 
andidate 
olumns is kept from one iteration to another.At ea
h iteration, we 
onsider �rst the 
olumns in the 
andidate list. If for all the 
olumnsin the list we have PTj bk�1 > 0, then we swit
h to the partial pri
ing strategy and look fora suitable 
olumn in one of the blo
ks of 
olumns. The strategy for 
hoosing the blo
ks isexa
tly as des
ribed in the previous se
tion. After we �nd a suitable 
olumn, we repla
e the
olumns in the 
andidate list by 
olumns j from the last blo
k examined for whi
h PTj bk�1is smallest. In our implementation, the 
andidate list 
ontains ten 
olumns.For the algorithms that, at ea
h iteration, require the 
olumns that make the largest andsmallest angles with bk�1, we �ll the 
andidate list with the �ve 
olumns for whi
h PTj bk�1is smallest and the �ve 
olumns for whi
h PTj bk�1 is largest.5 Computational ExperimentsIn our 
omputational experiments, we used a 
olle
tion of 145 linear programming instan
es.The set is divided into 91 Netlib instan
es [14℄, 15 Kennington instan
es [4℄, and 39 otherinstan
es whi
h are not available publi
ly but 
an be made available upon request. Note thatfour Netlib instan
es (s
sd1, s
sd6, wood1p, woodw) and one Kennington instan
e (pds-20)were removed from this study be
ause at least one of the algorithms stopped prematurelyon those problems. That happened be
ause some of our 
odes do not avoid all possiblesolutions where the variable 
orresponding to the last 
olumn of matrix P be
omes zero. Ifthat happens, we have a solution for problem (1) but not for the original primal and dualproblems (see the problem transformations in [16℄). Sin
e we only observed these diÆ
ultiesfor a few instan
es, we did not 
orre
t our 
odes in order to avoid them. However, the 
hangesneeded are fairly straightforward and should not a�e
t the performan
e of the algorithms.13



The names of the instan
es in the three subsets are given in a table in the appendixwhere the subsets appear ordered as above. In that same table, we also give the sizes of allthe problems after presolve, as well as kb0k, i.e., the norm of the ve
tor of residuals for thestarting solution. The starting solution is the same for all algorithms and 
orresponds tosetting all variables equal to 1=N , where N is the total number of variables in the problem.The main obje
tive of our 
omputational experiments was to 
ompare the performan
e ofthe new algorithms proposed in this paper with the performan
e of the von Neumann algo-rithm and of those resulting from the modi�
ations to the Frank-Wolfe algorithm proposedin the literature. We re
all that the three modi�
ations to the Frank-Wolfe algorithm thatwe have applied to the von Neumann algorithm are the away step introdu
ed by Wolfe [22℄,the parallel tangents (PARTAN) method [11, 18℄, and the idea introdu
ed by Fukushima [13℄.In terms of the algorithms that we propose in this paper, we tested the weight-redu
tionalgorithm as des
ribed in se
tion 3.1 and also a version where at ea
h iteration we sele
tthe best step between the weight-redu
tion step and the von Neumann step. We tested theother algorithms (optimal pair adjustment algorithm and proje
tion algorithm) as des
ribedin se
tions 3.2 and 3.3. In the 
ase of the proje
tion algorithm, we stop the auxiliary problemwhen the relative improvement in two 
onse
utive iterations is less than a 
ertain per
entage(rd) spe
i�ed by the user. We 
hose to use rd = 50%; 5%, and 0:5%. In addition to testingthe original algorithms, we also tested the versions that use partial pri
ing and multiplepri
ing.In our experiments, we �rst ran the von Neumann algorithm on all test problems and, forea
h problem, re
orded the time t1 (CPU se
onds) and the norm of the ve
