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In this work we consider feature selection for two-class linear models, a challenging task arising in several
real-world applications. Given an unknown functional dependency that assigns a given input to the class
to which it belongs, and that can be modelled by a linear machine, we aim to find the relevant features of
the input space, namely we aim to detect the smallest number of input variables while granting no loss
in classification accuracy. Our main motivation lies in the fact that the detection of the relevant features
provides a better understanding of the underlying phenomenon, and this can be of great interest in important
fields such as medicine and biology. Feature selection involves two competing objectives: the prediction
capability (to be maximized) of the linear classifier and the number of features (to be minimized) employed
by the classifier. In order to take into account both the objectives, we propose a feature selection strategy
based on the combination of support vector machines (for obtaining good classifiers) with a concave
optimization approach (for finding sparse solutions). We report results of an extensive computational
experience showing the efficiency of the proposed methodology.

Keywords: support vector machines; zero-norm; concave programming; Frank-Wolfe method

1. Introduction

Obtaining a reliable predictor is a key aspect when dealing with machine learning problems. If data
are noisy or there is much irrelevant and redundant information, then knowledge discovery during
the training phase becomes more difficult. Data preprocessing, which represents a fundamental
step in data mining, transforms raw data into a more suitable format for easing the training
task. There are a number of different tools and methods used for preprocessing, including: data
denoising, integration, transformation, normalization, feature extraction, and feature selection. In
this work, we focus on a specific class of feature selection problems.

Given an unknown process that assigns a given input to the class to which it belongs, feature
selection basically consists of selecting a subset of relevant features (components of the vectors)
that permits us to build a reliable model of the underlying process.
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118 F. Rinaldi and M. Sciandrone

The aims of feature selection are substantially the following: improving the generalization
performance of the predictive model, reducing the computational time to construct the model, and
better understanding the underlying process. A complete survey on the topic can be found in [8].

In this work, we focus on feature selection problems of two-class linear models, which are
common in several applications [4].

Given a finite set (the training set) of data (not necessarily linearly separable)

T S = {(xi, yi), xi ∈ Rn, yi ∈ {−1, 1}, i = 1, . . . , N},
where the label yi denotes the class of the vector xi, we make predictions about points x ∈ Rn by
a linear machine defined by the decision function

y(x) = sgn(wTx + b), (1)

where x ∈ Rn is the input vector, w ∈ Rn the vector of weights, b ∈ R the threshold, sgn:R →{− 1, 1}
the sign function such that sgn(t) = 1 for t ≥ 0 and s(t) = − 1 for t < 0. We denote by H(w, b) the
separating hyperplane associated with the decision function (1).

We are interested in finding the relevant features of the input space Rn, namely we want to
reduce the dimensionality of the data by selecting those variables that enable us to model the
unknown process by a linear classifier in a subspace of Rn. Our motivation lies in the fact that,
as mentioned earlier, the detection of the relevant features provides a better understanding of the
underlying phenomenon, and this can be of great interest in important fields such as medicine and
biology. For instance, feature selection in data concerning healthy patients and patients affected
by a given pathology may help to better understand the considered pathology from a medical
point of view.

In feature selection two objectives have to be considered:

(a) the goodness (to be maximized) of the data fitting of the linear classifier modelling the process;
(b) the number of input variables (to be minimized) of the classifier.

A reasonable and often adopted approach is that of formalizing the feature selection problem
as an optimization problem whose objective function consists of two terms, the first related to the
error on the training data (its inverse gives a measure of the goodness of the training data fitting),
the second to the sparsity of the solution to be determined. The second term is also introduced to
prevent overtraining (the machine learns too specifically the training data), a phenomenon that
could lead to a linear classifier with poor generalization capabilities, namely poor capabilities to
correctly classify input data never used in the training process.