tor of residualskbkk when the relative di�eren
e between kbk�1k and kbkk was less than 0:5%. We alsore
orded kbkk at four other times t2; t3; t4 and t5 (CPU se
onds). Times t2; t3; t4 and t5
orrespond to 3, 5, 10 and 20 times the number of iterations at t1. We then ran all otheralgorithms and, for ea
h problem, re
orded kbkk at times ti; i = 1; : : : ; 5. In table 1, wegive the per
entage of problems that were winning, i.e., that had smaller kbkk, at timest1 through t5. For ea
h algorithm, we give the results for the original version, as well asfor the versions with partial and multiple pri
ing. Note that the measure of time used isCPU se
onds. The algorithm that wins for a larger per
entage of the problems at times t1through t5 is the optimal pair adjustment algorithm with multiple pri
ing. It is followed bythe optimal pair adjustment with partial pri
ing. In third pla
e is the original optimal pairadjustment algorithm ex
ept for time t5 where the weight-redu
tion algorithm with multiple14



pri
ing has a larger number of winnings.Table 1: Per
entage of winning problems for ea
h algorithm at �ve di�erent times.Algorithm t1 t2 t3 t4 t5Von Neumann (VN) 0.7% 0.0% 0.0% 0.0% 0.0%w/ pp 0.0% 0.0% 0.0% 0.0% 0.0%w/ mp 0.0% 0.0% 0.0% 0.0% 0.0%VN w/ away step 0.0% 0.0% 0.0% 0.0% 0.0%w/ pp 0.0% 0.0% 0.0% 0.0% 0.7%w/ mp 0.0% 0.0% 0.0% 0.0% 0.0%PARTAN 0.0% 0.0% 0.0% 0.7% 0.7%w/ pp 0.0% 0.7% 0.7% 0.0% 0.0%w/ mp 0.0% 1.4% 2.1% 2.1% 2.8%Fukushima 0.0% 0.0% 0.0% 0.0% 0.0%w/ pp 0.0% 0.0% 0.0% 0.0% 0.0%w/ mp 1.4% 0.0% 0.0% 0.0% 0.0%Weight-redu
tion 0.0% 0.0% 0.0% 0.0% 0.7%w/ pp 0.0% 0.7% 0.0% 1.4% 2.8%w/ mp 2.8% 9.7% 11.0% 14.5% 18.6%Weight-redu
tion w/ VN 0.0% 0.7% 0.7% 0.7% 0.7%w/ pp 0.7% 2.1% 2.1% 1.4% 2.1%w/ mp 2.1% 1.4% 2.1% 3.4% 2.8%Proje
tion (rd = 50%) 4.1% 3.4% 4.1% 4.1% 4.8%w/ pp 2.8% 1.4% 2.8% 0.7% 0.0%w/ mp 0.0% 0.7% 0.0% 0.0% 0.0%Proje
tion (rd = 5%) 2.8% 2.8% 3.4% 2.1% 0.7%w/ pp 1.4% 0.7% 0.0% 0.0% 0.7%w/ mp 0.0% 0.0% 0.0% 0.0% 0.0%Proje
tion (rd = 0:5%) 0.0% 1.4% 0.0% 0.7% 0.7%w/ pp 0.0% 1.4% 0.0% 0.0% 0.0%w/ mp 0.0% 0.0% 0.0% 0.0% 0.0%Optimal pair adjustment 14.5% 11.7% 13.1% 15.2% 13.1%w/ pp 22.8% 21.4% 20.0% 18.6% 20.7%w/ mp 44.1% 38.6% 37.9% 34.5% 27.6%We also analyze the performan
e of the algorithms using performan
e pro�les, whi
h wereintrodu
ed by Dolan and Mor�e [7℄ as a tool for 
omparing optimization software. Dolan andMor�e 
all the performan
e pro�le for a solver \the distribution fun
tion of a performan
emetri
". It basi
ally provides a measure of the performan
e of a solver s as 
ompared to agroup of solvers S on a set of problems P . In order to 
onstru
t a performan
e pro�le, we�rst sele
t 
p;s, whi
h is a performan
e measure of solver s on problem p. The performan
e on15



problem p by solver s is 
ompared with the best performan
e by any solver on this problemusing the performan
e ratio rp;s = 
p;smins2S 
p;s :The performan
e pro�le for solver s is given by�s(�) = jfp 2 P jrp;s � �gjjP j ;i.e., it is the fra
tion of instan
es for whi
h the performan
e ratio rp;s is within a fa
tor of �of the best ratio. The 
omparison of the plots of �s(�) for the di�erent solvers gives a way of
omparing the relative performan
e between solvers. The performan
e pro�le plots that wepresent in this paper have � as the x-axis and �s(�) as the y-axis. The solvers that performbetter are those for whi
h the plots are \higher".In our 
ase, we 
onstru
t performan
e pro�les for the di�erent algorithms at ea
h timeti; i = 1; : : : ; 5. Our performan
e measure of algorithm s on problem p (
p;s) is the distan
e tothe origin kbkk at time ti. In �gure 2, we give the performan
e pro�les for the von Neumannalgorithm and our algorithms at time t1. For the optimal pair adjustment algorithm, weplot the performan
e pro�les for the three versions tested, i.e., the original version and theversions with partial and multiple pri
ing. For the other algorithms, we just plot one of theversions that is representative of their performan
e. The versions 
hosen are: the originalvon Neumann algorithm, the weight-redu
tion algorithm with multiple pri
ing, the multiplepri
ing version of the algorithm where at ea
h iteration we sele
t the best of the weight-redu
tion and the von Neumann steps, and the proje
tion algorithm with rd = 50% andmultiple pri
ing. In this graph, �s(1) is the per
entage of problems that were winning attime t1. It is 
lear from the graph that the three versions of the optimal pair adjustmentalgorithm perform mu
h better than any of the other algorithms. It 
an also be seen thatthe von Neumann algorithm performs at least as well as any of the other algorithms that wehave developed.When we 
ompare ea
h of our algorithms with the von Neumann algorithm, we 
on
ludethat the three versions of the optimal pair adjustment algorithm perform better than anyof the other algorithms. For example, at time t1, there are 91.7%, 97.2%, and 95.2% ofwinnings for the original version of the optimal pair adjustment, the version with partialpri
ing, and the version with multiple pri
ing, respe
tively. At the same time, the weight-redu
tion algorithm with multiple pri
ing and the proje
tion algorithm (rd = 50%) win16



only for 31% and 40.7% of the problems, respe
tively. Furthermore, in the 
ases where thevon Neumann algorithm performs better than some version of the optimal pair adjustmentalgorithm, the value of kbkk obtained with the latter is at most 2.4 times larger than thevalue of kbkk obtained with the former (i.e., kbkkOPA � 2:4kbkVN). In 
ontrast, when theweight-redu
tion algorithm with multiple pri
ing and the proje
tion (rd = 50%) lose againstthe von Neumann algorithm, the values of kbkk 
an be within a fa
tor of up to 156 and 124,respe
tively, of the value of kbkk obtained with the von Neumann algorithm.At time t5, the three versions of the optimal pair adjustment algorithm win for 97.2%of the problems when 
omparing with the von Neumann algorithm. When the optimalpair adjustment loses, the norm of the residuals ve
tor is at most twi
e as large as that
orresponding to the solution obtained with the von Neumann algorithm.The per
entage of winnings of the weight-redu
tion algorithm with multiple pri
ingagainst the von Neumann algorithm in
reases with time. At time t5, it wins for 78.6%of the problems. However, when it looses, the ratio of the norms of the ve
tors of residuals
an still be very large (up to 162).The performan
e of the proje
tion algorithm (rd = 50%) also improves with time when
ompared to the von Neumann algorithm. In this 
ase, not only the number of winnings
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in
reases (up to 95.9% at time t5) but also the ratio of the norms of the ve
tors of residuals(kbkkProje
tion=kbkVN) de
reases (at time t5, the maximum ratio is smaller than 1.1).For detailed results, in
luding the values of kbkk at di�erent points in time for severalalgorithms, the reader is referred to the appendix and to [16℄.In �gure 3, we give the 
onvergen
e for some of the algorithms tested when applied tothe Netlib problem 80bau3b whi
h was sele
ted as representative of performan
e as a whole.Similar to the behavior of the von Neumann algorithm, our algorithms start with a fast initial
onvergen
e (some faster than others) but later the 
onvergen
e be
omes slow. However, thesigni�
ant improvement of the optimal pair adjustment algorithm when 
ompared to thevon Neumann algorithm 
an 
learly be seen in the �gure.