The two formulations presented in [3] take the form

min
w,b,ξ

(1 − λ)f (ξ) + λg(w)

s.t. yi(wTxi + b) ≥ 1 − ξ i, i = 1, . . . , N,

ξ i ≥ 0, i = 1, . . . , N,

(2)

where λ∈ [0, 1) is a parameter, ξ i for i = 1, . . . , N are slack variables, the first term f in the
objective function is an upper bound of the average training error, and the second term g penalizes
nonzero components of w. In both the formulations, the term f is the sum (possibly weighted)
of the slack variables ξ i, and hence measures the (average) violation of the constraints (thus
giving an upper bound of the training error). Concerning the term g, in the first formulation it is a
concave smooth approximation of the so-called zero-norm of w, denoted by ‖w‖0, and indicating
the number of nonzero components of w. The second formulation, related to the support vector
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Optimization Methods & Software 119

machine (SVM) approach [12], uses as function g, three different functions: the 1-norm, the ∞-
norm, and the 2-norm of w. The numerical results reported in [3] show that the two approaches
lead to predictive models comparable in terms of classification accuracy. However, the concave-
based approach performs better as a feature selection technique, that is, the classifiers obtained
select fewer features than those determined by SVM.

In this work, we present a feature selection strategy that combines SVM and a concave
optimization-based approach. Differently from [3], where the two objectives (a) and (b) are
embedded in the objective function of Equation (2) and assessed by means of a parameter λ,
our method operates separately on the two objectives (a) and (b). The basic ideas of the strategy
are the following:

(i) to compute in a given subspace (which is the original input space at the beginning) a good
linear classifier (according to the statistical learning theory [12]) by means of SVM;

(ii) to determine a sparse linear classifier using concave optimization and checking that the current
solution is not ‘too far’from the SVM solution in order to preserve the generalization capability
of the classifier.

The method is designed in such a way as to avoid sparse solutions determined by concave
minimization diverging from SVM classifiers, thus deteriorating the quality of data fitting. It
involves convex quadratic and linear programming problems (which can be efficiently solved by
available solvers), and this makes possible its application, as shown by the experiments, to large
dimensional problems.

We tested the method on several problems with different sizes both in the number n (ranking
from 34 to 7129) of features and in the number N (ranking from 40 to 13,086) of training data.
The obtained results clearly show that the proposed feature selection technique is very efficient
and robust.

2. Linear support vector machines

Consider the training set

T S = {(xi, yi), xi ∈ Rn, yi ∈ {−1, 1}, i = 1, . . . , N}
and assume it is linearly separable, that is, there exists a separating hyperplane

H(w, b) = {x ∈ Rn : wTx + b = 0}
such that

wTxi + b ≥ 1, ∀xi : yi = 1,

wTxi + b ≤ −1, ∀xi : yi = −1.
(3)

The margin ρ(w, b) of a separating hyperplane H(w, b) is the distance from the hyperplane to the
closest training points, i.e.

ρ(w, b) = min
xi , i=1,...,N

|wTxi + b|
‖w‖ .

The SVM approach picks out, among the linear classifiers, the optimum separating hyperplane
(i.e. the hyperplane having maximum margin). The basic training principle of SVM, motivated by
the statistical learning theory [12], is that the expected classification error for unseen test samples
is minimized, so that SVM defines a good predictive model.
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120 F. Rinaldi and M. Sciandrone

The optimum hyperplane can be determined by solving the following quadratic programming:

min
w∈Rn, b∈R

1

2
‖w‖2

yi(wTxi + b) ≥ 1, i = 1, . . . , N.