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Figure 3: Comparison between the von Neumann algorithm and some of the other algorithmstested when applied to problem 80bau3b.In �gure 4, we present performan
e pro�les for the von Neumann algorithm, the threealgorithms des
ribed in the literature that were developed in the 
ontext of the Frank-Wolfealgorithm, and the optimal pair adjustment algorithm at time t1. This �gure illustrates the
onsistent improvement of the optimal pair adjustment algorithm over those presented inthe literature.We end this se
tion with an illustration of the typi
al residuals obtained after transform-18
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e pro�les of the von Neumann algorithm, the three algorithms devel-oped to improve the Frank-Wolfe algorithm, and the optimal pair adjustment algorithm,tested at time t1 (x-axis: � ; y-axis: �s(�)).ing the approximate solutions for problem (1) to the original form of the linear programs.In table 2 we show the norms of the residuals of the primal 
onstraints, upper bounds, dual
onstraints, and duality gap for a sample of problem instan
es sele
ted to illustrate the rangeof behavior observed. In the �rst four lines we show the norms of the residuals for the initialsolution. In the following four lines we show the norms of the residuals after running thevon Neumann algorithm, and in the last four lines we show the norms of the residuals afterrunning the optimal pair adjustment algorithm with multiple pri
ing. The results presentedin the table give a good idea of the range of a

ura
ies that 
an be a
hieved with the algo-rithms studied. As it 
an be seen, the a

ura
ies 
an vary 
onsiderably. For example, for thesolutions obtained by the optimal pair adjustment, the norm of the primal residual rangesfrom 10�1 in problem kb2 to 106 in problem CO5. Nevertheless, the �nal a

ura
ies obtainedby the optimal pair adjustment algorithm represent, in most 
ases, an improvement over thea

ura
ies of the initial solutions of at least two orders of magnitude.
19



Table 2: Norms of residuals in the original problem form at time t5 for several instan
estested.Algorithm Norm of residual 25fv47 kb2 ship12l tu� CO5Initial Primal 5.56E+05 4.03E+03 2.69E+05 1.65E+05 2.16E+08Upper bound 2.28E+05 2.41E+03 1.61E+05 3.64E+04 3.11E+07Dual 3.65E+05 5.64E+03 1.09E+05 3.03E+04 8.52E+07Duality gap 8.91E+06 7.14E+03 1.33E+07 5.21E+05 3.62E+09VN Primal 5.44E+03 3.57E+01 2.45E+03 8.79E+02 1.79E+07Upper bound 3.30E+03 8.85E+00 1.23E+03 4.72E+02 1.70E+07Dual 5.24E+03 1.18E+02 7.24E+02 6.95E+02 2.04E+07Duality gap 8.53E+01 1.19E-02 5.72E+01 3.70E+01 2.38E+05OPA Primal 5.07E+03 7.90E-01 3.84E+02 2.00E+01 5.18E+06w/ mp Upper bound 9.01E+02 2.43E-01 2.64E+02 3.43E+00 4.33E+06Dual 3.56E+03 3.80E+00 8.47E+02 3.84E+01 5.93E+06Duality gap 2.76E+01 7.09E-04 2.66E+00 7.48E-01 5.28E+036 Con