(4)

In the case that the training set is not linearly separable, the system of inequalities (3) does not admit
solution. By introducing slack variables ξ i, for i = 1, . . . , N, the SVM classifier is determined by
solving

min
w∈W, b∈R, ξ∈RN

1

2
‖w‖2 + C

N∑
i=1

ξ i,

yi(wTxi + b) ≥ 1 − ξ i, i = 1, . . . , N

ξ i ≥ 0, i = 1, . . . , N,

(5)

where the term
∑N

i=1ξ
i is an upper bound on the training error. The regularization parameter C > 0

trades off margin size and training error, and is usually determined by standard cross-validation
tuning procedures. More specifically, discrete values of C are defined, and for each value a k-fold
cross validation on the training set is performed. The value of C which gives the lowest cross-
validation error rate is selected. Recently, some algorithms have been developed to efficiently
solve large-scale problems of the form (5) (see [5] and the references therein).

We observe that SVM provides a good linear classifier, but we cannot expect that the obtained
separating hyperplane utilizes as few of the features as possible, since the minimization of the
Euclidean norm favours solutions with many small nonzero components. We will induce sparsity
by suitably exploiting the concave approach described in the next section.

3. Concave minimization for finding sparse solutions

Consider the general problem of finding a vector belonging to a polyhedron and having the
minimum number of nonzero components, that is

min
y∈Rn

‖y‖0,

y ∈ P,

(6)

where ‖y‖0 is the zero-norm of y defined as ‖y‖0 = card{yj:yj 	= 0}, P ⊂ Rn is a nonempty
polyhedral set. As shown in [2], this combinatorial optimization problem is NP-hard.

In order to make the problem tractable, a concave optimization-based approach has been orig-
inally proposed in [3] and successively developed in [11,14]. It is necessary to solve a separable
problem of the form

min
y,z∈Rn

F (z; u) =
n∑

j=1

fj (zj ; u),

y ∈ P,

− zj ≤ yj ≤ zj , j = 1, . . . , n,

(7)

where fj : R → R are continuously differentiable concave functions that depend on a vector u ∈ Rm

of parameters (in the proposed formulations, the number m of parameters is either one or two).
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Optimization Methods & Software 121

We say that an approximating problem (7) is equivalent to the given nonsmooth problem (6) if
for suitable values of the vector u there exists a solution of Equation (7) which yields a solution
of the original problem (6).

We briefly illustrate the ideas underlying the concave approach described above. We can write

‖y‖0 =
n∑

j=1

s(|yj |),

where s : R → R+ is the step function such that s(t) = 1 for t > 0 and s(t) = 0 for t ≤ 0. Then,
following the approach described in [3], we replace the discontinuous step function by a con-
tinuously differentiable concave function v(t) = 1 − e−αt , with parameter α > 0, thus obtaining a
problem of the form

min
y,z∈Rn

F (z; α) =
n∑

j=1

(1 − e−αzj ),

y ∈ P,

− zj ≤ yj ≤ zj , j = 1, . . . , n.

(8)

It has been shown in [10] that the approximating problem (8) is equivalent to the given nonsmooth
problem (6).

Another concave formulation has been proposed in [14]

min
y,z∈Rn

F (z; ε) =
n∑

j=1

ln(ε + zj ),

y ∈ P,

− zj ≤ yj ≤ zj , j = 1, . . . , n,

(9)

with 0 <ε � 1. Formulation (9) is practically motivated by the fact that, due to the form of the
logarithm function, it is better to increase one variable zj while setting to zero another, rather
than doing some compromise between both, and this should facilitate the computation of a sparse
solution. The following two concave formulations, related to the ideas underlying Equations (8)
and (9) respectively, have been proposed in [11]

min
y∈Rn,z∈Rn

F (z; ε, p) =
n∑

j=1

(zj + ε)p,

y ∈ P,

− zj ≤ yj ≤ zj , j = 1, . . . , n

(10)

with 0 < p < 1, and 0 <ε;

min
y∈Rn,z∈Rn

F (z; ε, p) = −
n∑

j=1

(zj + ε)−p,

y ∈ P,

− zj ≤ yj ≤ zj , j = 1, . . . , n

(11)

with 1 ≤ p, and 0 <ε.
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122 F. Rinaldi and M. Sciandrone

The following result (see Propositions 3–6 in [11]) shows the equivalence between the
approximating smoooth problems (8)–(11) and the original nonsmooth problem (6).