lusionsIn this paper, we presented three new algorithms for linear programming based on the vonNeumann algorithm. These algorithms 
an be 
onsidered elementary sin
e they performonly simple 
omputations.We presented 
omputational results that showed that our algorithms 
an provide sig-ni�
ant improvements when 
ompared to the von Neumann algorithm. In parti
ular, theoptimal pair adjustment algorithm 
onsistently provides solutions signi�
antly 
loser to op-timal than the von Neumann algorithm in the same amount of time.In spite of the improvements over the von Neumann algorithm, our algorithms are stillimpra
ti
al for solving linear programs to optimality. However, they 
ould be useful insome situations and future resear
h is needed to understand the pra
ti
al impa
t that thesealgorithms 
an have. Although we have presented results on some quite large and verysparse linear programming instan
e (e.g., ken-18 and osa-60), more resear
h should be doneon even larger instan
es where the simpli
ity of these methods may give them an advantageover interior point methods and the simplex method. Also, the fast initial 
onvergen
e rate ofthese methods 
ould be used to help enhan
e the performan
e of interior point methods. Thisidea is espe
ially attra
tive when 
onsidering the use of our algorithms in 
onjun
tion withan infeasible primal-dual path following algorithm, whi
h is the type of interior point method20



most 
ommonly implemented in software. Sin
e our algorithms provide an infeasible solutionand sin
e those interior point methods start with an infeasible solution and, in general, redu
ethe infeasibility at ea
h iteration, we 
ould easily swit
h between our algorithms and theinterior point method. Finally, generalizations of these algorithms, su
h as the one studiedby Epelman and Freund [9, 10℄ for solving 
oni
 linear systems, 
ould be studied.A
knowledgementsThe authors thank the anonymous referees for their suggestions for improving this paper.A AppendixIn table 3, we give the names of the 145 linear programming instan
es in our 
omputationalexperiments. We also give the sizes of all the problems after presolve, as well as kb0k, i.e.,the norm of the ve
tor of residuals for the starting solution.In the last two 
olumns of table 3, we provide the values of the norms of the ve
tors ofresiduals (kbkk) at time t1 obtained with the von Neumann algorithm and with the optimalpair adjustment algorithm. For more detailed results, in
luding the values of kbkk at otherpoints in time and for other algorithms, the reader is referred to [16℄.Table 3: Sizes of problems after presolve, norm of initial resid-ual ve
tors, and norm of residual ve
tors at time t1 for vonNeumann and Optimal Pair Adjustment algorithms.Problem m n nub nnz kb0k kbkkVN at t1 kb0kOPA at t125fv47 769 1821 513 10245 1.64E-1 9.40E-3 4.28E-380bau3b 1965 10701 5141 21013 2.70E-1 3.49E-3 6.28E-4adlittle 53 134 60 404 1.86E-1 2.46E-2 4.90E-3a�ro 25 48 6 97 7.69E-2 3.14E-2 2.08E-2agg 319 404 21 1838 2.19E-2 1.81E-2 1.79E-2agg2 455 689 16 4351 4.26E-2 1.57E-2 1.33E-2agg3 455 689 16 4367 4.27E-2 1.57E-2 1.33E-2bandm 211 366 271 1654 1.31E-1 1.68E-2 6.10E-3bea
onfd 73 148 27 561 2.69E-1 2.15E-2 5.56E-3blend 66 101 57 416 1.05E-1 2.76E-2 1.20E-2bnl1 558 1439 1002 4949 2.56E-1 6.97E-3 3.50E-3bnl2 1848 3800 2303 13251 1.95E-1 4.50E-3 1.16E-3boeing1 294 660 333 3020 1.37E-1 1.16E-2 1.48E-321



Table 3: 
ontinuedProblem m n nub nnz kb0k kbkkVN at t1 kb0kOPA at t1boeing2 125 264 108 922 6.63E-2 2.08E-2 1.23E-2bore3d 64 90 60 405 2.11E-1 2.30E-2 2.02E-2brandy 116 216 154 1557 1.69E-1 2.03E-2 1.06E-2
apri 235 421 239 1448 1.69E-1 1.58E-2 2.24E-3
y
le 1400 2749 1301 14462 6.54E-2 8.59E-3 8.12E-3
zprob 661 2705 2141 5393 1.90E-1 6.63E-3 6.39E-3d2q06
 2012 5561 1515 30860 1.89E-1 5.77E-3 5.60E-4d6
ube 403 5443 8 32523 4.59E-1 9.32E-3 9.33E-3degen2 444 757 0 4199 1.56E-1 1.42E-2 1.32E-2degen3 1503 2604 0 25149 1.11E-1 1.08E-2 1.07E-2d
001 5907 12065 5126 35021 1.51E-1 5.66E-3 6.42E-4e226 161 392 243 2301 1.26E-1 1.70E-2 1.47E-2etama
ro 331 666 411 1972 1.30E-1 1.76E-2 1.65E-3��f800 313 817 101 4542 1.08E-1 1.75E-2 1.93E-2�nnis 359 775 174 1809 1.52E-1 1.23E-2 4.11E-3�t1d 24 1047 1024 13381 2.90E-1 1.32E-2 1.34E-2�t1p 678 1706 399 9948 2.51E-1 8.11E-3 8.60E-3�t2d 25 10387 10363 127784 2.80E-1 3.06E-3 3.00E-3�t2p 3170 13695 7500 50624 3.62E-1 2.36E-3 1.19E-3forplan 104 411 7 4066 2.66E-1 1.82E-2 1.61E-2ganges 840 1197 428 5512 7.04E-2 1.46E-2 1.81E-4gfrd-pn
 590 1134 258 2393 2.76E-1 7.63E-3 2.64E-4greenbea 1872 4081 581 23334 4.73E-2 1.04E-2 3.56E-3greenbeb 1865 4065 754 23225 5.77E-2 1.02E-2 3.37E-3grow15 300 645 600 5620 1.80E-1 1.14E-2 8.35E-3grow22 440 946 880 8252 1.80E-1 9.54E-3 7.89E-3grow7 140 301 280 2612 1.81E-1 1.63E-2 8.94E-3israel 166 307 4 2425 3.81E-2 2.30E-2 2.13E-2kb2 43 68 9 292 6.21E-2 2.59E-2 3.86E-3lot� 117 329 16 643 1.63E-1 