Proposition 3.1 Formulations (8)–(11) are equivalent to Equation (6).

The above result well motivates, from a theoretical point of view, the replacement of problem
(6) with suitable smooth concave problems of the form (7).

In order to solve a concave problem of the form (7), the Frank–Wolfe algorithm [6] with unitary
stepsize can be applied. The algorithm is described below, where for notational convenience we
omit the dependence on the vector of parameter u of the objective function, and we set

� =
{(

y

z

)
∈ R2n : y ∈ P, −zj ≤ yj ≤ zj , j = 1, . . . , n

}
. (12)

Frank–Wolfe – Unitary Stepsize (FW1) Algorithm

(1) Let (y0, z0)T ∈ R2n be the starting point.
(2) For k = 0, 1, . . . ,

if (yk, zk)T /∈ arg min
(y,z)T∈�

∇F(zk)Tz then compute a vertex solution (yk+1, zk+1)T of

min
(y,z)T∈�

∇F(zk)Tz (13)

else exit.

The algorithm only involves the solution of linear programming problems. The following result,
proved in [10] for a general class of concave problems, states that the algorithm generates a finite
sequence and that it terminates at a stationary point, provided suitable assumptions are satisfied.
These assumptions hold for problems (8)–(11).

Proposition 3.2 Let us consider problem (7) and assume that F is a concave, continuously
differentiable function, bounded below on the feasible set that contains no straight lines going to
infinity in both directions. The Frank–Wolfe algorithm with unitary stepsize converges to a vertex
stationary point of problem (7) in a finite number of iterations.

The computational experiments described in [3,11,14] show that the FW1Algorithm, applied to
concave formulations, is able to find very sparse solutions. In particular, among the theoretically
equivalent concave formulations (8)–(11), slightly better results in terms of sparsity were obtained
in [11] by means of formulation (11), which have been used in the computational experiments of
the present work.

However, in a feature selection context where besides the objective of finding sparse solutions
there is the objective of ensuring a sufficiently high classification accuracy of the separating
hyperplane, the concave-based approach must be suitably adapted, and this will be shown in the
next section.

4. A feature selection algorithm

In this section, we present a feature selection technique based on the combination of SVM with
concave optimization. The approach exploits the good predictive capabilities of SVM classifiers
and the effectiveness of concave optimization to determine sparse solutions.
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Optimization Methods & Software 123

The method is designed in such a way as to avoid sparse solutions determined by concave
minimization diverging from SVM classifiers, thus deteriorating the quality of data fitting. More
specifically, starting from the SVM solution in a given subspace, we perform a single iteration of
the Frank–Wolfe algorithm on a problem whose objective function is a concave approximation
of the zero-norm (that favours sparse solutions), and the constraints are the linear inequalities
related to the training data correctly classified by SVM. The nonzero components of the computed
separating hyperplane define a subspace of a lower dimension, and we repeat the two-phase
procedure in this subspace.

In the sequel, we refer to an unspecified concave function of the form

F(z) =
n∑

j=1

fj (zj ),

where fj : R → R are concave smooth functions, aimed to approximate the zero-norm problem. Spe-
cific concave functions that can be practically employed are the objective functions of formulations
(8)–(11).

Formally, the feature selection algorithm, based on the combination of SVM with concave
programming, is reported below.

4.1 Algorithm FS-SVMCP

Let W = Rn.

(1) Solve the SVM problem

min
w∈W,b∈R,ξ∈RN

1

2
‖w‖2 + C

∑
i∈I

ξ i,

yi(wTxi + b) ≥ 1 − ξ i, i = 1, . . . , N,

ξ i ≥ 0, i = 1, . . . , N

(14)

and let (w�, b�, ξ�) be the solution obtained.
(2) Set I ={1, . . . , N}/{i:(ξ�)i ≥ 1}, z�

j = |w�
j | for j = 1, . . . , n, and compute a vertex solution

(ŵ, b̂, ẑ)T of the linear programming problem

min
w∈W,b∈R,z∈Rn

∇F(z�)Tz,

yi(wTxi + b) ≥ 1, i ∈ I,

− zj ≤ wj ≤ zj , j = 1, . . . , n.

(15)

If ‖ŵ‖0 < ‖w�‖0 then remove features corresponding to null components of ŵ, i.e. set

W = {w ∈ Rn : wh = 0, ∀h : ŵh = 0},
and go to step 1, otherwise let H(w�, b�) be the separating hyperplane and exit.

At Step 1 a good classifier in a given subspace of Rn (defined by W ) is determined by means
of the standard SVM technique (as said in Section 2, the value of parameter C can be computed
by means of a cross-validation tuning procedure). The misclassified training points xi are those
corresponding to slack variables (ξ ∗)i greater than 1. The index set I, defined at Step 2, identifies
the well-classified training points.
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124 F. Rinaldi and M. Sciandrone

At Step 2, starting from the point (w�, b�, z�)T provided by the SVM classifier, a single iteration
of FW1 Algorithm is applied to the problem

min
w∈W,b∈R,z∈Rn

F (z),

yi(wT xi + b) ≥ 1, i ∈ I,

− zj ≤ wj ≤ zj , j = 1, . . . , n,

(16)

where, as said above, the set I identifies the inequalities corresponding to the training points
well-classified by SVM classifier. The inequalities defined by the set I should induce the good
behaviour of SVM classifier in terms of separation, in other words, the constraints defined by
the set I impose that the hyperplane provides a decision function yielding, on the training data,
the same outputs of the SVM classifier. The aim of the single-iteration of Step 2 is to determine
a separating hyperplane that utilizes fewer features and is not too far from the SVM solution.
The nonzero components of the separating hyperplane so determined define a subspace of lower
dimension, and we repeat the two-phase procedure in this subspace. The algorithm terminates
whenever no dimension reduction is obtained by the concave minimization phase.

We remark that the algorithm is very simple and that involves the use of only one parameter
(the parameter C at Step 1). Furthermore, the optimization problems that must be solved at steps
1 and 2 are convex quadratic programming and linear programming problems respectively, so that
they can be efficiently solved even when their dimensions are extremely large.

5. Computational experiments

In this section we describe the numerical results obtained by Algorithm FS-SVMCP on nine data
sets (See appendix for further information) usually employed in linear classifier testing.

5.1 Implementation details

At Step 1, SVM problem (14) has been solved by LIBLINEAR A Library for Large Linear Clas-
sification, developed by the Machine Learning Group at National Taiwan University (see [5] for
the details). At each iteration, the parameter C has been determined by a standard cross-validation
procedure. At Step 2, we have used the concave function

F(z; ε, p) = −
n∑

j=1

(zj + ε)−p (17)

corresponding to formulation (11) approximating the zero-norm problem, with ε = 10−6 and
p = 1. This choice is motivated by the fact that, as previously mentioned, formulation (11) gave,
in (11), results slightly better than those of the other formulations.

At each iteration, the linear programming problem (15) has been solved using GLPK (4.9). The
experiments were carried out on Intel Pentium 4 3.2 GHz 512 MB RAM.

5.2 Experiments and results

For each problem, we randomly divided the available data into training set and test set, thus
generating 10 instances. We grouped the nine problems into two sets:
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Optimization Methods & Software 125

• the first set is made of four well-known problems in Bioinformatics (breast cancer, colon cancer,
leukemia, and lymphoma) having many features (of the order of thousands) and a small number
of training and test data (of the order of tens);

• the second set is made of five miscellaneous problems (Ionosphere, Sonar, Musk, Sylva, and
Gina) with number n of features ranking from 34 to 970, and number N of training data ranking
from 180 to 13,056.