2.16E-2 3.05E-3maros 626 1365 93 6156 6.38E-2 1.30E-2 8.14E-3maros-r7 2152 6578 0 80167 3.41E-1 3.88E-3 2.76E-4modszk1 658 1405 0 2863 1.90E-1 9.22E-3 1.18E-3nesm 646 2850 1560 13100 1.90E-1 1.34E-2 1.72E-3perold 580 1412 490 6298 9.43E-2 1.27E-2 2.53E-3pilot 1350 4506 1292 41683 5.95E-2 1.26E-2 1.19E-3pilot4 389 1069 349 6606 9.39E-2 1.59E-2 1.46E-3pilot87 1968 6367 1908 72133 6.57E-2 1.06E-2 2.14E-3pilot ja 795 1834 713 12032 9.57E-2 1.62E-2 4.37E-4pilot we 691 2621 560 8553 5.53E-2 1.84E-2 6.21E-3pilotnov 830 2089 895 11694 9.62E-2 1.57E-2 2.97E-4re
ipe 61 120 56 392 8.48E-2 2.58E-2 1.78E-2s
105 104 162 0 339 3.23E-2 2.79E-2 2.79E-2s
205 203 315 13 663 2.56E-2 1.94E-2 7.28E-3s
50a 49 77 0 159 4.68E-2 3.31E-2 3.23E-222



Table 3: 
ontinuedProblem m n nub nnz kb0k kbkkVN at t1 kb0kOPA at t1s
50b 48 76 0 146 4.72E-2 3.10E-2 2.94E-2s
agr25 344 543 127 1364 1.45E-1 1.16E-2 9.81E-4s
agr7 92 147 37 356 1.53E-1 2.21E-2 3.14E-3s
fxm1 268 526 201 2263 1.41E-1 1.60E-2 2.16E-3s
fxm2 536 1052 402 4531 1.40E-1 1.17E-2 2.32E-3s
fxm3 804 1578 603 6799 1.40E-1 9.60E-3 2.27E-3s
orpion 180 239 28 608 1.53E-1 2.12E-2 1.81E-2s
rs8 418 1183 622 2819 1.87E-1 9.84E-3 3.27E-3s
sd8 397 2750 0 8584 4.25E-1 2.14E-2 1.71E-2s
tap1 269 608 339 1713 2.66E-1 1.70E-2 1.64E-2s
tap2 977 2303 1326 6694 2.75E-1 1.61E-2 1.61E-2s
tap3 1346 3113 1767 8986 2.70E-1 1.65E-2 1.64E-2seba 2 9 8 12 4.20E-1 4.16E-2 1.64E-2share1b 107 243 31 1016 7.59E-2 3.01E-2 2.16E-2share2b 92 158 76 711 1.16E-1 2.75E-2 1.01E-2shell 487 1450 188 2904 3.33E-1 7.30E-3 7.41E-5ship04l 292 1905 1672 4290 4.24E-1 8.63E-3 1.75E-3ship04s 216 1281 1052 2875 4.21E-1 9.77E-3 1.69E-3ship08l 470 3121 2664 7122 4.28E-1 6.53E-3 1.66E-3ship08s 276 1604 1155 3644 4.22E-1 7.94E-3 1.67E-3ship12l 610 4171 3510 9254 3.95E-1 6.75E-3 2.89E-3ship12s 340 1943 1282 4297 3.89E-1 8.15E-3 2.99E-3sierra 1129 2618 2008 7566 3.43E-1 4.28E-3 1.64E-4stair 356 531 42 3811 3.18E-2 1.72E-2 1.34E-2standata 292 582 358 1167 2.39E-1 1.08E-2 6.19E-3standgub 292 582 358 1167 2.39E-1 1.08E-2 6.01E-3standmps 388 1146 984 2491 3.22E-1 7.50E-3 5.52E-3sto
for1 94 142 80 405 7.77E-2 2.39E-2 1.01E-2sto
for2 1968 2856 1286 8066 5.58E-2 5.61E-3 2.56E-3sto
for3 15336 22202 9667 62908 4.62E-2 2.07E-3 4.78E-4truss 1000 8806 0 27836 4.42E-1 9.42E-3 9.36E-3tu� 246 553 380 3737 1.60E-1 3.38E-2 3.55E-2vtp base 46 82 43 205 1.33E-1 2.79E-2 1.00E-2
re-a 2994 6692 302 16552 1.89E-1 5.24E-3 3.43E-4
re-b 5336 36382 506 111637 2.32E-1 8.09E-3 2.55E-4
re-
 2375 5412 132 13346 1.87E-1 6.23E-3 1.20E-4