The results obtained on the two sets of test problems are shown in Tables 1 and 2 respectively,
where for each problem we report

• the number Tr of training data, the number Ts of test data, the number n of features;
• the average (on the 10 instances) classification accuracy on the training set (TR%) and on the

test set (TS%), and the average number of selected features ‖w�‖0 obtained by the standard
linear SVM classifier (SVM);

• the average (on 10 instances) classification accuracy on the training set (TR%), on the test set
(TS%), and the average number of selected features ‖w�‖0 obtained by Algorithm FS-SVMCP
(FS-SVMCP).

The results of Tables 1 and 2 clearly show the effectiveness of the proposed feature selec-
tion technique. Indeed, the proposed algorithm seems to provide a good trade-off between the
classification accuracy and the number of selected variables.

Note that the data sets of the first table are very different (in the structure) from those of the
second table, and that the performance of the proposed algorithm on the two sets of problems are
very similar. This points out a good robustness of the method (thanks to its simplicity), which is
useful whenever different kind of applications must be tackled.

5.3 Comparison with an existing feature selection method

In order to better assess the performance of our algorithm, we have compared the obtained results
with those of a well-known and deeply used feature selection method, the so-called recursive

Table 1. Results obtained by Algorithm FS-SVMCP on the first set of test problems.

SVM FS-SVMCP

Data set Tr Ts n TR% TS% ‖w∗‖0 TR% TS% ‖w∗‖0

Breast cancer 40 4 7129 100 95.00 7128.8 100 90.00 10.10
Colon cancer 50 12 2000 100 88.33 2000.0 100 85.00 9.30
Leukemia 58 14 7129 100 98.57 7123.3 100 97.14 7.30
Lymphoma 85 11 4026 100 97.27 4025.0 100 96.36 10.50

Table 2. Results obtained by Algorithm FS-SVMCP on the second set of test problems.

SVM FS-SVMCP

Data set Tr Ts n TR% TS% ‖w∗‖0 TR% TS% ‖w∗‖0

Ionosphere 300 51 34 100 94.51 33.0 99.83 93.92 15.90
Sonar 180 28 60 91.22 79.99 60.0 89.73 81.07 21.60
Musk 430 46 166 96.28 89.77 166.0 94.95 88.91 48.2
Sylva 13086 1308 216 98.15 97.95 181.2 98.85 98.70 17.9
Gina 3153 315 970 93.85 85.17 969.1 91.95 85.78 156.10
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feature selection (RFE-SVM) method proposed in [9]. This method is based on a standard linear
SVM classifier and tries to determine the best subset of r features, r < n being a prefixed number
of variables. The strategy is that of choosing the r features that yield the largest margin of class
separation. To this aim, a sequential backward selection is performed removing some variables
(or only one variable) at each iteration until r features remain. The removed features are that
corresponding to the smallest values of the components of the weight vector w obtained by
SVM training. In the experiments we used the Matlab implementation of RFE-SVM provided by
SPIDER Toolbox [15].

For each problem, and for each of the 10 instances, we fixed r equal to the number of features
selected by our algorithm. Thus, we compare the performance of the two algorithms in terms
of classification accuracy on the test set. The results of the comparison are shown in Tables 3
and 4, where we report for each algorithm and for each problem the average (on the 10 instances)
classification accuracy on the test set (TS%).

From the results of Tables 3 and 4 we get that our algorithm outperforms RFE-SVM. Indeed,
the classification accuracy of the linear model generated by our algorithm is always better than
that of the linear machine determined by RFE-SVM.

We have performed further experiments with Algorithm RFE-SVM on breast cancer and colon
cancer problems, where we have detected the biggest differences, in terms of classification
accuracy, between Algorithm FS-SVMCP and the standard linear SVM.