re-d 4102 28601 203 86353 2.57E-1 8.99E-3 2.60E-4ken-07 1427 2603 2603 5494 5.84E-3 5.51E-3 5.04E-3ken-11 10061 16709 16709 35578 2.22E-3 2.12E-3 1.94E-3ken-13 22519 36546 36546 80148 1.58E-3 1.39E-3 1.30E-3ken-18 78823 128395 128395 286183 9.63E-4 7.51E-4 6.69E-4osa-07 1047 24911 23864 65138 4.76E-1 8.24E-3 9.89E-3osa-14 2266 54535 52269 143777 4.76E-1 5.87E-3 8.20E-3osa-30 4279 103978 99699 276565 4.77E-1 4.37E-3 6.90E-3osa-60 10209 242411 232202 614537 4.76E-1 3.05E-3 7.00E-323



Table 3: 
ontinuedProblem m n nub nnz kb0k kbkkVN at t1 kb0kOPA at t1pds-02 2603 7333 4440 15682 2.50E-1 7.42E-3 1.32E-3pds-06 9119 28435 18835 60676 2.77E-1 3.19E-3 1.02E-3pds-10 15587 48719 33076 104038 2.81E-1 2.26E-3 8.70E-4BL 5468 12038 2253 32699 1.73E-1 3.42E-3 9.66E-4BL2 5480 12063 2263 32837 1.73E-1 3.46E-3 1.07E-3CO5 4471 10318 1029 49028 1.34E-1 5.42E-3 3.90E-3CO9 8510 19276 1844 92450 1.31E-1 4.22E-3 2.36E-3CQ9 7073 17806 1893 82802 1.08E-1 5.26E-3 3.30E-3GE 8361 14096 1359 39167 9.58E-2 3.64E-3 9.02E-4NL 6478 14393 3213 44437 2.03E-1 2.95E-3 1.18E-3a1 42 73 72 284 1.16E-1 2.21E-2 1.81E-2fort45 1037 1467 1402 6077 1.26E-1 6.33E-3 4.86E-4fort46 1037 1467 1402 6077 1.25E-1 6.31E-3 6.16E-4fort47 1037 1467 1402 6077 1.37E-1 6.52E-3 4.08E-4fort48 1037 1467 1402 6077 1.29E-1 6.58E-3 2.31E-4fort49 1037 1467 1402 6077 1.27E-1 6.43E-3 4.01E-4fort51 1042 1473 1402 8359 1.77E-1 5.84E-3 1.10E-3fort52 1041 1471 1402 7957 1.57E-1 6.10E-3 2.04E-4fort53 1041 1471 1402 7957 1.57E-1 5.94E-3 2.02E-4fort54 1041 1471 1402 7730 1.34E-1 5.74E-3 2.70E-4fort55 1041 1471 1402 7730 1.34E-1 5.71E-3 2.77E-4fort56 1041 1471 1402 8027 1.60E-1 6.09E-3 2.04E-4fort57 1041 1471 1402 8027 1.60E-1 5.88E-3 2.02E-4fort58 1041 1471 1402 7957 1.25E-1 6.41E-3 2.13E-4fort59 1041 1471 1402 7957 1.25E-1 6.36E-3 2.17E-4fort60 1041 1471 1402 7958 1.34E-1 6.31E-3 2.12E-4fort61 1041 1471 1402 7958 1.34E-1 6.24E-3 2.13E-4x1 983 1413 1412 5873 1.40E-1 6.42E-3 4.36E-4x2 983 1413 1412 5873 1.08E-1 6.50E-3 9.03E-4pata01 122 1241 0 2443 7.19E-2 2.80E-2 2.46E-2pata02 122 1241 0 2443 7.19E-2 2.80E-2 3.74E-2patb01 57 143 0 277 7.00E-2 3.02E-2 1.49E-2patb02 57 143 0 277 7.00E-2 3.02E-2 1.48E-2vs
hna02 122 1363 0 2565 6.73E-2 2.96E-2 2.90E-2vs
hnb01 57 144 0 278 7.10E-2 2.97E-2 2.36E-3vs
hnb02 58 202 0 338 5.93E-2 3.49E-2 2.13E-2willett 184 588 0 2403 5.02E-2 4.10E-2 1.69E-2ex01 234 1555 1325 9091 1.95E-1 1.01E-2 1.44E-4ex02 226 1547 1324 8899 2.13E-1 1.31E-2 1.76E-2ex05 831 7747 6923 46038 1.93E-1 1.79E-2 3.42E-3ex06 824 7778 6961 44370 3.36E-1 8.71E-3 5.29E-4ex09 1818 18120 16309 104559 2.04E-1 2.22E-2 1.20E-3
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