ConcerningAlgorithm RFE-SVM, we performed several tests, varying the number r of selected
features. The obtained results are presented in Table 5 where we show the classification accuracy
on the test set for different values of r. By comparing the results of Tables 1 and 5, we may
observe that, even after a substantial increase in the number of selected features, RFE-SVM does
not outperform our method in terms of classification accuracy. This confirms the good trade-
off between the classification accuracy and the number of employed variables obtained by the
algorithm proposed in this work.

Table 3. Comparison between Algorithm RFE-SVM and
Algorithm FS-SVMCP on the first set of test problems.

TS%

Data Set RFE-SVM FS-SVMCP

Breast cancer 82.5 90.00
Colon cancer 81.0 85.00
Leukemia 90.0 97.14
Lymphoma 86.0 96.36

Table 4. Comparison between Algorithm RFE-SVM and
Algorithm FS-SVMCP on the second set of test problems.

TS%

Data Set RFE-SVM FS-SVMCP

Ionosphere 91.76 93.92
Sonar 76.11 81.07
Musk 86.73 88.91
Sylva 98.65 98.70
Gina 83.59 85.78
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Table 5. Results ofAlgorithm RFE-SVM on two test problems
with different values of the number r of selected features.

Data set r TS%

Breast cancer 20 85.0
40 87.5
80 87.5

Colon cancer 20 81.7
40 80.9
80 85.9
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Appendix 1. The test problems

Breast cancer [13]: The duke breast-cancer data set contains 44 breast cancer tissues described by 7129 genes expression
values extracted from DNA microarray data. The data are available at http://www.csie.ntu.edu.tw/ ∼ cjlin/libsvmtools/
datasets/.
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Colon cancer [1]: The colon cancer data set contains 22 normal and 40 colon cancer tissues described by
2000 genes expression values extracted from DNA microarray data. The data are available at http://www.csie.
ntu.edu.tw/ ∼ cjlin/libsvmtools/datasets/.

Leukemia [7]: The leukemia data set contains information on gene-expression in samples from human acute myeloid
(AML) and acute lymphoblastic leukemias (ALL). It contains 25 ALL examples and 47 AML examples described by
7129 genes. The data are available at http://www.csie.ntu.edu.tw/ ∼ cjlin/libsvmtools/datasets/.

Lymphoma: The gene expression of 96 samples is measured with microarray to give 4026 features; 61 of the samples
are malignant and 35 are normal. The data are available at http://llmpp.nih.gov/lymphoma/.

Ionosphere: The Ionosphere data set describes a binary classification task where radar signals target two types of
electrons in the ionosphere: those that show some structure (good) and those that do not (bad). The data set contains 351
samples described by 34 attributes. The data are available at http://archive.ics.uci.edu/ml/datasets/.

Sonar: The data set contains 111 sonar signals bounced off a metal cylinder and 97 bounced off a roughly cylin-
drical rock. Each pattern is a set of 60 numbers in the range 0.0 to 1.0. The data are available at http://archive.ics.
uci.edu/ml/datasets/.

Musk: This data set contains 476 conformations of molecules. The goal is to learn to predict whether new molecules
will be musks or non-musks. Each sample is described by a set of 166 features. The data are available at http://archive.ics.
uci.edu/ml/datasets/.

Sylva: The task of Sylva is to classify forest cover types. This is a two-class classification problem with 216 input
variables. Each pattern is composed of four records: two true records matching the target and two records picked at
random. Thus half of the features are distracters. This version of the database was prepared for the WCCI 2006 challenge
on performance prediction. The data are available at http://clopinet.com/isabelle/Projects/modelselect/.

Gina: The task of Gina is handwritten digit recognition. We chose the problem of separating the odd numbers from even
numbers. We used 2-digit numbers. Only the unit digit is informative for that task, therefore at least half of the features
are distracters. This version of the database was prepared for the WCCI 2006 challenge on performance prediction. The
data are available at http://clopinet.com/isabelle/Projects/modelselect/.
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